C asa Engineering Research Center for
Collaborative Adaptive Sensing of the Atmosphere

Exploiting Communities for Enhancing
Lookup Performance in Structured P2P
Systems

£ 1 P
CASA is pamarily supported by the Engineening Resaarch Centers Program | s '
of the National Science Foundation under NSF award number 0313747, =,

http://www.nsf.gov/start.htm
http://www.nsf.gov/start.htm
http://www.nsf.gov/start.htm
http://www.nsf.gov/start.htm

Cogg?edo

University

Contribution

Community-aware caching scheme to enhance

lookup performance in structured P2P systems
1. Build sub-overlays among community members while preserving
overlay properties
2. Weighted least frequently used caching based on local statistics

« Enhances both communitywide (23-51%) & system-wide lookup (40%)
performance

« Works with structured P2P systems that provide alternative pathsto a
given destination

« Workswith any skewed popularity distribution
« Adaptive to changing popularity

« Need small caches CasSd

Cogg‘taedo

University

Motivation

« Many small communities are emerging within P2P systems

« Community — subset of peers that share some similarity

— Semantic

* Many BitTorrent communities — music, movies, games, Linux
distributions, private communities

— Geography

» For 60% of files shared by eDonkey peers, more than 80% of their
replicas were located in a single country [Handurukande, 2006]

— Organizational

« Peers within an AS, members of a professional organization, group of
universities

* To share resources & limit unrelated external traffic

CasSd

S. B. Handurukande et al., “Peer sharing behaviour in the eDonkey network, and implications for the design of 3
server-less file sharing systems,” EuroSys ‘06, Apr. 2006.

Co do

University

Motivation (cont.)

« Content popularity in P2P follows Zipf's-
like distribution
« Improve lookup

— Restructure overlay based on similarity
— Cache most globally popular content

&

* However
1. Communities are not isolated / /\ \}on
2. Individual communities don’t rank high in “‘L
popularity Z“'Q{\ i Y

A L1

3. Not every node can or interested in caching « Noe oA

® home node
LO other nodes

[Ramasubramanian, 2004]

CasSd

Ramasubramanian and Sirer, “Beehive: O(1) lookup performance for power-law query distributions in peer-to-peer
overlays,” USENIX NSDI’04, 2004.

Cog?edo

University
Communities are not isolated
au fringe vampire diaries hall pass NO
Angeles Limitless criminal minds rango
biutiful bdsm thor big bang theory csi drive ar
lawyer archer Megamind fastfive xar XXX 127
IiFtIe fo_cke 'S your highness Stal-'gate U-niverse hOp
e Gnknown o, o BifTorrent
r0 MAXSPEED britneyspears modern family teen Communities
how i met your mother cue paul o
o s e Sasoty | The tourist noIr
Community’ EX FE SP TB TS TE TR
fenopy.com (FE) 0.38 EX — extratorrent.com
seedpeer.com(SP) 0.00 0.00
torrentbit.net (TB) 040 0.29 0.00
torrentscan.com (TS) 048 0.33 0.00 048
torrentsection.com(TE) 053 023 0.00 031 0.25
torrentreactor.net (TR) 010 0.08 0.00 0.06 0.09 0.06 casa

youbittorrent.com (YB) 0.36

0.35

0.00

0.29

042 020 0.04

2. Communities have different Zipf's parameters

400 -
300 -
200 -
100

C(&‘gedo

University

Content Popularity in Communities (cont.)

— a =0.53, 0.66, 0.79, 0.98
— Aggregation of multiple Zipf's distributions is not necessarily Zipf
— Caching on a structured P2P system with alternative paths [Rao, 2007]

C
H =logN -) f logf, —log, L
r=1

) 400 -
1 300 -
1 —> 0 -
I 100 -

0 -

12 3 456 7 8 910

a=1.0

12345678 91011121314151617181920

Ccasa

W. Rao et al., “Optimal proactive caching in peer-to-peer network: analysis and application,” 6" ACM Con. on
Information and Knowledge Management, Nov. 2007.

