
Page 1 of 2

CS4532 Concurrent Programming

Take Home Lab 1

Due – Oct 7 before 11:55 PM

Learning Outcomes
 In this lab we will learn how to develop parallel programs using the Pthread library. We will also
compare the performance of different implementations. At the end of the lab you will be able to:

• develop a simple program to solve a concurrent problem using threads
• collect performance data and use them to compare the performance of different implementations

used to solve a problem

Challenge
Implement a linked list as a:

a) Serial program
b) Parallel program (based on Pthreads) with one mutex for the entire linked list
c) Parallel program (based on Pthreads) with read-write locks for the entire linked list

Your implementation should support Member(), Insert(), and Delete() functions. Populate the
linked list with n random, but unique values. Make sure to set a different random seed for each execution.
Each value should be between 0 and 216 – 1. Then perform m random Member, Insert, and Delete operations
(simultaneously) on the link list. Let mMember, mInsert, and mDelete be the fractions of operations of each type.
You may use any values within 0 and 216 – 1 while performing these three operations. However, to
simplify the implementation, a new value inserted into the list cannot be a value already in the list (it could
be a value that was initially added to the list, but later removed).

Step 1: Design a solution such that you can generate mMember, mInsert, and mDelete operations of each type
using given number of threads. Briefly explain your design. [2 marks]

Step 2: Implement the link list using above three approaches.

You may use the code snippets discussed in the class slides as the starting point and complete
the missing pieces. [4 marks]

Step 3: Run your program sufficient number of times under the following three cases, and then fill up
the given tables using the execution time of your programs. While determining the execution
time, consider only the time taken to perform m operations and ignore other overheads such as
initially populating the link list. [4 marks]

Your performance results should be within an accuracy of ±5% and 95% confidence level. See
Slides 13-33 and 13-34 by Raj Jain (http://www.cse.wustl.edu/~jain/cse567-08/ftp/k_13cs.pdf)
to find out how to calculate the number of samples.

You should run this program on a machine with at least four physical CPU cores (Hyper
Threading is not considered as a separate core. Thus, use a 4/4 or 4/8 core/thread CPU).

Also, list the specification of the machine that you used to run your simulations (see
http://dilumb.blogspot.com/2013/12/describing-experimentalsimulation-setup.html for some
tips).

Step 4: Plot the average execution time against the number of threads for each case. [6 marks]

 See http://www.dbooth.net/mhs/common/graphrules.html for some tips on “How to Make a
Good Graph”.

http://www.cse.wustl.edu/~jain/cse567-08/ftp/k_13cs.pdf
http://dilumb.blogspot.com/2013/12/describing-experimentalsimulation-setup.html
http://www.dbooth.net/mhs/common/graphrules.html

Page 2 of 2

Step 5: Comment your observations while critically evaluating your findings. You may plot additional
graphs to support your discussion. [4 marks]

 While it is identified that sometimes results do not show a consistent pattern, in most cases it is
due to errors in code. Hence, you are advisable to double check your implementations in such
cases.

Case 1
n = 1,000 and m = 10,000, mMember = 0.99, mIndert = 0.005, mDelete = 0.005

Implementation
No of threads

1 2 4 8
Average Std Average Std Average Std Average Std

Serial
One mutex for entire list
Read-Write lock

Case 2
n = 1,000 and m = 10,000, mMember = 0.90, mIndert = 0.05, mDelete = 0.05

Implementation
No of threads

1 2 4 8
Average Std Average Std Average Std Average Std

Serial
One mutex for entire list
Read-Write lock

Case 3
n = 1,000 and m = 10,000, mMember = 0.50, mIndert = 0.25, mDelete = 0.25

Implementation
No of threads

1 2 4 8
Average Std Average Std Average Std Average Std

Serial
One mutex for entire list
Read-Write lock

Notes

• Each lab group consists of 2 students. You are free to select your lab buddy.
• While the students are expected to find out how to develop programs using Pthreads, students are

also encouraged to talk to the lecturer in charge for any clarifications especially related to pre-
generation of workload and proper timing.

What to Submit

• Submit following files as a single .zip file
o Source files
o README.txt explaining how to run your program

• Answers to steps 2, 3, and 4 as a .pdf file
• Name the .zip file as lab2_<index no 1>_<index no 2>.zip. Replace <index no x> with your

index number

