
 

COMPLEX EVENT PROCESSING OVER OUT-OF-

ORDER EVENT STREAMS 

 

 

 

    

 

 

 
Sinthuja Rajendran 

 

(168259U) 

 

 

 

Degree of Master of Science 

 

 

 

 

Department of Computer Science and Engineering 

 

University of Moratuwa  

Sri Lanka 

 

 

February 2019



 

COMPLEX EVENT PROCESSING OVER OUT-OF-

ORDER EVENT STREAMS 

 

 

 

    

 

 

 
Sinthuja Rajendran 

 

(168259U) 

 

 

 

Thesis submitted in partial fulfillment of the requirements for the degree Master of 

Science 

 

 

 

 

Department of Computer Science and Engineering 

 

University of Moratuwa  

Sri Lanka 

 

 

February 2019



 i 

DECLARATION 

 

I declare that this is my own work and this MSc project report does not incorporate 

without acknowledgement any material previously submitted for degree or Diploma 

in any other University or institute of higher learning and to the best of my knowledge 

and belief it does not contain any material previously published or written by another 

person except where the acknowledgement is made in the text.  

 

Also, I hereby grant to the University of Moratuwa the non-exclusive right to 

reproduce and distribute my dissertation, in whole or in part in print, electronic or 

another medium. I retain the right to use this content in whole or part in future works 

(such as articles or books).  

 

Signature: ..................................... 

Date: .............................................       

Name: Sinthuja Rajendran  

 

We certify that the declaration above by the candidate is true to the best of our 

knowledge and that this report is acceptable for evaluation for the CS6997 MSc 

Research Project qualifying evaluation.  

 

Supervisors 

 

......................................................   ......................................................  

Dr. H. M. N. Dilum Bandara    Dr. Srinath Perera     

 

..................................     ..................................  

Date       Date 



 ii 

ABSTRACT 

 

Complex Event Processing (CEP) enables real-time inferring of events and patterns of 

interest. Aggregation on a time window of events and pattern matching are two of the 

core functionalities of CEP. Accuracy of these CEP operations depend on the order of 

the events received at the CEP engine. However, due to network delay, environmental 

differences in event producing sources, and distributed CEP systems, event arrival 

order at the CEP engine maybe different from the order of event generation at the 

source. Such out-of-order events may lead to incorrect output events by the CEP 

engine.  

 

We propose a novel solution to handle the out-of-order events in three steps, namely 

(a) ordering events from the same source, (b) ordering events from multiple sources, 

and (c) optimizing query operator to further improve the accuracy after applying 

former steps. Sequence numbers are used to order events from a single source, whereas 

estimated time drift of each event source is used to order event from multiple event 

sources. Finally, the query operators are optimized to reduce the error of remaining 

out-of-order events. Performance of the proposed solution is evaluated using the DEBS 

2013 Football dataset. The performance analysis shows that the proposed techniques 

result in 9600% to 21300% and 1200% to 2500% reduction in latency compared to 

MP-K-Slack and AQ-K-Slack techniques, respectively. Further, the proposed solution 

was able to order the events with 99.97% - 99.99% accuracy. While it is comparatively 

lower than MP-K-Slack which had an accuracy of 99.99% and better than AQ-K-Slack 

which had an accuracy of 99.02%. Therefore, the proposed solution provides a good 

balance between latency and accuracy. The additional optimizations carried out in 

aggregator and pattern matching operators further increased the accuracy of the results 

by 50% compared to the final results obtained without these query optimizations. 
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1. INTRODUCTION  

 

Enterprises that monitor events in real-time from all their systems and swiftly respond 

to them have a greater competitive advantage over others. Complex Event Processor 

(CEP) [1] is the right solution for such real-time monitoring use cases, where it listens 

to events that are triggered from various sources and detect patterns in near real-time 

with minimum or no storage of events. CEP is being used in domains such as IoT, 

network and systems monitoring, banking, health care, etc. Therefore, it is important 

to have accurate and fast results. In CEP, most of the core operators such as pattern 

matching, time and batch window operations, aggregation operators, and join 

operators process the events based on the order they arrive at CEP node/engine. 

However, due to reasons such environmental difference in event producing sources, as 

network delay, network and machine failures, using the connection pool to publish 

events, and distributed processing in CEP the order of event arrival at the CEP node 

may not be identical to the actual order of event occurrences at the event source. This 

is more prevalent in IoT environments due to the high rate of data transmissions, and 

involvement of multiple sensors and gateways. Consequently, the result of the 

intended analysis will not be accurate as events are processed out-of-order.  

 

1.1. Background 

The basic unit in the CEP engine is an event and it is a unit of data that generally 

contains a set of attribute values according to a defined schema, along with a 

timestamp. Stream is the infinite continuous sequence of events arriving on a particular 

type, on which users can perform complex analytical processing. One event belongs 

to only one event stream, and all events of that stream will have the same schema. This 

data in motion analytics can be provided to the system as query/rule that will be 

executed on each event as and when they arrive at the system in the continuous fashion. 

 

CEP engine [1] is a real-time in-memory event processing engine which receives 

events from various sources, transports, and environments. CEP engine correlates 

these events and performs more complex analysis on those events. As CEP engines are 
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used in real-time analytics systems, CEP engines need to have high throughput while 

being able to process many queries with low latency and high accuracy. As the name 

implies, the CEP engines are not only used for simple filtering where the events could 

be filtered by certain attribute value, but also used for pattern matching of the event 

sequence for a given a sliding time or batch window, joining two or more streams, and 

performing aggregations on the window of events. These functions react based on the 

order of the events that is being received at the CEP engine than compared to the actual 

occurrence of the events.  