(?&gﬁgo

Structured Overlay — Chord DHT

12 1

11 | Song.mp3 |, . O(|Og N) hOpS
Song_mp3 -
Cars.mpeg

Successor

8 6 | Cars.mpeg

Ccasa

l. Stoica et al., “Chord: a scalable peer-to-peer lookup service for internet applications,” ACM SIGCOMM ‘01, Aug.
2001.

Co do

University

Sub-Overlay Formation

Chord overlay

« Goal — not to Isolate communities or mix contents

 Each community forms a sub-overlay
— Form links/fingers to community members

« Enable nodes to identify what’s popular in their community
& cache accordingly casa

— Forward queries to community members hoping that they may have
already cached required contents

Cogg‘&do
University

Sub-Ov%rlay Formation (cont.)

B->D->F=2hops
B->E->F=2hops

If E cache F’s content
B> E=1hop

No of distinct node found by
probing i-th finger & it's successor
2(1+2logN-m) -1
N — No of nodes
m — Key length
G F 1<i<m
Nodes have 1 or more community IDs

— Communities based on different similarity measures — semantic, geography

— Support exceptions — user in USA can be a member of a community in India
|ldentify community members that are at an exponentially increasing
distances in key space casa
« Sample nodes pointed by links & their successors

* Long distant links (large i) are more important & easy to find p

Coggfmedo

University

Caching Algorithm

Cache based on community interest

— Queries go through community members - Nodes get to know what’s
popular in their community

Local statistics are sufficient to estimate relative popularity
— Focus on community interest
— No assumption on popularity distribution

Weighted least frequently used caching
— Evaluate demand at arrival of each query q - Adaptive
— Weight o determine bias towards short or long term trends

kK _ k '
{demandi =1+ a)xdemand, If qisfork 0<g <1

demand = (1- &)x demand*, else

— If demandk > D, — Indicate node’s interest to cache by append to query q

Query response Is send to query originator & all nodes(cgsa
that want a copy to cache

10

C0§%‘fed0

University

Caching Algorithm (cont.)

Reevaluates what keys to
cache at arrival of a query

— Naturally adapts to varying
trends of community
interests

— Computationally efficient

Track contents even if not
cached

— Threshold to remove least
popular ones

Dcache — Caching threshold
— Prevents cache thrashing
Deache > @

void forward(key, msg, nextHop*)

1 If msg.type = PUT put message

2 return

3 If msg.type = GET get message

4 addLookup(key) Track demand

5 Ifkev e C In cache

6 sendDirect(msg.source, key, Clkey])

7 For each i in msg.cList[| //Send to each cache requester
8 sendDirect{msg.cList|i], key, Clkey])

9 nextHop € NULL Drop original get message
10 Else Not in cache

11 If C.size() = Coar Cache already full

12 key lowest € getCachedKeyWithLowestDemand(L|[])
13 If L{key]| = L[key lowest] Higher demand

14 msg.cList[| € myNodelD //Request a copy

15 Clkey_lowest]. remove Remove lowest key
16 Else

17 If L[key] = D.ache 'Higher demand

18 msg.cList] | € myNodelD //Request a copy
void addLookup(key)

19 Foreachiin /[]

20 If i = key Increase demand for key

21 Lli]=(1 +a) > L[]

22 Else //Decrease demand for others
23 Lli]=(1 —a) x L[{]

24 If L1 < D,opone Very low demand 1
25 L[i].remove Remove key

Simulation Setup

Cogg‘fmedo

University

1 key

Community C; C, Cs C,4 Cs Cs C, Cs Co Cuo
('\'ag)?'; nodes 600 | 600 | 600 | 1200 | 1200 | 1.200| 1,200 | 1,200 | 2400 | 4,800
Zipf’s parameter 0.85 0.95 1.10 0.5 0.80 0.80 1.0 0.90 0.90 0.75
No of distinct
Keys 40,000 | 30,000 | 30,000 | 40,000 | 40,000 | 40,000 | 50,000 | 50,000 | 50,000 | 50,000
0.4
0.3 0.1 03 | (C)
Similarity with 0.2 . 0.1 02 | (Co . C) | (Co | 02 03
community (X) (Ce) (%) (Co) 0.5 0.5 0.2 (Cq) (Co)
(C) (Cs) (Cy) 0.3
| (Cw)
Queriesforrank |, oo | o535 | 17100 | 603 | 6454 | 6454 21,059 | 11,956 | 23911 | 17.030

