
 

 

SCATTER-GATHER BASED APPROACH IN SCALING 

COMPLEX EVENT PROCESSING SYSTEMS FOR 

STATEFUL OPERATORS 

 
 
 

    
 
 

Sriskandarajah Suhothayan 
 

(168268V) 
 

 

 

Degree of Master of Science 
 

 
 

Department of Computer Science and Engineering 
 

University of Moratuwa  

Sri Lanka 
 

 

February 2019 
  



 

 

SCATTER-GATHER BASED APPROACH IN SCALING 

COMPLEX EVENT PROCESSING SYSTEMS FOR 

STATEFUL OPERATORS 

 
 
 

    
 
 

Sriskandarajah Suhothayan 
 

(168268V) 
 

 

 
Thesis submitted in partial fulfillment of the requirements for the degree Master of 

Science 

 

 

 
Department of Computer Science and Engineering 

 

University of Moratuwa  

Sri Lanka 
 

 
February 2019 

 
 



 

 

i

DECLARATION  

 
I declare that this is my own work and this MSc project report does not incorporate 

without acknowledgment any material previously submitted for degree or Diploma in 

any other University or institute of higher learning and to the best of my knowledge 

and belief it does not contain any material previously published or written by another 

person except where the acknowledgment is made in the text.  

 

Also, I hereby grant to the University of Moratuwa the non-exclusive right to 

reproduce and distribute my dissertation, in whole or in part in print, electronic or 

another medium. I retain the right to use this content in whole or part in future works 

(such as articles or books).  

 

Signature: ..................................... 

Date: .............................................       

Name: Sriskandarajah Suhothayan  

 

We certify that the declaration above by the candidate is true to the best of our 

knowledge and that this report is acceptable for evaluation for the CS6997 MSc 

Research Project qualifying evaluation.  

 

Supervisors 

 

..................................      ..................................  

Dr. H. M. N. Dilum Bandara    Dr. Srinath Perera    

 

..................................      ..................................  

Date        Date  



 

 

ii

ABSTRACT  

 
With the introduction of Internet of Things (IoT), scalable Complex Event 

Processing (CEP) and stream processing on memory, CPU, and bandwidth constraint 

infrastructure have become essential. While several related work focuses on 

replication of CEP engines to enhance scalability, they do not provide expected 

performance while scaling stateful queries for event streams that do not have pre-

defined partitions. Most of the CEP systems provide scalability for stateless queries or 

for the stateful queries where the event streams can be partitioned based on one or 

more event attributes. These systems can only scale up to the pre-defined number of 

partitions, limiting the number of events they can process. Meanwhile, some CEP 

systems do not support cloud-native and microservices features such as startup time in 

milliseconds. 

 

In this research, we address the scalability of CEP systems for stateful 

operators such as windows, joins, and pattern by scaling data processing nodes and 

connecting them as a directed acyclic graph. This enabled us to scale the processing 

and working memory using the scatter and gather based approach. We tested the 

proposed technique by implementing it using a set of Siddhi CEP engines running on 

Docker containers managed by Kubernetes container orchestration system. The tests 

were carried out for a fixed data rate, on uniform capacity nodes, to understand the 

processing capacity of the deployment. As we scale the nodes, for all cases, the 

proposed system was able to scale almost linearly while producing zero errors for 

patterns, 0.1% for windows, and 6.6% for joins, respectively. By reordering events the 

error rate of window and join queries was reduced to 0.03% and 1% while introducing 

54ms and 260ms of delays, respectively. 
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1. INTRODUCTION 

 

1.1 Background 

Processing data on the fly with Complex Event Processing (CEP) and stream 

processing systems are gaining popularity due to the introduction of the Internet of 

Things (IoT) [1], [2]. With increased network connectivity and lower costs, more 

sensors are being deployed to build smart connected systems. These systems often 

generate a massive volume of data in real time, where resource constraint systems now 

find it difficult to keep up with the expected performance. Surveillance through IoT 

devices, connected cars, monitoring critical distributed systems, monitoring financial 

transactions, digital control systems, and network security monitoring are some use 

cases which demand highly scalable real-time stream processing on resource-

constrained environments. 

CEP engine is a real-time, in-memory event processing system, which has the 

capability to receive events (from various sources via various transports), correlate 

them to identify meaningful insights on those events based on the user-defined queries, 

and notify them as alerts in many formats. In CEP engines, an event is a unit of data 

that contains a timestamp and set of attribute values according to a defined schema, 

and the sequence of events arriving on a particular type is called stream, on which 

users can perform complex analytical processing. This data in motion analytics can be 

provided to the system as query/rule that will be executed on each event as and when 

they arrive at the system. CEP engines support several common functions such as 

filtering events based on attributes, aggregation over sliding windows, joining multiple 

streams, pattern matching, and sequence detection. 

 

1.2 Motivation 

As processing data on distributed systems is gaining more attraction due to the 

increased availability of sensor networks and with the new trend of micro-services 

architecture [3], the focus is more on building distributed processing optimized to 
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utilize available resources in the ecosystem. In most of the real-world scenarios, a 

single CEP engine cannot process all the events with expected performance due to 

limited resources. Therefore, we need to scale the Complex Event Processing to 

overcome the following limitations [4]: 

● Bandwidth bottlenecks in receiving and publishing events to CEP.  

● Insufficient CPU cycles to handle multiple complex query operations.  

● Memory limitations to store intermediate events of the queries.  

To overcome some of these challenges multiple distributed deployment 

patterns are implemented by several CEP vendors including the following:  

● Running multiple CEP nodes in a cluster fronted by Enterprise Service Bus 

(ESB) [5]. 

● Distributing different type of queries to different CEP nodes [6], [7].  

● Distributing execution via Publish/Subscribe infrastructure [8], [9].  

● Distributing events by partitioning each stream into isolated environments 

[10], [11].  

● Distributing events as batches [12]. 

There are several hybrid implementations [11], [13], [14] that also tries to mix and 

match some of these techniques. Therefore, it is evident that scaling CEP systems into 

multiple nodes is effective in increasing availability and throughput while maintaining 

low response time by reduced bandwidth, CPU, and memory consumption of its single 

instance/node. While scalability have been discussed in the literature specifically for 

window and pattern matching by partitioning the events streams into non-overlapping 

partitions [15], [16], [17], [18], [19], not much work has been done on achieving 

scalability for non-partitionable streams which cannot be divided into partitions by any 

criteria such as an attribute key or range, and being able to process them in isolation, 

especially for CEP constructs like window, joins, and patterns. Therefore, there is still 

a need for building a fully-featured CEP engine that can be scaled dynamically, which 

will be useful in IoT, cloud, and microservices environments, that allow us to build 
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highly scalable event processing systems that can work both in device and cloud 

infrastructure. 

 

1.3 Problem statement 

The problem this research trying to address can be formulated as the following 

research question: 

How scatter-gather based approach can be used for scaling Complex Event 

Processing systems having stateful operators? 

such that it can be massively scaled by distributing memory, CPU, and bandwidth 

utilization over multiple nodes, without depending on user-defined partition (Group 

By) key. This become very useful in cloud and microservices environments such as 

Apache Mesos [20] and Kubernetes [21] where they provide on-demand scalability 

using low-resource instances. 

 

1.4 Objectives 

The objective of this research is to address the following on event streams that 

cannot be partitioned by a key: 

● To build a system using scatter-gather based approach to scale stateful CEP 

operators without having any assumptions on the datasets.  

● To develop a scalable solution focusing of following core CEP queries:  

○ Large sliding time-based window queries.  

○ Large sliding length-based window queries.  

○ Pattern queries defined over large temporal period.  

○ Achieving inter streams joins over various window sizes. 

● To evaluate the scalability and accuracy of the proposed system using a fixed 

data rate workload. 
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1.5 Outline 

Rest of the thesis is organized as follows. Chapter 2 presents the literature 

review. It covers areas related to CEP and scaling, as well as existing scaling 

approaches. Chapter 3 presents the proposed solution for scaling CEP operations such 

as windows, patterns, and joins. It also discusses the techniques that are used for 

scaling such as connecting distributed data processing nodes as a directed acyclic 

graph and processing streaming data using scatter and gather based approach. Details 

of how these techniques are implemented on top of Siddhi CEP engine are presented 

in Chapter 4. Chapter 5 presents the evaluation of the proposed approach using fixed 

data rate workload, on uniform capacity nodes, to understand the processing capacity 

of the deployment. Concluding remarks and suggestion for future works are presented 

in Chapter 6. 

 

 

  



 

 

5

2. LITERATURE REVIEW 

 
This section presents the related work on scaling Complex Event Processing 

(CEP) systems. Section 2.1 presents details about CEP systems. Common CEP 

functionalities that one could expect from CEP engines are discussed in Section 2.2. 

Section 2.3 characterizes single node CEP performance in terms of CPU, bandwidth, 

and memory utilization. Section 2.4 reviews distributed architectures for scaling CEP 

deployments. Finally, how CEP operations can be scaled on multiple CEP nodes is 

discussed in Section 2.5.  

 

2.1 Complex Event Processing Systems  

As the name implies, CEP engines (as seen in Fig. 2.1) are not only used for 

simple filtering where the events could be filtered by certain attribute value, but also 

used for more complex analysis such as time and length (number of events) based 

aggregations on sliding and tumbling (batch) windows, multi-stream joins, and for 

pattern matching to identify event occurrence order. As its primary goal is to provide 

real-time monitoring, CEP’s main functional behavior includes being high 

performance in retrieving events, processing them to produce accurate results, and 

responding to the results quickly as possible in suitable message format and transport 

[22]. 

  
Fig. 2.1: Overview of CEP.  
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2.2 CEP functionalities  

Following are some common CEP functionalities that all CEP systems 

supports and it is important that these functionalities are also available in distributed 

and scalable deployments. For the analysis of these functionality we are using Siddhi 

CEP Engine [22], [23]. The reason for choosing Siddhi is because it is lightweight high 

performing Java library such that it can be easily integrated as a core for a distributed 

CEP implementation, and it can run on multiple nodes with limited resource 

consumption while each node performing up to 100,000 events per second. Further it 

also provides easy adoption as it was also released under an open source Apache 

License v2 and provides and easy to use SQL-like query processing interface. Next, 

we discuss the common set of CEP functionalities.  

2.2.1 Filtering events based on attributes 

 This provides the capability of removing uninteresting events in the stream and 

only outputting the events that match the filtering condition. For example, in Query 

2.1 all events of the TempStream containing temperature events are filtered and only 

events having temp attribute value greater than 45 have been selected and from those 

events roomNo and temp attributes are sent to the stream HighTempStream.  

from TempStream[temp > 45] 
select roomNo, temp 
insert into HighTempStream; 

Query 2.1: Filter query. 

2.2.2 Aggregation on sliding windows 

The window is an important function provided by the CEP engine, where a 

predefined last few events based on time or length are considered and user defined 

aggregations operations can be executed on top of them. The window can be a sliding 

window where it shifts upon each event arrival and departure, such as last five minutes, 

last one hour, last 100 event windows. Aggregation operations such as sum(), min(), 

max(), and avg() can be performed effectively on windows as windows will provide a 

bound on the number of events we need to consider for the processing.  
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As seen in Query 2.2 on the stream TempStream per room average temperature 

is calculated for the events arrived in last 1 min. In Query 2.2 the results are inserted 

into the stream AvgRoomTempStream.  

from TempStream#window.time(1 min) 
select roomNo, avg(temp) as avgTemp 
group by roomNo 
insert all events into AvgRoomTempStream; 

Query 2.2: Sliding time window query. 