 

1.2. Motivation  

In CEP, the event processing accuracy is based on time and the order of events that 

were received at CEP engine with respect to the order that were originated in the 

source. Let us consider an example of book store where RFID [2] tags attached to each 

book, and it is used to track the books in the store. Also, RFID readers placed at key 

locations throughout the store, like bookshelves, billing counters and the book store 

exit. The RFID readers send data to CEP which check for potential theft of books and 

alert the staff. To detect and alert theft, a pattern matching query can be used. Typical 

checkout process can be modeled as a series of events where an event gets generated 

when a book is taken out from the bookshelf (e1). Then there should be an event related 

to billing operation performed for the book (e2) and followed by another event 

detecting the book passing the exit (e3). If these three events do not occur in the said 

order, an alarm should be triggered to notify the staff. Therefore, in a genuine case if 

the events e1, e2, and e3 have been received in order by the CEP engine no fraud pattern 

will be detected. In case if e2 was delayed, and only e2 and e3 arrived at the CEP, then 

a false positive alarm will be triggered. This could even affect the business as the false 

alarm was associated with a legitimate customer.  

 

Figure 1.1: Out-of-order event arrival. 
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Figure 1.1 shows out-of-order event arrival in an arbitrary event stream in which the 

order of event arrival in the CEP is indicated as input events and the actual timestamp 

of the event occurrence as e.ts. While the events e10 and e13 were triggered at time 4 

and 8, they are actually received after e9 and e12 which were triggered at time 11 and 

13 respectively. Also, the events which has been generated after e10 and e13, e.g., e4, 

e5, e6, have already reached the CEP before e10 and e13. Such behavior could be due to 

reasons such as network jitters, environments of different event sources, and network 

and machine failures. Further it is difficult to preserve the order of events, if the 

incoming rate of the events are very high, and the event sources are located in different 

networks which may experience different delays and finally, result in out-of-order 

arrival in CEP.  

 

Such out-of-order event arrival affects the accuracy of CEP queries such as pattern 

matching, aggregation queries within time window, and join queries. The order of the 

event arrival has different impact when we consider the aggregate and pattern 

matching scenarios, where the first case does not require the order of the events rather, 

when the window time elapses all the events for the given window should be arrived, 

but in the second case before proceeding the pattern matching operator the events 

needs to be sorted in the same order that have originated.  

 

It is not trivial to handle out-of-order events in CEP due to the following reasons: 

1. Impact of premature accuracy of the results, specially the output results that 

are triggered based on insufficient messages maybe irreversible. 

2. Inability to predict delay accurately and allocate sufficient buffer time or 

capacity.  

3. Buffering introduces delay and reduces throughput of CEP engine which are 

key features of CEP. 

4. Increased memory and computing requirements of the CEP engine to store and 

handle out-of-order events. 

 

Resolving the above challenges and building a solution which could satisfy all the use 

cases is not practical. Some use cases can compromise on the accuracy to gain low 
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latency. For example, a query applying the average operator may produce a less precise 

result while achieving low latency, as no buffers are used to collect and correct out-of-

order arrivals. This is acceptable in use cases where the out-of-order event arrival is 

uncommon or infrequent and inaccuracy is acceptable. Anyhow, this may not suit for 

use cases such as credit card fraud detection where the order of events matter. While 

false positive alerts are acceptable in this case false negatives are not acceptable. In 

certain use cases, once the alert has been triggered based on out-of-order arrival, it may 

be reversed by issuing a reverse alert. For example, let us consider a use case of 

actuating a fire alarm based on the pattern of temperature increase, once the alarm has 

been switched on, we cannot do much other than switching it off, even after detecting 

that is a false alarm. 

 

Accuracy is a major challenge in this problem, where unless CEP engine receives an 

event that is having older timestamp than the latest event that the engine has seen so 

far, it does not know whether there is an event yet to be received for that time window 

or not. Therefore, we cannot be 100% certain about the produced results but rather can 

only have a confidence level associated with the final results. However, if the 

confidence level needs to be increased, it will increase the latency of the final result. 

 

 

1.3. Research Question 

The main operators provided by CEP engine such as pattern matching, aggregations 

operators, and join operators in time and batch window depend on the order of the 

events that have been received at the CEP engine. This phenomenon is more prevalent 

when multiple event sources produce events that are collectively processed and 

analyzed by the same CEP query. Therefore, the research question can be formulated 

as: 

 

 How to detect and overcome out-of-order event arrivals in complex event processing 

while increasing accuracy and minimizing time and space complexity? 

 



 

 5 

1.4. Objectives 

The main objectives of this research can be stated as follows: 

1. Develop a suitable set of out-of-order event handling mechanism(s) that can 

provide increased accuracy and low latency which can work with multiple 

event sources. 

2. For more complicated out-of-order arrival scenarios develop a technique to 

detect and estimate the possibility of the out-of-order event arrival with high 

confidence while having minimum overhead for pattern matching and 

aggregation operations.  

3. Formulate a solution that could order the out-of-order events with a delay less 

than a few minutes and does not consider the very late event arrivals.  

4. The solution may involve modifications in different components and stages of 

event flow including event sources, CEP event receiver and query operators. 

5. Evaluate the accuracy and performance of the proposed techniques by 

simulating the out-of-order event arrival with varying network delays and 

multiple nodes. 

 

1.5. Outline 

Related work is presented in Chapter 2. Furthermore, it provides the functionality 

supported by CEP queries, critically evaluates the work carried out in each approach 

and suitability of those approaches for the objectives mentioned in Section 1.4. Chapter 

3 presents the proposed methodology to handle the out-of-order events with single and 

multiple event sources, and with aggregation and pattern matching query operators. 

