
[CS5225]

UNIVERSITY OF MORATUWA

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

MSc in Computer Science
2014 Intake Semester 2 Examination

CS5225 PARALLEL AND CONCURRENT PROGRAMMING

 Time allowed: 2 Hours August 2014

ADDITIONAL MATERIAL: None

INSTRUCTIONS TO CANDIDATES:
1. This paper consists of 7 questions in 7 pages.
2. Answer All questions from Section A and any THREE questions from Section B.

3. Start answering each of the main questions on a new page.
4. The maximum attainable mark for each question is given in brackets.

5. This examination accounts for 50% of the module assessment.
6. This is a closed book examination.

NB: It is an offence to be in possession of unauthorised material during the examination.

7. Only calculators approved by the Faculty of Engineering are permitted.
8. Assume reasonable values for any data not given in or with the examination paper. Clearly

state such assumptions made on the script.
9. In case of any doubt as to the interpretation of the wording of a question, make suitable

assumptions and clearly state them on the script.
10. This paper should be answered only in English.

Page 2 of 7

Section	A	

Answer	All	Questions	

Question	1	(10	marks)	

Select the most appropriate answer, and write the corresponding sub-question number and the
answer number in your answer book. [10 × 1]

(i) Which of the following factors contributed to the migration from uniprocessor systems to
shared memory multiprocessor systems?

 A) Flattening in clock speed of CPUs
 B) Flattening in Instruction-Level Parallelism (ILP)
 C) Increased power consumption
 D) All of the above

(ii) Liveness property says
 A) All processes get a fair share of CPU B) No process will starve
 C) Nothing bad happens ever D) Something good happens eventually

(iii) What makes GPUs an attractive choice for parallel computing?

 A) High cost B) High throughput
 C) Large inbuilt memory D) Low latency

(iv) Which of the following is NOT an advantage of Monitors?
 A) Implementation doesn’t rely on the OS or programming language
 B) Enforces mutual exclusion
 C) Synchronization code doesn’t depend on the number of threads competing
 D) Synchronization code is centralized

(v) Which of the following statements are True about Parallel Algorithms?
 (p) Work ≥ Span

(q) Throughput is always a good measure of performance
(r) By allocating more resources to a scalable parallel algorithm for a given

problem, we can solve a larger version of the problem
 A) (p) and (q) only B) (p) and (r) only
 C) (q) and (r) only D) All three

(vi) In which of the following phase does “each computational task is assigned to a processor
while attempting to satisfy competing goals of maximizing processor utilization and
minimizing communication costs”?

 A) Agglomeration B) Communication
 C) Mapping D) Partitioning

Page 3 of 7

(vii) Which of the following Solution Patterns for Parallelism is most suitable to solve the
following problem?

 int[] A = .. int[] B = .. int[] C = ..
for (int i; i < N; i++){
 C[i] = F(A[i], B[i – 1], C[i])
}

 A) Divide and Conquer B) Fork/Join
 C) Loop Parallel D) None of the above

(viii) Which of the following MPI function can be used by all the processes to find the
maximum value among a large array of numbers?

 A) MPI_Allreduce B) MPI_Gather
 C) MPI_Reduce D) MPI_Scatter

(ix) Which of the following is NOT a step involved while writing a Map-Reduce job?
 A) Write the Combine function B) Write the Kernel
 C) Write the Mapper D) Write the Reducer

(x) Which of the following statements are True about Concurrent Data Structures?
 (p) Locks, semaphores, and monitors serialize the execution of mutually exclusive

code
(q) A wait-free operation is guaranteed to complete after a finite no of its own steps
(r) Wait-freedom is weaker than Lock-freedom

 A) (p) and (q) only B) (p) and (r) only
 C) (q) and (r) only D) All three
	

Question	2	(10	marks)	

State whether the following statements are TRUE or FALSE. Give one sentence justification for
your answer.
Write the corresponding sub-question number and the justification in your answer book. [5 × 2]

(i) Starvation may automatically go away after some time.

(ii) Tp ≥ T1/P
where P is the number of processors, and Tp and T1 are execution times on P and single
processor systems, respectively.

(iii) Work stealing is a static load balancing technique.

(iv) MPI can be applied to any large data-intensive application.

(v) Map-Reduce programming model provides a powerful abstraction to handle embarrassingly
parallel problems.

Page 4 of 7

Question	3	(5	marks)	

Write the most appropriate short answer (word/phrase) for the following questions.
Write the corresponding sub-question number and the answer in your answer book. [5 × 1]

(i) A critical section that lets only N (≥ 1) threads to enter at a given time is called a ________.

(ii) When a __________ lock occurs, each thread repeats the same state again and again, but
doesn’t progress any further.

(iii) While using data-level parallelism, large data units lead to _________________ .

(iv) Temporal and __________ locality in data access can be used to design efficient/fast
parallel algorithms.

(v) _______________ breaks a computational task into small steps (which may have
dependencies) and assign execution of steps to different threads.

	
	

Section	B	

Answer	Any	THREE	Questions	

Question	4	(25	marks)	

(i) Consider the following program with 2 threads.