2.2.3 Joining multiple streams 

Joining multiple streams based on given conditions is also a must to have 

functionality for CEP engine. In this case, CEP engines use windows to collect events 

and join the incoming events against them. Example in Query 2.3 demonstrates how 

CEP can be used to correlate OrderStream and DeliveryStream to detect time taken to 

deliver the order within 1 hour and notify the results via DeliveryTimeStream. 

from DeliveryStream#window.length(1) as d join  
OrderStream#window.time(1 hour) as o 

 where o.id == d.orderId 
select d.time - o.time as timeToDeliver,  

o.id as orderId 
insert into DeliveryTimeStream; 

Query 2.3: Join query. 

2.2.4 Pattern matching and sequence detection 

 Another most important aspect of the Complex Event Processor is its ability to 

detect events occurrences by identifying specific patterns. Non-deterministic finite 

automata are used by most of the CEP systems to accomplish this task, and they usually 

support regular expression related query syntax to achieve this.  

Query 2.4 demonstrates how CEP can be used to detect potential credit card 

fraud, where when a thief steals a credit card, the thief tries whether it is working by 

using it for a low-value transaction at the grocery store and if it does work the thief 

might try to use that to for a huge purchase. Here in CardStream, if there is an event 

a1 arrives having amount less than $100 and following that event (shown using ‘->’ 
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symbol) if there in another event b1 arrives which has amount greater than $10,000 

within a one-day interval for the same ATM card, then CEP will insert the matching 

details to PossibleFraudStream for alerting.  

from every a1 = CardStream[amount < 100] 
    -> b1 = CardStream[amount > 10000 and  

a1.cardNo == b1.cardNo] 
    within 1 day 
select a1.cardNo as cardNo,  

a1.cardHolderName as cardHolderName,  
b1.amount as lastPurchaseAmount,  
b1.location as location,  
b1.cardHolderMobile as cardHolderMobile 

insert into PossibleFraudStream; 

Query 2.4: Pattern matching query. 

Filter, window and aggregation queries are at the heart of many continuous 

streaming analytics applications, CEP applications also support other complex queries 

involving multi-stream joins and pattern matching, and they support inserting the 

results back to other streams to chain multiple analytics.  

 

2.3 Understanding characteristic of single node CEP  

As a baseline we compare the scalable CEP characteristics against single node 

CEP for each of its query type, their results are presents in Table 2.2. The symbols 

used to analyze the CEP characteristics on this thesis are presented in Table 2.1.  

Table 2.1 Symbols used to analyze CEP characteristics. 

Symbol Description 

݁ Number of events 

݃ Number of groups by keys 

݊ Number of nodes 

 Number of states ݏ

 Time interval ݐ

  Rate of event arrival ߣ
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Table 2.2 Baseline characteristics of a single node CEP engine. 

Query type Input 
Bandwidth 

Output 
Bandwidth 

Memory 
Consumption CPU Utilization 

Filter Θ(ߣ) Ω(ߣ) 0 Θ(ߣ) 

Sliding time 
window ݐ with no 
group by 

Θ(ߣ) Θ(ߣ) O(ݐߣ), contains 
all events. 

Θ(ߣ), process 
each event twice 
one for arrival 
and one for 
expiry. 

Sliding time 
window ݐ with ݃ 
group by keys 

Θ(ߣ) Θ(ߣ) 
 

O(ݐߣ +  ݃), 
contains all 
events and 
aggregates for 
each group by 
key. 

Θ(ߣ), same as 
sliding time 
window without 
group by. 

Sliding length 
window ݁  with 
no group by 

Θ(ߣ) Θ(ߣ) O(݁) Θ(ߣ) 
 

Sliding length 
window ݁  with ݃ 
group by keys 

Θ(ߣ) Θ(ߣ) 
 

O(݁ + ݃) Θ(ߣ) 
 

Pattern matching 
with ݏ states.  
e.g., A  B 
 … 

Θ(ߣݏ) = Θ(ߣ), 
assuming each 
stream associated 
with a state have 
input rate ߣ and ݏ 
is constant. 

O(ߣ), output at 
last state 
 

< O൫(ݏ − ൯ߣ(1 =
O(ߣ), as s is 
constant 
 

Θ(ߣݏ) =
Θ(ߣ), as s is 
constant 
 

Joining 2 streams 
using windows 
and equijoin. 
Assuming all 
streams have  
input rate ߣ. 

Θ(ߣ) Θ(ߣ) O(݁) 
 

O(݁ߣ) 

 

2.4 Distributed architectures for scaling CEP nodes 

Even though single node systems are fast and have the ability to process all 

CEP functionalities they frequently encounter memory, CPU, and bandwidth 

bottlenecks forcing us to distribute CEP. This section focuses on possible architectures 
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for scaling CEP functionalities. Some of the distributed deployment architectures are 

following:  

2.4.1 Running multiple CEP nodes in a cluster 

This enables horizontal scalability by simply fronting the CEP cluster with a 

load balancer or an Enterprise Service Bus (ESB) [5], here each node in the cluster 

will contain exactly the same queries and all nodes will receive all events or in a round-

robin manner. This mode is efficient for filtering kind of stateless queries but does not 

support stateful queries like windows and patterns as their states will be now 

distributed across multiple nodes. As a solution, sticky sessions can be used for some 

use cases but this will not work as the same stream can be joint it multiple ways with 

same attribute value and always sending a stream or an attribute value to a single node 

will not fix the problem. Alternatively, a central session store can be used to solve the 

problem but this will not be efficient as there will be a high number of concurrent 

updates to the central session store slowing the system drastically.  

2.4.2 Distributing different type of queries to different CEP nodes 

This approach focuses on distributing query network to multiple nodes as an 

acyclic graph helping to achieve vertical and horizontal scalability. As depicted in Fig. 

2.2, this will allow us to place queries such that we can reduce the event rate by filtering 

incoming events as they go through the initial stages of the query topology and perform 

more Complex Event Processing at latter stages of the topology [7]. This can also 

further scale horizontally by having multiple filter nodes to handle the load 

appropriately. 

 

 
Fig. 2.2: Vertical scaling with multiple CEP nodes. 
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Most stream processing systems currently use the technique of distributing 

queries as an acyclic directed graph over connected nodes [24]. WSO2 Complex Event 

Processor [25], Medusa [26], Apache Storm [11], Apache Flink [14], and Apache 

Samza [13] are some systems who support such approaches. Apache Storm allows 

deploying multiple number of different type of nodes (Spouts and Bolts) and connect 

to each other as a directed graph using some well-defined patterns such as, Shuffle 

Grouping which shuffles the events among the receiving nodes, Field Grouping which 

does hash based partitioning based on the given event field, and Global Grouping 

where it sends all events to all the receiving nodes. There have also been attempts to 

do distributed processing using query rewriting [6] such that transparently distributing 

single query plan across multiple nodes distributing each query to one or more stream 

processing nodes. But most of the open source CEP systems [27], [28] like S4 [29] do 

not provide many capabilities in achieving automated distributed deployment and they 

rely on developer configuring the topology for distributed deployment.  

The main drawback of these systems is fault tolerance, this is because if a node 

goes down or if a node is processing slowly the upstream nodes get to know about this 

via back pressure and they start collecting events in their buffers till the downstream 

system to recover. However, due to high event rate there is a high possibility the whole 

system to crash.  

2.4.3 Distributing execution via Publish/Subscribe infrastructure 

This allow CEP to achieve vertical and horizontal scalability while allowing it 

to work asynchronously and help tolerating event rate spikes. Each node sends events 

to the Publish/Subscribe infrastructure (supported by a message broker) and the 

interested nodes subscribe to the infrastructure to get relevant events based on the topic 

they are interested in [8], [9]. Java Messaging Service (JMS) is a popular approach 

that used for traditional CEP scaling use cases, where each processing node is 

manually configured with different JMS topics to achieve distributed processing. 

Currently with durable subscriptions they can now reliably communicate between 

multiple nodes and with XA Transaction (2-way commit) support of JMS they can 

also have exactly-once event processing. While this is suitable for a small distributed 
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deployment, it cannot scale vertically by chaining multiple processing nodes one after 

another using JMS topics as the latency of event processing increases drastically with 

each event going through the message broker.  

If multiple nodes can also subscribe to the same topic then the events will reach 

each node in a random partitioning strategy, which is still not suitable for scaling 

stateful processing. To overcome this, as depicted in Fig. 2.3, Oracle CEP [30] engine 

uses JMS message selectors when subscribing to the topics that will filter only the 

events that the node interested in.  

 
Fig. 2.3 Distributed deployment of Oracle CEP [30]. 

2.4.4 Distributing events by partitioning each stream 

This allows horizontal and vertical scalability of the system by allowing it to 

run the same query in multiple nodes and by partitioning the stream by defined 

attribute and allowing each partition of the same stream to be processed in each node. 

Systems like Apache Storm [11] supports such processing.  

For efficiently processing events via partitions, modern CEP systems are 

utilizing Apache Kafka [10], which is not a traditional message broker, but rather the 
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backend for such a broker. Kafka guarantee exactly-once processing and, as depicted 

in Fig. 2.4, it supports partitioning topics into multiple topic-partitions and assigning 

a sequence number for each of the events within a topic-partition. When writers write 

events, the data gets distributed among each partition based on a hash key, and the 

subscribers can either subscribe to the topic to consume events from all its topic-

partitions or subscribe to one or more partitions to retrieve data. Through this it 

supports scalable executions of CEP nodes. Further as Kafka has the API to support 

reading historical (already processed) data using an offset within each of its topic-

partitions, the same events can be read from a topic-partition multiple times like 

reading a file in the file system many times. The consuming system can keep track of 

these event offsets for each partition, and during failure recovery, it can decide from 

which offset it should read the messages again. Further with optimized disk write and 

read Kafka also have the ability to provide very high-performance persistence 

asynchronous data transfer compared to conventional JMS-based data transfer. 

 
Fig. 2.4: Anatomy of Kafka topic. 

Apache Samza [13] uses Kafka [10] to guarantee the messages are processed 

in the order they were written to a partition and that no messages are ever lost. Due to 

the use of Kafka in Samza, if one job goes slow and builds up a backlog of unprocessed 

messages, the rest of the system does not get affected. Though stream partition helps 

Samza to achieve high performance and helps to reduce latency, Samza can only 

process messages in the order they appear in a partition, and it does not guarantee 

message ordering across different input streams or partitions.  
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2.4.5 Distributing events as batches 

Spark Streaming [12] treats streaming as a series of deterministic batch 

operations. Spark Streaming groups the stream into batches of a fixed duration (such 

as 1 second) and so each batch is processed one after another. Each batch in Spark 

represents a Resilient Distributed Dataset (RDD). The receiver receives data and stores 

it in Spark which then does transformations and performs the output operations. Spark 

Streaming guarantees ordered processing of RDDs within a stream. When using 

multithreading, each RDD will process in parallel and hence output event ordering is 

not guaranteed. Hence, multithreading is a tradeoff design Spark has made. Further, it 

does not provide any key-value access to its state data, and the only way to access the 

state is by iterating the whole dataset. The recommended minimum value of processing 

block interval is about 50ms [12], below which the task launching overheads may 

cause problems. Due to task launching overheads, event processing with less than 

50ms latency may not be achievable with Apache Spark. Further Spark Streaming and 

Samza achieve end-to-end exactly-once semantics by using idempotent and 

transactional updates. 

