

COMPLEX EVENT PROCESSING OVER OUT-OF-

ORDER EVENT STREAMS

Sinthuja Rajendran

(168259U)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

February 2019

COMPLEX EVENT PROCESSING OVER OUT-OF-

ORDER EVENT STREAMS

Sinthuja Rajendran

(168259U)

Thesis submitted in partial fulfillment of the requirements for the degree Master of

Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

February 2019

 i

DECLARATION

I declare that this is my own work and this MSc project report does not incorporate

without acknowledgement any material previously submitted for degree or Diploma

in any other University or institute of higher learning and to the best of my knowledge

and belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to

reproduce and distribute my dissertation, in whole or in part in print, electronic or

another medium. I retain the right to use this content in whole or part in future works

(such as articles or books).

Signature:

Date: ...

Name: Sinthuja Rajendran

We certify that the declaration above by the candidate is true to the best of our

knowledge and that this report is acceptable for evaluation for the CS6997 MSc

Research Project qualifying evaluation.

Supervisors

.. ..

Dr. H. M. N. Dilum Bandara Dr. Srinath Perera

..................................

Date Date

 ii

ABSTRACT

Complex Event Processing (CEP) enables real-time inferring of events and patterns of

interest. Aggregation on a time window of events and pattern matching are two of the

core functionalities of CEP. Accuracy of these CEP operations depend on the order of

the events received at the CEP engine. However, due to network delay, environmental

differences in event producing sources, and distributed CEP systems, event arrival

order at the CEP engine maybe different from the order of event generation at the

source. Such out-of-order events may lead to incorrect output events by the CEP

engine.

We propose a novel solution to handle the out-of-order events in three steps, namely

(a) ordering events from the same source, (b) ordering events from multiple sources,

and (c) optimizing query operator to further improve the accuracy after applying

former steps. Sequence numbers are used to order events from a single source, whereas

estimated time drift of each event source is used to order event from multiple event

sources. Finally, the query operators are optimized to reduce the error of remaining

out-of-order events. Performance of the proposed solution is evaluated using the DEBS

2013 Football dataset. The performance analysis shows that the proposed techniques

result in 9600% to 21300% and 1200% to 2500% reduction in latency compared to

MP-K-Slack and AQ-K-Slack techniques, respectively. Further, the proposed solution

was able to order the events with 99.97% - 99.99% accuracy. While it is comparatively

lower than MP-K-Slack which had an accuracy of 99.99% and better than AQ-K-Slack

which had an accuracy of 99.02%. Therefore, the proposed solution provides a good

balance between latency and accuracy. The additional optimizations carried out in

aggregator and pattern matching operators further increased the accuracy of the results

by 50% compared to the final results obtained without these query optimizations.

 iii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deep sense of gratitude and

profound feeling of admiration to my project supervisors. Many thanks go to all those

who helped me in this work. My special thanks to University of Moratuwa for giving

an opportunity to carry out this research project.

I would like to gratefully acknowledge to Dr. Dilum Bandara, the internal supervisor

of the project, for sharing the experiences and expertise with the project matters. I

would like to extend my heartfelt gratitude to Dr. Srinath Perera, the external project

supervisor, for his continuous guidance and support throughout the whole duration of

the project. Last but not least, I thank to Dr. Miyuru Dayarathna, for sharing the

experience in the related work carried out with Siddhi engine, and all those who like

to remain anonymous although the help they provided me was valuable.

Thank you.

 iv

TABLE OF CONTENTS

DECLARATION i

ABSTRACT ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF FIGURES vii

LIST OF TABLES ix

1. INTRODUCTION 1

1.1. Background 1

1.2. Motivation 2

1.3. Research Question 4

1.4. Objectives 5

1.5. Outline 5

2. LITERATURE REVIEW 6

2.1. Complex Event Processor Functionalities 6

2.2. Out-of-order Event Handling Approaches 7

2.2.1. Buffer-based Approach 7

2.2.2. Punctuation-based Approach 8

2.2.3. Speculation-based Approach 9

2.2.4. Approximation-based Approach 9

2.3. Buffer-based Techniques 9

2.3.1. K-Slack Approach 10

2.3.1.1. Out-of-order Event Processing in SASE 12

2.3.2. MP-K-Slack Approach 16

 v

2.3.3. AQ-K-Slack Approach 18

2.3.4. Latency Distance and Purging Time Based out-of-order Event Processing

(LDOP) 22

2.3.5. K-Slack Chain Approach 23

2.3.6. Summary 27

3. METHODOLOGY 29

3.1. Definitions 29

3.2. Proposed Solution 31

3.2.1. Handling Events Produced from Single Event Source 31

3.2.2. Handling Events Produced from Multiple Event Sources 36

3.2.3. Query Operators with Out-of-order Events 40

3.2.3.1. Time Batch Window and Aggregation Operators 40

3.2.3.2. Pattern Matching 42

3.4. Summary 43

4. IMPLEMENTATION 45

4.1. Summary 53

5. PERFORMANCE EVALUATION 55

5.1. Dataset 55

5.1.1. Dataset for Single Source 59

5.1.2. Dataset for Multiple Sources 59

5.1.3. Dataset with Time Drift for Event Source 60

5.1.4. Dataset for Pattern Matching 60

5.2. Experimental Setup 61

5.2.1. Prototype 61

5.2.2. Analysis of Out-of-order Events Handling Solution 61

 vi

5.2.2.1. Performance and Accuracy with Single Event Source 62

5.2.2.2. Performance and Accuracy with Multiple Event Sources 68

5.2.2.3. Accuracy with Time Drifted Event Sources 71

5.2.3. Analysis of Query Operators under Out-of-order Events 73

5.2.3.1 Aggregator Operator 73

5.2.3.2. Pattern Matching Operator 76

5.3. Summary 78

6. CONCLUSION 80

6.1. Summary 80

6.1. Research Limitations 82

6.2. Future Work 84

REFERENCES 86

 vii

LIST OF FIGURES

Figure 1.1: Out-of-order event arrival 2

Figure 2.1: Out-of-order event arrival – K- Slack 11

Figure 2.2: Sorting the events in the window with K-Slack 11

Figure 2.3: Event Query Plan 12

Figure 2.4: Query Evaluation of SASE 13

Figure 2.5: Problems exists in SSC and PSSC with out-of-order event arrival 14

Figure 2.6: Out-of-order event arrival handling in MP-Slack 18

Figure 2.7: Design of AQ-K-Slack 19

Figure 2.8: Adoption of α using a PD controller 21

Figure 2.9: A Global Query Graph 24

Figure 2.10: Shared disorder handling for a query graph G that has no filter

operators: single K-slack versus K-slack chain 26

Figure 3.1: Event source S1 sending event stream R1 and event stream R2 to

CEP 32

Figure 3.2: Communication between the CEP receiver and event source to

calculate the timestamp drift 37

Figure 3.3: Out-of-order event handling with multiple event sources with

event stream R1. 39

Figure 3.4: Multiple time batch windows to cover the events from ± (Ta/2) of

original time batch window w. 41

Figure 4.1:Out-of-order event flow of an event stream within siddhi engine. 45

Figure 4.2: Sequence-based ordering in sequence-based reorder extension. 50

Figure 5.1: Playing field and its dimensions 55

Figure 5.2: Average events inter-arrival time with out-of-order event Dataset 1

and Dataset 2 57

 viii

Figure 5.3: Maximum events inter-arrival time in Dataset 1 and Dataset 2. 57

Figure 5.4:Average events inter-arrival time with out-of-order event Dataset 3 58

Figure 5.5: Maximum event inter-arrival time in seconds for Dataset 3. 58

Figure 5.6: Average and maximum latency of events for Dataset 1 with

proposed sequence-based approach. 64

Figure 5.7: Average and max latency of events for Dataset1 with MP-K-Slack,

AQ-K-Slack and sequence-based approach 64

Figure 5.8: Average latency of all three approaches with respective to the

dataset. 65

Figure 5.9: Total number of out-of-order events for all three approaches and

the respective datasets. 67

Figure 5.10: Variation of average latency in ms of all three approaches with

number of event sources. 68

Figure 5.11: Average latency for sequenced based approach across all event

sources. 69

Figure 5.12: Total out-of-order events with multiple event sources for all three

approaches 70

Figure 5.13: The number of out order events with amount of time drifts for

sequence based approach. 72

Figure 5.14: The difference between the of average values for normal time

batch window, and reorder based time batch window. 75

 ix

LIST OF TABLES

Table 2.1: The comparison of the out-of-order event handling approaches 10

Table 2.2: Comparison of buffer-based approaches 28

Table 3.1: List of Symbols 33

Table 5.1: Description of event attributes 56

Table 5.2: Input Dataset and out-of-order events 56

Table 5.3: Specification of the machine that was used for the experiment

and evaluation 61

Table 5.4: Overall Summary of Latency incurred for events in Dataset1

with all out-of-order handling approaches 65

Table 5.5: Total number of out-of-order events with Dataset1 with all out-

of-order handling approaches 65

Table 5.6: Average Latency for all three approaches along with datasets. 66

Table 5.7: Accuracy of all three approaches with datasets. 66

Table 5.8: Average latency for all three approaches along with number of

events sources 69

Table 5.9: Accuracy of all three approaches when publishing events with

multiple sources. 70

Table 5.10: The total out-of-order events produced in sequence based

approach with the time drift between the event sources, with and without

time syncing of event source. 71

Table 5.11: The differences between the expected and actual average

values. 74

Table 5.12: The average value of the velocity after using the reorder based

time batch window. 75

Table 5.13: Results of the pattern matching dataset. 77

 x

LIST OF ABBREVIATIONS

AIS Active Instance Stack

ATM Automated teller Machine

CEP Complex Event Processor

DAG Directed Acyclic Graph

IoT Internet of Things

LDOP Latency Distance and Purging Time

NFA Nondeterministic finite automaton

NTP Network Transfer Protocol

PD Proportional Derivative

PSSC Purged Sequence Scan Construction

QDDH Quality Driven Disorder Handling

RFID Radio-Frequency Identification

SC Sequence Construction

SL Selection

SS Sequence Scan

TCP Transmission Control Protocol

TF Transformation

UDP User Datagram Protocol

WD Window

 1

1. INTRODUCTION

Enterprises that monitor events in real-time from all their systems and swiftly respond

to them have a greater competitive advantage over others. Complex Event Processor

(CEP) [1] is the right solution for such real-time monitoring use cases, where it listens

to events that are triggered from various sources and detect patterns in near real-time

with minimum or no storage of events. CEP is being used in domains such as IoT,

network and systems monitoring, banking, health care, etc. Therefore, it is important

to have accurate and fast results. In CEP, most of the core operators such as pattern

matching, time and batch window operations, aggregation operators, and join

operators process the events based on the order they arrive at CEP node/engine.

However, due to reasons such environmental difference in event producing sources, as

network delay, network and machine failures, using the connection pool to publish

events, and distributed processing in CEP the order of event arrival at the CEP node

may not be identical to the actual order of event occurrences at the event source. This

is more prevalent in IoT environments due to the high rate of data transmissions, and

involvement of multiple sensors and gateways. Consequently, the result of the

intended analysis will not be accurate as events are processed out-of-order.

1.1. Background

The basic unit in the CEP engine is an event and it is a unit of data that generally

contains a set of attribute values according to a defined schema, along with a

timestamp. Stream is the infinite continuous sequence of events arriving on a particular

type, on which users can perform complex analytical processing. One event belongs

to only one event stream, and all events of that stream will have the same schema. This

data in motion analytics can be provided to the system as query/rule that will be

executed on each event as and when they arrive at the system in the continuous fashion.

CEP engine [1] is a real-time in-memory event processing engine which receives

events from various sources, transports, and environments. CEP engine correlates

these events and performs more complex analysis on those events. As CEP engines are

 2

used in real-time analytics systems, CEP engines need to have high throughput while

being able to process many queries with low latency and high accuracy. As the name

implies, the CEP engines are not only used for simple filtering where the events could

be filtered by certain attribute value, but also used for pattern matching of the event

sequence for a given a sliding time or batch window, joining two or more streams, and

performing aggregations on the window of events. These functions react based on the

order of the events that is being received at the CEP engine than compared to the actual

occurrence of the events.

1.2. Motivation

In CEP, the event processing accuracy is based on time and the order of events that

were received at CEP engine with respect to the order that were originated in the

source. Let us consider an example of book store where RFID [2] tags attached to each

book, and it is used to track the books in the store. Also, RFID readers placed at key

locations throughout the store, like bookshelves, billing counters and the book store

exit. The RFID readers send data to CEP which check for potential theft of books and

alert the staff. To detect and alert theft, a pattern matching query can be used. Typical

checkout process can be modeled as a series of events where an event gets generated

when a book is taken out from the bookshelf (e1). Then there should be an event related

to billing operation performed for the book (e2) and followed by another event

detecting the book passing the exit (e3). If these three events do not occur in the said

order, an alarm should be triggered to notify the staff. Therefore, in a genuine case if

the events e1, e2, and e3 have been received in order by the CEP engine no fraud pattern

will be detected. In case if e2 was delayed, and only e2 and e3 arrived at the CEP, then

a false positive alarm will be triggered. This could even affect the business as the false

alarm was associated with a legitimate customer.

Figure 1.1: Out-of-order event arrival.

 3

Figure 1.1 shows out-of-order event arrival in an arbitrary event stream in which the

order of event arrival in the CEP is indicated as input events and the actual timestamp

of the event occurrence as e.ts. While the events e10 and e13 were triggered at time 4

and 8, they are actually received after e9 and e12 which were triggered at time 11 and

13 respectively. Also, the events which has been generated after e10 and e13, e.g., e4,

e5, e6, have already reached the CEP before e10 and e13. Such behavior could be due to

reasons such as network jitters, environments of different event sources, and network

and machine failures. Further it is difficult to preserve the order of events, if the

incoming rate of the events are very high, and the event sources are located in different

networks which may experience different delays and finally, result in out-of-order

arrival in CEP.

Such out-of-order event arrival affects the accuracy of CEP queries such as pattern

matching, aggregation queries within time window, and join queries. The order of the

event arrival has different impact when we consider the aggregate and pattern

matching scenarios, where the first case does not require the order of the events rather,

when the window time elapses all the events for the given window should be arrived,

but in the second case before proceeding the pattern matching operator the events

needs to be sorted in the same order that have originated.

It is not trivial to handle out-of-order events in CEP due to the following reasons:

1. Impact of premature accuracy of the results, specially the output results that

are triggered based on insufficient messages maybe irreversible.

2. Inability to predict delay accurately and allocate sufficient buffer time or

capacity.

3. Buffering introduces delay and reduces throughput of CEP engine which are

key features of CEP.

4. Increased memory and computing requirements of the CEP engine to store and

handle out-of-order events.

Resolving the above challenges and building a solution which could satisfy all the use

cases is not practical. Some use cases can compromise on the accuracy to gain low

 4

latency. For example, a query applying the average operator may produce a less precise

result while achieving low latency, as no buffers are used to collect and correct out-of-

order arrivals. This is acceptable in use cases where the out-of-order event arrival is

uncommon or infrequent and inaccuracy is acceptable. Anyhow, this may not suit for

use cases such as credit card fraud detection where the order of events matter. While

false positive alerts are acceptable in this case false negatives are not acceptable. In

certain use cases, once the alert has been triggered based on out-of-order arrival, it may

be reversed by issuing a reverse alert. For example, let us consider a use case of

actuating a fire alarm based on the pattern of temperature increase, once the alarm has

been switched on, we cannot do much other than switching it off, even after detecting

that is a false alarm.

Accuracy is a major challenge in this problem, where unless CEP engine receives an

event that is having older timestamp than the latest event that the engine has seen so

far, it does not know whether there is an event yet to be received for that time window

or not. Therefore, we cannot be 100% certain about the produced results but rather can

only have a confidence level associated with the final results. However, if the

confidence level needs to be increased, it will increase the latency of the final result.

1.3. Research Question

The main operators provided by CEP engine such as pattern matching, aggregations

operators, and join operators in time and batch window depend on the order of the

events that have been received at the CEP engine. This phenomenon is more prevalent

when multiple event sources produce events that are collectively processed and

analyzed by the same CEP query. Therefore, the research question can be formulated

as:

 How to detect and overcome out-of-order event arrivals in complex event processing

while increasing accuracy and minimizing time and space complexity?

 5

1.4. Objectives

The main objectives of this research can be stated as follows:

1. Develop a suitable set of out-of-order event handling mechanism(s) that can

provide increased accuracy and low latency which can work with multiple

event sources.

2. For more complicated out-of-order arrival scenarios develop a technique to

detect and estimate the possibility of the out-of-order event arrival with high

confidence while having minimum overhead for pattern matching and

aggregation operations.

3. Formulate a solution that could order the out-of-order events with a delay less

than a few minutes and does not consider the very late event arrivals.

4. The solution may involve modifications in different components and stages of

event flow including event sources, CEP event receiver and query operators.

5. Evaluate the accuracy and performance of the proposed techniques by

simulating the out-of-order event arrival with varying network delays and

multiple nodes.

1.5. Outline

Related work is presented in Chapter 2. Furthermore, it provides the functionality

supported by CEP queries, critically evaluates the work carried out in each approach

and suitability of those approaches for the objectives mentioned in Section 1.4. Chapter

3 presents the proposed methodology to handle the out-of-order events with single and

multiple event sources, and with aggregation and pattern matching query operators.

Chapter 4 explains the implementation details of the proposed methodology based on

the Siddhi [3] CEP engine. Chapter 5 discusses the experiment carried out with

different approaches, test results, and evaluation. Chapter 6 discusses the conclusions

of the results obtained, research limitations, and future work.