Thread 1
 while(true){
 print “Red” + math.rand(10);
 }

Thread 2
 while(true){
 print “Blue” + math.rand(10);

 }

Math.rand(10) generates a random value between 1 and 10.
Change the above program to make sure the sum of all Red values it had printed so far
is always less than the sum of all Blue values it has printed. For example, if Blue had
printed 1, 5, and 7 then it is OK for Red to print 2 and 9 because 2 + 9 < 1 + 5 + 7. [12]

(ii) You are given a matrix Am×n and a vector Vn×1. Suppose both m and n are expected to
be in the thousands (i.e., m, n > 1000). Outline a CUDA program to calculate the
matrix-vector multiplication AV. Your solution should include the code for the Kernel
function and the code required to invocate the Kernel function. [9]

(iii) Using a suitable diagram briefly explain how a Combining Tree can increase the
parallelism while updating a shared counter. [4]

	

Page 5 of 7

Question	5	(25	marks)	

(i) Consider the following program with 2 threads.

 Thread 1
 while(true){
 print “Red”;
 print “Red”;
 }

Thread 2
 while(true){
 print “Blue”;

 }

 (a) Provide 4 possible outcomes of the above program. [2]

 (b) Rewrite the above program using a semaphore(s) and 1 print statement per
thread such that we get the following sequence of outputs.

 Red, Red, Blue, Red, Red, Blue, Red, ….

[9]

(ii) Consider an m×n matrix A. 1-norm (magnitude) of matrix A is obtained as follows:

where i and j are row and column numbers, respectively.

Following is an illustration of steps involved in calculating 1-norm of a matrix A.

 (a) Write the pseudocode of a parallel algorithm to calculate 1-norm of a m×n matrix
A. Use a Parallel For loop(s).

[5]

 (b) How much work to be performed by the algorithm? [3]

 (c) What is the span of the algorithm? [2]

 (d) How much parallelism is available in the algorithm? [2]

 (e) Is your algorithm still useful, if m is small and n is large? Briefly Explain. [2]

	 	

å
-

=

=
1

0
,1 max||||

m

i
jij aA

[] 9||||95max
43
52

1 =®®ú
û

ù
ê
ë

é -
= AA

Page 6 of 7

Question	6	(25	marks)	

(i) Zipf’s Law states that in the English language, the frequency of any word is inversely
proportional to its rank in the frequency table. Thus, the most frequent word will occur
approximately twice as often as the 2nd most frequent word, three times as often as the
3rd most frequent word, and so on. This can be formally written as the probability of
encountering the r-th most common word is roughly P(r) = 0.1/r.
Suppose we want to check whether the Zipf’s law proposed in 1935 is still true by
counting the frequency distribution of word occurrences of the top 100 books ranked
by the New York Times during the last 25 years.
Write a pseudocode that shows how you can use Map-Reduce to check whether the
Zipf’s law is still true. The answer should provide map and reduce functions. [17]

(ii) What type of load balancing would you recommend while solving following problems?
Briefly explain.

 (a) Frequency distribution of word occurrences of the top 100 books ranked by the
New York Times during the last 25 years. [4]

 (b) Matrix-Matrix multiplication. [4]

Question	7	(25	marks)	

(i) What are the four conditions required for deadlock to occur? Explain all four using a
suitable example(s). [5]

(ii) Following is an MPI style message passing system. mq refers to a message queue.

Thread 1
 mq1.receive();
 mq2.send(x);

Thread 2
 mq2.receive();
 mq1.send(y);

 a) Will this code lead to a deadlock? Briefly explain. [2]

 b) Does this program, violate the four conditions required for a deadlock to occur?
Explain. [3]

(iii) The variance of a set of numbers X can be calculated as follows, where E[] is the expected
value, and µ is mean.

Var(X) = E[(X - µ)2] = E[X2] – (E[X])2

 Outline an MPI program (using pseudo code) that can be used to calculate the variance
of one million numbers. Once the calculation is complete all process involved in the
computation need to know the value. Use relevant MPI functions that are given in the
Appendix. Note that it is impractical to create one million concurrent processes.
Hint: E[X] = µ [15]

Page 7 of 7

Appendix – MPI Functions

int MPI_Init(int *argc, char **argv)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Finalize()

int MPI_Send (void *buf,int count, MPI_Datatype datatype, int dest, int
 tag, MPI_Comm comm)
int MPI_Recv (void *buf,int count, MPI_Datatype datatype, int source, int
 tag, MPI_Comm comm, MPI_Status *status)
int MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype
 datatype, MPI_Op op, int root, MPI_Comm comm)
int MPI_Allgather(void *sendbuf, int sendcount, MPI_Datatype sendtype, void
 *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allreduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype
 datatype, MPI_Op op, MPI_Comm comm)

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,
 MPI_Comm comm)

int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void
 *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,
 MPI_Comm comm)

int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void
 *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,
 MPI_Comm comm)

-------------------------- END OF THE PAPER --------------------------