Chapter 4 explains the implementation details of the proposed methodology based on 

the Siddhi [3] CEP engine. Chapter 5 discusses the experiment carried out with 

different approaches, test results, and evaluation. Chapter 6 discusses the conclusions 

of the results obtained, research limitations, and future work. 
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2. LITERATURE REVIEW 

 

This Chapter discusses in detail about the related work with regard to out-of-order 

event arrival problem in Complex Event Processing (CEP). In Section 2.1, CEP and 

several important functions supported by CEP are discussed. Methodologies that the 

researchers have followed to solve the problem of out-of-order event arrival are 

presented in Section 2.2. Section 2.3 provides a detailed analysis of buffer-based 

approaches that had been already researched.  

 

2.1. Complex Event Processor Functionalities 

CEP supports a set of common functionalities such as time batch window, pattern 

matching, and aggregations operations. The time window is one of the most important 

functions provided by the CEP engines, where a set of events within a given time 

window is considered and the user provided CEP query is executed on top of that. A 

time window quantifies the window based on time such as events collected in 5 

minutes, 15 minutes, and 1 hour durations.  

 

Query 2.1 shows an example query related to the time batch window. 

TemperatureStream is a stream of temperature events from temperature sensors in 

rooms. It calculates the average temperature once a minute. Then the average value is 

used to create a new stream called AvgRoomTemperatureStream.  

 
from TemperatureStream#window.timebatch(1 min) 

select roomNumber,avg(temperature) as avgTemperature 

group by roomNumber 

insert all events into AvgRoomTempeartureStream ; 

Query 2.1: Time batch window. 

 

Similarly, the pattern matching also can be performed in the window of streams, where 

a sequence of the expected events can be provided, the CEP engine will be listening to 

the pattern in the events streams and once it is matched it will be triggering an alert. 

Query 2.2 can be used to detect fraud in Automated Teller Machine (ATM) card 

transactions, where if there is an event a1 which has amountWithdrawed less than 1000 
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and following that event, if there is another event b1 which has amountWithdrawed 

greater than 100,000 within a day interval for the same ATM card number, then insert 

the matching details to another event stream possibleFraudStream for alerting. 

 
   from  

every a1 = atmStream[amountWithdrawed < 1000] 

 -> b1 = atmStream[amountWithdrawed > 100000  

and a1.creditCardNo == b1. creditCardNo] 

within 1 day 

select  

a1. creditCardNo as creditCardNo,  

a1.creditCardHolderName as creditCardHolderName,  

b1.amountWithdrawed as amountWithdrawed,  

b1.location as location,  

b1.creditCardHolderMobile as creditCardHolderMobile 

insert into possibleFraudStream; 

Query 2.2: Pattern Matching. 

 

Fraud detection systems, network monitoring and throttling systems, banking 

transaction systems, IoT network, and stock exchange systems are some of the 

example systems that uses CEP extensively. Time window aggregate queries are at the 

core operation of many such real time analytics applications.  

  

2.2. Out-of-order Event Handling Approaches 

Several prior works focus on handling out-of-order events in a single CEP event 

stream. These techniques can be broadly classified as buffer based [3], [4], punctuation 

based [5], [6], speculation based [7], [8], and approximation based [9] approach. In all 

approaches handing the disordered events consists of a trade-off between result 

accuracy and latency. Nevertheless, each of these techniques is discussed next to 

understand their design philosophy and the pros and cons. 

 

2.2.1. Buffer-based Approach  

Buffer-based approach [3], [4], [10] handles the disordered event reception by having 

a buffer to store and sort the events from an input stream based on the timestamps 

before presenting them to the query execution. While this is a simple and common 
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approach, buffering and sorting increase event processing latency. Several buffer-

based solutions are discussed in Section 2.3 in detail. 

 

2.2.2. Punctuation-based Approach 

Punctuation-based disorder handling [5] depend on special events (punctuations) 

within data streams which specifies that no pending events with timestamps less than 

the timestamp of punctuation timestamp are anticipated. Once punctuation is received, 

the query operator produces the query results for the windows that are expected to not 

to receive any future late arrivals. Heartbeats and partial-order guarantees are the types 

of punctuations used [6]. The punctuations can be produced externally with data 

sources or generated within the system [11].  

 

Query operators are explicitly informed by punctuations about when to return results 

for windows, and until the punctuation is received the events will be buffered. 

Therefore, the accuracy of the punctuations determines the accuracy of the final 

results. Furthermore, in the environment with the network jitters and connectivity 

problems, the punctuation event stream itself can get affected when it is sent from the 

external data source and may not be received by CEP in the expected time. This leads 

to the poor accuracy of the final results produced. Also, the dilemma between the 

accuracy and latency of the query results is a limitation of this approach. Punctuations 

should not be produced before all late arrivals of the window are observed because it 

is providing the confirmation on not receiving any delayed events after the punctuation 

timestamp. Therefore, this approach also has a similar latency concern as the buffer-

based approach, where it cannot determine the buffer size until all the late arrivals are 

received. Another approach would be to have a separate data partitions to record late 

arrivals received after the corresponding punctuations and to process them 

independently [12]. Previously produced inaccurate query results, which were caused 

by the early trigger of punctuation, can be merged with the results of these partitions. 

However, this approach requires keeping the entire history of query results. 
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2.2.3. Speculation-based Approach 

Speculation-based disorder handling [7], [8] can be considered as an aggressive 

approach because it assumes in-order arrival of events and produces the results 

immediately without waiting for any late arrivals. The other approaches such as buffer 

based and punctuation based can be considered as conservative. In this approach, once 

a late arrival event e is received, the premature results that are influenced by e are 

invalidated. And then new revisions of these invalidated results are produced by taking 

the late arrival event e into account. For data streams with frequent out-of-order events, 

a query may produce several inaccurate revisions before the final accurate revision of 

the result, and hence this method may exhaust CPU and cause high result latency. 