 6

2. LITERATURE REVIEW

This Chapter discusses in detail about the related work with regard to out-of-order

event arrival problem in Complex Event Processing (CEP). In Section 2.1, CEP and

several important functions supported by CEP are discussed. Methodologies that the

researchers have followed to solve the problem of out-of-order event arrival are

presented in Section 2.2. Section 2.3 provides a detailed analysis of buffer-based

approaches that had been already researched.

2.1. Complex Event Processor Functionalities

CEP supports a set of common functionalities such as time batch window, pattern

matching, and aggregations operations. The time window is one of the most important

functions provided by the CEP engines, where a set of events within a given time

window is considered and the user provided CEP query is executed on top of that. A

time window quantifies the window based on time such as events collected in 5

minutes, 15 minutes, and 1 hour durations.

Query 2.1 shows an example query related to the time batch window.

TemperatureStream is a stream of temperature events from temperature sensors in

rooms. It calculates the average temperature once a minute. Then the average value is

used to create a new stream called AvgRoomTemperatureStream.

from TemperatureStream#window.timebatch(1 min)

select roomNumber,avg(temperature) as avgTemperature

group by roomNumber

insert all events into AvgRoomTempeartureStream ;

Query 2.1: Time batch window.

Similarly, the pattern matching also can be performed in the window of streams, where

a sequence of the expected events can be provided, the CEP engine will be listening to

the pattern in the events streams and once it is matched it will be triggering an alert.

Query 2.2 can be used to detect fraud in Automated Teller Machine (ATM) card

transactions, where if there is an event a1 which has amountWithdrawed less than 1000

 7

and following that event, if there is another event b1 which has amountWithdrawed

greater than 100,000 within a day interval for the same ATM card number, then insert

the matching details to another event stream possibleFraudStream for alerting.

 from

every a1 = atmStream[amountWithdrawed < 1000]

 -> b1 = atmStream[amountWithdrawed > 100000

and a1.creditCardNo == b1. creditCardNo]

within 1 day

select

a1. creditCardNo as creditCardNo,

a1.creditCardHolderName as creditCardHolderName,

b1.amountWithdrawed as amountWithdrawed,

b1.location as location,

b1.creditCardHolderMobile as creditCardHolderMobile

insert into possibleFraudStream;

Query 2.2: Pattern Matching.

Fraud detection systems, network monitoring and throttling systems, banking

transaction systems, IoT network, and stock exchange systems are some of the

example systems that uses CEP extensively. Time window aggregate queries are at the

core operation of many such real time analytics applications.

2.2. Out-of-order Event Handling Approaches

Several prior works focus on handling out-of-order events in a single CEP event

stream. These techniques can be broadly classified as buffer based [3], [4], punctuation

based [5], [6], speculation based [7], [8], and approximation based [9] approach. In all

approaches handing the disordered events consists of a trade-off between result

accuracy and latency. Nevertheless, each of these techniques is discussed next to

understand their design philosophy and the pros and cons.

2.2.1. Buffer-based Approach

Buffer-based approach [3], [4], [10] handles the disordered event reception by having

a buffer to store and sort the events from an input stream based on the timestamps

before presenting them to the query execution. While this is a simple and common

 8

approach, buffering and sorting increase event processing latency. Several buffer-

based solutions are discussed in Section 2.3 in detail.

2.2.2. Punctuation-based Approach

Punctuation-based disorder handling [5] depend on special events (punctuations)

within data streams which specifies that no pending events with timestamps less than

the timestamp of punctuation timestamp are anticipated. Once punctuation is received,

the query operator produces the query results for the windows that are expected to not

to receive any future late arrivals. Heartbeats and partial-order guarantees are the types

of punctuations used [6]. The punctuations can be produced externally with data

sources or generated within the system [11].

Query operators are explicitly informed by punctuations about when to return results

for windows, and until the punctuation is received the events will be buffered.

Therefore, the accuracy of the punctuations determines the accuracy of the final

results. Furthermore, in the environment with the network jitters and connectivity

problems, the punctuation event stream itself can get affected when it is sent from the

external data source and may not be received by CEP in the expected time. This leads

to the poor accuracy of the final results produced. Also, the dilemma between the

accuracy and latency of the query results is a limitation of this approach. Punctuations

should not be produced before all late arrivals of the window are observed because it

is providing the confirmation on not receiving any delayed events after the punctuation

timestamp. Therefore, this approach also has a similar latency concern as the buffer-

based approach, where it cannot determine the buffer size until all the late arrivals are

received. Another approach would be to have a separate data partitions to record late

arrivals received after the corresponding punctuations and to process them

independently [12]. Previously produced inaccurate query results, which were caused

by the early trigger of punctuation, can be merged with the results of these partitions.

However, this approach requires keeping the entire history of query results.

 9

2.2.3. Speculation-based Approach

Speculation-based disorder handling [7], [8] can be considered as an aggressive

approach because it assumes in-order arrival of events and produces the results

immediately without waiting for any late arrivals. The other approaches such as buffer

based and punctuation based can be considered as conservative. In this approach, once

a late arrival event e is received, the premature results that are influenced by e are

invalidated. And then new revisions of these invalidated results are produced by taking

the late arrival event e into account. For data streams with frequent out-of-order events,

a query may produce several inaccurate revisions before the final accurate revision of

the result, and hence this method may exhaust CPU and cause high result latency.

2.2.4. Approximation-based Approach

Approximation-based disorder handling [9] computes approximate aggregates over

the event stream by using a special data structure (e.g., histograms and q-digests) in

the raw event stream. The approximation-based approach is also considered as an

aggressive strategy, similar to the speculation-based approach. But the difference from

speculation-based technique to this approach is that when a late arrival is received, the

approximation-based approach does not correct previously emitted results, and only

ensures that this late arrival event is considered for in upcoming aggregate results. This

approach is not suitable for queries with small windows, as this will lead to many

incorrect output events.

Table 2.1 shows a comparison of the approaches discussed in the above Sections. To

satisfy various objectives provided in Section 1.5, in this research work we will be

focusing on the buffer-based approach which could provide the balanced behavior

between the accuracy and latency of the produced results.

2.3. Buffer-based Techniques

Solutions based on the buffer-based approach can be broadly classified as K-Slack,

MP-K-Slack, and AQ-K-Slack approach. K-Slack approach delays the incoming event

by k time units, where k is defined as a priori. MP-K-Slack delays the incoming events

 10

by k time units, which is the largest delay that has been seen so far at CEP engine.

Furthermore, AQ-K-Slack delays the events by αk time units where k is the largest

delay that has been seen so far and α is the dynamic parameter that is determined from

user-specified result error threshold value. A detailed explanation of each of these

methods is explained in the following Sections.

Table 2.1: The comparison of the out-of-order event handling approaches.

Out-of-order

Event Handling

Approaches

Advantages Disadvantages

Buffer-based

Approach

Accuracy of results can be increased

by having large buffer size.

Latency can be reduced by having

small buffer length.

Ability to adjust the buffer size and

obtain balanced accuracy and

latency.

Dilemma between latency and

accuracy.

Increased memory requirement to

buffer the events.

Punctuation-based

Approach

Accuracy of results can be increased

by having large punctuation interval.

Latency can be reduced by having

small punctuation interval.

Punctuation event stream itself can

get affected, which affects the

accuracy of results produced.

Dilemma between latency and

accuracy.

Increased memory requirement to

buffer the events.

Speculation-based

Approach

Less latency. Increased traffic of correction events.

Cannot control accuracy of the result

produced.

Approximation-

based Approach

Less latency. Inaccurate results are left without

correcting them.

Cannot control accuracy of the result

produced.

2.3.1. K-Slack Approach

K-slack transparently buffers and reorders the events before the actual event

processing happens. It uses a buffer to delay each incoming event (ei) by at most a

predetermined k time unit from the current timestamp tcurr where ei.ts + k ≤ tcurr [10].

 11

In this method, k is assigned based on a priori knowledge about the incoming events

stream. However, it is not trivial to estimate a suitable value for k in realistic

environments with fluctuating network properties such as network traffic and delay.

Figure 2.1 depicts the out-of-order event arrival problem, where id indicates the event

types received, ts is the actual event originated timestamp, and clk is the latest

timestamp of the event that has been seen by the system. As shown in Figure 2.1, event

C (with ts = 1) which was generated before event A (with ts = 2) but received later

than event A at CEP engine. Similarly, event B (with ts = 3) was generated before

event A (with ts = 4) also have been received at the CEP engine in reverse order. At

the same time event E (with ts = 20) was received before event C (with ts = 12) and A

(with ts = 15). As shown in Figure 2.2, with a re-ordering unit these out-of-order events

can be sorted and then passed to the CEP engine for execution. For example, in Figure

2.2, the buffer size of five will be suitable to sort the out-of-order events, where the

events seen so far have been delayed by at most five time units.

Figure 2.1: Out-of-order event arrival - K-Slack.

Figure 2.2: Sorting the events in the window with K-Slack [7].

Ming Li et al. [10] in SASE (see Section 2.3.1.1) proves that K-Slack can also be

applied in distributed stream applications. Authors used local clock clk was used,

where an event e is buffered at least for ei.ts + k ≤ clk. Generally reactive distributed

systems do not have any global clock such that all nodes can rely on that, and hence

 12

each node in the system will adjust the local clock based on the largest timestamp seen

so far on any incoming event.

The key issue with K-Slack is having a single fixed k, which cannot be easily derived

and cannot adapt to network changes. Hence, use of excessively large k values will

effect in large buffers and high latency which are not usually preferred.

2.3.1.1. Out-of-order Event Processing in SASE

Ming Li et al. [10] studied the out-of-order event processing in a Stream-based and

Shared Event Processing Engine (SASE) based on K-Slack. The query plan is

translated based on the operators such as Sequence Scan (SS), Sequence Construction

(SC), Window (WD), Selection (SL) and Transformation (TF) as explained in Figure

2.3.

Figure 2.3: Event query plan [10].

The SS operator employs an NFA (Non-Deterministic Finite Automata) to find

matches to the event pattern specified in the query. As depicted in Figure 2.3, the

 13

expected event sequences are built by the SC operator according to the events retrieved

by SS component. SC and SS together create the Sequence Scan Construction (SSC)

component. By applying all the predicates specified in the query, the SL operator

filters event sequences. Further, the WD operator scans through the sliding window to

confirm the occurrence of the input event sequence. Finally, each input event sequence

is converted into a composite event by the TF operator.

Figure 2.4: Query Evaluation of SASE [10].

For the execution of SSC, a data structure named Active Instance Stack (AIS) was

proposed. As illustrated in Figure 2.4(a), AIS associates a stack with each state of the

NFA, instead of using a single stack. These stacks of NFA is used to store the events

that activated the NFA transition to that state, and the events in the stack is called the

active instances. Besides that, each active instance e in the stack is analyzed, and an

extra field is added to identify the most recent instance in the stack of the previous

state (RIP). Figure 2.4(c) shows an input event stream, and the events extracted during

the sequence scan is marked with an underscore. AIS keep hold of the retrieved events

of type A, B, and D. The event in three AIS stacks is depicted in Figure 2.4(b) and

 14

Figure 2.4(c) shows event stream after passing through AIS. Each active instance of

the accepting state initiates the sequence construction, and according to the provided

event stream in Figure 2.4(c) d10 and d15 events will initiate the sequence construction.

Figure 2.5: Problems exists in SSC and PSSC with out-of-order event arrival [10].

With the usage of AIS, the event sequence construction is performed by a depth-first

search in the DAG (Directed Acyclic Graph) that is rooted in this instance and includes

all the RIP edges accessible from the root. One matched event sequence is returned by

the SSC operator, for each path from root to leaf in the DAG. Based on window

constraints the State purge on SSC is performed by removing outdated events from

AIS dynamically, and this function is called a Purged Sequence Scan Construction

(PSSC). In this design, the out-of-order event arrival is causing problems in SSC such

as incomplete event retrieval and event misplacement. Incomplete event retrieval

problem involves discarding some events by the sequence scan which should have

been kept. Event misplacement involves inserting into the wrong location of the stack.

 15

In AIS when an event needs to be inserted it could have been just inserted into the top

of the stack due to total order assumption, but that cannot be done when the total order

assumption is wrong with out-of-order event arrival. Hence, the events need to be

scanned and inserted into the correct location. As explained above, the window

constraint-based AIS purge in PSSC is not safe with out-of-order data arrivals, and

further, it’s referred to as unauthorized AIS purge as described in Figure 2.5.

Therefore, any event removal of AIS will impair the accuracy, and the purging can be

permitted only when the total order of the event arrival is guaranteed.

The incomplete event retrieval problem is handled by setting all states of NFA to be

active before the retrieval over the event stream. The event misplacement problem is

dealt with applying Sort Semantics which involves in searching for a correct insertion

place in the intended stack. Therefore, the sort semantics is applied when the NFA

transition is activated by an event. And this guarantees the order of the events stored

in the stack as chronological from bottom to top. Further, the newly inserted event Ei

should have the context pointer (RIP). In case, if Ei is not the rightmost event type in

the event sequence query that needs to be matched, then RIP of the consequent event

instances in the right-adjacent stack might need to be revised as well.

In order to avoid the overhead produced by considering every event as a potential out-

of-order event, a new variable AIS-CLOCK is maintained in SSC operator. This value

holds the largest timestamp of events resides in AIS. When an event with a timestamp

greater than AIS-CLOCK is received, the AIS-CLOCK will be changed to the new

event’s timestamp value. Therefore, the new event is handled with append Semantics

as in order events. Sort Semantics is applied and intended out-of-order specific steps

are executed, once an event is received with a smaller timestamp that AIS-CLOCK.

To prevent these errors, data purge cannot be applied on AIS. And that will result it

unbounded memory requirement, which makes it unpractical solution. Therefore, for

unblocking PSSC functionality, authors have proposed to use the K-Slack based

approach. K-Slack checks the distance between the current event and the latest event

received by the system. A variable named CLOCK is maintained to hold value of the

 16

largest timestamp of received events so far by the system. PSSC will be notified at

each time the value of CLOCK is updated. Based on the sliding window semantics,

any event ei that resides in AIS can be purged, if (ei.ts + w) < CLOCK, where w is the

size of the window. Therefore, with the out-of-order events, the above condition will

be change to (ei.ts + w + k) < CLOCK. However, the workload of the SSC operator to

construct the event sequence will be increased due to the increase in expired event

sequences in the AIS structure. As the event sequence produced by this will be

removed by window-based filtering filtering (functionality of the WD operator), it can

never correspond to the final result sequence. Further, it also creates a load to the WD

operator to perform window-based filtering. Also, if the k value is substantially big,

then several outdated event may reside in the AIS stacks. Hence, the impact on

sequence construction and AIS filtering should be evaluated.

Each events in AIS is partitioned into two as outdated and up-to-date events, to

overcome the overhead problem in selecting large k value. A divider is used to create

these partitions. Further, if a stack does not have outdated events, then the divider is

set to NULL. Once sequence construction is activated in SSC, it also considers the

events under the divider in each of the stacks.

2.3.2. MP-K-Slack Approach

MP-K-slack is an extension of K-Slack approach, which was introduced by Mutschler

and Philippsen [3] where the buffer size k used for event ordering can be dynamically

adjusted. In this method, k is initialized to zero and a variable tcurr is used to hold the

largest timestamp of events seen so far in the event stream. At the runtime, once the

events are received, they are first inserted into the buffer, and then their timestamps

are compared with tcurr. Each time when tcurr is updated, the below mentioned two

actions are performed. Also, in the case of delayed event arrival where tcurr will not be

updated. Therefore, the following actions will not be performed, and those will be

performed when an event arrives that has timestamp > tcurr:

 17

(1) Update k to maxi {k, D(ei)}, where D(ei) = (tcurr − ei.ts) where D(ei) denotes

the delay of the event ei and it is calculated for each event ei that has arrived

since the last update of tcurr.

 (2) Release any event ei that satisfies the following condition from the buffer:

ei.ts + k ≤ tcurr (2.1)

Figure 2.6 shows how MP-K-Slack approach operates where the buffer input denotes

the input sequence of events arrived at CEP, ei.ts denotes the timestamp of the event

ei, tcurr denotes the current timestamp at CEP, and k denotes the buffer size. As shown

in Figure 2.6, in the beginning, k is zero, and event e1 with ts = 1 (𝑒1
1) and event 𝑒2

4

arrives to the system in order and updates tcurr value and then they are emitted from the

buffer immediately. Thereafter, when event 𝑒3
3 arrives it will not update tcurr as it is a

late arrival. When 𝑒4
5

 arrives, it has a timestamp greater than tcurr; therefore, it updated

tcurr. As tcurr was updated, the above mentioned two actions will be performed, where

it calculates delay D for each delayed event (in this case 𝑒3
3 where the D(𝑒3

3) = 5 − 3

= 2) and update the k value. Here as the D(𝑒3
3) = 2 is larger than the current k = 0, k is

updated to 2 according to action (1) as mentioned above and 𝑒3
3 is emitted from the

buffer. Similarly, events 𝑒4
5

 and 𝑒5
6

 are stored in the buffer until 𝑒6
9

 reaches, and though

events 𝑒7
7

 and 𝑒8
8 are also stored in the buffer at the arrival of 𝑒9

10 events 𝑒7
7

 is emitted

while updating k to 3. This is because max{D(𝑒7
7), D(𝑒8

8)} = max {3, 2} = 3, larger

than the current k = 2. Then events 𝑒8
8, 𝑒6

9, and 𝑒9
10 are released in ascending order of

the timestamp at the arrival of 𝑒10
13.