This section presented the current systems that support distributed processing 

deployment, where they either support distributing CEP queries if the stream can be 

partitioned or else provide an infrastructure for us to implement distributed processing 

logic that we want. Table 2.3 compare currently available such distributed 

architectures for scaling CEP nodes. 

 

2.5 Distributing CEP operations over multiple CEP nodes 

This section discusses the techniques used to scale stateless and stateful CEP 

operations over multiple CEP nodes. 
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Table 2.3: Comparison of distributed architectures for scaling CEP nodes. 

Solution Technique Advantages Disadvantages 

Running multiple CEP 
nodes in a cluster. 

Fronting nodes with 
Load Balancer. 
 

Easy to implement and 
scale stateless queries.  

Cannot scale stateful 
queries. 

Distributing different 
type of queries to 
different CEP nodes. 

Configuring nodes as 
an acyclic graph and 
using transient 
network 
communication. 

Support horizontal and 
vertical scaling by 
reducing load on latter 
nodes. 

Cannot horizontally 
scale stateful queries. 
Uses back pressure to 
control the flow, 
system is brittle. 

Distributing execution 
via Publish/Subscribe 
infrastructure. 

Configuring nodes as 
an acyclic graph and 
using pub/sub 
communications. 

Support horizontal and 
vertical scaling by 
reducing load on latter 
nodes, also no need for 
back pressure as it can 
buffer events when 
nodes are down. 

Cannot horizontally 
scale stateful queries.  

Distributing events 
based by partitioning 
each stream. 

Configuring nodes as 
an acyclic graph and 
also partition the 
streams based on 
partitioning key. 

If the stateful query 
can be partitioned then 
it can scale 
horizontally and 
vertically. 

Cannot scale stateful 
queries if the stream 
cannot be partition 
based on a partitioning 
key. 

Distributing events as 
batches. 

Process events as 
batches. 

Support scalable 
processing with 
MapReduce. 

High latency due to 
batching behavior. 

 

2.5.1 Scalability of stateless operators 

When distributing CEP, stateless queries like filters can only be a bottleneck 

of the system when their CPU or bandwidth is over utilized. Because as they are 

stateless they will not be constrained by memory. To overcome CPU and bandwidth 

limitations, as illustrated in Fig. 2.5, they can be scaled over multiple nodes both 

horizontally and as pipeline [31]. Here source can send events to the horizontally 

scaled nodes in a round-robin manner or using a hash function such that CPU load and 

bandwidth will be distributed equally across multiple nodes. 

With the query horizontally scaled to ݊  nodes, input and output bandwidth, and 

CPU utilization of each node will be (baseline values)/n. At the meantime when they 

are scaled as pipeline their CPU utilization will be reduced as Θ(/n). 
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Fig. 2.5: Scaling stateless CEP queries.  

2.5.2 Scalability of stateful operators 

 Stateful queries such as windows, joins, and patterns are the most complex in 

terms of distributing as they need to maintain a common state among the nodes to 

produce consistent results. There have been several attempts in achieving this and 

among them, the most efficient scaling approach is partitioning the queries [31], and 

as depicted in Fig. 2.6 the event streams will be partitioned based on event attributes 

that will allow the data to be distributed across multiple nodes while achieving 

approximately equal CPU, memory and bandwidth load on each node, provided that 

each partition have the approximately same number of events and the deployed queries 

match approximately equal number of events from each partition. 

As depicted in Fig. 2.6 each source should send events falling into the same 

partition to the same node. Because partitions are usually calculated with hash 

functions, when data is skewed there is a high probability that lots of events fall into 

the same partition and load only some nodes in the system. In such cases, CEP systems 

become unable to handle the load or reach their maximum performance limit. 

When the CEP query is horizontally scaled using equal partitions to ݊ nodes, 

their input and output bandwidth, memory consumption, and CPU utilization of each 

node will be (baseline values)/n. 
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Fig. 2.6: Parallelizing operator graph using partitions [31]. 

Partitioning itself is not always effective, but when this is combined with 

pipelining (vertical scaling) as seen in Fig. 2.7, it helps to process events in a more 

scalable manner, because this approach filters out more events in the initial nodes and 

only concentrate on storing the states on relevant events in latter nodes for further 

processing [31]. 

 
Fig. 2.7: Combining partitioning and pipelining [31]. 
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Brenna et al. [31] illustrates two techniques for scaling pattern queries which 

can be expressed as Non-Deterministic Finite Automata (NFA) in CEP engines. Here 

they define scaling by partitioning the event streams and also by scaling by splitting 

NFA into smaller sub NFA’s and distributing them in a pipeline manner. In the prior 

CPU, memory and bandwidth can be scaled based on number of partitions we have 

defined, here if we partition the query into ݊ partitions and distribute them over to ݊  

nodes the CPU, memory, and bandwidth utilization will become (baseline values)/n. 

But in the latter we can only achieve CPU and memory scaling as (baseline values)/n 

where the bandwidth can become a bottleneck, where first node in the sequence will 

have O(ߣ) bandwidth utilization and all other nodes in the sequence will have 

bandwidth of O(ߣ). This is because in Brenna at el. deployment, not only all nodes 

receive all the events but the latter nodes will additionally receive matched events from 

their preceding nodes.  

Pandey et al. [19] provides a MapReduce based streaming aggregation 

technique to scaling aggregations without depending on a partition key. 

 
Fig. 2.8: Optimization on streaming aggregation [19]. 

As depicted in Fig. 2.8, the average is calculated by counting the sums and 

counts of the events and then dividing the sum of sums by the sum of counts at node 

B4. The paper also focuses on optimizing these aggregations by an adaptive technique 

dynamically deciding when to aggregate the events in the event flow based on 

publication rate and the number of subscriptions. But this technique does not focus on 

managing the window period that the events need to be processed.  

Similarly, for patterns that cannot be partitioned by a key, Leghari et al. [17] 

have proposed a system that can distribute data to multiple nodes based on the first 

matching events. This only supports when the pattern is defined with the within 
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operator. When the first message on the sequence is detected the system randomly 

send that event to a downstream node and it will continue to send all the following 

events to the same downstream node till the window period for the specific pattern 

ends. Though this approach scales the memory and CPU consumptions by (baseline 

values)/n it hinders bandwidth utilization as in the worst-case scenario almost all 

events will be sent to all the nodes where bandwidth being equal to the baseline values.  

 StreamCloud [9] has implemented a scalable infrastructure that scales CEP 

operators, here it uses both fan-out and pipelining techniques. As depicted in Fig. 2.9, 

the main finding of this work is that a single topology can be divided into multiple sub 

clusters such that each sub cluster will have multiple nodes where each node will have 

one stateful operator followed by number of stateless operators and here each sub 

cluster communicate to its downstream cluster by sending messages in a fan-out 

manner to each nodes of the sub cluster. In this case, the CPU and memory 

consumptions will be (baseline values)/n where nbeing the number of partitions and 

when it comes to bandwidth all stateful nodes will have bandwidth equal to baseline 

values and other nodes will only have (baseline values)/n bandwidth utilization.  

 
Fig. 2.9: StreamCloud query parallelization strategy [9]. 
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Similarly, for joining events in a scalable manner map side joins and reduce 

side joins are some techniques that are used to perform join operations in MapReduce 

[32]. In map side join the data is joint at the map side where one table will be large and 

it will be distributed among all the map nodes while the other table will be small 

enough to keep in the mapper nodes memory. Events will be joint at the mapper and 

passed to the reducer. At the meantime for the reduce side join the mappers will map 

the data against its joining key and passes that to the reducer and the equijoin happens 

at the reducer by joining data with same keys from both tables. Google Photon [33] 

has also illustrated several approaches for scalable and fault-tolerant joining with low 

latency. 

As discussed in the literature the major bottleneck in the CEP systems is its 

ability to scale beyond the number of partitions and especially on cases where streams 

cannot be partitioned by a key. In the following sections, we will discuss how we can 

scale CEP functions such as windows, patterns and joins without enforcing any 

restrictions on event streams. 

 

2.6 Summary 

This section presented related work on scaling CEP systems. Filter, window, 

pattern, and join are the common operations of a CEP system where these can be scaled 

by scaling CEP nodes or by scaling CEP operations. Running multiple CEP nodes in 

a cluster, distributing different type of queries to different CEP nodes, distributing 

execution via Publish/Subscribe infrastructure, distributing events by partitioning each 

stream, or by distributing events as batches are some approaches of scaling CEP nodes. 

In the meantime, CEP operations can be scaled by simply duplicating stateless 

operators such as filters. Whereas for scaling stateful queries such as windows, 

patterns, and joins techniques like parallelizing operator graph using partitions, 

combining partitioning and pipelining, optimizing streaming aggregations, and using 

StreamCloud’s query parallelization strategy can be used. The key takeaway in this 

section is that the major bottleneck in the current CEP systems is their ability to scale 
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beyond the number of partitions, especially without enforcing any restrictions on event 

streams.  

Table 2.4: Characterization summary of distributed CEP operations over 
multiple CEP nodes. 

Query Type Input Bandwidth Output 
Bandwidth 

Memory 
Consumption 

CPU 
Utilization 

Stateless 
Operators (Filter) 

Θ(ߣ/݊) Θ(ߣ/݊) (none) Θ(ߣ/݊) 

Stateful Operators 
with partitioning 
(window, pattern, 
and join) 

Θ(ߣ/݊) Θ(ߣ/݊) O(ݐߣ/݊), for 
temporal 
processing. 

Θ(ߣ/݊) 

Pattern matching 
by combining 
partitioning and 
pipelining. 

Θ(ߣ) for the first 
node, Θ(ߣ/݊) for 
other nodes. 

Θ(ߣ) for the first 
node, Θ(ߣ/݊) for 
other nodes. 

O(ݐߣ/݊), for 
temporal 
processing. 

Θ(ߣ/݊) 

Pattern matching 
by time-based 
distribution. 

Θ(ߣ) Θ(ߣ) 
 

O(ݐߣ/݊), for 
temporal 
processing. 

Θ(ߣ/݊) 

StreamCloud 
 

Θ(ߣ) for stateful 
nodes, Θ(ߣ/݊) for 
other nodes. 

Θ(ߣ) for stateful 
nodes, Θ(ߣ/݊)for 
other nodes. 

O(ݐߣ/݊), for 
temporal 
processing. 

Θ(ߣ/݊) 
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3. PROPOSED SOLUTION 

 
Complex Event Processing Engines (CEP) support stateless operators such as 

filters and stateful operators such as windows, patterns, and joins. Solutions to scale 

stateless operators are already discussed in the literature. Whereas we focus on how to 

scale stateful operators without enforcing any restrictions on partitioning the event 

streams. Section 3.1 proposes several solutions for scaling stateful CEP operations 

while Section 3.2 summarizes the methodology.  