 

2.2.4. Approximation-based Approach 

Approximation-based disorder handling [9] computes approximate aggregates over 

the event stream by using a special data structure (e.g., histograms and q-digests) in 

the raw event stream. The approximation-based approach is also considered as an 

aggressive strategy, similar to the speculation-based approach. But the difference from 

speculation-based technique to this approach is that when a late arrival is received, the 

approximation-based approach does not correct previously emitted results, and only 

ensures that this late arrival event is considered for in upcoming aggregate results. This 

approach is not suitable for queries with small windows, as this will lead to many 

incorrect output events. 

 

Table 2.1 shows a comparison of the approaches discussed in the above Sections. To 

satisfy various objectives provided in Section 1.5, in this research work we will be 

focusing on the buffer-based approach which could provide the balanced behavior 

between the accuracy and latency of the produced results.  

 

2.3. Buffer-based Techniques 

Solutions based on the buffer-based approach can be broadly classified as K-Slack, 

MP-K-Slack, and AQ-K-Slack approach. K-Slack approach delays the incoming event 

by k time units, where k is defined as a priori. MP-K-Slack delays the incoming events 
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by k time units, which is the largest delay that has been seen so far at CEP engine. 

Furthermore, AQ-K-Slack delays the events by αk time units where k is the largest 

delay that has been seen so far and α is the dynamic parameter that is determined from 

user-specified result error threshold value. A detailed explanation of each of these 

methods is explained in the following Sections. 

 

Table 2.1: The comparison of the out-of-order event handling approaches. 

Out-of-order 

Event Handling 

Approaches 

Advantages Disadvantages 

Buffer-based 

Approach 

Accuracy of results can be increased 

by having large buffer size. 

Latency can be reduced by having 

small buffer length. 

Ability to adjust the buffer size and 

obtain balanced accuracy and 

latency. 

Dilemma between latency and 

accuracy.  

Increased memory requirement to 

buffer the events. 

Punctuation-based 

Approach 

Accuracy of results can be increased 

by having large punctuation interval. 

Latency can be reduced by having 

small punctuation interval. 

 

Punctuation event stream itself can 

get affected, which affects the 

accuracy of results produced. 

Dilemma between latency and 

accuracy. 

Increased memory requirement to 

buffer the events. 

Speculation-based 

Approach 

Less latency. Increased traffic of correction events. 

Cannot control accuracy of the result 

produced. 

Approximation- 

based Approach 

Less latency.  Inaccurate results are left without 

correcting them. 

Cannot control accuracy of the result 

produced. 

 

2.3.1. K-Slack Approach 

K-slack transparently buffers and reorders the events before the actual event 

processing happens. It uses a buffer to delay each incoming event (ei) by at most a 

predetermined k time unit from the current timestamp tcurr where ei.ts + k ≤ tcurr [10]. 
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In this method, k is assigned based on a priori knowledge about the incoming events 

stream. However, it is not trivial to estimate a suitable value for k in realistic 

environments with fluctuating network properties such as network traffic and delay.  

 

Figure 2.1 depicts the out-of-order event arrival problem, where id indicates the event 

types received, ts is the actual event originated timestamp, and clk is the latest 

timestamp of the event that has been seen by the system. As shown in Figure 2.1, event 

C (with ts = 1) which was generated before event A (with ts = 2) but received later 

than event A at CEP engine. Similarly, event B (with ts = 3) was generated before 

event A (with ts = 4) also have been received at the CEP engine in reverse order. At 

the same time event E (with ts = 20) was received before event C (with ts = 12) and A 

(with ts = 15). As shown in Figure 2.2, with a re-ordering unit these out-of-order events 

can be sorted and then passed to the CEP engine for execution. For example, in Figure 

2.2, the buffer size of five will be suitable to sort the out-of-order events, where the 

events seen so far have been delayed by at most five time units.  

 

Figure 2.1: Out-of-order event arrival - K-Slack. 

Figure 2.2: Sorting the events in the window with K-Slack [7]. 

 

Ming Li et al. [10] in SASE (see Section 2.3.1.1) proves that K-Slack can also be 

applied in distributed stream applications. Authors used local clock clk was used, 

where an event e is buffered at least for ei.ts + k ≤ clk. Generally reactive distributed 

systems do not have any global clock such that all nodes can rely on that, and hence 



 

 12 

each node in the system will adjust the local clock based on the largest timestamp seen 

so far on any incoming event. 

 

The key issue with K-Slack is having a single fixed k, which cannot be easily derived 

and cannot adapt to network changes. Hence, use of excessively large k values will 

effect in large buffers and high latency which are not usually preferred.  

 

2.3.1.1. Out-of-order Event Processing in SASE 

Ming Li et al. [10] studied the out-of-order event processing in a Stream-based and 

Shared Event Processing Engine (SASE) based on K-Slack. The query plan is 

translated based on the operators such as Sequence Scan (SS), Sequence Construction 

(SC), Window (WD), Selection (SL) and Transformation (TF) as explained in Figure 

2.3. 

Figure 2.3: Event query plan [10]. 

 

The SS operator employs an NFA (Non-Deterministic Finite Automata) to find 

matches to the event pattern specified in the query. As depicted in Figure 2.3, the 
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expected event sequences are built by the SC operator according to the events retrieved 

by SS component. SC and SS together create the Sequence Scan Construction (SSC) 

component. By applying all the predicates specified in the query, the SL operator 

filters event sequences. Further, the WD operator scans through the sliding window to 

confirm the occurrence of the input event sequence. Finally, each input event sequence 

is converted into a composite event by the TF operator. 