Note that event 𝑒3
3 still remain as out-of-order event in the output event stream after

the buffer. For example, if the sliding window operator is using the output event stream

after the MP-K-Slack buffer, then by the time 𝑒3
3 is received at the window operator,

the result of the window is already produced. Namely, 𝑒3
3 will not able to contribute to

the final result of that window.

 18

 Figure 2.6: Out-of-order event arrival handling in MP-K-Slack [3].

Despite the unsuccessfully handled late arrivals such as event 𝑒3
3, MP-K-slack tries to

have the buffer size to a large enough value to capture all late events. While such

dynamic buffer size re-configuration provides increased it comes at the expense of

high result latency.

2.3.3. AQ-K-Slack Approach

AQ-K-Slack is a buffer based, quality-driven disorder handling approach. Sampling-

based approximate query processing and control theory [4] are the core techniques

used in this approach to find the suitable buffer size. AQ-K-Slack is an extension of

MP-K-Slack, where AQ-K-Slack buffer size can be dynamically increased than having

an a-priori fixed value as MP-K-Slack. Furthermore, it can also decrease the buffer

size while preserving the user-specified error threshold in the final query results. As

this approach can dynamically alter the buffer size to minimize the latency and

increase accuracy, the AQ-K-slack approach does not require any a priori knowledge

of out-of-order event streams. Also, this approach can be used without any changes to

the query operators in use or the application implementation logic.

In this approach, the user annotates the sliding window query with expected a result

error threshold (εthr, 𝛿) (i.e., Probability (ε < εthr) ≤ 𝛿). To adhere to this threshold AQ-

K-Slack introduces a new parameter α (α ∈ [0, 1]) on top of the buffer size k (effective

buffer size becomes αk) to determine the appropriate buffer size. Here α is initialized

to one and dynamically adapted at query runtime.

 19

In this approach when late event arrives, if it still falls under the prevailing window-

slide range then the event will be considered, else it will be discarded. Consequently,

the condition for releasing an event ei from the buffer changes as follows:

ei.ts + αk ≤ tcurr (2.2)

Figure 2.7 shows the main components of the AQ-K-Slack approach and data flow

among the components. The Buffer Manager as the name implies manages the buffer

to store and sort the input events based on the timestamp. The Proportional-Derivative

(PD) Controller regulates the value of α to Buffer Manager. Window Coverage

Threshold Calculator, determines the window coverage threshold θthr based on the

user-specified result relative error threshold (εthr, 𝛿). Window Coverage Runtime

Calculator measures the window coverage of produced query results. Statistics

Manager collects the required statistics for Window Coverage Threshold Calculator

and Window Coverage Runtime Calculator.

Figure 2.7: Architecture of AQ-K-Slack [4].

The quality of the produced query results is measured using a transitional metric called

window coverage θ. And θ is defined as the proportion of the number of events that

contributed vs total number of events that should have been contributed to the results.

The window coverage threshold (θthr) is derived from user-specified result relative

error threshold (εthr, 𝛿), which determines the expected quality of the output. Based on

the deviation of the θ and θthr, the value of α of determined.

 20

However, adjusting the buffer size based on the relative error threshold requires all the

events of the corresponding time window to be received, but with out-of-order events

this is impractical. And hence the relative error threshold cannot be computed correctly

for the current window. Therefore, sampling-based approximate query processing is

used to compute the query result of a window. This allows to calculate the θ before

receiving all out-of-order events, and the late arrivals of the window. Further, an error

model is determined for the results of an aggregate query under sampling, by

leveraging statistical inequalities and the central limit theorem. This error model helps

to identify a suitable sampling rate p based on the relative error ε in a query result.

Therefore, the minimum sampling rate required to meet the threshold is derived from

the given relative error threshold. As the applied sampling rate influences the

proportion of events within each window to be preserved for processing, it also

influences the window coverage. Therefore, with a minimum sampling rate, the

minimum window coverage threshold (θthr) is also derived.

In sampling-based approximate query processing, the events are excluded from the

window; therefore, the window coverage is influenced only by the applied sampling

rate. Hence, that approach cannot be used to calculate the runtime window coverage

(θ) where it depends on both current applied buffer size (αk) and the out-of-order event

arrival characteristics. Furthermore, over the time the measured window coverage of

a result gets accurate, as the probability to receive all late arrival is increased.

Therefore, the old window coverages are more accurate than the latest calculated

window coverage, hence the old window coverage is considered to buffer size

adaptation logic in AQ-K-Slack. The result produced before the maximum delay that

has been seen so far (i.e., value of k) are assumed to be stable but this will lead to

delayed adaptation of the buffer. Therefore, to reduce the delay and increase the

accuracy in adaptation and remove the effect of abnormal spikes in the delay, the

window coverage used for the calculations is at M time units earlier than tcurr, where

M equals to the q-quantile (0 < q < 1) [13] of delays of previously received late arrivals.

 21

Figure 2.8 illustrates α adaptation solution which provides the adaptivity to this

methodology. The controller output the difference of the last known value of the α,

and it could be positive or negative value based on the increase or decrease of α, and

denoted by Δα. Window coverage θ(i) is sent to the controller for the i-th window. The

value of Δα(i) is calculated by the controller based on the control error, err(i). The

control error is known as the deviation between the calculated window coverage

threshold θthr and measured window coverage θ(i), i.e., err(i) = θthr - θ(i). Further, the

calculated error threshold is passed in to proportional component (P) and derivative

component (D). The to P component focuses on the the present error, and D component

focuses on the future error hence considering the error changing rate. The

combinations of PD components yields the final value of Δα(i). The value of Δα(i) is

a weighted sum of P and D components, where the weights are configured manually

by users via parameters Kp and Kd as shown in Equation 2.3.

Figure 2.8: Adoption of α using a PD controller [4].

Δα(i) = Kp err(i) + Kd (d err(i) / di) (2.3)

Manual parameter tuning was used for PID controllers on top of the well-known

Ziegler-Nichols method [14] to configure parameters Kp and Kd. This provides

minimum buffer size while honoring the user-specified accuracy and error threshold

requirement.

However, this approach has the following disadvantages:

1. The performance and accuracy of AQ-K-Slack is influenced by the parameter

setting for Kp and Kd of the PD controller, and it is currently performed

manually.

 22

2. This approach is well suited for aggregation operators but it is not well suitable

for the functions such as pattern matching or join. Because the user-defined

error threshold can be only provided for the aggregate operations and not for

the other operations mentioned above.

3. Delayed adaptation of the buffer size, as it considers the old window coverage

of the result into consideration to determine the α.

2.3.4. Latency Distance and Purging Time Based out-of-order Event Processing

(LDOP)

In this approach, the latency distance calculation and then purging time is used to

handle out-of-order event arrival [15]. Consider a mixed event stream S <S1, S2, …,

Sm>. The latency distance of S in time window w, denoted by LD (S, w), is defined as

follows:

𝐿𝐷(𝑆, 𝑤) =
1

𝑁
∑

𝑆𝑖∈ 𝑆

∑

𝑒𝑖𝑗∈ 𝑆𝑖

(𝑒𝑖𝑗 . 𝑎𝑡𝑠 − 𝑒𝑖𝑗 . 𝑡𝑠)

(2.4)

where eij denotes an out-of-order event in event stream Si in time window w and N

represents the number of out-of-order events from S in w.

Latency distance reflects the average delay between occurrence timestamps and arrival

timestamps of all out-of-order events from S in time window w. The purging time of

an event eij, denoted by PT(eij), is specified in Equation 2.5, where |w| denotes the size

of time window w and SF denotes the slack factor, a random variable uniformly chosen

from a slack range. The value of SF can be adjusted according to the size of the

available memory.

PT(eij) reflects the time when eij must be purged from the memory keeping event

streams:

𝑃𝑇(𝑒𝑖𝑗) = 𝑒𝑖𝑗. 𝑡𝑠 + |𝑤| + 𝑆𝐹 × 𝐿𝐷 (𝑆, 𝑤) (2.5)

Suppose that a mixed event stream S <S1, S2, …, Sm> is generated from heterogeneous

networks and then transmitted to the event processing system where out-of-order

 23

arrivals of events may exist. out-of-order arrivals of events together with the limited

memory space make the event processing system have to quickly purge those

unnecessary events for pattern matching by calculating the latency distance and

purging time (called LDOP). This method first filters out those event instances whose

event types do not appear in the pattern matching plan. Then, it calculates the latency

distance based on Equation 2.4, and it calculates the purging time for each event

instance based on Equation 2.5. Finally, it decides on whether an event instance must

be purged from the buffer if the event was kept in the buffer more than the calculated

purging time.

The disadvantage of this approach is that it is well suited for pattern matching query

but not for the other query operators such as aggregate operators. Because with pattern

matching operator, only the incoming events that are specified in the pattern sequence

will be buffered and the rest of the events will be discarded. This filtering cannot be

done with aggregate operators as all the events are required for the actual event

processing. Therefore, with aggregate and join operators, the memory usage will be

high compared to the pattern matching query. This results in a low value of the slack

factor for non-pattern matching query operators, and hence the purging time will be

less. This indeed results in the increase of unsuccessfully handled out-of-order events.

2.3.5. K-Slack Chain Approach

Concurrently executing multiple queries in the stream processing engine is a very

common in current world use cases. For example, for the same incoming events

stream, both pattern matching query and aggregation query could be executed

concurrently. In such cases, the query operators could exploit sharing options when

ever possible. For example, Stream-sorting buffers can be shared across multiple

concurrent queries therefore overall memory cost incurred by the buffers can be

reduced substantially. Quality Driven Disorder Handling (QDDH) approach handles

out-of-order events for concurrent queries which analyzes the same incoming event

stream and share the stream-filtering operators [16]. In a join function which operates

on a window of events, if the window on one input stream has moved forward while

 24

there are delayed events from other event streams which are yet to arrive, it may

produce an incomplete result set. In order to improve final result quality (on accuracy

or completeness), the fast event stream may need to wait for those delayed events, but

at the same time will have negative impact on the the result latency. This approach

focuses solving the problem with multiple event streams with join with aggregate

sliding time windows. Shared filter are used to evaluate the common selection

predicates of different queries. Basically shard filter is a common technique used in

both database and streaming engines to share the computations among multiple

concurrent queries. After evaluation the sharing opportunities, selection predicates of

the concurrent queries can be modelled by the global query graph, which is a Directed

Acyclic Graph. Figure 2.9 shows a global query graph for multiple query operators.

Figure 2.9: A global query graph [16].

Based on deduced global query graph G and the quality requirements provided by the

user, the QDDH is derived with the goal of minimizing the latency of the final result

for each query.

To achieve this goal, a natural solution is to have individual and unshared event stream

buffers. For example, for each query Q there may be window and aggregate operators

used, and hence the K-Slack buffers can be placed just before those operators (i.e.,

 25

above leaf nodes in G). Further, the buffer size can be dynamically adjusted

independently without affecting any other queries based on the quality-driven manner.

However, this approach will result in redundant storage and processing of out-of-order

events for each operator. To explains this further, assume that the operators F8 and F9

in Figure 2.9 have the selectivity of 0.9 (i.e., 90% of the events are filtered). Therefore,

buffers for Q4 and Q5 will be handling at least 80% (2 × 0.9 − 1 = 0.8) of the output

events of operator F7. Hence the memory waste could be enormous if the operator F7

has a large fan-out degree or has a high output rate. To overcome such redundant out-

of-order processing and save resources such as memory, and CPU, shared K-Slack

buffers can be used across multiple queries (i.e., shared QDDH). As per the above

example, sharing the QDDH involves placing a buffer below operator F7, without

duplicating them below each operator F8 and F9. Therefore, the queries Q4 and Q5

can be benefitted directly by the sorted output events of operator F7. In general, just

below the branch operator is a suitable place to have a shared disorder handling buffer.

Branch operator be the parent operator which has more than one child in G, or a

concurrent child operator of multiple another branch operator. However, just because,

sharing the disorder handling buffer in the output events at a branch operator does not

always result in lower memory consumption. In the above example, the selectivity of

the operator F7 and F8 is assumed to be at 0.9, but now assume the selectivity of F8

and F9 are low as 0.1. Then the result will be reversed, where the unshared buffers for

each operator F8 and F9 will have less memory compared to having a shared disorder

handling right below F7. Also, shared K-Slack buffers will have a high overhead of

executing the buffer size adaptation once a buffer configuration of a query is modified,

and this will have unnecessarily increase the latency of the queries which have less

result quality requirements. Hence, it is not obvious to find a suitable location that

leads to overall minimum memory consumption when performing QDDH for

concurrently shared query operators. This is prevalent with a large number of branch

operators in a global query graph.

K-Slack chain solves this ambiguity of suitable place to have the K-Slack buffer. This

allows sharing out-of-order event processing at a branch operator in a global query

 26

graph G, without having an impact on the goal of latency minimization for each query

that shares the particular operator. For example, let us consider a simple sub-graph

G(S1) depicted in Figure 2.10 (a). S1 is the only branch operator in G(S1) and it does

not contain filters. Assume k1, k2, and k3 are the optimal QDDH buffer sizes of queries

Q1, Q2, and Q3, and k3 < k1 < k2. Let r denote the average data rate of S1.

Figure 2.10: Shared disorder handling for a query graph G that has no filter

operators: single K-Slack versus K-slack chain. (Assume that k3 < k1 < k2) [16].

With unshared out-of-order handling, output event stream of branch operator S1 has a

memory cost of r(k1 + k2 + k3). The shared out-of-order handling can decrease this

memory cost, and the obvious solution is to place a single K-Slack buffer just below

the source operator S1 as in Figure 2.10(b). To obey the result quality requirements

specified by the user for each query, the buffer size (i.e., K(B1) in Figure 2.10(b))

should not be less than the largest value among k1, k2, and k3, which is k2 in this

example. But, this will have an effect in queries Q1 and Q3 to have increased latency

than specified by the user, which violates the latency minimization condition.

A chain of K-Slack buffers can be used to solve the above problem with a single K-

Slack buffer as depicted in Figure 2.10 (c). This approach enables the total effective

buffer size of the whole chain to be equivalent to the single K-Slack buffer size, and

hence it still adheres to the K-Slack approach. As shown in Figure 2.10(c), first buffer

B1 in the chain has the smallest buffer size with the value of k3. Output events of B1

are dispatched second K-slack buffer B2 to meet the result-quality requirements of the

other two queries, and concurrently to operator A3 without being delayed further to

 27

affect the quality requirements imposed by the Q1. With the introduction to second

buffer B2, the effective buffer size for Q3 should be k1 (i.e., second smallest buffer),

but as the first buffer has already had a buffer size of k3, the actual buffer size of the

B2 will K(B2) = k1 – k3. And then similarly to B1, the output of B2 is also forwarded to

operators A1 and then consequently to buffer B3. The effective buffer size of the query

Q2 should be k2, and since the buffers B1 and B2 are placed before B3, last buffer B3

has K(B3) = k2- k1. Finally, the output of B3 is only forwarded to A2. The total

effective buffer size of K-Slack chain is (k2− k2) +(k1− k3) +k3 = k2. Therefore, it was

able to provide the optimal, memory cost as the single K-Slack buffer in Figure 2.10(b)

while overcoming the drawback with the single buffer and satisfying the latency-

minimization condition.

As this approach uses AQ-K-Slack to determine each buffer size, the disadvantages

mentioned in the AQ-K-Slack also applies here as well. Also, in this case, as the

buffers are shared among operators, the operator level optimizations such as filtering

and only buffering the events that are specified in pattern matching, cannot be applied.

2.3.6. Summary

Table 2.2 provides a summary of each buffer-based approaches discussed, where each

of them has its own advantages, as well as disadvantages. K-Slack approach adds a

fixed amount of delay to all events to handle out-of-order event events. MP-K-Slack

improves the K-Slack approach by finding the buffer size in runtime without requiring

a priori fixed delay. However, the MP-K-Slack approach could only increase the buffer

size; therefore, any burst event delays will affect the latency for all the following

events. This limitation was overcome by the AQ-K-Slack approach with the ability to

reduce and increase the buffer size based on the window coverage, but this approach

is only applicable to aggregation operators.

 28

Table 2.2: Comparison of buffer-based approaches.

Buffer-based

Approach
Advantages Disadvantages

K-Slack Provides a fixed amount of

delay to handle delayed event

arrival.

Hard to find a suitable buffer size k for the

system.

Inability to adapt to the changes in the

operating environment.

Added overhead to all events though the

events are received in order.

Events are released from the buffer only

when an event with largest timestamp is

arrived.

MP-K-Slack No requirement of finding a

priori buffer size k.

Ability to increase the buffer

size k based on delay in event

arrival.

Overly large buffer size k assigned can

incur unbearable latency.

Inability to reduce the buffer size k, when

the network properties improve.

Less frequent event delays could dominate

the latency for all events and hence the

impact is high.

Events are released from the buffer only

when an event with largest timestamp is

arrived.

AQ-K-Slack Ability to reduce and increase

the buffer size k.

Provides the guarantee on the

user-defined error threshold

for the final result produced.

Manual parameter tuning of Kp and Kd

which determines the performance.

Not suitable for operations such as join

and pattern matching.

Delayed buffer size adaptation.

Events are released from the buffer only

when an event with largest timestamp is

arrived.

Latency Distance

and Purging Time

based out-of-order

Event Processing

Improved memory utilization.

Well suited for pattern

matching operations.

Not suitable for aggregate operations

where all events are required for

processing.