OverSim P2P simulation environment
Sub-overlay formation & caching implemented on top of Chord overlay

15,000 nodes

10 communities of different sizes
Different Zipf's parameters

Queries after system got stabilized — around 2000 sec

10 samples

CasSd

12

C0§%‘fed0

University

Community, Keys & Query Generation

Peers know their group ID at initialization
Each peer

— Maintain a key index — no capacity limit
— Maintain a cache — fixed capacity

Generate fixed set of keys a-priory

— Peers read keys from a file & store in appropriate nodes

Queries
— Use set of Zipf's parameters observed form BitTorrent f(r.a,N)=—

Keys

%

Queries

Zipf's parameters for
groups

e
>y

n=1

FORi=0toN

ftr e, N)

get random key
aa
333
555
eee
ee

FORi=0toM
1 0, M)
M-p get random key

| @

[ee]

=
\
7 4\
\\\

o b Tt e
861, T]
<
S5+
@
Qo
c4
p}
c
271
TP Chord
2 Passive Caching

P A e Caching

Community Caching
0O e e e
2000 2500 3000 3500 4000 4500

Performance Analysis

vvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Time (seconds)

Reduced path length
— Overall system — 40.5%
— More popular communities — 48-53%
— Least popular community — 23%

reduction (7% with caching)

5000

Dcache =0.12
a=0.1
Crax =20

Performance depends on skewness

- Gy, G5, & Cq
Most queries are responded within few
hops

Average number of hops

B Chord
T Caching

[| | == Community Caching _

o
©

C1

Cc2

C3

C4

C5 C6 (ov4 Cc8
Community

c9 cC10

Chord
Passive Caching
Caching

Community Caching | 7

8 10 12 14

16

14

Co&do

University

Performance Analysis (cont.)

Average number of hops

— Py Py ® ® Py ®
V\\ kel o o s ° ° l
\. \\V\ Dcache =0.10
\ Tt _ 0 Dcache = 0.11
N\ Vom————— o7 1
~ Vo ————y E —————— Dcache =0.12
T kS Dcache = 0.13
T = - — A — — A g _—— Dcache =0.14
g 6 —_—————— Dcache =0.15
c
(]
(@2}
——e—— Chord g
©0 Passive Caching 5: 5
——-w——- Caching
— —A.—.. Community Caching
5 10 15 20 25 2000 2500 3000 3500 4000 4500 5000
Cache size (C,,,) Time (seconds)

Small cache size per node | S~
D... Feduce cache thrashing, _ Snaeox |
overhead ,& long-term path length

Rapidly respond to popularity changes
Better load distribution

— Max with Chord — 27,574
- Max With Community CaChing -_— 1’677 42000 25:00 30:00 35:00 40:00 45:00 50:00 55:00 6000

Time (seconds)

~

——— Dcache = 0.14

Popularity inversion

Average number of hops
(2]

(&)
|

15

Cogg?edo

University

Summary

« Community-aware caching solution for structured P2P

Allows queries to be forwarded through community members
Enable nodes to cache resources that of interest to their community

* Properties

Improve both communitywide & system-wide performance

Works with any structured P2P system that provides alternative pathsto
a given destination

* Preserve overlay bound O(log N)
Independent of popularity distribution & how communities are formed
Based on local statistics
Adaptive
Introduces minimum cache storage, network, & computational overhead

 Current/future work

Analyze performance under peer churn, heterogeneous caches, &
geography based communities Casd

In-network community identification & formation 16

rado

University

Casa Engineering Research Center for
Collaborative Adaptive Sensing of the Atmosphere

Questions ?

CASA 5 pmarily supported by the Engineering Research Centers Pragram
of the National Science Foundation under NSF award number 0313747,

® @

u-u-uu of University of Oklahoma Colorado State University

http://www.nsf.gov/start.htm
http://www.nsf.gov/start.htm
http://www.nsf.gov/start.htm
http://www.nsf.gov/start.htm