 

3.1 Proposed solution 

As discussed in Section 2.4 and 2.5 stateful queries such as windows, joins, 

and patterns cannot be distributed in an efficient manner unless otherwise they are 

partitioned by one or more of their event attributes [31]. Partitioning the event streams 

based on event attributes will allow the data to be distributed across ݊ nodes while 

achieving approximately equal (baseline values)/n of CPU, memory, and bandwidth 

load at each node. This is achieved when approximately the same number of events 

are sent to each partition, and queries deployed on the partitions also matches an 

approximately equal number of events. As discussed in the literature the major 

bottleneck in the CEP systems is its ability to scale beyond the number of partitions 

and especially on cases where streams cannot be partitioned by a partition key. Next, 

we discuss how we can scale CEP functions such as windows, patterns, and joins for 

streams that cannot be partitioned by a partition key.  

3.1.1 Scaling window operators 

 CEP window queries can be categorized into time and length siding windows. 

Time window aggregates given attributes based on a given time period, e.g., last five 

hours. Length window aggregates the attributes based on the given number of events, 

e.g., last 10,000 events. Both of these windows move in a sliding manner and produce 

outputs upon each event arrival/departure to/from the window.  
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3.1.1.1 Scaling sliding time window  

Sliding time window holds all events that fall within the time window in-

memory. This is necessary because it has to emit the events upon the window expiry 

to adjust the time window aggregations accordingly. When it comes to scaling sliding 

time windows over non-partitioned streams, techniques such as MapReduce-style 

aggregations [8] can be used by modifying mapper to perform window execution in a 

distributed manner and reducer functions to aggregate the windows results in a 

streaming manner.  

Given a time windows of size t and arrival rate ߣ, tߣ events can be split among 

n mappers such that each maintains tߣ/n events. Each mapper then needs to emit its 

local result such that a reducer could calculate the global result. To maintain a 

consistent view of CEP state, each mapper needs to emit its local state at the arrival or 

departure of an event while reducer needs to recalculate as soon as a new local result 

arrives. This style of reducer operations can be applied for queries such as sum, count, 

average, min, and max. For example, consider the Siddhi query for a sliding time 

window in Query 3.1.  

from stockStream#window.time(h hour) 
select sum(price) as sumPrice,  

count() as countEvents,  
avg(price) as avgPrice 

Insert into outputStream; 

Query 3.1: Example sliding time window query. 

 
Fig. 3.1: Scaling sliding time window. 
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As seen in Fig. 3.1 Nodes 1, 2, and 3 mimics mapper functions while node 4 

mimics reducer. As per Query 3.1, sumPrice, countEvents, and avgPrice have to be 

calculated over the last h hour. Based on the MapReduce techniques avgPrice will be 

calculated by separately calculating sums (s) and counts (c) at each window nodes and 

aggregating them at the reducer node. 

As depicted in Fig. 3.1 events will be sent from source to Node 1, 2, and 3 in a 

round robin manner. Then each node uses its sliding window to keep the states of the 

last h-hour. All nodes will then send sums and counts of their windows to node 4 as a 

stream, node 4 calculates sumPrice, countEvents, and avgPrice and emits the output 

as a stream.  

With this technique, there is no need of partitioning the streams and due to the 

round robin distribution to the nodes 1, 2, and 3, they will get an equal number of 

events approximately splitting the CPU, memory, and bandwidth among the nodes as 

(baseline values)/n. As node 4 get partially aggregated data it does not need high CPU, 

memory, and bandwidth. Therefore, node 4’s input and output bandwidth will be the 

same as the single node case, and its CPU utilization and memory consumption will 

come down from O(baseline) to O(n). 

3.1.1.2 Scaling sliding length window  

While a similar idea could be adopted for length-based windows, a length-

window query has an additional drawback. Each window node does not implicitly 

know when they should expire the window, as it depends on the windows size of other 

reducers and the source.  

Let us discuss an example query based for sliding length as seen in Query 3.2. 

having a window of length l.  

from stockStream#window.length(l) 
select sum(price) as sumPrice,  

count() as countEvents,  
avg(price) as avgPrice 

Insert into outputStream;  

Query 3.2: Example sliding length window query. 
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By tagging each event with a sequence number at the source, this issue can be 

resolved. Here the windows in all nodes just need to ensure that the following 

condition is met: 

latest_Event_sequence_Number – oldest_Event_sequence_Number <  l. 

For this to work correctly, the events from the source should be dispatched to 

the windows in a round-robin manner. This is because when other techniques like 

random or hashing are used there is a possibility of some windows not getting new 

events regularly; hence, they may fail to expire the events that fall out of the window.  

As all the techniques used in sliding time window is also applied to the sliding 

length window, nodes 1, 2, and 3 will get an equal number of events approximately 

splitting the CPU, memory, and bandwidth among the nodes as (baseline values)/n. At 

the same time, node 4 provides the same input and output bandwidth as the single node 

case, and O(݊) CPU utilization and memory consumption. 

3.1.2 Scaling pattern operators 

As discussed in [31] there are two techniques for scaling pattern queries that 

can be expressed as Non-Deterministic Finite Automata (NFA). First, is scaling by 

partitioning the event streams. Second, is scaling by splitting NFA into smaller sub-

NFA’s and distributing them in a pipeline manner.  

Let us consider the pattern query in Query 3.3. The query can be simply 

expressed as a small purchase (ܽ ) followed by another small purchase (ܾ ) followed by 

a large purchase (ܿ) within a day. Based on Brenna et al. [31] this cannot be partitioned 

but can only be scaled as a pipeline by moving each pattern to a separate node and 

chaining them one after another as a pipeline such that the matching events of the 

previous state feed into nodes with later states as depicted in Fig. 3.2. 

from every a = CardStream[amount < s] 
    -> b = CardStream 

[amount < s and a.cardId==cardId] 
    -> c = CardStream 

[amount > l and a.cardId==cardId] 
    within 1 day 
select a.amount as initialPurchaseAmount,  
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c.amount as lastPurchaseAmount,  
c.location as location 

insert into PossibleFraudStream; 

Query 3.3: Example pattern query. 

 
 Fig. 3.2: Scaling pattern based on Brenna at el. [31]. 

As discussed in the literature this has a limitation in scaling bandwidth. This 

can be reduced to some extent by categorizing input streams into logical streams based 

on their types or by pre-filtering and publishing relevant streams only to relevant 

nodes. For example, in the above case based on the pattern query defined we know 

that node 1 and 2 are only interested in events having (price < s); hence, as depicted in 

Fig. 3.3, the source can filter those events having (price < s) into a logical stream (ܵ) 

and publish only that stream to node 1 and 2. At the same time, we can filter all events 

having (price > l) into another logical stream (L) and publish that stream only to node 

3. As this approach only sends part of the initial stream to each node, the initial node 

consumes (ߣ) bandwidth while other nodes consume (ߣ) bandwidth. This way, we 

can reduce the bandwidth constraint to some extent. But if the arrival rates are high 

theses nodes may even need more CPU and memory to process incoming events. 

 
 Fig. 3.3: Scaling patterns based on stream type.  
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In real-world deployments, patterns may also be defined across multiple stream 

types. For example, suppose a Tweet saying CEO of company X resigned followed by 

the stock price of company X falling. For these types of queries instead of generating 

logical streams, we can directly distribute the different type of streams to different 

nodes and scale distributed pattern matching.  

Fig. 3.4: Scaling pattern based on distributed streams. 

 
Fig. 3.5: Scaling pattern by replicating distributed streams.  
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Even with this approach, there is a possibility of nodes hitting maximum 

bandwidth, memory and CPU limits, especially for the nodes processing the initial part 

of the pattern. We can overcome this by replicating and horizontally scaling each 

pattern state into multiple nodes, chaining each previous state with each next state, and 

by sending events of the high bandwidth stream in a round-robin manner while 

broadcasting other streams to relevant nodes. For example, as depicted in Fig. 3.4 an 

instance of stream S is sending to nodes 1 and 4 in a round-robin manner, another 

instance of stream S is sending all events to nodes 2 and 5, and stream L is sending all 

events to nodes 3 and 6. Further, the matched events of node 1 and 4 are sent to nodes 

2 and 5 and their matched events are then sent to nodes 3 and 6 in a round-robin 

manner. This will make sure that the NFA is initialized in either of the initial nodes 1 

or 4 and those nodes pass the partially matched states to downstream nodes in a 

scalable manner. With this design, we reduce the CPU utilization, memory 

consumption and bandwidth of the initial pattern to (initial value when pattern states 

are not replicated)/n where ݊ is the number of state-replicated nodes.  

Though this approach scales the CPU and memory of all pattern states and the 

bandwidth of the initial state, it does not scale the bandwidth of the second and later 

states of the pattern. This can be resolved by replicating the states that receive high 

bandwidth into groups and send events in a round-robin manner to each group while 

broadcasting the events to each member within the group. For example, as depicted in 

Fig. 3.5 the bandwidth of each second pattern state node is now reduced by replicating 

the states to two groups of two nodes where node 2 and 5 in one group and node 7 and 

8 in the other group, and by source broadcasting stream Sb, and the previous states 

broadcasting partially matched events to node 5 and node 2 and then to node 7 and 

node 8 in a round-robin manner. Through this bandwidth of the non-initial nodes can 

be reduced to 2/n. 

This approach is also better than Leghari et al.’s [17] implementation as this 

has only O(none scaled state node value)/n CPU, memory, and bandwidth utilization, 

while the Leghari et al.’s implementation can only scale up to (none scaled state node 

value)/3 in terms of CPU and memory utilization.  
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3.1.3 Scaling join operators 

Joining streams can be categorized into two, namely joining a stream having a 

large window with another stream having a small window and joining two streams 

both having large windows. Both of these problems are already solved in the databases 

and in the MapReduce literature [32] and we can simply use the same techniques to 

achieve streaming joins in a scalable manner.  

3.1.3.1 Joining large window with small window  

To scalable joining of large and small windows, we have to have the instance 

of the small window in all the nodes and distribute the large window across all the 

nodes. When scaling the large window, we need to employ the techniques that are used 

for scaling windows in Section 3.1.1. This way we can make sure that windows contain 

only the data relevant to the window period and all events are properly joint against 

one another. Finally, as depicted in Fig. 3.7, all events should be sent to a reducer for 

final aggregations if there are any. As depicted in Fig. 3.6 events of StreamA (large 

window) is sent in a round robin manner to multiple nodes (like how we have scaled 

the window) and events of StreamB (small window) is sent to all the nodes. The joining 

of the StreamA window with the StreamB window happens at each node. 

Consider the example query in Query 3.4.  

from StreamA#window.length(l) join  
StreamB#window.length(s) 
on StreamA.symbol == StreamB.symbol 

select sum(price) as sumPrice,  
count() as countEvents,  
avg(price) as avgPrice 

Insert into OutputStream; 

Query 3.4: Example joining small and large window query. 