Out-of-order event processing cannot be

successfully handled with limited memory.

K- Slack Chain Ability to handle out-of-order

event arrival from multiple

event streams.

Less memory consumption for

multiple streams.

Operator-level optimizations are not

considered.

Uses AQ-K-Slack to find the buffer size;

therefore, disadvantages mentioned in AQ-

K-Slack applies here as well.

 29

3. METHODOLOGY

Out-of-order event arrival can be experienced within the event stream from both a

single event source and across multiple event sources. This is more prevalent in cases

where multiple event sources are publishing within a Local Area Network (LAN) or

Wide Area Network (WAN) with different time drifts among them. Furthermore,

given out-of-order arrival, there could be different requirements for accuracy and

latency based on the use cases. As summarized in Table 2.2, all current approaches

add the latency to not only to the delayed events but also to in-order events after a late

arrival, and those do not address the problem of events produced from multiple sources

where the drift in timestamps are common and not synced. Also, when event sources

produce events at a high rate (e.g., in IoT domains), larger buffers are required to

handle out-of-order event arrival.

In this chapter, we discuss the proposed approach where the latency is introduced to

the event only when an event is delayed. In Section 3.1 relevant definitions are

described. The details of the proposed solution are provided in Section 3.2. Further,

Section 3.3 discusses the implementation details of the system. Finally, Section 3.4

provides the overall summary of the proposed methodology.

3.1. Definitions

This Section defines the elements in the event stream and the attributes associated with

the out-of-order event handling problem. First, we define the elements of the problem,

such as the event sources, event, event stream, and timestamps associated with event

processing. We then explain the proposed solution for the out-of-order event handling

problem which includes handling out-of-order events from the single event source,

multiple events sources, and effect in query operators due to out-of-order event arrival.

The event sources generate the data that are published to CEP as events to be analyzed.

The event sources could be edge devices such as IoT sensors, mobile phones, smart

TVs, and wearable devices, to high-end computer systems and network systems. Let

 30

us denote the set of event sources that publish events to an event stream as I, which

consists of n event sources I = {S1, S2, S3, …, Sn} where each of them independently

collects the events and transmits to the CEP engine.

Event Streams are the grouping of the same type of continuous events that are received

by the CEP engine. One event source can produce one or more event streams. Let R

denote the set of event streams and there can be m event streams such that R = {R1, R2,

R3, …, Rm}, for which the events can be generated from any number of event sources

in I.

Events are the collection of attributes such as actual payload of the data, the name of

the data stream it belongs to, and the generated timestamp. Let the set of events be

denoted as E = {E1, E2, E3, …, Ek} which belong to one of the streams in R.

We consider the following four main types of timestamps:

1. Source time – The timestamp in which the event was generated at the source.

This indicates the actual event occurring time. Let source time of event e of

event source s be denoted as 𝑡𝑒
𝑠.

2. Reference time – The timestamp at CEP engine when the event is originated at

the event source. The difference between this timestamp and source time is that

the reference timestamp is time at CEP engine, and source time is the time at

event source when the event is generated. Let us denote this timestamp as 𝑡𝑒
𝑟𝑒𝑓

.

The time difference between the 𝑡𝑒
𝑟𝑒𝑓

 and 𝑡𝑒
𝑠 is the time drift between the CEP

server and event sources.

3. CEP arrival time – The time which the event is received by the CEP engine

and excludes CEP processing time. Let us denote this as 𝑡𝑒
𝑟 . This timestamp

will include the any delays added to the event from to 𝑡𝑒
𝑠.

4. CEP start time – The timestamp of the event in which the event has been

admitted into the CEP engine for further processing. Let us denote this

timestamp as 𝑡𝑒
𝑝

, i.e., 𝑡𝑒
𝑝
 ＞ 𝑡𝑒

𝑟 ＞ 𝑡𝑒
𝑠.

 31

3.2. Proposed Solution

Next, we discuss the proposed solution to solve the out-of-order handling problem in

CEP. We propose to address this problem for the events generated from both single

and multiple event sources. The former problem can be handled by adding a sequence

number to each event which is used by the CEP engine to put events back in order.

This is discussed in Section 3.2.1. For the latter problem of ordering the events from

multiple event sources, we use the timestamp drift of each event sources to find the

estimated global order of events. In Section 3.2.3, we discuss how the query operators

can operate on the event stream that is received from multiple event sources while

reducing any anomalies that are left untreated after the approach proposed in Section

3.2.2.

3.2.1. Handling Events Produced from Single Event Source

Out-of-order events within a single event source can be handled to a certain extent in

the transport level if the events that are sent with TCP or another reliable protocol,

where the order of the events is preserved. However, if the event source is producing

a very high number of events, then the event source could use multiple parallel

connections with the connection pool to send the events. Hence, in-order delivery is

not guaranteed by the transport protocol. Further, if we consider distributed processing

at CEP, then the events will be processed separately and will be collected at a node

which expects the events to be in order, to produce the final results. To solve this

problem, we can add a sequence number for the events produced by the event source.

This sequence number is local to the event source and the event stream. Figure 3.1

shows how the events are buffered and passed to the CEP engine for further processing

by the query operators.

The events will be ordered based on the sequence number of the events (labeled by the

source) at the CEP event receiver component which consumes events just after the

transport socket and before passing the events to the query operators. Once an event is

received, CEP event receiver will check the sequence number, and an event is released

to CEP engine only if it matches the next expected sequence number. Any event with

 32

a higher sequence number will be added to a buffer and will be released only when the

expected sequence number is received. For example, let us assume the events from

event source D1 are received in the order E1, E2, E4, E5, E6, E3, E7. In that case, up to

E2 the events are received in order; hence, those will be passed to the next level in the

CEP. The next expected event is E3, but the received event is E4. Therefore, events E4,

E5, E6 will be buffered without passing to the next stage. Once expected event E3

arrives, it will be moved immediately to the next stage for further processing, and

subsequently the next expected events E4, E5, E6 will be released in order immediately

following E3.

Figure 3.1: Event source S1 sending event stream R1 and event stream R2 to CEP.

To handle the event loss in the network, there is also a wait timeout, so that the CEP

engine can continue without waiting indefinitely. The timeout value 𝑡𝑡𝑖𝑚𝑒𝑜𝑢𝑡 can be

calculated based on the following parameters (list of symbols is given on Table 3.1).

1. Inter-arrival time between in-order events (𝑡𝑖𝑛𝑡𝑒𝑟)

2. Time spent on the buffer (𝑡𝑏𝑢𝑓𝑓𝑒𝑟)

3. User configured maximum latency threshold (𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦−𝑡ℎ)

The first parameter 𝑡𝑖𝑛𝑡𝑒𝑟 can be calculated by combining average 𝑡𝑎𝑣𝑔 and mean

deviation 𝑡𝑑𝑒𝑣
 of the inter-arrival time between in-order events as shown in Equation

3.1. We use mean deviation (mdev) than standard deviation (sdev) because it is a good

approximation to standard deviation and easier to calculate [17]. Also, for most of the

 33

common distributions the factor goes closer to 1 (mdev =√
𝜋

2
 sdev , √

𝜋

2
 ≈ 1.25) as

discussed in [17] for calculating TCP timeout for retransmission.

Table 3.1: List of symbols.

Symbol Description

𝑡𝑒
𝑠 Timestamp in which event e was generated at event source s

𝑡𝑒
𝑟𝑒𝑓

 Timestamp at CEP engine when event e is originated at event source s

𝑡𝑒
𝑟 Time which event e is received by CEP engine and excludes CEP

processing time

𝑡𝑒
𝑝
 Timestamp of event e in which events has been admitted into CEP engine

for further processing

𝑡𝑖𝑛𝑡𝑒𝑟
 Inter- arrival time between in-order events

 𝑡𝑎𝑣𝑔 Average inter-arrival time between in-order events

 𝑡𝑑𝑒𝑣 Mean deviation of inter-arrival time between in-order events

𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 Current timestamp of the event

∝ Smoothing factor used to find 𝑡𝑎𝑣𝑔and 𝑡𝑑𝑒𝑣

𝑡 𝑏𝑢𝑓𝑓𝑒𝑟
 Time spent on the buffer

 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔 Average time spent on the buffer

 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣 Mean deviation of time spent on the buffer

𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑙𝑎𝑦
 Duration that the current event is held in the buffer

𝛽 Smoothing factor used to find 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔and 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣

𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦−𝑡ℎ
 User configured maximum latency threshold

𝑇𝑖 Round trip time of an event source in i-th time sync iteration

𝑡𝑖
𝑑 Time drift of an event source in i-th time sync iteration

𝑇𝑠 Round trip time of event source s

𝑡𝑠
𝑑 Time drift of event source s

 34

𝑡𝑖𝑛𝑡𝑒𝑟 = 𝑡𝑎𝑣𝑔 + 2𝑡𝑑𝑒𝑣 (3.1)

The inter-arrival time of events are measured and monitored for each event source at

the CEP event receiver component. For the calculations of 𝑡𝑎𝑣𝑔 and 𝑡𝑑𝑒𝑣, the last

arrived in order event timestamp of that particular source (𝑡𝑙𝑎𝑠𝑡
), and the current in-

order event timestamp 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 is stored. Then 𝑡𝑎𝑣𝑔

 and 𝑡𝑑𝑒𝑣 will be calculated based

on Exponential smoothing as in Equation 3.2 and Equation 3.3 where ∝ is a smoothing

factor. We opted to use the exponential smoothing because we will be using the

calculated time values to adjust the timeout of the events arriving early. Therefore, we

need to give more weightage to the recent time measurements, than older

measurements which can be set via 𝛼.

tavg = (∝ 𝑡𝑎𝑣𝑔
) + (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 - 𝑡𝑙𝑎𝑠𝑡
) (1 - ∝)) (3.2)

tdev = (∝ 𝑡𝑑𝑒𝑣
) + |[(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 − 𝑡𝑙𝑎𝑠𝑡
) − 𝑡𝑎𝑣𝑔

] (1 − ∝)| (3.3)

Initially 𝑡𝑎𝑣𝑔
 and 𝑡𝑑𝑒𝑣 will be initialized to zero, and the hence the first 𝑡𝑎𝑣𝑔

 will be

calculated as shown in Equation 3.4.

tavg = (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 - 𝑡𝑙𝑎𝑠𝑡

) (3.4)

Once the first 𝑡𝑎𝑣𝑔
 is calculated, the 𝑡𝑑𝑒𝑣

 can be calculated with the next in-order event,

and first tdev will be calculated as shown in Equation 3.5.

tdev = (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 - 𝑡𝑙𝑎𝑠𝑡

) - 𝑡𝑎𝑣𝑔
 (3.5)

Second parameter 𝑡𝑏𝑢𝑓𝑓𝑒𝑟
 , can be deduced by combining both average 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔and

mean deviation 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣 of the time interval that the early events was held in the

buffer as shown in Equation 3.6.

𝑡𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔 + (2 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣) (3.6)

Initial value of 𝑡𝑏𝑢𝑓𝑓𝑒𝑟
 will be zero. Any events arriving early (i.e., the expect next

sequence number x did not arrive but the event with sequence number x + n (n > 1) has

arrived) will be buffered. Once the event with the expected sequence number is

 35

received, the buffered events will be released based on the sequence number order.

Therefore, when releasing those buffered events, the average time 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔 and

mean deviation time 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣 that the events was held in the buffer can be

calculated using Equation 3.7 and Equation 3.8 respectively, where

𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑙𝑎𝑦
 is the time that the particular event was held in the buffer

and 𝛽 is buffered delay smoothing factor.

tbuffer-avg = (𝛽 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔
) + (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑙𝑎𝑦

 (1 - 𝛽)) (3.7)

tbuffer-dev = (𝛽 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣
)+|[(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑙𝑎𝑦

 − 𝑡 𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔
) (1 − 𝛽)]| (3.8)

In the initial stage of the system 𝑡𝑏𝑢𝑓𝑓𝑒𝑟
 will be initialized to zero, and the first

𝑡𝑏𝑢𝑓𝑓𝑒𝑟
 will be calculated as:

𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔
 = 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑙𝑎𝑦

 (3.9)

Once the first 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔
 is calculated, the 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣

 can be calculated when

clearing the buffer next time. Hence, the first 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣
 will be be calculated as

shown in Equation 3.10.

tbuffer-dev = |[(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑙𝑎𝑦
) − 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔

] | (3.10)

The final timeout 𝑡𝑡𝑖𝑚𝑒𝑜𝑢𝑡
 can be calculated as:

𝑡𝑡𝑖𝑚𝑒𝑜𝑢𝑡
 = Min (𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦−𝑡ℎ

 , Max (tinter, tbuffer)) (3.11)

Based on Equation 3.11, when the event inter-arrival time is large, the user-defined

latency threshold dominates for the timeout calculation. However, it is fair to assume

that out-of-order events are rare for longer event inter-arrival streams as they have

sufficient time to tolerate network delays and distributed CEP processing. Therefore,

using user-defined latency threshold for timeout in such cases will not bring any

negative impact to the solution.

This technique is suitable for continuous stream of high traffic events, where the

legitimate events will not be having any additional overhead and will be just passing

 36

through the system. Only the events which arrive early will be held back to match with

other event sources. In related work such as MP-K-Slack and AQ-K-Slack events will

be held in the selected size of buffer even though the event stream is in order.

3.2.2. Handling Events Produced from Multiple Event Sources

Next, we focus on handling out-of-order event arrival among multiple event sources.

It is reasonable to assume that the events are ordered within a single event source using

the sequence-based approach proposed in Section 3.2.1. To handle this problem, we

propose an approach where the CEP event receiver estimates the time drift between

the CEP receiver and actual event sources and then ordering the events from multiple

event sources based on this estimate.

In this approach, the time synchronization will be performed between the event

receiver and the CEP engine. Event receiver will order events from each event source

based on sequence number per event stream, and then pass the events to the

Synchronizing Component. Synchronizing Component is responsible to order the

events from multiple event sources per event stream and release global ordered event

stream to the query operators. Each event streams will be handled by different threads

in the Synchronizing Component. As event sources could be in different time zones

without using standard time and the clocks may be out of sync, we cannot order the

events based on the timestamp 𝑡𝑒
𝑠 by the event source. However, to find the global

order of the event sequence, we need to map the timestamp of the events from different

sources to a single base clock. As all the event sources send events to the CEP engine,

events could be ordered by taking the CEP engine’s clock as the reference. Thus, each

event’s timestamp can be mapped to 𝑡𝑒
𝑟𝑒𝑓

, which is the timestamp at the CEP engine

at the time of event generation at source. For this, we need to calculate the clock drift

between the CEP receiver and each event source and store them within the CEP

receiver.

Therefore, we use an approach similar to the Network Transfer Protocol (NTP) time

synchronization [18] to calculate the round trip delay and the time drift between the

 37

event source and CEP receiver. Here, the CEP server will act as an NTP server, and

the event source will act as an NTP Client, and it uses UDP transport to calculate the

time drift. We calculate the round trip delay and time drift for each event source and

use that to correct the incoming event’s timestamp in the CEP server, without changing

the event source’s local clock.

Figure 3.2: Communication between the CEP receiver and event source to calculate

the timestamp drift.

The time sync process will be initiated first by the event source before transmitting the

actual events. During the time synchronization process, CEP Server and Event source

will record the timestamps at the arrival and departure of the time sync packets similar

to NTP [18] as shown in Figure 3.2. Therefore, in the i-th time synchronization

attempt, the round trip time 𝑇𝑖 is calculated as per Equation 3.12, and time drift 𝑡𝑖
𝑑 is

calculated as per Equation 3.13 [18].

𝑇𝑖 = (t4 − t1) − (t3 − t2) (3.12)

𝑡𝑖
𝑑 = [(𝑡2 − 𝑡1) + (𝑡3 − 𝑡4)]/2 (3.13)

Equation 3.13 assumes that network delays are a stationary random process, but

practically stochastic network delays are common, and the network queues can grow

and shrink in a chaotic fashion. Therefore, the accuracy of the time drift can be

impaired and hence the bounds of the actual time drift 𝑡𝑠
𝑑 can be as Equation 3.14 [18]:

𝑡𝑖
𝑑 −

𝑇𝑖

2
≤ 𝑡𝑠

𝑑 ≤ 𝑡𝑖
𝑑 +

𝑇𝑖

2

(3.14)

 38

Based on Equation 3.14, we can claim that the true time drift of the event source 𝑡𝑠
𝑑 ,

must lie in the interval of size equal to the measured delay and centered about the

measured time drift.

Event source will send a series of time sync requests to increase the accuracy of the

round trip delay and time drift calculation. And then we use NTP data filtering method

- minimum filter [18] in CEP server, which selects the time sync request with lowest

delay Ti to calculate the final round trip delay, and time drift (𝑇𝑠, 𝑡𝑠
𝑑) for among all the

time synchronization requests.

Once the time sync process is complete, the event source will start to publish the actual

events. And hence when a new event arrives, the calculated drift 𝑡𝑠
𝑑for its event source,

can be added to the event timestamp 𝑡𝑒
𝑠 to find the reference timestamp 𝑡𝑒

𝑟𝑒𝑓
of that

event. For example, assume there are three event sources, S1, S2, and S3 which

publishes for event stream as shown in Figure 3.3. The respective calculated time drifts

are 𝑡𝑠1
𝑑 , 𝑡𝑠2

𝑑 , and 𝑡𝑠3
𝑑 . Therefore, the CEP’s synchronizing component will be adding the

timestamp drift of the source to each of its events and compare with all events from all

sources and provide an estimated global order per event stream as shown in Figure 3.3

and Equation 3.15.