 

Figure 2.4: Query Evaluation of SASE [10]. 

 

For the execution of SSC, a data structure named Active Instance Stack (AIS) was 

proposed. As illustrated in Figure 2.4(a), AIS associates a stack with each state of the 

NFA, instead of using a single stack. These stacks of NFA is used to store the events 

that activated the NFA transition to that state, and the events in the stack is called the 

active instances. Besides that, each active instance e in the stack is analyzed, and an 

extra field is added to identify the most recent instance in the stack of the previous 

state (RIP). Figure 2.4(c) shows an input event stream, and the events extracted during 

the sequence scan is marked with an underscore. AIS keep hold of the retrieved events 

of type A, B, and D. The event in three AIS stacks is depicted in Figure 2.4(b) and 
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Figure 2.4(c) shows event stream after passing through AIS. Each active instance of 

the accepting state initiates the sequence construction, and according to the provided 

event stream in Figure 2.4(c) d10 and d15 events will initiate the sequence construction. 

 

Figure 2.5: Problems exists in SSC and PSSC with out-of-order event arrival [10]. 

 

With the usage of AIS, the event sequence construction is performed by a depth-first 

search in the DAG (Directed Acyclic Graph) that is rooted in this instance and includes 

all the RIP edges accessible from the root. One matched event sequence is returned by 

the SSC operator, for each path from root to leaf in the DAG. Based on window 

constraints the State purge on SSC is performed by removing outdated events from 

AIS dynamically, and this function is called a Purged Sequence Scan Construction 

(PSSC). In this design, the out-of-order event arrival is causing problems in SSC such 

as incomplete event retrieval and event misplacement. Incomplete event retrieval 

problem involves discarding some events by the sequence scan which should have 

been kept. Event misplacement involves inserting into the wrong location of the stack. 
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In AIS when an event needs to be inserted it could have been just inserted into the top 

of the stack due to total order assumption, but that cannot be done when the total order 

assumption is wrong with out-of-order event arrival. Hence, the events need to be 

scanned and inserted into the correct location. As explained above, the window 

constraint-based AIS purge in PSSC is not safe with out-of-order data arrivals, and 

further, it’s referred to as unauthorized AIS purge as described in Figure 2.5. 

Therefore, any event removal of AIS will impair the accuracy, and the purging can be 

permitted only when the total order of the event arrival is guaranteed. 

 

The incomplete event retrieval problem is handled by setting all states of NFA to be 

active before the retrieval over the event stream. The event misplacement problem is 

dealt with applying Sort Semantics which involves in searching for a correct insertion 

place in the intended stack. Therefore, the sort semantics is applied when the NFA 

transition is activated by an event. And this guarantees the order of the events stored 

in the stack as chronological from bottom to top. Further, the newly inserted event Ei 

should have the context pointer (RIP). In case, if Ei is not the rightmost event type in 

the event sequence query that needs to be matched, then RIP of the consequent event 

instances in the right-adjacent stack might need to be revised as well. 

 

In order to avoid the overhead produced by considering every event as a potential out-

of-order event, a new variable AIS-CLOCK is maintained in SSC operator. This value 

holds the largest timestamp of events resides in AIS. When an event with a timestamp 

greater than AIS-CLOCK is received, the AIS-CLOCK will be changed to the new 

event’s timestamp value. Therefore, the new event is handled with append Semantics 

as in order events. Sort Semantics is applied and intended out-of-order specific steps 

are executed, once an event is received with a smaller timestamp that AIS-CLOCK. 

 

To prevent these errors, data purge cannot be applied on AIS. And that will result it 

unbounded memory requirement, which makes it unpractical solution. Therefore, for 

unblocking PSSC functionality, authors have proposed to use the K-Slack based 

approach. K-Slack checks the distance between the current event and the latest event 

received by the system. A variable named CLOCK is maintained to hold value of the 
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largest timestamp of received events so far by the system. PSSC will be notified at 

each time the value of CLOCK is updated. Based on the sliding window semantics, 

any event ei that resides in AIS can be purged, if (ei.ts + w) < CLOCK, where w is the 

size of the window. Therefore, with the out-of-order events, the above condition will 

be change to (ei.ts + w + k) < CLOCK. However, the workload of the SSC operator to 

construct the event sequence will be increased due to the increase in expired event 

sequences in the AIS structure. As the event sequence produced by this will be 

removed by window-based filtering filtering (functionality of the WD operator), it can 

never correspond to the final result sequence. Further, it also creates a load to the WD 

operator to perform window-based filtering. Also, if the k value is substantially big, 

then several outdated event may reside in the AIS stacks. Hence, the impact on 

sequence construction and AIS filtering should be evaluated. 

 

Each events in AIS is partitioned into two as outdated and up-to-date events, to 

overcome the overhead problem in selecting large k value. A divider is used to create 

these partitions. Further, if a stack does not have outdated events, then the divider is 

set to NULL. Once sequence construction is activated in SSC, it also considers the 

events under the divider in each of the stacks. 