This will help to scale CPU and memory on all window nodes. When we scale 

the window to ݊  nodes, as each incoming event need to be processed against all events 

of the other stream’s window, its CPU utilization will be O((ߣ஺/݊)݁஻  + ஻ߣ ஺݁/݊ ) 

where ݁ ௜  is the number of events in stream ݅ ’s window. Whereas memory consumption, 

input bandwidth utilization, and output bandwidth utilization will be O( ஺݁/݊ +  ݁஻), 
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Θ(ߣ஺/݊ + + ݊/஺ߣ)஻), and Ωߣ   ஻), respectively. As the aggregation node 3 has toߣ

aggregate all the incoming events at any given time, its CPU and bandwidth load will 

be Ω(ߣ஺/݊ +   .(݊)஻) and the memory utilization will be Oߣ

 
Fig. 3.6 Scaling join of small and large windows.  

3.1.3.2 Joining two large windows  

 
Fig. 3.7: Scaling join of two large windows.  

For scalable joining of two large windows, as described in the database 

literature we can distribute both the windows such that each part of the window will 

be matched against the other as depicted in Fig. 3.7.  

Though this scale based on CPU, memory, and bandwidth, the drawback of 

this approach is that it needs number of nodes equal to the power of two. This will help 

to scale CPU, memory, and bandwidth on all window nodes where the CPU utilization 
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will be O((ߣ஺݁஻  + ஻ߣ ஺݁ )/݊) where ௜݁  is number of events in Stream ݅’s window, 

memory consumption will be O((݁஺  +  ݁஻)/݊), input bandwidth utilization will be 

Θ((ߣ஺  + ஺ߣ))஻)/݊), and output bandwidth utilization will be Ωߣ   ,஻)/݊). At node 3ߣ + 

the CPU and bandwidth load will be Ω((ߣ஺  ஻)/݊), while memory load will beߣ + 

Θ(݊).  

Table 3.1: Summary of distributed stateful CEP operations over multiple CEP 

nodes for streams that cannot be partitioned by a key. 

Query Type Input 
Bandwidth 

Output 
Bandwidth 

Memory 
Consumption 

CPU 
Utilization 

Scalable sliding 
time and length 
windows operators 

Window Node 
Θ(ߣ/݊), 
Aggregator 
Node Θ(ߣ) 
which is ≤ to 
single node 
baseline Θ(ߣ). 

Window Node 
Θ(ߣ/݊), 
Aggregator Node 
Θ(ߣ) which is ≤ 
to single node 
baseline Θ(ߣ). 

Window Node 
Θ(݁/݊), 
Aggregator Node 
O(݊) which is ≤ 
to single node 
baseline Θ(݁). 

Window Node 
Θ(ߣ/݊), 
Aggregator 
Node Θ(ߣ) 
which is ≤ to 
single node 
baseline Θ(ߣ). 

Scalable pattern 
operators based on 
distributed streams.  
Assuming all 
streams have  
input rate ߣ and all 
states have equal 
number of events. 

(ߣ) (ߣ) 
 

First node 
O(1), 
Other nodes 
Θ(݁/(ݏ − 1)) 
which is ≤ to 
single node 
baseline O(݁). 

Θ(ݏ/݁ߣ) 
which is ≤ to 
single node 
baseline O(݁ߣ). 

Scalable join 
operators for 
joining small and 
large windows. 
Assuming all 
streams have  
input rate ߣ. 

Join Node  

Θ൬ߣ +
ߣ

݊ − 1൰, 
 
Aggregator 
Node  
O(ߣ) 
which is = to 
single node 
baseline O(ߣ). 

Join Node  

Θ൬ߣ +
ߣ

݊ − 1൰, 
 
Aggregator Node  
 
O(ߣ)  
which is = to 
single node 
baseline O(ߣ). 

Join Node  
Θቀ݁ +

݁
݊ − 1ቁ, 

 
Aggregator Node 
  
O(݊) 
which is = to 
single node 
baseline O(݁). 

Join Node 

Θ൬݁ߣ +
݁ߣ
݊ − 1൰, 

 
Aggregator 
Node 
Θ(ߣ+  (݊/ߣ
which is = to 
single node 
baseline O(ߣe). 

Scalable join 
operators for 
joining 2 large 
windows. 
Assuming all 
streams have  
 .input rate ߣ

Join Node  
 O(ߣ/݊), 
Aggregator 
Node  
O(ߣ) 
which is ≤ to 
single node 
baseline O(ߣ). 

Join Node 
O(ߣ/݊), 
Aggregator Node 
  
O(ߣ)  
which is ≤ to 
single node 
baseline O(ߣ). 

Join Node 
Θ(݁/݊), 
Aggregator Node 
  
O(݊) 
which is ≤ to 
single node 
baseline O(݁). 

Join Node 
Θ(݁ߣ/݊), 
Aggregator 
Node  
Θ(ߣ/݊) 
which is ≤ to 
single node 
baseline O(݁ߣ). 
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3.2 Summary 

We discussed how stateful CEP operations such as windows, patterns, and 

joins can be distributed and scaled across multiple nodes while understanding how 

each of the approaches affects CPU, memory, and bandwidth utilization of the system. 

In our proposed approach events are sent from the source to various processing nodes 

connected to each other as a directed acyclic graph. As discussed in the methodology 

Table 3.1 summarizes the input and output bandwidth, memory consumption, and 

CPU utilization of the scalable stateful CEP operations for streams that cannot be 

partitioned by a key while comparing it against single-node base cases. The workload 

characteristics such as the rate of event arrival of each stream, number of processing 

nodes, the total number of events stored in memory for processing, and the total 

number of states in a pattern. 
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4. IMPLEMENTATION 

 
The proposed solution for scaling windows, patterns and joins are to be 

implemented using Siddhi CEP engine and Kubernetes [21] container orchestration 

system. Siddhi is selected as it is open-source, has low latency, highly extensible, and 

capable of analyzing millions of events per second [23]. Kubernetes is selected as it is 

a widely accepted container orchestration system that can host scalable microservices. 

Section 4.1 presents how to practically implement the proposed solution discussed in 

Section 3.1, and the implementation summary is presented in Section 4.2.  

 

4.1 Scaling window operators 

To evaluate the stability of each window component, a non-scalable 

implementation and scalable distributed implementations are tested. To achieve fair 

comparison across all use cases the data publisher and the consumer are separated from 

the CEP processing logic. For example, for the cases of scalability of sliding time 

window as given in Query 4.1 we have implemented two implementations as shown 

in Fig. 4.1 and 4.2. 

from stockStream#window.time(1 hour) 
select sum(price) as sumPrice,  

count() as countEvents,  
avg(price) as avgPrice 

Insert into outputStream; 

Query 4.1: Example sliding time window query. 

 
Fig. 4.1: Deployment of standard sliding time window test. 
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Fig. 4.2: Deployment of scalable sliding time window test. 

The data publisher, data consumer, and the intermediate data processing nodes 

are implemented using Siddhi. Each segment of the distributed logic is also written as 

Siddhi queries, where each node runs a single Siddhi Manager and deploys a service 

to consume, process, and publish messages.  

For publishing, application given in Query 4.2 is deployed and events are 

pushed to StockEventStream. This will send the events to multiple internal data 

processing nodes in a round-robin manner. 

@app:name('publisher') 
@sink(type='tcp', sync='true', @map(type='binary') 

@distribution(strategy='roundRobin',  
 @destination(  

   url='tcp://url1/time-window/StockEventStream') 
@destination(  
   url='tcp://url2/time-window/StockEventStream')))  

define stream StockEventStream(symbol string,  
price float, volume long); 

Query 4.2: Data publisher Siddhi Application. 

To consume the final output, the application provided in Query 4.3 is deployed. 

When the processed events are pushed to its endpoint the application calculates the 

throughput and accuracy of the system.  

@app:name('consumer') 
@source(type='tcp', @map(type='binary')) 
define stream AggregateStockStream (symbol string,  

totalPrice double, avgVolume double); 

Query 4.3: Data consumer Siddhi application. 
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In terms of the standard sliding time window test, the processing node 2 (see 

Fig. 4.1) will contain the application in Query 4.4 to consume the events, process the 

sliding time window, and to publish the events to the consumer.  

@app:name('time-window') 
@source(type='tcp', @map(type='binary')) 
define stream StockEventStream (symbol string,  

price float, volume long); 
@sink(type='tcp',  

url='tcp://url3/consumer/AggregateStockStream',  
sync='true', @map(type='binary')) 

define stream AggregateStockStream (symbol string,  
totalPrice double, avgVolume double); 

@info(name = 'query1')  
from StockEventStream#window.time(1 hour)  
select symbol, sum(price) as totalPrice,  

avg(volume) as avgVolume  
group by symbol  
insert into AggregateStockStream; 

Query 4.4: Standard sliding time window Siddhi Application. 

 When implementing the scalable sliding time window, nodes 2 to 4 of Fig. 4.2 

will contain the following application as shown in Query 4.5. Here each node will have 

time window and local data aggregations to achieve scalability as we have discussed 

under Section 3.1.1 scaling window operators. These will also send the node ID in 

each of its output event for accurate global aggregation.  

@app:name('time-window')  
@source(type='tcp', @map(type='binary')) 
define stream StockEventStream (symbol string,  

price float, volume long); 
@sink(type='tcp',  
url='tcp://url5/aggregation/PartialAggregateStockStream’
,sync='true', @map(type='binary')) 
define stream PartialAggregateStockStream (symbol string,  

totalPrice double, totalVolume long,  
countVolume long, id string); 

@info(name = 'query1') 
from StockEventStream#window.time(1 hour) 
select symbol, sum(price) as totalPrice,  

sum(volume) as totalVolume,  
count(volume) as countVolume, '1' as id  

group by symbol 
insert into PartialAggregateStockStream; 

Query 4.5: Scalable pre aggregation of sliding time window Siddhi Application. 
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The global aggregator of the scalable sliding time window depicted in node 5 

of Fig. 4.2 will contain the Siddhi application provided by Query 4.6. This matches 

the latest event of each node by their unique node ID and performs the aggregation to 

get the global aggregation across the given sliding time period. When the events are 

arriving out of order, they are buffered and reordered using the K-Slack [34] algorithm 

to improve the accuracy of the system. In this case, the K-Slack algorithm is engaged 

just before the unique:ever() window to reorder the events before aggregation. 

@app:name('aggregation') 
@source(type='tcp', @map(type='binary')) 
define stream PartialAggregateStockStream (symbol string,  

totalPrice double, totalVolume long,  
countVolume long, id string);   

@sink(type='tcp',  
url='tcp://url6/consumer/AggregateStockStream',  
sync='true', @map(type='binary')) 

define stream AggregateStockStream (symbol string,  
totalPrice double, avgVolume double); 

@info(name = 'query1') 
from PartialAggregateStockStream  

#window.unique:ever(id, symbol)  
select symbol, sum(totalPrice) as totalPrice, 

sum(totalVolume)*1.0/sum(countVolume) as avgVolume 
group by symbol  
insert into AggregateStockStream; 

Query 4.6: Global aggregator of scalable sliding time window Siddhi Application. 

Data publisher and data consumer are separated, and the data is transferred 

between nodes using blocking TCP calls using Siddhi’s TCP [35] data publisher. 

Blocking TCP calls are selected as they give low latency data transfer and provide 

back pressure to the event sources if the system is having performance bottlenecks 

downstream. Due to this behavior, there would not be any events pile-ups in the 

network buffers. Therefore, we can better evaluate the memory consumptions of 

stateful CEP operators. 