𝑡𝑒
𝑟𝑒𝑓

 = 𝑡𝑒
𝑠+ 𝑡𝑠

𝑑 (3.15)

There could be also local clock drift at event sources and CEP with time; hence, we

also need to periodically re-calculate the drift for each event source. This could be

achieved by repeating the same process which could update the record drift maintained

at the event receiver. The period in which the calculation can occur can be set during

the event source initialization.

 39

Figure 3.3: Out-of-order event handling with multiple event sources for

event stream R1.

As shown in Figure 3.3, the ordered events received from each source is globally

ordered by the Synchronizing Component. Each event stream is handled by a separate

thread in the Synchronization Component, which also corrects the time based on the

estimated drift. As shown in Figure 3.3, the events of an event stream are already sorted

based on the sequence number. Therefore, the synchronizing component will fetch the

first event (i.e., the lowest sequence and timestamp event) of each event sources that

publish to the particular event stream. The reference timestamp of the fetched events

will be calculated by adding the estimated time drift as explained in Equation 3.15.

The event which has the lowest reference timestamp among all fetched events will be

released to the next process. Then, the component will fetch the next event from the

same event source that the last released event belongs to. It then calculates the

reference timestamp for the newly fetched event and continues the same comparison

and releasing process.

However, not all event sources will have events during the synchronization process.

Therefore, if one of the event sources does not have an event during the

synchronization process, then the component will wait until the timeout defined for

that event source as per Equation 3.11. If an event arrives for that particular event

source before the timeout, then it will be fetched and used in the comparison and

releasing process along with other event sources. But in case, if the event did not arrive

 40

within the timeout, then the synchronization component will flag the event source as

timed out. This flag will be down once a new event arrives for the source. When the

flag is up for a particular source, the synchronization component can skip it without

waiting, e.g., the event source may have gone offline or stopped publishing events.

However, overall with this approach, the event source with the highest out of order

event distribution dominates the latency incurred in the events whereas, for larger

event inter-arrival event sources, the user-defined latency threshold dominates.

3.2.3. Query Operators with Out-of-order Events

Once the out-of-order events are ordered as per the mechanisms discussed in Section

3.2.1 and 3.2.2, the ordered events are presented to the query operators to perform the

actual query execution on those events. Due to timeout-based buffers, a few events

may still be out-of-order; hence, need to be handled further. Next, we focus on two

query operators such as aggregation operator and pattern operator, which depend on

the order of the event arrivals when processing within a window of events.

3.2.3.1. Time Batch Window and Aggregation Operators

Based on the multiple source out-of-order approach, we calculate the time drift 𝑡𝑠
𝑑for

each event source, and event timestamps are adjusted accordingly. As mentioned in

Equation 3.14, the calculated drift 𝑡𝑠
𝑑can vary ±(𝑇𝑠

 /2). In that case, there exists an

ambiguous range of events in a window which may or may not actually correspond to

that window. Therefore, we cannot have a window which has the size less than the

𝑇𝑠
 because all the events that are included on the window will be in the ambiguous

range.

Let us consider 𝑇𝑎
 as the maximum round-trip time of all event sources.

𝑇𝑎
 = 𝑀𝑎𝑥(𝑇𝑠

) (3.16)

Let w be the windows length in time. As seen on Figure 3.4, the events from 𝑡 to 𝑡 −

(
𝑇𝑎

2
) and from 𝑡 − (

𝑇𝑎

2
) + 𝑤 to 𝑡 + 𝑤 are in the ambiguous range. Similarly, the events

 41

from 𝑡 − (
𝑇𝑎

2
) to 𝑡 and from 𝑡 + 𝑤, and 𝑡 + (

𝑇𝑎

2
) + 𝑤 maybelong to the time window,

though that is out of the window time. Therefore, when query operators are used along

with the window of events, there are five different kinds of events produced at the end

of the window, they are:

1) Events between the 𝑡 − (
𝑇𝑎

2
) and 𝑡.

2) Events between 𝑡 and 𝑡 + (
𝑇𝑎

2
).

3) Events between 𝑡 + (
𝑇𝑎

2
) and 𝑡 − (

𝑇𝑎

2
) + 𝑤.

4) Events between 𝑡 − (
𝑇𝑎

2
) + 𝑤 and 𝑡 + 𝑤.

5) Events between 𝑡 + 𝑤, and 𝑡 + (
𝑇𝑎

2
) + 𝑤.

Figure 3.4: Multiple time batch windows to cover the events from ± (𝑇𝑎
 /2) of

original time batch window w.

As per Figure 3.4, the events between time 𝑡 + (
𝑇𝑎

2
) and 𝑡 − (

𝑇𝑎

2
) + 𝑤 corresponds

to the window 𝑤. But the events from 𝑡 − (
𝑇𝑎

2
) to 𝑡 + (

𝑇𝑎

2
) and events from 𝑡 − (

𝑇𝑎

2
) +

𝑤 to 𝑡 + (
𝑇𝑎

2
) + 𝑤 may or may not belong to this window. Therefore, given the

knowledge about different kind of events passed to the query operators, users can write

their CEP queries to accommodate this behavior. Hence, we can have three time batch

windows that range from 𝑡 − (
𝑇𝑎

2
) to 𝑡 − (

𝑇𝑎

2
) + 𝑤, from 𝑡 to 𝑡 + 𝑤, and from 𝑡 + (

𝑇𝑎

2
)

to 𝑡 + (
𝑇𝑎

2
) + 𝑤. This multiple window can be used for the aggregation calculation to

 42

reduce the inaccuracies that could have been introduced by the time drift calculation.

Therefore, we can perform the aggregations for three windows of events 𝑡 − (
𝑇𝑎

2
)

to 𝑡 − (
𝑇𝑎

2
) + 𝑤, 𝑡 to 𝑡 + 𝑤, and 𝑡 + (

𝑇𝑎

2
) to 𝑡 + (

𝑇𝑎

2
) + 𝑤 and emit the average of all

three windows as the final aggregated results, which will be more accurate than

considering the single estimated window 𝑡 to 𝑡 + 𝑤.

This method reduces impact due to any inaccuracies in the time drift calculation and

increases the accuracy of the query result after the window and aggregation operation.

However, the disadvantage of this method is that the users have to be aware of this

condition and rewrite the query to make use of the three time windows, as this will not

be handled automatically within the CEP engine.

3.2.3.2. Pattern Matching

The order of the events significantly influences the pattern matching decision.

Therefore, once the events are ordered with the sequence-based approach, we can use

the pattern matching operator directly to detect the pattern. However, as mentioned in

Section 3.2.3.1, due to the uncertainty in calculating the exact drift there will be a

certain ambiguous time range of the event in which it could have actually occurred.

Therefore, we need to consider the time difference of the events which contributed to

the pattern matching to evaluate its correctness of the general pattern matching

decision. Let us consider an example, where e1 and e2 as two events and the actual

pattern to detect is event e1 followed by event e2. The pseudocode to detect the pattern

in this case that handles the inaccuracies in drift is shown in Pseudocode 3.1.

As shown in Pseudocode 3.1, we try to detect both combinations of pattern e1 followed

by e2, and e2 followed by e1. In both cases, we evaluate the time difference of the event

occurrences, and if the time difference is less than time 𝑇𝑎
 mentioned in Equation 3.16,

then we can mark it as Uncertain pattern detection because it could be actually correct

decision or false positive. If it is greater than 𝑇𝑎
 , then we can be certain about our final

decision, and we can conclude as the pattern is detected or not.

 43

if e1 -> e2,

if(e2.timestamp - e1.timestamp <= 𝑇𝑎)

then

PRINT ‘Uncertain Pattern Detection’

else

PRINT ‘Confirmed Pattern Detection’

if e2 -> e1,

if(e1.timestamp - e2.timestamp <= 𝑇𝑎)

then

PRINT ‘Uncertain Pattern Detection’

else

PRINT ‘Pattern Not Detected’

Pseudocode 3.1: Pattern detection code for pattern event e1 followed by e2.

The main advantage of this method is that it makes sure that there are no false negative

pattern decisions; therefore, it is very suitable for domains such as finance, health care,

and fraud detection, where false negative is not acceptable at all. Since the pattern

matching result is provided with additional information about the uncertainty, the final

decision can be taken by the end users based on the business context of the pattern

matching query. The disadvantage of this method is that the users will have to rewrite

the pattern matching query by utilizing the time drift calculation, and it is not handled

within the CEP engine automatically. If the pattern has more events, then the modified

pattern matching query will be more complex.

3.4. Summary

This Chapter discussed the terminology and proposed a solution to handle out-of-order

events. Our proposed approach contains three primary steps, that includes ordering the

events for single sources based on the sequence numbers, ordering the events with

multiple sources with time drift calculations, and finally presenting the events to

window and query operators. In our proposed approach, the incoming events are

initially ordered based on the sequence numbers which are injected into the events by

the event sources, and then the ordered events of a single source are added to the queue

for multiple source synchronization. The time drift is calculated at the time of event

source initialization by using the NTP like technique, and it is used to calculate the

reference time of the event received based on its event source ID. Further, this

 44

calculated reference timestamp is used to order the events among multiple sources. As

there could be irregularities in the calculation of the reference time of a source, we

have proposed multiple window approach where additional two windows are

maintained in the difference of the max delay time of all sources for the event stream.

This information needs to be utilized explicitly when writing the aggregator and

pattern matching queries. The aggregator operators can be written in a way that it can

utilize multiple windows and increase the accuracy of the final result. Similarly,

pattern matching query can also be written to consider max delay time into its final

pattern matching decision and increase its accuracy of the decision with an additional

attribute to specify about the confidence level of the pattern matching result.

 45

4. IMPLEMENTATION

To demonstrate the proposed solution, it is implemented on the WSO2 CEP Siddhi

engine [19]. Siddhi is selected as it is open-source, has low latency, and capable of

analyzing millions of events per second [19]. The main reasons for selecting Siddhi

CEP are:

1. Known to consume minimum resources such as memory and CPU.

2. It has throughput high as 30 Million events/sec and latency ranges from 1 ms

to 130 ms for most of the cases such as pass-through, filter query, and time

windows [19], [20].

3. Have multiple extension points such as Stream Function Extension, Stream

Processor Extension, and Window, Aggregate and Custom Function

Extensions [21], [22].

4. Easy-to-use and Open Source CEP engine under Apache Software License

v2.0

Figure 4.1: Out-of-order event flow of an event stream within siddhi engine.

Figure 4.1 shows the main components and the event flow to handle out-of-order

events of an event stream in Siddhi engine. Note that the entire process is executed per

event stream by a different thread, and there are no resources shared among multiple

event streams including the event buffers and queues. Sequence-Based Reorder

Extension is the heart of solution where out-of-order events are ordered by sequence

 46

numbers for a single event source, and reference timestamps for multiple event sources

for a particular event stream. Source-based Information Store holds the information

about the time drift, inter-arrival time and time spent on buffer per event stream. And

this information is used by Sequence-based Reorder Extension to find the global order

of the events in the event stream from multiple sources, and Source Drift Variation

based Window Processor to maintain multiple windows as explained in Section

3.2.3.1. If the user-defined CEP query has time batch window query, then the output

events from Sequence-based Reorder Extension will be first passed to the Source Drift

Variation based Window Processor, and then the events expired from the windows are

presented to the query operator such as aggregator operators to produce the actual

result of the query for events within the time window. If the user-defined CEP query

does not involve any time batch window operators, then the output events from

Sequence-based Reorder Extension will be directly fed into the query operators such

as pattern matching, filter queries, and pass through queries.

As depicted in Figure 4.1, the following steps are followed when handling the out-of-

order events in Siddhi CEP Engine:

1. As a first step, the event sources will send initialization Time Sync events to

Siddhi CEP Server along with its source ID to calculate the source drift and

reference timestamp 𝑡𝑒
𝑟𝑒𝑓

as mentioned in Section 3.2.2. Once the initialization

is successfully performed, the event source will start to publish its actual event

stream.

2. The actual events are passed into the Sequence-based Reorder Extension, that

orders the events based on the sequence number of each source ID and

synchronizes the events across all the event sources based on the reference

timestamp 𝑡𝑒
𝑟𝑒𝑓

as mentioned in Equation 3.12.

3. If the user has used time batch window as the CEP query, then the output events

from the Sequence-based Reorder Extension are fed into the Source Drift

Variation based Window Processor. Else, the output events from the Sequence-

based Reorder Extension are directly fed into the intended query operators

(e.g., pattern matching) of the defined CEP query.

 47

4. If the events are fed into the Source Drift Variation based Window Processor,

then it maintains multiple windows to cover the events from ± (𝑇𝑎
 /2) of

original time batch window w as mentioned in Section 3.2.3.2. Once the events

are expired from time batch window, those are presented to the query operators

(e.g., aggregator operator) to produce the final results as discussed in Section

3.2.3.1.

Next, we explain the detailed implementation on top of WSO2 Siddhi CEP engine. We

use TCPNettyClient [23], [24] to publish events into an event stream in a remote CEP

server. But this client does not have the time syncing process that we discussed in

Section 3.2.2. Therefore, the new client was implemented by extending the existing

TCPNettyClient [23] to include the time syncing process. The client can be initialized

as shown in Sample Code 4.1.

TCPNettyClient tcpNettyClient = new TCPNettyClient();

//Host: 10.100.1.138

//Actual Event Receiver Port:9892

//Time Sync Receiver UDP Port: 7452

//Source ID: “Sensor1”

//Number of Time Sync Attempts: 10

tcpNettyClient.connect("10.100.1.138", 9892, 7452, ”Sensor1”, 10);

Sample Code 4.1: Extended TCPClient initialization with time syncing.

A new UDP (User Datagram Protocol) Time Sync Server was implemented to receive

the time sync events in the Siddhi CEP server. It calculates the time drift based on the

event source and updates the Source-based Information Store as shown in Figure 4.1.

This data is later used when reordering events in the Sequence-based Reorder

Extension and Source Drift Variation based Window Processor. Once the initialization

is successful, the event sources can send the actual events. The event stream defined

to handle out-of-order events should consist of additional attributes to specify the

source ID of the event source and sequence number of that event. For example, Query

4.1 and 4.2 introduce additional attributes sourceId and seqNum to handle the out order

events. Because the stream definition consists of additional attributes sourceId and

 48

seqNum, the events published to the event stream from event sources also should

consist of the same data.

define stream inputStream (timestamp long, temperature

double);

Query 4.1: Stream definition without out-of-order handling.

define stream inputStream (timestamp long, temperature double,

sourceId string, seqNum long);

Query 4.2: Stream definition with out-of-order handling.

Once the actual events are received, those are passed to the Sequence-Based Reorder

Extension which is the main component of the out-of-order event handling. This is

developed by extending the Stream Processor extension without modifying the core

Siddhi CEP code. The stream can be enabled with this reorder extension as shown in

Query 4.3.

from inputStream#reorder:sequence(sourceId, seqNum, timestamp,

10L, 0.6, 0.6, false)

select timestamp, temperature

insert into inOrderStream;

Query 4.3: Query with sequence based reorder extension.

There are mainly seven configurable parameters for this extension as indicated in

Query 4.3, namely:

1. Attribute name of the event stream definition that denotes the source ID field

sourceId

2. Attribute name of the event stream definition that denotes the sequence number

field seqNum.

3. Attribute name of the event stream definition that denotes the timestamp field.

If this is not provided, then the event’s default timestamp is taken

4. The user-defined timeout in ms and this will be used to control the maximum

time the events are kept in the buffer.

 49

5. The value for smoothing factor ∝which can be a decimal number between 0 to

1. This value is used to calculate event inter-arrival time as explained in Section

3.2.1.

6. The value for smoothing factor 𝛽 which can be a decimal number between 0

to 1. This value is used to calculate the duration of early events spent in the

buffer as explained in Section 3.2.1.

7. The Boolean parameter to configure whether to drop or pass late arrival events

after the timeout.

Once the event is received by the Sequence-based Reorder Extension, the flow

illustrated in Figure 4.2 is executed to order the events based on sequence numbers per

event source. When an event is received, the event’s sequence number (seqNum) is

checked against next expected sequence number (expSeqNum = last seen in-order

sequence number + 1) for the event source. If it is equal, the event is passed to multi-

source synchronization, and subsequently, release all buffered events that follow the

current event’s sequence number. If the sequence number is greater than expected

sequence number, then it will put the event into the buffer. If the sequence number is

less than the expected sequence number, then based on the user-defined configuration

of the Sequence-based Reorder Extension, the event will be dropped or put into multi-

source synchronization immediately. The in-order event arrival time and buffered

event time are calculated (Section 3.2.1) respectively when an event arrived in order

(i.e., seqNum == expSeqNum), and when the buffered events are released after the

expected sequence number has arrived. These values are used to calculate the timeout

as explained in Section 3.2.1 when an event is added into the buffer. Once the events

are ordered for each event sources, the events are added to the source specific event

queues for multi-source event synchronization.

Once the events are added into the source specific queues, those are picked up by

multi-source synchronization, which orders the events based on 𝑡𝑒
𝑟𝑒𝑓

. Effectively it

collects the smallest 𝑡𝑒
𝑟𝑒𝑓

event from all event queues and releases it to the next process.

It then polls the next event from the same queue which had the smallest 𝑡𝑒
𝑟𝑒𝑓

and

 50

continue the same iteration. In case, if the event queue is empty, then it will wait till

the same timeout calculated by Equation 3.11 then continue the synchronization

process.

Figure 4.2: Sequence-based ordering in sequence-based reorder extension.