 

2.3.2. MP-K-Slack Approach 

MP-K-slack is an extension of K-Slack approach, which was introduced by Mutschler 

and Philippsen [3] where the buffer size k used for event ordering can be dynamically 

adjusted. In this method, k is initialized to zero and a variable tcurr is used to hold the 

largest timestamp of events seen so far in the event stream. At the runtime, once the 

events are received, they are first inserted into the buffer, and then their timestamps 

are compared with tcurr. Each time when tcurr is updated, the below mentioned two 

actions are performed. Also, in the case of delayed event arrival where tcurr will not be 

updated. Therefore, the following actions will not be performed, and those will be 

performed when an event arrives that has timestamp > tcurr: 
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(1) Update k to maxi {k, D(ei)}, where D(ei) = (tcurr − ei.ts) where D(ei) denotes 

the delay of the event ei and it is calculated for each event ei that has arrived 

since the last update of tcurr.  

 (2) Release any event ei that satisfies the following condition from the buffer: 

ei.ts + k ≤ tcurr (2.1) 

Figure 2.6 shows how MP-K-Slack approach operates where the buffer input denotes 

the input sequence of events arrived at CEP, ei.ts denotes the timestamp of the event 

ei, tcurr denotes the current timestamp at CEP, and k denotes the buffer size. As shown 

in Figure 2.6, in the beginning, k is zero, and event e1 with ts = 1 (𝑒1
1) and event 𝑒2

4
 

arrives to the system in order and updates tcurr value and then they are emitted from the 

buffer immediately. Thereafter, when event 𝑒3
3 arrives it will not update tcurr as it is a 

late arrival. When 𝑒4
5

 arrives, it has a timestamp greater than tcurr; therefore, it updated 

tcurr. As tcurr was updated, the above mentioned two actions will be performed, where 

it calculates delay D for each delayed event (in this case 𝑒3
3  where the D(𝑒3

3) = 5 − 3 

= 2) and update the k value. Here as the D(𝑒3
3) = 2 is larger than the current k = 0, k is 

updated to 2 according to action (1) as mentioned above and 𝑒3
3 is emitted from the 

buffer. Similarly, events 𝑒4
5

 and 𝑒5
6

 are stored in the buffer until 𝑒6
9

 reaches, and though 

events 𝑒7
7

 and 𝑒8
8 are also stored in the buffer at the arrival of 𝑒9

10 events 𝑒7
7

 is emitted 

while updating k to 3. This is because max{D(𝑒7
7), D(𝑒8

8)} = max {3, 2} = 3, larger 

than the current k = 2. Then events 𝑒8
8, 𝑒6

9, and 𝑒9
10 are released in ascending order of 

the timestamp at the arrival of 𝑒10
13. 

 

Note that event 𝑒3
3 still remain as out-of-order event in the output event stream after 

the buffer. For example, if the sliding window operator is using the output event stream 

after the MP-K-Slack buffer, then by the time 𝑒3
3 is received at the window operator, 

the result of the window is already produced. Namely, 𝑒3
3 will not able to contribute to 

the final result of that window. 
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   Figure 2.6: Out-of-order event arrival handling in MP-K-Slack [3]. 

 

Despite the unsuccessfully handled late arrivals such as event 𝑒3
3, MP-K-slack tries to 

have the buffer size to a large enough value to capture all late events. While such 

dynamic buffer size re-configuration provides increased it comes at the expense of 

high result latency.  

 

2.3.3. AQ-K-Slack Approach 

AQ-K-Slack is a buffer based, quality-driven disorder handling approach. Sampling-

based approximate query processing and control theory [4] are the core techniques 

used in this approach to find the suitable buffer size. AQ-K-Slack is an extension of 

MP-K-Slack, where AQ-K-Slack buffer size can be dynamically increased than having 

an a-priori fixed value as MP-K-Slack. Furthermore, it can also decrease the buffer 

size while preserving the user-specified error threshold in the final query results. As 

this approach can dynamically alter the buffer size to minimize the latency and 

increase accuracy, the AQ-K-slack approach does not require any a priori knowledge 

of out-of-order event streams. Also, this approach can be used without any changes to 

the query operators in use or the application implementation logic.  

 

In this approach, the user annotates the sliding window query with expected a result 

error threshold (εthr, 𝛿) (i.e., Probability (ε < εthr) ≤ 𝛿). To adhere to this threshold AQ-

K-Slack introduces a new parameter α (α ∈ [0, 1]) on top of the buffer size k (effective 

buffer size becomes αk) to determine the appropriate buffer size. Here α is initialized 

to one and dynamically adapted at query runtime.  
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In this approach when late event arrives, if it still falls under the prevailing window-

slide range then the event will be considered, else it will be discarded. Consequently, 

the condition for releasing an event ei from the buffer changes as follows:  

ei.ts + αk ≤ tcurr (2.2) 

Figure 2.7 shows the main components of the AQ-K-Slack approach and data flow 

among the components. The Buffer Manager as the name implies manages the buffer 

to store and sort the input events based on the timestamp. The Proportional-Derivative 

(PD) Controller regulates the value of α to Buffer Manager. Window Coverage 

Threshold Calculator, determines the window coverage threshold θthr  based on the 

user-specified result relative error threshold (εthr, 𝛿). Window Coverage Runtime 

Calculator measures the window coverage of produced query results. Statistics 

Manager collects the required statistics for Window Coverage Threshold Calculator 

and Window Coverage Runtime Calculator. 

Figure 2.7: Architecture of AQ-K-Slack [4]. 

 

The quality of the produced query results is measured using a transitional metric called 

window coverage θ. And θ is defined as the proportion of the number of events that 

contributed vs total number of events that should have been contributed to the results. 