All the nodes used for testing are build using Docker [36] and deployed as pods 

in Kubernetes, and for this implementation, Kubernetes Google Cloud is used. Further, 

the Kubernetes deployment is also configured such a way that it kills the nodes who 
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consumes more memory than allocated. This helped us to detect out of memory 

situations without affecting the performance of the system. 

In terms of the scalable implementation, each distributed node is given a unique 

node ID and it is passed to the aggregation node along with each message, through this 

the latest event of each node was uniquely identified and aggregated. Sliding length 

window operations are also implemented and tested using the same methodology and 

guidelines.  

 

4.2 Scaling of pattern operators 

To evaluate the scalability of pattern component, like in windows, a non-

scalable implementation and a scalable distributed implementation are tested. Here 

also the data publisher and the consumer are separated from the CEP processing logic. 

To test the scalability of the pattern operation, Query 4.7 is selected as discussed in 

Section 3.1.2 and its implemented in three different ways as given in Fig. 4.3, 4.4, and 

4.5. Implementation in Fig. 4.3 represents the standard single-node pattern 

deployment. Implementation in Fig. 4.4 is used to evaluate how patterns can be scaled 

by executing each pattern state in a dedicated node and the final implementation shown 

in Fig. 4.5 is used to evaluate how each pattern state can be further scaled.  

from every a = CardStream[amount < 100] 
    -> b = CardStream 

[amount < 100 and a.cardId==cardId] 
    -> c = CardStream 

[amount > 10000 and a.cardId==cardId] 
    within 1 day 
select a.amount as initialPurchaseAmount,  

c.amount as lastPurchaseAmount,  
c.cardId as cardId,  
c.location as location 

insert into PossibleFraudStream; 

Query 4.7: Example pattern query. 
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Fig. 4.3: Deployment of standard pattern test. 

 
Fig. 4.4: Deployment of scalable patterns based on streams. 

 
Fig. 4.5: Deployment of scalable pattern based on distributed streams. 

The data publisher, data consumer nodes are implemented similarly to the 

scalable window operator implementation in Section 4.1. The standard pattern test 

implementation for the processing node 2 as shown in Fig. 4.3 contains the application 

in Query 4.8 to consume the events, process the pattern query, and to publish the events 

to the consumer. 

The first condition used in the scalable pattern depicted as nodes 2 of Fig. 4.4 

and node 2 and 3 of Fig. 4.5 is implemented using Query 4.9 to perform basic input 

event filtering. The second condition of the pattern implementation of node 3 of Fig. 
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4.4 and node 4 and 5 of Fig. 4.5 contains the Siddhi application in Query 4.10, having 

basic pattern matching with the previous event occurrences.  

 

@app:name('pattern') 
@source(type='tcp', @map(type='binary')) 
define stream CardStream (cardId string, amount float,  

location string); 
@sink(type='tcp', 

url='tcp://url1/consumer/PossibleFraudStream',  
sync='true', @map(type='binary')) 

define stream PossibleFraudStream ( 
initialPurchaseAmount float, 
lastPurchaseAmount float,  
cardId string, location string); 

@info(name = 'query1')  
from every a = CardStream[amount < 100] 

-> b = CardStream[amount < 100 and 
a.cardId==cardId] 
-> c = CardStream 

[amount > 10000 and a.cardId==cardId] 
within 1 day 

select a.amount as initialPurchaseAmount,  
  c.amount as lastPurchaseAmount,  

c.cardId as cardId 
c.location as location 

insert into PossibleFraudStream; 

Query 4.8: Standard pattern Siddhi Application. 

@app:name('pattern1') 
@source(type='tcp', @map(type='binary')) 
define stream CardStream (cardId string, amount float,  

location string); 
@sink(type='tcp', 

url='tcp://url2/pattern2/PossibleFraudStream1',  
sync='true', @map(type='binary')) 

define stream PossibleFraudStream1 ( 
initialPurchaseAmount float,  
cardId string, timestamp long); 

@info(name = 'query1')  
from every a = CardStream[amount < 100] within 1 hour 
select a.amount as initialPurchaseAmount,  

currentTimeMillis() as timestamp, a.cardId 
insert into PossibleFraudStream1; 

Query 4.9: First condition of the scalable pattern Siddhi Application. 
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@app:name('pattern2') 
@source(type='tcp', @map(type='binary')) 
define stream CardStream (cardId string, amount float,  

location string); 
@source(type='tcp', @map(type='binary')) 
define stream PossibleFraudStream1 ( 

initialPurchaseAmount float,  
cardId string, timestamp long); 

@sink(type='tcp', 
url='tcp://url2/pattern3/PossibleFraudStream2',  
sync='true', @map(type='binary')) 

define stream PossibleFraudStream2 ( 
initialPurchaseAmount float,  
cardId string, timestamp long); 

@info(name = 'query1') 
from every a=PossibleFraudStream1  

-> b = CardStream [amount < 100 and  
(currentTimeMillis() - a.timestamp) < 60000 and  
a.cardId == cardId] within 1 hour 

select a.amount as initialPurchaseAmount,  
a.timestamp, a.cardId 

insert into PossibleFraudStream2; 

Query 4.10: Second condition of the scalable pattern Siddhi Application. 

 Like the second condition, all other non-initial pattern conditions can also be 

implemented using the same technique discussed for the second pattern state 

implementation. In the pattern implementation to handle out of order event arrival, the 

conditions are written in such a manner that they will always produce the expected 

output when either of the streams arrives to the node first. The implementation of 

nodes, deployment, and data transfer technique of patterns are similar to the window 

implementation and follows the same implementation techniques and principles. 

 

4.3 Scaling join operators 

The join operations are also implemented like the windows having a non-

scalable implementation and scalable distributed implementations. To test the 

scalability of the join query given in Query 4.11 is selected as discussed in Section 

3.1.3 and implemented as given in Fig. 4.6 and 4.7. The standard join is similar to the 

window and pattern implementations but the data producer, in this case, publishes both 

the joining streams (StreamA and StreamB) at the same time. 
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from StreamA#window.length(10000)  
join StreamB#window.length(20) 
on StreamA.symbol == StreamB.symbol 

select sum(price) as sumPrice,  
count () as countEvents,  
avg(price) as avgPrice 

Insert into OutputStream; 

Query 4.11: Example join query. 

 
Fig. 4.6: Deployment of standard join test. 

 
Fig. 4.7: Deployment of scalable join test. 

 The scalable join is implemented as illustrated in Fig. 4.7 and it caters both 

joins across small and large windows and joins across two large windows. These are 

facilitated by sending the data streams as discussed in Section 3.1.3. The 

implementation, deployment, and data transfer between nodes of the join 

implementation also follows the same techniques and principles followed by the 

window and pattern implementation. 

 

4.4 Summary 

We discussed how stateful CEP operations such as windows, patterns, and 

joins can be implemented and scaled across multiple nodes. In the proposed approach 
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events are sent from a data publisher to various processing nodes to perform standard 

and scalable complex event processing. Finally, when the data is processed by the data 

processing nodes the final output will be pushed to the data consumer to calculate 

performance and accuracy. Here each node is implemented using Siddhi, containerized 

using Docker, and deployed as Kubernetes pods. The communication between the 

nodes happens using TCP transport. 
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5. PERFORMANCE EVALUATION 

 
This section provides details about the scalability analysis of the proposed 

stateful CEP operation. Section 5.1 discusses how the data is generated and how it is 

used for the evaluation. Experimental setup and hardware configurations are presented 

in Section 5.2. Section 5.3 analyzes the scalability of the proposed solution compared 

to the single nodes operation of the CEP engine considering system resource (CPU, 

memory, and bandwidth) utilization. Section 5.4 presents more in-depth information 

on accuracy and latency while Section 5.5 provides the applicability of the results of 

other CEP systems and Section 5.6 presents the summary. 

 

5.1 Data set 

As this thesis focuses on scalability and related performance implications, data 

generation for testing also focuses on introducing the worst-case scenarios for all the 

use cases as and when applicable. Due to this fact, no existing benchmark was used 

but rather the data is generated in a way that stresses the system.  

Data generation is done using a Java client and published using a Siddhi 

Application using TCP transport. For testing window and join operations stock quote 

data stream is generated containing a symbol of type string, volume of type long, and 

price of type float. To test the pattern operation a credit card data stream is generated 

comprising cardID of type string, amount of type float, and transaction location of 

type string. All events are also published with the event generated timestamp value.  

 To maintain consistency when testing standard and scalable distributed setups 

the data publisher client is modified to publish events at a consistent rate. For testing 

purposes, this value is constantly maintained at 1000 Events per Second (TPS). By 

having a consistent data flow rate, the calculations of CPU, memory, and bandwidth 

become straightforward and they also become comparable across various test cases. 

Here, the bandwidth of the nodes is approximated by calculating the corresponding 
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nodes the event arrival and event publishing rates. For testing purposes, the data 

publisher’s upload bandwidth for all test cases is constantly maintained at 1000 TPS.  

 

5.2 Experimental setup 

 The test setup is configured on Kubernetes [21] container orchestration system 

offered by Google Cloud. Each node used for testing is modeled as a Docker [36] 

Container running necessary Java code and Siddhi application and deployed in 

Kubernetes running on Google Cloud. 

 The prototype of the experimental implementation is built using Open JDK 

1.8.0_152 and Siddhi version 4.2.35. For achieving TCP based event transmission 

Siddhi IO TCP version 2.0.20 is used. The data publisher, data consumer, and the 

processing nodes are built as Docker images using OpenJDK 8-jre-alpine3.8 base 

image. These Docker images are then configured using Kubernetes deployment and 

service configurations and deployed on the Kubernetes version 1.9.7-gke.11 [21] 

provided by the Google Cloud. 

As we are focused on the scalability of the system, resource constraint nodes 

are selected, and for testing purposes, each node is also allocated an equal amount of 

CPU and memory. Here each node of the window operation tests was given 0.5 virtual 

CPU and 256MB of memory, and each node of the pattern and join operation tests was 

given 1 virtual CPU and 512MB of memory. Further Kubernetes deployment is 

configured such a way that it kills the nodes who consumes more memory than 

allocated. This facilitated detecting out of memory situations without affecting the 

throughput of the system.  

The system is also implemented and tested according to the following 

guidelines:  

● All nodes have an equal amount of memory and CPU. 

● The data publishing throughput is constantly maintained at 1000 events per 

second. 
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● Events with constant size are published across standard and scalable stateful 

CEP operations for the test. 

● For each test, the system ran for more than 20 minutes and the results are 

measured at steady state. 

● The results for each scenario was calculated by running the tests three times 

and averaging the readings to improve the accuracy. 

 

5.3 Analysis on system scalability 

 As discussed in Section 3.1 different implementation was done for standard 

and scalable versions of each stateful CEP operation and tested for scalability of the 

system. During this phase, the scalability of the system is tested by changing the 

duration considered for real-time analytics from 5 seconds windows to 1-hour 

windows while maintaining the input message rate and keeping the hardware 

configuration of the nodes unchanged. During the evaluation CPU, memory and 

bandwidth of each node are measured.  

5.3.1 Analysis on scalability of window operation 

 Sliding time, and length windows are considered for this evaluation. For 

evaluation purposes, each test has been carried out with a selected query with a given 

time or length window, as these query parameters do not affect the scalability 

properties of the solution. 