If the user-defined CEP query consists of time batch window, then in the ordered event

stream is passed to the Source Drift Variation based Window Processor. This custom

window processor [22] implementation will retrieve 𝑇𝑎
 as per Equation 3.16 from the

Source-based Information Store, and will maintain three different windows as follows:

 51

1. Low window – The window events from event from 𝑡 − (
𝑇𝑎

2
) to 𝑡 − (

𝑇𝑎

2
) + 𝑤.

2. Middle window – The window events from event from 𝑡 to 𝑡 + 𝑤.

3. High window – The window events from event from 𝑡 + (
𝑇𝑎

2
) to 𝑡 + (

𝑇𝑎

2
) + 𝑤.

The window can be defined as in Query 4.4 along with the Sequence-based Reorder

Extension.

from inputStream#reorder:sequence(sourceId, seqNum, timestamp,

10L, 0.6, 0.6, false)#reorder:externalTimeBatch(timestamp, 1

sec, false)

select timestamp, temperature

insert into inOrderWindowedStream;

 Query 4.4: Reorder time batch window.

The window can have three different configurations as follows:

1. The timestamp field name in which the external time batch window should

operate, i.e., timestamp field.

2. Time window Size (e.g., 1 sec).

3. Boolean parameter to configure whether immediately emit the windowed

events as the time elapsed. The Low window will be elapsing first and the High

window will be elapsing last. And this configuration controls whether the

events of the window needs to be released immediately when that specific

window is elapsed, or to hold those are release together at time 𝑡 + (
𝑇𝑎

2
) + 𝑤.

According the Query 4.4, this parameter set to false.

The expired events from the time window will have an additional attribute as

windowType to specify which type of time window that the event belongs to.

Now we will focus on using the query operators after the time window. Let us consider

the sum operator as a sample query operator, and with the above window of events

that can be used as shown in Query 4.5. The individual sum is calculated for each

window of events, and the average of those are considered into the final output, which

reduces the effect of irregularities in calculating the event source’s time drifts.

 52

from inputStream#reorder:sequence(sourceId, seqNum, timestamp,

10L, 0.6, 0.6, false)#reorder:timeBatch(1 sec, false, false)

select

(sum(ifThenElse(windowType=='LOW',price, 0.0f))+

sum(ifThenElse(windowType=='MIDDLE',price,0.0f))+

sum(ifThenElse(windowType=='HIGH',price, 0.0f)))/3 as

totalPrice

insert all events into outputStream;

Query 4.5: Sample siddhi query to calculate average of aggregated results among

different windows.

If the user-defined CEP query does not consist of time batch window, the output events

from the Sequence-based Reorder Extension will be directly fed into the query

operators without passing through the Source Drift Variation based Window

Processor. Pattern matching is one type of query operator which does not require to

be used along with time batch window. Now let us focus on using the pattern matching

query operator with out-of-order event arrival with Siddhi CEP Engine.

For pattern matching, we have to consider the actual intended pattern and the other

combinations of the event sequence of the pattern and incorporate all those into the

pattern matching query. Once the pattern is detected we will have to compare the time

difference of the events that participated in detecting the pattern, with the max delay

(𝑇𝑎
 /2) of the event sources, and decide whether the pattern detection is confirmed, or

uncertain as explained in Section 3.2.3.2. Therefore, we have implemented a new

function maxDelay to retrieve the max transport delay of the event sources that publish

events to the intended original event stream. Let us consider an example of detecting

the pattern where an event e1 which has temperature greater 30 is followed by an event

e2 which has temperature greater than 35 in the event stream inOrderStream. Query

4.6 shows how the pattern-matching query operator can utilize the maxDelay function

and produce the result with additional field confidence as explained in Section 3.2.3.2.

from every e1=inOrderStream [temperature > 30]

-> e2=inOrderWindowedStream [temperature > 35]

select ifThenElse(e2.relativeTimestamp -

e1.relativeTimestamp<=reorder:MaxDelay(‘inputStream’)

 53

,'UncertainPatternDetected', ‘Confirmed’) as confidence,

e2.temperature, e2.timestamp

insert into patternStream;

from every e2=inOrderStream [temperature > 35]

-> e1=inOrderWindowedStream [temperature > 30]

select ifThenElse(e1.relativeTimestamp -

e2.relativeTimestamp<=reorder:MaxDelay(‘inputStream’)

,'UncertainPatternDetected', ‘Not Matched’) as confidence,

e2.temperature, e2.timestamp

having confidence == 'UncertainPatternDetected'

insert into patternStream;

Query 4.6: Pattern matching query with maxDelay function.

Though we are interested in single pattern (e1 followed by e2), Query 4.6 consists of

two pattern matching queries. It is because, as we discussed in Section 3.2.3.2, the

relative order of the events cannot be accurately decided if the time difference between

them is less than maxDelay. Therefore, we write the pattern matching query for both

event sequence, e1 followed by e2 (first part of Query 4.6) and e2 followed by e1

(second part of Query 4.6). In both pattern matching cases, we check the time

difference of the events in the pattern with maxDelay and add the confidence attribute

to express the level of confidence about the pattern detection. As the first part of Query

4.6 consists the actual pattern, if the event time difference is less than or equal

maxDelay, then the confidence attribute is set to UncertainPatternDetected, else it is

set to Confirmed. Since the second part of the Query 4.6 consists of the alternate event

sequence of the actual pattern, if event time difference is less than or equal maxDelay,

then the confidence attribute is set to UncertainPatternDetected, else it is set to

NotMatched. Finally, with the second part of the Query 4.6, we only trigger the pattern

detection if the confidence attribute is equal to UncertainPatternDetected, and ignore

pattern detected with NotMatched.

4.1. Summary

This Chapter discussed the implementation details of the proposed methodology. We

have implemented many custom extensions for WSO2 Siddhi CEP Engine, to

implement the proposed methodology. A new UDP based Time Sync Server is

developed to calculate the time drift and round trip time as explained in Section 3.2.2.

 54

Also, a new TCP-Netty-Client is implemented to include the time syncing process

which transmits a series of UDP time sync messages before transmitting the actual

events stream. The event sources should use the new implementation of the TCP-

Netty-Client and add two additional attributes to specify the event sequence number

and the source ID when publishing each event. The Sequence-based Reorder Extension

is the custom extension developed to handle the out-of-order event arrival, and it is the

core part of the implementation. The events received for an event stream are passed

into this extension as the first step before it is processed by any query operators. This

extension orders events from both single and multiple event sources. The Source Drift

Variation based Window Processor is custom window extension implemented to

handle the multiple windows as explained in Section 3.2.3.1, and it is used when the

user had defined the time batch window in the CEP query. We also discussed how

Siddhi queries for aggregation and pattern matching operators can be modified as

discussed in Section 3.2.3.1, and 3.2.3.2.

 55

5. PERFORMANCE EVALUATION

In this Chapter, we will evaluate the performance of the proposed sequence based

reordering approach. Section 5.1 presents the dataset and how it is used for the

evaluation. Section 5.2 discusses the experimental setup and hardware configurations.

Section 5.3 compares the performance of the proposed solution with other reordering

techniques such as AQ K-Slack and MP-K-Slack. Section 5.4. presents in-depth

information on accuracy and latency.

5.1. Dataset

The datasets used for this evaluation were derived from the football dataset used in

DEBS (Distributed Event-based Systems) 2013 Grand Challenge [25]. A football field

of the Nuremberg Stadium in Germany was equipped with real-time locating system

that collects data about location of ball and players. And it contains 47 Million rows

of events. Data originates from mainly two types of sensors; one located near the shoes

of the players (single sensor per leg) and another one in the ball (single sensor).

Further, two sensors (one at each hand) are attached with the goal keeper. The sensors

attached to players can produce data with 200 Hz frequency, while the sensor attached

to the ball produces data with 2,000 Hz frequency.

Figure 5.1: Playing field and its dimensions in mm [25].

 56

The overall total data rate produced by all sensors is 15,000 position events/sec. Every

event produced by illustrates the position in a 3D coordinate system. Figure 5.1 depicts

the coordinates of the kickoff and dimensions of the playground. The event schema is

given below, and the description of each attributes are provided in Table 5.1.

sid, ts, x, y, z, |v|, |a|, vx, vy, vz, ax, ay, az

Table 5.1: Description of event attributes.

Symbols Description

sid Sensor Id- Produced the position event

ts

Timestamp- Defined in picoseconds e.g.: 10753295594424116 (with the value

of 10753295594424116 designating the start and 14879639146403495 the end

of the game)

x, y and z Position of the sensor in mm

|v| Velocity of the ball in μm/s

|a| Absolute acceleration of the ball in μm/s²

vx, vy and vz Direction by a vector with size of 10,000 (in m/s)

ax, ay and az Constituents of absolute acceleration in three dimensions

The original dataset contains the events that are generated from the sensors and ordered

by the timestamp. We extracted a smaller dataset of roughly 500,000 events from this

original dataset and prepared three different datasets by introducing completely

different out-of-order event distributions into them. Table 5.2 shows the total number

of events and the number of events that were out-of-order from those.

Table 5.2: Input Dataset and out-of-order events.

Dataset Name Total Events No of Out-of-order Events

Dataset 1 499982 62473

Dataset 2 499499 62409

Dataset 3 999499 83212

 57

The distribution of latencies introduced in out-of-order event dataset 1, 2, and 3 are

shown in Figure 5.2 to 5.5.

Figure 5.2: Average events inter-arrival time with out-of-order event Dataset 1 and

Dataset 2.

Figure 5.3: Maximum events inter-arrival time in Dataset 1 and Dataset 2.

 58

Figure 5.4:Average events inter-arrival time with out-of-order event Dataset 3

Figure 5.5: Maximum event inter-arrival time in seconds for Dataset 3.

Dataset 1 has mainly two significant late arrivals and average late event inter-arrival

time is between 0.1 to 0.3 ms. Also, the significant late arrival events in the Dataset 1

were having a max delay from 750 to 1000 ms. Whereas Dataset 2 had a much wider

 59

distribution of out-of-order events and average late inter-arrival time is less than 1 ms.

The maximum delay of the out-of-order events were less than 2 seconds. Dataset 3

was created with a larger average late inter-arrival time ranging from 1 ms to 7 ms.

Also, the maximum delay of out-of-order events ranges in seconds and goes up to 30

seconds.

5.1.1. Dataset for Single Source

All three datasets were tagged with additional attribute sourceId and seqNum to denote

the identifier of the event source that the event belongs to and the sequence number of

the event. For the single source performance evaluation purpose, all three dataset

events were added with the same source ID and the sequence number is added in the

increasing order of the event’s timestamp. The stream definition defined in Query 5.1

was used on these datasets.

@source(type='tcp', @map(type='binary'))

define stream inputStream (sid int, ts long, x int, y int, z

int, v_abs int, a_abs int, vx int, vy int, vz int, ax int, ay

int, az int, sourceId string, seqNum long);

Query 5.1: Stream definition for datasets.

5.1.2. Dataset for Multiple Sources

The evaluation of the proposed methodology is performed for 2, 5, 10, and 20 event

sources. Dataset 3 was used for this evaluation, as it has comparatively large average

late inter-arrival time compared to the other two datasets and has relatively wider out-

of-order event distribution. Also, we used multiple clients to simulate multiple event

sources. Additionally, the actual timestamp of the event was increased by 3 ms with

increasing source ID. For example, let us assume an event was published at timestamp

t (in milliseconds) with single source, then with multiple sources the source ID 0 will

be publishing the same event at timestamp t, source ID 1 will be publishing the same

event with timestamp t + 3, source ID 2 will be publishing the event at timestamp t +

6, and so on. This modification was made to the dataset to make more realistic test

 60

with multi sources and to evaluate the effect of multi-source event synchronization.

The stream definition defined in Query 5.1 was used for this evaluation as well.

5.1.3. Dataset with Time Drift for Event Source

The same Dataset 3 was improved to evaluate the effect of time drift. A new field was

injected into the dataset as driftedTs which will have the (actual timestamp + time

drift). Therefore, when an event source is initiated, based on the time drift provided

for the evaluation purpose, it will add the new field driftedTs to the event, and publish.

For example, let us assume t is reference timestamp of an event and d is the drift for

the event source. Therefore, the client will send two timestamp attributes, where ts

attribute will be having the value t and driftedTs will be having the value t + d. Further,

the CEP server will be using the driftedTs to actually order events between the event

sources, and ts will be used to evaluate the accuracy of the re-ordering approach. Since

we modified the attributes in the original dataset, the stream definition is modified as

shown in Query 5.2.

@source(type='tcp', @map(type='binary'))

define stream inputStream (sid int, ts long, x int,

y int, z int, v_abs int, a_abs int, vx int, vy int,

vz int, ax int, ay int, az int, sourceId string,

seqNum long, driftedTs long);

Query 5.2: Stream definition for Dataset with time drift.

5.1.4. Dataset for Pattern Matching

A new dataset, namely Dataset 4, was generated for pattern matching which has the

events in the pattern in out-of-order fashion. The dataset consists of a pattern of goal

score event, which is triggered based on the events from sensors located on the ball

and on the shoes of the football players. The two events which participate in this

pattern matching is having ~44 ms time difference. To simulate the multiple event

sources condition with drift, the Dataset 4 is also published similar to the manner

explained in Section 5.1.3.

 61

5.2. Experimental Setup

The entire experiment was primarily performed on a single machine with specification

listed in Table 5.3. The machine was configured with Oracle JDK 1.8.0_101. All the

tests were carried out without having any restriction on memory

Table 5.3: Specification of the machine that was used for the valuation.

Processor Name Intel(R) Core(TM) i7-4770HQ CPU

Processor Speed 2.2 GHz

Number of Processors 1

Total Number of Cores 4

L2 Cache (per Core) 256 KB

L3 Cache 6 MB

 Memory 16 GB

Hyper Threading Enabled Yes

5.2.1. Prototype

Tests were carried out using the implementation described in Chapter 4. We used

Siddhi version 4.2.33 to implement the proposed solution. The Siddhi server is started

with extensions and queries, that are required for each experiment. Further, we have

created a Java based application to simulate the event sources, that reads from the

datasets discussed in Section 5.1. As we required to evaluate the proposed solution

with multiple event sources, the simulated client program will spawn different threads

to act as different event sources for the Siddhi engine. To simulate real-world

condition, the in order events were published with actual intervals that were present in

the dataset.

5.2.2. Analysis of Out-of-order Events Handling Solution

Recall that our primary objective is to have high accuracy and low latency for the

incoming events while solving the out-of-order events and having a minimal impact

on the in-order events. As mentioned in Chapter 4, the implementation was done to

 62

handle the main cases of the out-of-order events with single and multiple event

sources. In this Section, we will be focusing on latency and accuracy of the proposed

solution, compared to other buffer based techniques such as MP-K-Slack and AQ-K-

Slack that was discussed under Section 2.3.2 and 2.3.3, respectively.

As we will be focusing mainly on the latency and accuracy, let us first define how

those are calculated.

1. Latency – The latency was calculated as the total time duration an event took

to reach the pass-through output stream from the time that event was actually

published from the client.

2. Accuracy – A current event is considered as out-of-order, if the last received

event is having the timestamp greater than the current event. Therefore, the

accuracy is the percentage of the total corrected events out of the total out-of-

order events that were injected into the stream.

5.2.2.1. Performance and Accuracy with Single Event Source

In this Section, we analyze the performance and accuracy of the proposed out-of-order

handling approach for a single source. The Siddhi query that was executed during this

evaluation is shown in Query 5.3, 5.4, and 5.5 for sequence-based approach, MP-K-

Slack approach and AQ-K-Slack approach respectively for input stream definition

mentioned in Query 5.1.

from inputStream#reorder:sequence(sourceId, seqNum, driftedTs,

500L,0.6, 0.6, false)

select sourceId, seqNum, eventTimestamp() as

relativeTimestamp,ts

insert into outputStream;

Query 5.3: Siddhi query with sequence based reorder extension

from inputStream#reorder:kslack(ts)

select sourceId, seqNum, eventTimestamp() as

relativeTimestamp,ts

insert into outputStream;

Query 5.4: Siddhi query with MP-K-Slack extension

 63

from inputStream#reorder:reorder:akslack(ts, v_abs)

select sourceId, seqNum, eventTimestamp() as

relativeTimestamp,ts

insert into outputStream;

Query 5.5: Siddhi query with AQ-K-Slack extension.

As shown in Query 5.3, we have used 0.6 as the smoothing factor to calculate event

inter-arrival time and duration of early events spent in the buffer as defined in Section

3.2.1. This value was producing less latency and improved accuracy for the datasets.

The average and max latencies incurred with different approaches are shown in Figure

5.6 and 5.7. Among all three approaches, the highest latency was experienced when

there was a high delay on the out-of-order event as per dataset distribution described

in Figure 5.2 and 5.3. As per Table 5.4, we can see that the sequence-based approach

has an overall average latency of 4 ms, whereas MP-K-Slack and AQ-K-Slack

approaches are having an overall average latency of 400 ms and 79 ms, respectively.

Similarly, sequence-based approach has an overall average maximum latency of 10

ms. Whereas an overall maximum latency for MP-K-Slack is 465.37 ms, and for AQ-

K-Slack is 133.27. Therefore, we can clearly see that the sequence-based approach has

much lower latency compared to MP-K-Slack and AQ-K-Slack with respect to both

the overall average and maximum latencies introduced to the events. As per the

summary listed in Table 5.4, the sequence-based approach is 9600% faster than MP-

K-Slack and 1800% faster than AQ-K-Slack. Whereas the maximum latency is 4100%

and 1100% lower than MP-K-Slack and AQ-K-Slack, respectively.