The window coverage threshold (θthr) is derived from user-specified result relative 

error threshold (εthr, 𝛿), which determines the expected quality of the output. Based on 

the deviation of the θ and θthr, the value of α of determined. 
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However, adjusting the buffer size based on the relative error threshold requires all the 

events of the corresponding time window to be received, but with out-of-order events 

this is impractical. And hence the relative error threshold cannot be computed correctly 

for the current window. Therefore, sampling-based approximate query processing is 

used to compute the query result of a window. This allows to calculate the θ before 

receiving all out-of-order events, and the late arrivals of the window. Further, an error 

model is determined for the results of an aggregate query under sampling, by 

leveraging statistical inequalities and the central limit theorem. This error model helps 

to identify a suitable sampling rate p based on the relative error ε in a query result. 

Therefore, the minimum sampling rate required to meet the threshold is derived from 

the given relative error threshold. As the applied sampling rate influences the 

proportion of events within each window to be preserved for processing, it also 

influences the window coverage. Therefore, with a minimum sampling rate, the 

minimum window coverage threshold (θthr) is also derived.  

 

In sampling-based approximate query processing, the events are excluded from the 

window; therefore, the window coverage is influenced only by the applied sampling 

rate. Hence, that approach cannot be used to calculate the runtime window coverage 

(θ) where it depends on both current applied buffer size (αk) and the out-of-order event 

arrival characteristics. Furthermore, over the time the measured window coverage of 

a result gets accurate, as the probability to receive all late arrival is increased. 

Therefore, the old window coverages are more accurate than the latest calculated 

window coverage, hence the old window coverage is considered to buffer size 

adaptation logic in AQ-K-Slack. The result produced before the maximum delay that 

has been seen so far (i.e., value of k) are assumed to be stable but this will lead to 

delayed adaptation of the buffer. Therefore, to reduce the delay and increase the 

accuracy in adaptation and remove the effect of abnormal spikes in the delay, the 

window coverage used for the calculations is at M time units earlier than tcurr, where 

M equals to the q-quantile (0 < q < 1) [13] of delays of previously received late arrivals. 
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Figure 2.8 illustrates α adaptation solution which provides the adaptivity to this 

methodology. The controller output the difference of the last known value of the α, 

and it could be positive or negative value based on the increase or decrease of α, and 

denoted by Δα. Window coverage θ(i) is sent to the controller for the i-th window. The 

value of Δα(i) is calculated by the controller based on the control error, err(i). The 

control error is known as the deviation between the calculated window coverage 

threshold θthr and measured window coverage θ(i), i.e., err(i) = θthr - θ(i). Further, the 

calculated error threshold is passed in to proportional component (P) and derivative 

component (D). The to P component focuses on the the present error, and D component 

focuses on the future error hence considering the error changing rate. The 

combinations of PD components yields the final value of Δα(i). The value of Δα(i) is 

a weighted sum of P and D components, where the weights are configured manually 

by users via parameters Kp and Kd as shown in Equation 2.3. 

Figure 2.8: Adoption of α using a PD controller [4]. 

 

Δα(i) = Kp err(i) + Kd (d err(i) / di) (2.3) 

Manual parameter tuning was used for PID controllers on top of the well-known 

Ziegler-Nichols method [14] to configure parameters Kp and Kd. This provides 

minimum buffer size while honoring the user-specified accuracy and error threshold 

requirement. 

 

However, this approach has the following disadvantages: 

1. The performance and accuracy of AQ-K-Slack is influenced by the parameter 

setting for Kp and Kd of the PD controller, and it is currently performed 

manually. 
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2. This approach is well suited for aggregation operators but it is not well suitable 

for the functions such as pattern matching or join. Because the user-defined 

error threshold can be only provided for the aggregate operations and not for 

the other operations mentioned above.  

3. Delayed adaptation of the buffer size, as it considers the old window coverage 

of the result into consideration to determine the α. 

 

2.3.4. Latency Distance and Purging Time Based out-of-order Event Processing 

(LDOP) 

In this approach, the latency distance calculation and then purging time is used to 

handle out-of-order event arrival [15]. Consider a mixed event stream S <S1, S2, …, 

Sm>. The latency distance of S in time window w, denoted by LD (S, w), is defined as 

follows:  

𝐿𝐷(𝑆, 𝑤)  =  
1

𝑁
∑  

 

𝑆𝑖∈ 𝑆

∑  

 

𝑒𝑖𝑗∈ 𝑆𝑖

(𝑒𝑖𝑗 . 𝑎𝑡𝑠 − 𝑒𝑖𝑗 . 𝑡𝑠) 
 

(2.4) 

where eij denotes an out-of-order event in event stream Si in time window w and N 

represents the number of out-of-order events from S in w. 

 

Latency distance reflects the average delay between occurrence timestamps and arrival 

timestamps of all out-of-order events from S in time window w. The purging time of 

an event eij, denoted by PT(eij), is specified in Equation 2.5, where |w| denotes the size 

of time window w and SF denotes the slack factor, a random variable uniformly chosen 

from a slack range. The value of SF can be adjusted according to the size of the 

available memory. 

 

PT(eij) reflects the time when eij must be purged from the memory keeping event 

streams: 

𝑃𝑇(𝑒𝑖𝑗)  =  𝑒𝑖𝑗. 𝑡𝑠 +  |𝑤| + 𝑆𝐹 ×  𝐿𝐷 (𝑆, 𝑤)  (2.5) 

 

Suppose that a mixed event stream S <S1, S2, …, Sm> is generated from heterogeneous 

networks and then transmitted to the event processing system where out-of-order 
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arrivals of events may exist. out-of-order arrivals of events together with the limited 

memory space make the event processing system have to quickly purge those 

unnecessary events for pattern matching by calculating the latency distance and 

purging time (called LDOP). This method first filters out those event instances whose 

event types do not appear in the pattern matching plan. Then, it calculates the latency 

distance based on Equation 2.4, and it calculates the purging time for each event 

instance based on Equation 2.5. Finally, it decides on whether an event instance must 

be purged from the buffer if the event was kept in the buffer more than the calculated 

purging time.  