5.3.1.1 Sliding time window  

As our primary objective is to determine the scalability of the system, the 

standard single-node time window and deployment of the scalable time window (as 

discussed in Section 4.1) are tested against various time window intervals with a 

varying number of nodes and their throughput, memory, and CPU utilization. The 

throughput of the single-node system stayed at a constant level up to a 30-second 

window test, and on the 35-second window test, the Kubernetes killed the node due to 

high memory consumption. This can be viewed by the throughput and memory values 

depicted in Fig. 5.1 and 5.2, respectively. During this phase, the CPU of the node has 
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been the same over various time intervals as depicted in Fig. 5.3. This can be justified 

as that the amount of work that needs to be done only depends on the input rate and 

they do not depend on the size of the sliding window that is being processed. This is 

because the Siddhi CEP engine always maintains running aggregations and as events 

arrive and leave the window, it updates running aggregations only by considering the 

deltas produced by the new and expired events, and not by iterating through the whole 

window every time.  

 
Fig. 5.1: Throughput of 1, 3, 5, 9, and 17 node time windows. 

 
Fig. 5.2: Memory consumption of 1, 3, 5, 9, and 17 node time windows. 
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Fig. 5.3: CPU utilization of 1, 3, 5, 9, and 17 node time windows. 

From Fig. 5.1, 5.2, and 5.3 we are able to understand how average system 

throughput, memory, and CPU varies as we scale the number of processing nodes. To 

understand how much the system can scale, the system was stressed to find out the 

maximum time interval it can support when the system is at steady state by varying 

number of processing nodes. For 3, 5, 9, and 17 nodes systems, one node was used as 

the aggregator and other nodes were used as the window nodes. Corresponding results 

are shown in Fig. 5.4. It can be seen that the time interval that the system can process 

has increased exponentially when the number of nodes increases. This is in contrast to 

the expected linear scalability of Θ(e/n) (see Table 3.1). This is probably due to not 

having sufficient aggregated memory when the number of nodes is less. To further 

analyze the behavior of the system, the number of events stored in each node, the 

bandwidth of each window processing node, and their CPU utilization were measured 

while scaling the system. The results are depicted in Fig. 5.6, 5.7, and 5.8. 
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Fig. 5.4: Maximum time interval supported by the number of nodes. 

 
Fig. 5.5: Event consumption throughput by the number of nodes while supporting 

maximum time interval. 

 
Fig. 5.6: Average number of events stored in each window node. 
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Fig. 5.7: Average bandwidth of window processing nodes (events/Sec). 

 
Fig. 5.8: Average CPU utilization of window processing nodes.  

While the results show that the bandwidth and CPU utilization do not adhere 

to theoretical expected linear input bandwidth of Θ(λ/(n-1)) and linear CPU utilization 

of Θ(λ/(n-1)), we were able to see a clear positive correlation between CPU utilization 

and the input bandwidth of the system where both are decreasing when the number of 

nodes increases. This is evident because our publishing bandwidth is kept at a constant 

rate of 1000 events/Sec and hence when the number of nodes increases each node will 

receive a fraction of the published bandwidth. Because each node is consuming only a 

fraction of the published bandwidth their CPU utilization has also decreased 

corresponding to the processing event rate. This behavior can also be correlated against 

the number of events stored in each node, where when the CPU utilization of the node 
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decreases the system was able to keep more events in the window. This is because 

when the CPU utilization decreases the system will have enough cycles to perform 

accurate thread scheduling for event expiry and have cycles for garbage collection. 

Due to this behavior, the system will not unnecessarily waste its memory because it 

will not contain many garbage-collectible objects on its heap at any given time. Hence, 

it can use that space to accommodate the events that are actually needed to be stored 

in sliding time window. Note that this conclusion only holds when the system is 

implemented in Java and deployed in Kubernetes, as Kubernetes does not impose 

additional garbage collection cycles but rather it kills the nodes who consuming more 

memory without providing back pressure and affecting the throughput of the system. 

If this system is implemented on top of a non-Java based CEP system which does not 

require garbage collection, there is a possibility of achieving more linear scalability as 

we increase the number of nodes.  

5.3.1.2 Sliding length window 

The evaluation of the sliding length window depicted in Fig. 5.9 shows 

approximately linear behavior than the sliding time window because its Siddhi 

implementation does not require any additional threads for event expiry like time 

windows. Hence, it will consume lesser CPU and processing memory even for systems 

having a lower number of nodes. 

 
Fig. 5.9: Maximum window length supported by the number of nodes. 



 

 

51

5.3.2 Analysis of pattern operation scalability 

Standard single-node pattern, scaling pattern by distributing each of its states 

to a dedicated node, and scaling pattern by replicating the states on multiple nodes are 

evaluated. To understand the worst-case behavior of the system subject to an uneven 

rate of input streams, we tested the system in such a way that the system will create 

lots of partially matched internal states but none of them ever qualifying as full 

matches. This is done by sending only CardStream events having an amount less than 

100 for each cardID for the pattern Query 4.7, these events matched the pattern 

conditions at state 1 and state 2 while none of them ever matched the condition at state 

3. This lets the system to accumulate lots of partially matched internal events at state 

2. To make sure the system does not go out of memory, Query 4.7 restricts the pattern 

matching duration such that the first and last event of a particular match should be 

within a given time period. Therefore, if there are no matching events to a partially 

matched event within the given time period it will get cleaned by the system. This 

worst-case behavior is analyzed by capturing the maximum supported pattern 

matching duration as given in Fig. 5.10 for all three types of deployments while scaling 

the number of nodes.  

 
Fig. 5.10: Maximum supported pattern matching duration for worse-case workload. 

In this case, as we are sending the input events at a constant rate, the pattern 

matching time interval will have a positive correlation to the number of internally 
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created partially matched events. Therefore, we can consider the system is not scalable 

when we distribute the states to three dedicated nodes by increasing the number of 

nodes from 1 to 3, as in both cases the system can only sustain three seconds of data. 

This can be categorized as the state 3 in pattern becoming the bottleneck as it was 

holding all the data objects that need to be matched against the state 3 of the query. To 

further analyze this an average-case scenario was introduced. Here the data is 

published in such a way that nodes having state 2 and state 3 will be holding an equal 

number of objects that need to be matched against their respective states. This is 

achieved by sending two events having amount < 100 for 50% of the cardIDs and 

sending only one event having amount < 100 events to rest of the 50% cardIDs this 

make sure the prior cardIDs matches both state 1 and 2 while the latter matches only 

state 1. The output of this is also analyzed by capturing the maximum supported pattern 

matching duration as in Fig. 5.11. It can be seen that the supported pattern matching 

time interval increase with the increasing number of nodes, especially when we move 

each state to individual nodes. This behavior also correlates with the theoretical 

analysis of linear memory distribution of Θ(e/(s-1)) between all the nodes except the 

node containing the initial state. Further, while using the worse-case workloads, we 

can also conclude that the scalability of the system is limited by the partially matched 

event objects accumulated at state 3.  

 
Fig. 5.11: Maximum supported pattern matching duration for average-case workload. 
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To further analyze the pattern’s scalability both bandwidth and CPU utilization 

were analyzed for the average-case. The results of the analysis are presented in Fig. 

5.12 and 5.13, respectively.  

 
Fig. 5.12: Average throughput of each pattern state node. 

 
Fig. 5.13: Average CPU utilization of each pattern state node. 
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 Aligning to the expected per node bandwidth (λ), the input bandwidth to the 

nodes is decreasing as we increase the number of nodes (see Fig. 5.12). Even though 

the average CPU utilization calculated by considering all the three states together is 

decreasing as depicted by the All-State series of Fig. 5.13 corresponding to the 

expected linear theoretical Θ(ݏ/݁ߣ) behavior, the CPU consumption of state 2 is high. 

This is because state 2 nodes hold more partially-matched events compared to other 

states, and they need to process all incoming events against those. This is because 

based on our workload, 50% of the events that do not get matched at state 2 will be 

stagnated at state 2, and the other 50% of the events not getting matched at state 3 will 

also get stuck at state 2 for some time before they get matched and reach state 3. 

5.3.3 Analysis on scalability of join operation 

 We conducted an evaluation similar to the window and pattern operations to 

evaluate the scalability of join operations as well. We evaluated both joining a small 

window against a larger window and joining two large windows. As we are interested 

in the worst-case scenarios we simulated events in such a way that all events in the one 

window will always match against the events in the other window. 

5.3.3.1 Joining a small window with large window  

 To evaluate join against small and large window we constantly kept the small 

window length size as 20 and only changed the large window size for testing purposes. 

Here three, five, and nine node deployments were tried and in all the deployments one 

node is used as an aggregator and other nodes are used to hold the windows and to 

perform join operations. Through this, we tried to find the maximum large window 

size the system can hold while we increase the number of nodes as depicted in Fig. 

5.14. In the meantime, the average bandwidth of the join nodes is also captured and its 

reported in Fig. 5.15.  
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Fig. 5.14: Maximum large window length of the join nodes. 

 
Fig. 5.15: Average bandwidth of the join nodes. 

 As seen in Fig. 5.14, the proposed system is able to almost linearly scale as we 

increase the number of nodes, adhering to the theoretically expected scalability of Θ(e 

+ e/n). This clearly shows that the proposed system was able to distribute the events 

of the large window evenly across available join nodes. Further, as depicted in Fig. 

5.14 the average bandwidth of join nodes is also constantly decreasing aligning to the 

expected theoretical bandwidth distribution of Θ(ߣ +  as we are distributing one ,(݊/ߣ

of the streams across the nodes. Further, as join queries internally contain windows, 

the behavior of the distributed join correlates with the behavior of the windows.  
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5.3.3.2 Joining two large windows  

 Similar to the above use case, two large window joins are also evaluated. Here 

both the windows are increased at the same level to evaluate the scalability of the 

system. Here five and ten node deployments are used for testing. In all cases, one node 

is used as an aggregator and other nodes are used to hold the windows and perform 

join operations. For the five node case each joining stream is divided into two equal 

sections such as A1, A2 and B1, B2, and on the four available nodes A1B1, A1B2, 

A2B1 and A2B2 combination of the sub streams are joined, at the same time in the 10 

node case each stream is divided into three equal subsections and they are cross joint 

in the available nine join nodes.  

 
Fig. 5.16: Maximum length of each join window. 

 
Fig. 5.17: Average join node bandwidth while holding the largest possible length 

window. 



 

 

57

 

The maximum large window size, the system can hold and the average 

bandwidth of the join nodes at that time are evaluated to understand the scalability of 

joins and they are reported in Fig. 5.16 and 5.17, respectively. From these figures, we 

can see that the system is able to evenly distribute the events of both the join windows 

across all the nodes and scale the system corresponding approximately to the expected 

linear theoretical value of as Θ(e/n). The average bandwidth of the join nodes is also 

reducing while approximately correlating to the expected linear theoretical value of 

O(λ/n). These results also match the behavior of small-window joins and the scalability 

characteristics of the windows. Hence, we can conclude joins can be approximately 

linearly scaled as we increase the number of joining nodes. 