 64

Figure 5.6: Average and maximum latency of events for Dataset 1 with proposed

sequence-based approach.

Figure 5.7: Average and max latency of events for Dataset1 with MP-K-Slack, AQ-

K-Slack and sequence-based approach

 65

Table 5.4: Overall summary of latency incurred for events in Dataset1 with all out-

of-order handling approaches

Out-of-order Handling

Approach

Overall Average Latency

(ms)

Overall Average Max

Latency (ms)

Sequence Based 4.09 10.98

MP-K-Slack 399.56 465.37

AQ-K-Slack 79.04 133.27

Table 5.5: Total number of out-of-order events with Dataset 1 with all out-of-order

handling approaches.

Out-of-order Handling Approach Total Out-of-order Events Accuracy

Sequence Based 5 99.99%

MP-K-Slack 5 99.99%

AQ-K-Slack 5 99.99%

As shown in Table 5.5, all three approaches resulted in the same number of out-of-

order events. Therefore, with respect to the accuracy, all three approaches perform at

the same level at 99.99% (compared to all events being in order). But when comparing

latency and accuracy, the sequence-based approach provides greater performance.

Figure 5.8: Average latency of all three approaches with respective to the dataset.

 66

Table 5.6: Average latency for all three approaches along with datasets.

Dataset Sequence Based (ms) MP-K-Slack (ms) AQ-K-Slack (ms)

Dataset 1 4.09 399.56 79.04

Dataset 2 6.52 1397.52 176.48

Dataset 3 398.12 62507.29 10462.98

As shown in Figure 5.8 and Table 5.6, we can see the latency had increased from

Dataset 1 to 2 and then from 2 to 3. This is because, as mentioned in Section 5.1, the

Dataset 1 has less variant distribution of out-of-order events compared to Dataset 2

and Dataset 3. Also, for Dataset 2 the maximum event inter-arrival time can be as high

as 1800 ms with very high variations, whereas Dataset 1 has only two peaks of up to

1000 ms. Similarly, Dataset 3 has more high inter-arrival times between the out-of-

order events, and maximum is 30 seconds. Therefore, it is expected that the latency

will increase from Dataset 1 to Dataset 3.

Further, based on Figure 5.8 we can see, that MP-K-Slack has high latency while it is

relatively less in AQ-K-Slack. As AQ-K-Slack is having an adaptive buffer (see

Section 2.3.3), latency is less compared to MP-K-Slack. Whereas sequence-based

approach has drastically less latency compared to the other two approaches. Therefore,

based on these results, we can see that the sequence-based approaches latency is lower

than MP-K-Slack by 21300% and AQ-K-Slack by 2600% for Dataset2. Similarly,

sequence-based approach performs faster than MP-K-Slack as 15600% and AQ-K-

Slack as 2500% for Dataset 3.

Table 5.7: Accuracy of all three approaches with datasets.

Datasets Sequence-Based (%) MP-K-Slack (%) AQ-K-Slack(%)

Dataset 1 99.99 99.99 99.99

Dataset 2 99.97 99.98 99.96

Dataset 3 99.98 99.99 99.98

 67

Figure 5.9: Total number of out-of-order events for all three approaches and the

respective datasets.

Next, we evaluate the accuracy of these all three methods under all three datasets. The

total number of out-of-order events encountered for these datasets are shown in Figure

5.9 and Table 5.7. As shown in Figure 5.9, overall MP-K-Slack produces the lowest

number of out-of-order events and AQ-K-Slack approach produces the highest number

of out-of-order events in all three datasets. Also, we can see the MP-K-Slack has high

accuracy compared to the other two methods and has accuracy high as 99.99% for all

datasets as shown in Table 5.7. This is because the K-Slack set the buffer size to be

high as the maximum late arrival time interval (see Section 2.3.2). Hence, it results in

high accuracy and also high latency. Because the AQ-K-Slack can adjust its buffer size

based on the sampled statistics, it is resulting in less latency compared to MP-K-Slack

but has lower accuracy. The accuracy of the AQ-K-Slack was 99.99% for Dataset1,

but then reduced to 99.96% with Dataset 2, and 99.98% with Dataset 3. Further, the

accuracy of the sequence-based approach was 99.99% with Dataset1 but reduced to

99.97% in Dataset2, and 99.98% with Dataset 3. The proposed sequence-based

approach has the lowest latency compared to all three approaches and has acceptable

accuracy which is in between of MP-K-Slack and AQ-K-Slack.

 68

5.2.2.2. Performance and Accuracy with Multiple Event Sources

Next, we consider the performance when publishing with multiple event sources. To

evaluate the behavior of multiple sources we used Dataset 3 as explained in Section

5.1.2. As per Figure 5.10 and Table 5.8, the sequence-based approach has the lowest

latency compared to the other two approaches. MP-K-Slack is having a higher latency

compared to AQ-K-Slack, as AQ-K-Slack dynamically changes the buffer size based

on the runtime window coverage. The average latency of MP-K-Slack does not

increase with the increasing number of sources because its buffer size had been already

increased to the maximum latency of out-of-order events. As we are using the same

out-of-order event distribution for multiple event sources, the maximum time interval

for out-of-order event arrival does not have an impact. However, when we increase the

event sources, the latency of the AQ-K-Slack increases. This is because, with multiple

event sources, AQ-K-Slack buffer minimization logic did not reduce the buffer size

drastically since the runtime window coverage was low due to the increase of the out-

of-order events after passing through AQ-K-Slack as shown in Table 5.9.

Figure 5.10: Variation of average latency in ms of all three approaches with number

of event sources

 69

Table 5.8: Average latency with varying number of events sources.

No of Event

Sources

Sequence Based

(ms)

MP-K-Slack

 (ms) AQ-K-Slack (ms)

1 398.12 62507.29 10462.98

2 412.23 67274.41 12634.21

5 552.72 72937.56 13432.69

10 652.34 66178.05 16134.3

20 963.54 78200.31 19313.43

Figure 5.11: Average latency for sequenced-based approach across all event sources.

Figure 5.11 shows the average latency variation for sequence based approach from

Figure 5.10. Based on Table 5.8 and Figure 5.11, we can claim that the average latency

is linearly increasing when increasing the number of event sources. The sequence

based approach, have to synchronize the ordered events coming from multiple sources

based on the event’s timestamp. As discussed in Section 3.2.2, during this process, the

synchronization component will wait for an event to be received for each event sources

to make sure the lowest timestamp event is received and considered for the

synchronization process. Therefore, when the number of event sources is increased,

more time will be spent on waiting for events from all event sources. Therefore, the

latency has linearly increased when we increase the number of event sources.

 70

 Figure 5.12 and Table 5.9 shows the variation of the out-of-order events, and the

accuracy of each approaches. We can see that AQ-K-Slack is having less accuracy

compared to the other two methods, as the dynamic buffer size was not big enough to

get all late arrival events, and it drops to 99.02%. Whereas MP-K-Slack continues to

have high accuracy for most of the cases. This is because MP-K-Slack adjusts the

buffer size based on the maximum delay seen up to that point in time. While this

increases accuracy, it also highly increases the average latency of events. The accuracy

of the sequence-based approach has between AQ-K-Slack and MP-K-Slack. More

importantly, the accuracy does not change with the number of event sources.

Figure 5.12: Total out-of-order events with multiple event sources for all three

approaches.

Table 5.9: Accuracy of all three approaches when publishing events with multiple

sources.

No of Event

Sources

Sequence Based

(%)

MP-K-Slack

(%)

AQ-K-Slack

(%)

1 99.98 99.99 99.98

2 99.97 99.98 99.47

5 99.97 99.99 99.12

10 99.97 99.99 99.02

20 99.97 99.99 99.08

 71

Therefore, based on the results of average latency incurred with the multiple sources,

we could see that the sequence-based approach is 15600% faster than K-Slack, and

2500% faster than AQ-K-Slack. Also, the accuracy remained higher as 99.97% with

the sequence-based approach, AQ-K-Slack dropped down to 99.02%, and MP-K-

Slack remained high as 99.98%. Therefore, we can conclude that the sequence-based

approach performed well with respect to the latency and accuracy when comparing the

other two methods for both single and multiple sources scenarios.

5.2.2.3. Accuracy with Time Drifted Event Sources

We further focus on the effect of the time drift in the event sources. For this evaluation,

we do not consider MP-K-Slack and AQ-K-Slack as those approaches do not consider

this problem, and we noticed once we introduced the time drift the accuracy reduced

significantly as these approaches only consider event timestamp to order the events.

We used the dataset explained in Section 5.1.3 for this evaluation. We evaluated the

effect of time drift between two event sources, by introducing a time drift for one event

source and having another event source without any time drift.

Table 5.10: The total number out-of-order events produced and accuracy in sequence

based approach with and without time syncing of event sources.

Time Drift

Without Initial Time Sync With Initial Time Sync

No of Out-of-order

events
Accuracy (%)

No of Out-of-order

events
Accuracy (%)

0ms 52 99.97 52 99.97

1ms 502560 -201.98 78 99.95

5ms 505235 -203.58 75 99.95

10ms 539849 -224.38 72 99.96

1min 441979 -165.57 74 99.96

1hour 18001 89.18 73 99.96

As seen in Table 5.10, once we introduced the time drift between the sources, a very

high number of out-of-order events was produced without having initial time sync

operation. Actually, the number of out-of-order events produced in this case was

higher than the original number of out-of-orders presented in the dataset. The original

 72

number of out-of-order events with two event sources is 166424 (83212 x 2) based on

Table 5.2. But based on Table 5.10, we can see that once we introduced the time drift,

the total number of out-of-order events is more than 3 times higher than the original

number of out-of-order events, which resulted in accuracy to be in negative value and

low as -224.38%. This is because the drifted timestamp is used without any correction.

Therefore, the events from a source with less time drift will be getting the precedence

over events produced by sources with higher drift. This is the same reason for having

a significant drop in the total out-of-order events to 18000 for 1 hour time drift. With

time drift high as 1 hour, the most of the events from lower time drift sources are first

released until the event timestamps from lower time drift event source meets the first

event’s timestamp of higher drifted event sources. Once we introduce the time syncing,

the total number of out-of-order events is reduced, and it stabilized around 75 out-of-

order events regardless of the change in the time drift.

Figure 5.13: The number of out-of-order events with amount of time drifts for

Sequence based approach.

As shown in Figure 5.13, the sequence-based approach has the same number of out

order events while having different time drifts. But there is a small increase in the

number of out-of-order events when there are no time drifts and having the time drift

between the event sources. The reason for this behavior is the inaccuracies in

calculating the time drifts as mentioned in Section 3.2.2.

 73

5.2.3. Analysis of Query Operators under Out-of-order Events

Based on the above evaluations, we noticed that inaccuracies in the transport delay

calculation had increased the number of out-of-order events with multiple event

sources. Therefore, in this Section, we will focus on the effect of those with query

operators and the final results.

5.2.3.1 Aggregator Operator

Let us focus on using an aggregation operator with out-of-order events from multiple

event sources. To evaluate this, we enhanced the setup mentioned in Section 5.2.2.3

by adding further transport delay of 0.125 ms. This value was selected as this was able

to introduce a considerable difference in the final result of the aggregation with the

time window and practically feasible transport delay. We used Query 5.6 to calculate

the average velocity of 10 seconds time batch window.

from inputStream#reorder:sequence(sourceId, seqNum, driftedTs,

500L, 0.6, 0.6, false) select sourceId, seqNum,

eventTimestamp() as relativeTimestamp, ts as occuredTime,

v_abs

insert into outputStream;

from outputStream#window.externalTimeBatch(occuredTime, 10

sec)

select avg(v_abs) as AvgVelocity, occuredTime

insert into aggregateOutputStream;

Query 5.6: Calculating average velocity.

This evaluation was carried forward with two event sources, and the outputs were

obtained for the following two cases:

1) Event sources do not have any drift and no inaccuracies in the transport

delay. The dataset used for this was mentioned under Section 5.1.2.

2) Event sources have a drift of 5ms and 0.125ms is the calculated max delay for

these event sources.

The average output values from the time batch windows for these cases are listed in

Table 5.11, where we could see small irregularities between the expected and actual

averaged values.

 74

Table 5.11: The differences between the expected and actual average values.

Time Batch

Window ID
Average velocity without

drift & transport delay

(μm/s)

Average velocity with

drift & transport delay

(μm/s)

Difference of

Expected vs Actual

Average

1 144123.87 144123.87 0

2 133834.17 133834.29 -0.12

3 138424.12 138422.58 1.54

4 157036.12 157037.65 -1.53

5 154401.79 154401.73 0.06

6 138580.31 138580.56 -0.25

7 443901.59 443900.16 1.43

As this is attributed to the time drift and transport delay calculations, we further

evaluated the method proposed in Section 3.2.3. Query 5.7 was used to evaluate the

effect of this method. As shown in Query 5.7, the average was calculated for each

LOW, MIDDLE, HIGH window independently, and the average of those was taken as

a final average value.

from inputStream#reorder:sequence(sourceId, seqNum, driftedTs,

500L,0.6, 0.6, false) select sourceId, seqNum,

eventTimestamp() as relativeTimestamp, ts as occuredTime,

v_abs

insert into outputStream;

from outputStream#reorder:externalTimeBatch(10 sec,

occuredTime, false)

select (avg(ifThenElse(windowType=='LOW',v_abs, 0))+

avg(ifThenElse(windowType=='MIDDLE',v_abs, 0))

+avg(ifThenElse(windowType=='HIGH',v_abs, 0)))/3 as

avgVelocity, occuredTime

insert into aggregateOutputStream;

Query 5.7: Average velocity calculation by using reorder based external time batch

window.

Table 5.12 shows the difference between the average velocity calculated in an ideal

environment with no time drift and transport delay and the average velocity calculated

with drift and transport delay by using Query 5.7. We can see the difference between

the actual and expected values is reduced after using the reorder based time batch

window as mentioned in Query 5.7.

 75

Table 5.12: The average value of the velocity after using the reorder based time batch

window.

Time Batch

Window ID
Average velocity without

drift & transport delay

(μm/s)

Average velocity with

drift & transport delay

(μm/s)

Difference of

Expected vs Actual

Average

1 144123.87 144123.87 0

2 133834.17 133833.95 0.22

3 138424.12 138423.91 0.21

4 157036.12 157036.48 -0.36

5 154401.79 154401.22 0.57

6 138580.31 138580.91 -0.60

7 443901.59 443901.55 0.04

Figure 5.14: Difference between the of average values for normal time batch

window, and reorder based time batch window.

Figure 5.14 shows the actual variation of the difference in the final output when using

the general time batch window and the reorder-based time batch window. We can see

that the reorder-based time batch window is closer to the x-axis, in other words, closer

 76

to the expected value. Also, it reduces the deviation of the results by ~ 50% compared

to the value obtained by using the normal window.

5.2.3.2. Pattern Matching Operator

For the evaluation of the pattern matching, we use the Dataset 4 described in Section

5.1.4. In this case, the goal score event needs to be detected based on the sensor events

from the ball and the shoes of the football players as defined by the pattern matching

query in Query 5.8. The query involves two events e1 and e2 which should occur one

after the other with some preconditions being satisfied such as the position and

acceleration of the ball. The x and y values in query indicate the boundary points of

the goal region. The attribute sid corresponds to the sensor ID which is a unique

identifier of the sensor which produced a signal used for the calculation of the position

event as explained in Section 5.1. Further, as we are using two event sources to match

this pattern where we consider the e1 to be matched form Source ID 0, and e2 to be

matched in Source ID 1.

from inputStream#reorder:sequence(sourceId, seqNum, driftedTs,

500L, 0.6, 0.6, false)

select sid, ts, x, y, z, v_abs, a_abs, sourceId, seqNum,

eventTimestamp() as eventTime, driftedTs, relativeTimestamp

insert into outputStream;

from every e1=outputStream [sourceId == '0' and (x>29880 or

x<22560) and y> (-33968) and y <33965 and (sid==4 or sid ==12

or sid==10 or sid==8)]

-> e2=outputStream [sourceId == '1' and (x<=29898 and x>22579)

and y<= (-33968) and z<2440 and a_abs>=55000 and (sid==4 or sid

==12 or sid==10 or sid==8)]

select e2.sourceId, e2.ts, e2.driftedTs, e1.ts as e1Ts,

e1.driftedTs as e1drift

insert into patternStream;

Query 5.8: Pattern matching query to match the goal events.

The query was run against multiple cases and the pattern matching results are listed in

Table 5.13. The pattern is correctly detected until the transport delay increased up to

50 ms. This is because the timestamp of events e1 and e2 have a difference of 44 ms.

Therefore, the drift correction is effective only up to 50 ms. Therefore, to handle this

 77

situation, the pattern matching query can be rewritten as shown in Query 5.9 (as

described in Section 3.2.3.3).

Table 5.13: Results of the pattern matching dataset.

Test Case Pattern Matching Detected or Not

Two event sources without any Drift Pattern Detected

Two event sources with 1 second Drift Pattern Detected

Two event sources with 1 Seconds Drift and Transport

delay of 0.125 ms

Pattern Detected

Two event sources with 1 Seconds Drift and Transport

delay of 1 ms

Pattern Detected

Two event sources with 1 Seconds Drift and Transport

delay of 10 ms

Pattern Detected

Two event sources with 1 Seconds Drift and Transport

delay of 50 ms

Pattern Not Detected

The modified query captures two possibilities of the pattern, which are e1 followed by

e2 and e2 followed by e1. It then compares the time difference of the events that

matched the pattern and verify whether it is less than the maximum delay calculated

for the event sources that publish to the input event stream. In the pattern e1 followed

e2 case, we trigger a pattern matches event, with the confidence attribute set to indicate

the confidence level of the pattern matching decision based on the time difference and

the max delay of the event sources. If the time difference between e1 and e2 is greater

than maxDelay, then we trigger pattern matched event with confidence level set to

Confirmed, else with confidence level set to UncertainPatternDetection. However, for

the e2 followed by e1 pattern, we trigger the pattern matching event only if the

differences between the event is less than the maximum delay of the event sources

with confidence level set to UncertainPatternDetection. Therefore, we reduce

unnecessary false positives by following the above approach. With this approach, the

pattern was able to be detected for the last test case in Table 5.13 with the confidence

level set to UncertainPatternDetection.

 78

from inputStream#reorder:sequence(sourceId, seqNum, driftedTs,

500L, 0.6, 0.6, false)

select sid, ts, x, y, z, v_abs, a_abs, sourceId, seqNum,

eventTimestamp() as eventTime, driftedTs, relativeTimestamp

insert into outputStream;

from every e1=outputStream [sourceId == '0' and (x>29880 or

x<22560) and y> (-33968) and y <33965 and (sid==4 or sid ==12

or sid==10 or sid==8)]

 -> e2=outputStream [sourceId == '1' and (x<=29898 and

x>22579) and y<= (-33968) and z<2440 and a_abs>=55000 and

(sid==4 or sid ==12 or sid==10 or sid==8)]

select ifThenElse(e2.relativeTimestamp -

e1.relativeTimestamp<=reorder:getMaxDelay(‘inputStream’)

,'UncertainPatternDetection', 'Confirmed') as confidence,

e2.sourceId, e2.ts, e2.driftedTs, e1.ts as e1Ts, e1.driftedTs

as e1drift

insert into patternStream;

from every e2=outputStream [sourceId == '1' and (x<=29898 and

x>22579) and y<= (-33968) and z<2440 and a_abs>=55000 and

(sid==4 or sid ==12 or sid==10 or sid==8)]

 -> e1=outputStream [sourceId == '0' and (x>29880 or x<22560)

and y> (-33968) and y <33965 and (sid==4 or sid ==12 or

sid==10 or sid==8)]

select ifThenElse(e1.relativeTimestamp -

e2.relativeTimestamp<=reorder:getMaxDelay(‘inputStream’)

,'UncertainPatternDetection', 'NotMatch') as confidence,

e2.sourceId, e2.ts, e2.driftedTs, e1.ts as e1Ts, e1.driftedTs

as e1drift

having confidence == 'UncertainPatternDetection'

insert into patternStream;

Query 5.9: Pattern matching query to remove the effect of the time drift calculation

inaccuracies.

5.3. Summary

This Chapter discussed the details related to the performance evaluation and the results

obtained through tests. We used the dataset from the DEBS 2013 football game to

evaluate different cases of the proposed methodology. We focused on the latency and

accuracy of different out-of-order event handling approaches, with single and multiple

event sources without and with different time drifts. In all cases, we observed that the

proposed sequence-based approach provided significantly low latency where it was

9600%-15600% lower compared to MP-K-Slack and 1200% -2500% lower compared

to AQ-K-Slack. We also observed that accuracy of the proposed method was between

99.97% - 99.99% for different cases and this is relatively less than MP-K-Slack which

 79

always gives 99.99% accuracy but greater than AQ-K-Slack which has accuracy as

low as 99.02% in several cases. Therefore, when we compare both accuracy and

latency, the proposed sequence-based approach performed well compared to the other

two approaches. We also looked into the possible errors that can be caused by drift

calculation and the effect of those in time batch window based aggregation and pattern

matching operators. We were able to bring down the difference of the aggregated time

batch window and expected results, by 50% after using the multiple window average

method. We also observed that the pattern matching query was able to provide correct

results after including the max delay time into the consideration, regardless of the

increased error in the drift calculation.

 80

6. CONCLUSION

6.1. Summary

Complex Event Processing Engines (CEP) is heavily used in many domains such as

IoT, Banking Systems, Telecommunication and Networking Systems, and Health care

to analyze data produced in these systems and produce the results accurately in real

time. We often use query operators such as aggregators on time windows and pattern

matching to analyze the data in CEP. But the accuracy of these query operators highly

dependent on the order of the events received. The event sources used in some domains

(e.g., IoT) produce a very high rate of events, and those data could be in different

networks and time zones without using the standard time. Hence, the events can be

bundled together and transmitted via connection pool and could be transmitted with

UDP protocols. Therefore, we cannot expect the events will be received in the same

order as they were produced at the event sources. Such out-of-order events could lead

to inaccurate decisions depending on the types of CEP queries that process those

events. Also, this problem exists in distributed CEP processing, where the data will be

analyzed by multiple CEP nodes. When those events are transmitted from peer CEP

nodes to a single node for the final aggregation, the order of the events received by

that node will not be following the actual order in which the events were produced in

the event source.

We analyzed several approaches to solving this problem, but those approaches either

increase the latency or reduce accuracy. Also, those approaches do not solve the

problem with multiple event sources which will have time drifts among them.

Therefore, we proposed an approach based on the event sequence numbers to achieve

a good balance between latency and accuracy. Moreover, the proposed technique

works with multiple event sources that may have time drifts. The sequence-based

approach requires adding two attributes to the event data namely, the source identifier

and sequence number. Here the source identifier is the specific value assigned to the

event source, and sequence number is an incremental number that is assigned to the

event based on the time it was generated at the event source per event stream. In the

 81

multi-source case, the event source will first send initialization time sync requests to

CEP in order to calculate the event source’s time drift. This solves the problem of

having event sources with different time zones. Once the initialization is completed,

the actual events are ready to be transmitted to the CEP engine with the two additional

attributes mentioned above. Once the event is received, the CEP receiver first orders

the events of the particular event stream based on the sequence number for each event

source separately. It then orders the events among multiple event sources based on the

reference timestamp that was deduced by adding the time drift that was calculated

during the initialization step. The global ordered events after the synchronization

process are fed to the query operators. As any errors in estimating time drift could

compromise the accuracy of the final global ordered events, we introduced multiple

windows approach. Because the drift calculation can differ as much as the maximum

delay time from the event sources to the CEP server, we produce an additional two

windows that could cover this ambiguous time range. Therefore, rather than using the

single aggregator operation on a single window, we can use the aggregator operator

on all three windows and obtain an average value of that. This reduces possible

inaccuracies in calculating the drift of the event sources. Similarly, for pattern

matching query operator, we can write multiple pattern matching queries with other

different combinations of the event sequence that could exist and compare the

timestamp difference with max delay time to obtain the confidence level of the pattern

detection.

The proposed sequence-based approach was implemented in Siddhi CEP server as an

extension. Several tests were then performed to obtain its latency and accuracy of the

results produced. For comparison, we also considered MP-K-Slack and AQ-K-Slack

approaches which are buffer based techniques and can be used for aggregation and

pattern matching query. In all cases, we observed the proposed methodology, provided

very low latency. For example, the latency of the proposed approach was 9600%-

15600% lower compared to MP-K-Slack and 1200% -2500% lower compared to AQ-

K-Slack. We also observed that the accuracy of the proposed method was 99.97% -

99.99% in all cases analyzed, and this is relatively lower than MP-K-Slack which

 82

always give 99.9% accuracy. However, it was greater than AQ-K-Slack which has

accuracy low as 99.02% in some cases. Therefore, when we compare both accuracy

and latency, the proposed sequence-based approach has a good balance compared to

the other two approaches. Because MP-K-Slack and AQ-K-Slack cannot handle the

time drifts, we evaluated the effect of the time drift with the sequence-based approach.

With time drift calculation included, we were able to order the events to get closer to

100% accuracy compared to not having the time drift included in the system. We also

looked into the possible errors that could be caused by drift calculation and the effect

of those in time batch window based aggregation and pattern matching operators. We

were able to reduce the difference between the aggregated time batch window and

expected results by 50% after using the proposed multiple window average method

that covers the ambiguous time range due to the possible inaccuracies in the drift

calculation. We also observed that the pattern matching query was able to provide

correct results regardless of the increased error in the drift calculation after including

the ambiguous time into the consideration.

6.1. Research Limitations

The proposed approach depends on sequence number that is produced by event

sources, and therefore, the solution assumes that the event sources can be modified to

accurately generate and accommodate the sequence number attribute to the raw event

stream.

The proposed approach is using the time synchronization technique to find the time of

the event source, and we have moved the possible inaccuracies of this approach to

query operators and handled them separately. Therefore, each query operator needs to

be written considering this problem and handle it independently. Currently, we have

only considered time batch windows, aggregator operators, and pattern matching

operator, and we have not considered other windows such as sliding time window,

event batch window, and other operators such as join operator.

 83

The proposed solution only considers out-of-order events until the final output is

produced by the query operators. And this has not considered the very late out-of-order

event that is received after producing the result of the query operator. For example, in

the time batch window case, there can be an event received after the window is elapsed.

The proposed technique includes the changes in the event sources where it should use

the special client which includes the time sync process before sending the actual

events. Also, this technique expects the event sources to send two additional attributes

such as sequence number and source ID with the actual event. In case if the event

sources cannot be modified to use such client, and send these additional attributes, then

we cannot use this technique for such use cases.

This technique requires the CEP query to be written with conscious knowledge about

the time drift inaccuracies with multiple sources. For example, pattern matching query

should have written to consider all alternate event sequences of the pattern and trigger

the pattern matched event by comparing the time of difference of the events in the

matched pattern with transport delay of the event sources. This is not handled

automatically by the CEP server, and users should use the information about the

transport delay and rewrite the query manually to increase the accuracy of the proposed

technique.

The evaluation was performed in a LAN network with simulated event sources, but in

reality, the multiple event sources will belong to WLAN with different geographical

regions and will have varying transport delay. We have not evaluated the behavior of

with very dynamic environment, with different kind of event sources.

The datasets used in the evaluations were generated by introducing random out-of-

order events to the original DEBS 2013 dataset which does not have any out of order

events. Though we have introduced the delays ranging from milliseconds to seconds

with different out-of-order distributions, we haven’t evaluated in the real environment.

 84

6.2. Future Work

As mentioned under research limitations, the system only considers certain query

operators, and we need to extend the solution to other query operators such as sliding

time window, event batch window, and join operators. We can implement the sliding

time batch window and event batch window to maintain multiple windows to cover

the ambiguous time range from time drift calculation as similar to the time batch

window in the proposed technique. With this, when we are joining the events to

another window of events, we should perform multiple joins with all active windows.

With these implementations, all the operators can be used without any limitation along

with this approach.

The current system can be extended to handle very late event arrival as well. For this

we need to persist some information from the query operators; therefore, we could

produce the corrective event once the very late event has arrived. Because we do have

knowledge about when an event is missing from the sequence number order, we can

decide when to store the details beforehand without storing all the information.

However, this functionality needs to be handled per query operator so that it can persist

its state and restore it when needed to produce the corrective event. For aggregation

operators, the information to be stored might be very less, but for pattern matching

operator, we may need to store the entire window which could be intense operation.

We can absorb the complexity of rewriting the queries to reduce the inaccuracies in

the time drift calculations, by implementing the extended reorder based query

operators. For pattern matching operator, we can implement the extended version of

pattern matching query operator which can find the all alternate sequence of the events

in the pattern matching internally and perform the comparison of the timestamps of

the events with transport delay before triggering the matched event as proposed

technique. Similarly, the aggregation operator can also be extended to get average of

all windows which covers the ambiguous time range without letting the user write that

logic. Therefore, the users do not have to worry about rewriting the query to increase

 85

the accuracy, and it will be handled internally within the extended version of the query

operator.

The technique should be evaluated with real-world dynamic environments with

multiple event sources, and the performance and accuracy of the technique should be

evaluated.

 86

REFERENCES

[1] D. Luckham and R. Schulte, “Event processing glossary-version 1.1,” Event

Processing Technical Society [Online] Available: http://complexevents.com/wp-

content/uploads/2008/08/epts-glossary-v11.pdf [Accessed: 23rd Dec 2016]

[2] K. Finkenzeller, “RFID Handbook: Radio-frequency identification fundamentals

and applications,” New York: Wiley, 1999.

[3] C. Mutschler and M. Philippsen, “Distributed Low-Latency Out-of-Order Event

Processing for High Data Rate Sensor Streams,” in IEEE 27th Int. Symp. on Parallel

and Distributed Processing, 2013, pp. 1133 – 1144.

[4] Y. Ji, J. Sun, A. Nica, Z. Jerzak , G. Hackenbroich, and C. Fetzer, “Quality-

driven Processing of Sliding Window Aggregates over Out-of-order Data Streams,”

in 9th ACM Int. Conf. on Distributed Event-Based Syst., 2015, pp. 68 - 79.

[5] J. Li, D. Maier, D. Maier, K. Tufte , V. Papadimos , and P. A. Tucker,

“Semantics and Evaluation Techniques for Window Aggregates in Data Streams,” in

ACM SIGMOD Int. Conf. on Manage. of Data, 2005, pp. 311 - 322.

[6] J. Li, K.Tufte , V. Shkapenyuk, V. Papadimos, T. Johnson , and D. Maier, “Out-

of-order Processing: A New Architecture for Highperformance Stream Systems,” in

VLDB Endowment, vol. 1, no. 1, 2008, pp. 274- 288.

[7] R. S. Barga, J. Goldstein, M. Ali and M. Hong, “Consistent Streaming Through

Time: A Vision for Event Stream Processing,” in 3rd Biennial Conf. on Innovative

Data Syst. Research, 2007, pp. 412 - 422.

 87

[8] A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber, “Speculative Out-of- order

Event Processing with Software Transaction Memory,” in 2nd Int. Conf. on

Distributed Event-based Syst., 2008, pp. 265 - 275.

[9] S. Tirthapura and D. P. Woodruff, “A General Method for Estimating Correlated

Aggregates Over a Data Stream,” in 28th IEEE Int. Conf. on Data Eng. (ICDE’ 12),

Washington, DC, USA, 2012, pp. 162–173.

[10] M. Li, M. Liu, L. Ding, E.A. Rundensteiner and M. Mani, “Event Stream

Processing with Out-of-Order Data Arrival,” in 27th Intl. Conf. Distrib. Comp.

Systems Workshops, 2007, pp. 67–74

[11] U. Srivastava and J. Widom, “Flexible Time Manage. in Data Stream Syst.,” in

23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Syst.,

2004, pp. 263–274.

[12] S. Krishnamurthy, M. J. Franklin, J. Davis, D. Farina, P. Golovko, and A. Li,

“Continuous Analytics over Discontinuous Streams,” in 2010 ACM SIGMOD Intl.

Conf. on Manage. of Data, 2010, pp. 1081 - 1092.

[13] L. Wang, G. Luo, K. Yi, and G. Cormode, “Quantiles over Data Streams: An

Experimental Study,” in 2013 ACM SIGMOD Int. Conf. on Manage. of Data, 2013,

pp. 737–748.

[14] J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic

Controllers,” J. Dyn. Sys., Meas., Control, vol. 115, no. 2B, 1993, pp. 220–222.

[15] Y. Xiao, T. Jiang, Y. Shen and H. Deng, “Efficient Strategy for Out-of-Order

Event Stream Processing,” in J. Appl. Sci. and Eng., vol. 17, no. 1, 2014, pp. 73-80.

 88

[16] Y. Ji, A. Nica, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Quality-driven

Disorder Handling for Concurrent Windowed Stream Queries with Shared

Operators,” in 10th ACM Int. Conf. on Distributed and Event-based Syst., 2016, pp.

25–36, 2016.

[17] V. Jacobson, “Congestion avoidance and control,” in SIGCOMM '88

Symposium proceedings on Communications architectures and protocols, Stanford,

1988, pp. 314-329

[18] David L. Mills, “Internet Time Synchronization: The Network Time Protocol,”

in IEEE Transactions on Communications, vol. 39, no. 10, 1991, pp 1482 - 1493

[19] S. Suhothayan, K. Gajasinghe, I. Loku Narangoda, S. Chaturanga, S. Perera, and

V. Nanayakkara, “Siddhi: A Second Look at Complex Event Processing

Architectures,” in ACM Workshop on Gateway Computing Environments, 2011, pp.

43-50.

[20] Anonymouse, “Performance Analysis Results” [Online]. Available:

https://docs.wso2.com/display/SP400/Performance+Analysis+Results [Accessed: 29-

Dec-2018]

[21] Anonymous, “Writing Extensions to Siddhi” [Online]. Available:

https://docs.wso2.com/display/CEP420/Writing+Extensions+to+Siddhi. [Accessed:

10-Jan-2017]

[22] Anonymouse, “Siddhi Query Guide” [Online]. Available:

https://wso2.github.io/siddhi/documentation/siddhi-4.0/#extensions [Accessed: 29-

Dec-2018]

[23] Anonymous, “Siddhi-io-http” [Online]. Available “https://github.com/wso2-

extensions/siddhi-io-http” [Accessed: 2-Dec-2018]

https://docs.wso2.com/display/SP400/Performance+Analysis+Results

 89

[24] Anonymous, “Netty Project,” [Online]. Available” https://netty.io/ [Accessed:

2-Dec-2018]

[25] Anonymous, “DEBS 2013 Grand Challenge: Soccer monitoring” [Online].

Available http://debs.org/debs-2013-grand-challenge-soccer-monitoring/ [Accessed:

2-Dec-2018]