 

5.4 Analysis on latency and accuracy  

 The latency of all operators is also calculated during the tests. In this test, the 

latency is calculated by setting the data publishing timestamp to the event and by 

finding the time difference between the published time and the final event arrival time. 

Therefore, the calculated latencies also include the time taken to send the events over 

the network. Fig. 5.18, 5.19, and 5.20 depict the end-to-end latency of sliding time and 

length window, simple pattern, large and small window, and two large-window-join 

use cases. 

 
Fig. 5.18: Average latency of the sliding time and length windows. 
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Fig. 5.19: Average latency of simple pattern. 

 
Fig. 5.20: Average latency of small and large window and two large-window joins. 

 

 When it comes to the window use case when the system is scaled from one to 

three nodes the latency increased. But when its scaled beyond the latency gradually 

reduces. This is because from three nodes onwards the hop count of the end to end 

event flow has not changed but at the same time overall system load decreases while 

reducing the latency. Similar behavior is also observed with the pattern use case. In 

terms of joins, the latency increased between 44% to 67% with the number of nodes. 

This is because we are storing more events when we scale the nodes the number of 

events each node needs to match is also increasing and this is contributing to latency.  
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To understand the accuracy of the final CEP results produced by the system, 

one test out of each CEP operator was taken and evaluated. In each case, they are tested 

against the corresponding single node counterpart. Here, five-node scalable time 

window, six-node scalable simple pattern, and five-node scalable two large window 

join were evaluated for accuracy. For window and join cases the error is defined by 

the difference between final aggregation results of the expected single node and scaled 

solutions, and in the evaluations, all events were given the same weight to make the 

error reproducible. In the pattern case, the error is defined by the difference in the 

number of patterns detected by the single node and the scaled solution. 

When five node scalable window and five node scalable join are evaluated, we 

were able to find an out of order event arrival behavior. Such out of order arrivals to 

the aggregation node caused incorrect aggregation results, and therefore, the 

implementation was enhanced to reorder events at the aggregation nodes using the K-

Slack [34] algorithm. Here the K-Slack algorithm is used, as it buffers events and 

orders them based on their origin time by limiting the buffer size to worse-case out of 

order events seen so far. To understand the output accuracy and performance of the 

system single node, scalable five node, and scalable K-Slack based five node setups 

are tested for both windows and joins. During the tests as presented in Table 5.1 and 

5.2, the percentage of events arriving out of order, the maximum out of order arrival 

delay, the end to end event latency, and the error in final aggregation are measured 

while maintaining the throughput at 1000 events per second.  

 
Table 5.1: Accuracy and performance analysis of window queries. 

 
Single Node Standard 

Time Window 
5 Node Scalable 
Time Window 

5 Node Scalable Time 
Window with K-Slack 

Max window time 
interval 15 sec 2 min 2 min 

Out of order % 0.00% 0.58% 0.07% 

Max out of order (ms) 0 92 30 

Avg latency (ms) 0.243 0.349 55.58 

Error % 0.00% 0.08% 0.03% 
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 According to Table 5.1 when the system is scaled there is about 0.58% out of 

order event arrivals coursing 0.08% error as the incorrect output window aggregation 

values, and when K-Slack is used the out of order event arrivals has been reduced to 

0.07% and the incorrect output window aggregation values has been dropped to 0.03% 

with the additional cost of ~54ms delay in output. As depicted in Table 5.2 a similar 

behavior was also observed with joins where we were able to improve the accuracy by 

5.6% by adding around 260ms of latency. 

Table 5.2: Accuracy and performance analysis of join queries. 

 Single Node 2 Large 
Window Join 

5 Node Scalable 2 
Large Window Join 

5 Node Scalable  
2 Large Window Join 

with K-Slack 

Max window length 100 500 500 

Out of order % 0.00% 3.40% 0.05% 

Max out of order (ms) 0 33 202 

Avg latency (ms) 0.366 0.504 261.06 

Error % 0.00% 6.60% 1.00% 

 
 When accuracy is tested for the pattern, as its scalable implementation already 

handles pattern matching for out of order event arrival as discussed in Section 3.1.2, 

there were no errors identified when we scale the system. 

 

5.5 Applicability to other CEP systems 

As the system is designed to scale by rewriting the CEP operators in a generic way by 

defining independent CEP queries and distributing them to various nodes, we will be 

able to achieve almost identical results to the experimental results produced by Siddhi 

even if we implement the system using any other CEP engine. In all cases, the system 

should identify the expected queries that need to run on each distributed node and 

implement them using an available CEP engine. This approach also allows us to use a 

different type of CEP engines at various nodes if necessary, and this can become handy 

if we are using multiple runtime environments in scenarios like IoT. Based on the 
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analysis we believe if we have used a CEP engine that is implemented on a language 

that has better garbage collection than Java or that has no garbage collection at all (e.g., 

C++) the overall performance would have been better.  

 

5.6 Summary 

We simulated a dataset for worse-case scenarios for all the operators, and we 

simulated a dataset with an average-case scenario for patterns. In all cases, we were 

able to get almost linear scalability when we increase the number of processing nodes. 

For window and pattern cases we were able to achieve this with no increase in the 

overall end to end latency while for join we were able to achieve this with lower than 

linear increase in latency. Most importantly the system was able to produce results 

with zero errors for the pattern, less than 0.1% of error for windows and with 6.6% of 

error for joins. By using K-Slack based event reordering algorithm the error rate of the 

window was able to be reduced to 0.03% just by adding 54ms of delay, and the error 

rate of join was decreased to 1% by adding 260ms delay.  
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6. SUMMARY 

This section presents the summary of the thesis. Section 6.1 presents the 

conclusion on the finding of how stateful operations of Complex Event Processing can 

be scaled when event streams are not partitioned by a key. The research limitations are 

provided in Section 6.2 and Section 6.3 presents possible future work that can be done 

in this area.  

 

6.1. Conclusion 

Scaling the Complex Event Processing (CEP) is an essential requirement in the 

data analytics space. Scaling enables handling a large number of CEP queries, running 

queries that need large working memory, handling a large number of events, complex 

queries that might not fit within a single machine, and handling a large number of 

events. In this thesis, we discussed the most common and available scaling approaches 

that can be used for CEP scaling purposes. They are, running multiple CEP nodes in a 

cluster, using different types of queries to different CEP nodes, scaling execution via 

publish/subscribe and scaling events by partitioning each stream and as batches. We 

have evaluated each of these scaling approaches and analyzed their pros and cons. 

Based on the analysis, we identified several bottlenecks while scaling stateful CEP 

operations such as windows, patterns, and joins especially when the streams are not 

partitioned by a partition key. Scaling such queries on such streams are difficult, as in-

memory states need to be maintained between multiple nodes in the cluster. 

As the major bottleneck of scaling windows, patterns and joins is storing 

temporal events at the processing nodes in a scalable manner, we proposed a scatter 

and gather based solution. In the proposed approach events are sent from a data 

publisher to various CEP nodes who are connected as a directed acyclic graph. For 

window and join cases the data is processed in a distributed manner, and the results 

are collected and aggregated by a single aggregation node to produce the final output. 

In the case of patterns, the pattern matching and the aggregation happens at each node 

used in the pattern matching pipeline. Finally, the processed output of windows, joins, 
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and patterns are sent to a consumer node to calculate the performance and the accuracy 

of the system. Here the communication between the nodes happened through TCP 

transport and the distributed data processing is implemented using Java and Siddhi 

CEP engine and deployed as Docker images in Kubernetes pods. When accuracy-

related issues are identified K-Slack algorithm is used to reorder the events.  

We conducted various tests to verify the scalability of the proposed solution 

with a various number of processing nodes. The tests were carried out for a fixed data 

rate, and with the uniform capacity nodes, to understand the maximum processing 

capacity of the deployment as we scale the number of nodes. Based on this analysis, 

in all cases, we were able to achieve almost linear scalability when we increase the 

number of processing nodes. For window and pattern cases we were able to achieve 

this with about ~25% increase in the overall end to end latency while for join cases we 

were able to achieve this with 44% to 67% increase in the latency. Most importantly 

the system was able to produce this result with zero errors for the pattern, less than 

0.1% of error for windows and with 6.6% of errors for joins. By using K-Slack based 

event reordering algorithm the error rate of the window was able to be reduced to 

0.03% just by adding 54ms of delay, and the error rate of joins was decreased to 1% 

with by adding 260ms delay. 

 

6.2. Research limitations 

The proposed solution is implemented using the Siddhi CEP engine which is a 

Java-based system. Due to Java’s garbage collection and threading behavior the system 

was not able to achieve the calculated theoretical values. This can be overcome by 

using a CEP engine that is implemented on a language that has better garbage 

collection than Java or that has no garbage collection at all (e.g., C++).  

The current system can only support windows, patterns, and joins that can be 

implemented using scatter and gather approach, where we split the data, perform 

summarizations or pattern matching in a distributed manner, and then we combine 

them for further summarization or pattern matching. Because of this, all MapReduce 

based aggregation algorithms such as sum, count, min, max, average, and standard 



 

 

64

deviation can be easily implemented. However, we cannot process algorithms such as 

median which does not fit into the scatter and gather approach. Therefore, this 

approach has a limitation on the algorithms supported. Also, the supported algorithms 

need to be written in scatter and gather way to support distributed processing possible.  

The window and join implementations have a possibility of producing out of 

order events even when the K-Slack algorithm is used for event reordering. Therefore, 

the solution may not be useful when we need 100% accuracy for output data. But this 

system will be useful in most real-world use cases because most of the use cases will 

be able to tolerate the 1% error produced by the system.  

The proposed solution increases the per-event latency compared to the default 

Siddhi engine. Moreover, this latency depends on the number of network hops and the 

corresponding data reordering that need to be done. Due to this, our solution might not 

be the most suitable to produce results instantly. However, in most cases the latency is 

increased by only a few millisecond ranges; hence, the proposed solution is still 

applicable in many applications that need near real-time event detection. 

Finally, the proposed solution is not implemented to handle data recovery when 

there are node failures or network failures. Therefore, during failures even though the 

system was able to recover the nodes using Kubernetes due to data losses it can 

produce wrong results.  

 

6.3. Future work  

 As the proposed solution is implemented using Java, due to the garbage 

collection and threading behavior was not able to achieve the calculated theoretical 

values. One possible extension is to implement the system using a language that has 

better garbage collection and threading behavior than Java.  

Currently, the distributed processing topology and the sub queries need to be 

given by the user to scale the system, and as future work, we can implement a compiler 

that can take a simple single node query and automatically build the distributed query 

and the connection between the nodes for deployment.  
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For this thesis, we were using the K-Slack algorithm for reordering out of order 

events and that was enforcing up to 260ms delay on some cases, at the meantime the 

system was still producing up to 1% error on the output of window and join use cases, 

as future work better algorithms should be evaluated and implemented to improve the 

overall latency and to eliminate the output error of the system.  

 Even though the system was implemented using Kubernetes the current 

implementation does not use any of its auto-scaling capabilities to scale the system, 

and therefore, the system is currently static. As future work, we can implement 

elasticity to the system such that it can scale based on the load.  

The current solution is not implemented to handle data recovery when there are 

node failures or network failures. Therefore, as future work, this can be eliminated by 

using periodic data persistence and using data playback techniques during recovery.  
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