 

The disadvantage of this approach is that it is well suited for pattern matching query 

but not for the other query operators such as aggregate operators. Because with pattern 

matching operator, only the incoming events that are specified in the pattern sequence 

will be buffered and the rest of the events will be discarded. This filtering cannot be 

done with aggregate operators as all the events are required for the actual event 

processing. Therefore, with aggregate and join operators, the memory usage will be 

high compared to the pattern matching query. This results in a low value of the slack 

factor for non-pattern matching query operators, and hence the purging time will be 

less. This indeed results in the increase of unsuccessfully handled out-of-order events. 

 

2.3.5. K-Slack Chain Approach 

Concurrently executing multiple queries in the stream processing engine is a very 

common in current world use cases. For example, for the same incoming events 

stream, both pattern matching query and aggregation query could be executed 

concurrently. In such cases, the query operators could exploit sharing options when 

ever possible. For example, Stream-sorting buffers can be shared across multiple 

concurrent queries therefore overall memory cost incurred by the buffers can be 

reduced substantially. Quality Driven Disorder Handling (QDDH) approach handles 

out-of-order events for concurrent queries which analyzes the same incoming event 

stream and share the stream-filtering operators [16]. In a join function which operates 

on a window of events, if the window on one input stream has moved forward while 
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there are delayed events from other event streams which are yet to arrive, it may 

produce an incomplete result set. In order to improve final result quality (on accuracy 

or completeness), the fast event stream may need to wait for those delayed events, but 

at the same time will have negative impact on the the result latency. This approach 

focuses solving the problem with multiple event streams with join with aggregate 

sliding time windows. Shared filter are used to evaluate the common selection 

predicates of different queries. Basically shard filter is a common technique used in 

both database and streaming engines to share the computations among multiple 

concurrent queries. After evaluation the sharing opportunities, selection predicates of 

the concurrent queries can be modelled by the global query graph, which is a Directed 

Acyclic Graph. Figure 2.9 shows a global query graph for multiple query operators. 

 

 

Figure 2.9: A global query graph [16].  

 

Based on deduced global query graph G and the quality requirements provided by the 

user, the QDDH is derived with the goal of minimizing the latency of the final result 

for each query. 

 

To achieve this goal, a natural solution is to have individual and unshared event stream 

buffers. For example, for each query Q there may be window and aggregate operators 

used, and hence the K-Slack buffers can be placed just before those operators (i.e., 
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above leaf nodes in G). Further, the buffer size can be dynamically adjusted 

independently without affecting any other queries based on the quality-driven manner. 

However, this approach will result in redundant storage and processing of out-of-order 

events for each operator. To explains this further, assume that the operators F8 and F9 

in Figure 2.9 have the selectivity of 0.9 (i.e., 90% of the events are filtered). Therefore, 

buffers for Q4 and Q5 will be handling at least 80% (2 × 0.9 − 1 = 0.8) of the output 

events of operator F7. Hence the memory waste could be enormous if the operator F7 

has a large fan-out degree or has a high output rate. To overcome such redundant out-

of-order processing and save resources such as memory, and CPU, shared K-Slack 

buffers can be used across multiple queries (i.e., shared QDDH). As per the above 

example, sharing the QDDH involves placing a buffer below operator F7, without 

duplicating them below each operator F8 and F9. Therefore, the queries Q4 and Q5 

can be benefitted directly by the sorted output events of operator F7. In general, just 

below the branch operator is a suitable place to have a shared disorder handling buffer. 

Branch operator be the parent operator which has more than one child in G, or a 

concurrent child operator of multiple another branch operator. However, just because, 

sharing the disorder handling buffer in the output events at a branch operator does not 

always result in lower memory consumption. In the above example, the selectivity of 

the operator F7 and F8 is assumed to be at 0.9, but now assume the selectivity of F8 

and F9 are low as 0.1. Then the result will be reversed, where the unshared buffers for 

each operator F8 and F9 will have less memory compared to having a shared disorder 

handling right below F7. Also, shared K-Slack buffers will have a high overhead of 

executing the buffer size adaptation once a buffer configuration of a query is modified, 

and this will have unnecessarily increase the latency of the queries which have less 

result quality requirements. Hence, it is not obvious to find a suitable location that 

leads to overall minimum memory consumption when performing QDDH for 

concurrently shared query operators. This is prevalent with a large number of branch 

operators in a global query graph. 

 

K-Slack chain solves this ambiguity of suitable place to have the K-Slack buffer. This 

allows sharing out-of-order event processing at a branch operator in a global query 
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graph G, without having an impact on the goal of latency minimization for each query 

that shares the particular operator. For example, let us consider a simple sub-graph 

G(S1) depicted in Figure 2.10 (a). S1 is the only branch operator in G(S1) and it does 

not contain filters. Assume k1, k2, and k3 are the optimal QDDH buffer sizes of queries 

Q1, Q2, and Q3, and k3 < k1 < k2. Let r denote the average data rate of S1. 

 

Figure 2.10: Shared disorder handling for a query graph G that has no filter 

operators: single K-Slack versus K-slack chain. (Assume that k3 < k1 < k2) [16]. 

 

With unshared out-of-order handling, output event stream of branch operator S1 has a 

memory cost of r(k1 + k2 + k3).  The shared out-of-order handling can decrease this 

memory cost, and the obvious solution is to place a single K-Slack buffer just below 

the source operator S1 as in Figure 2.10(b). To obey the result quality requirements 

specified by the user for each query, the buffer size (i.e., K(B1) in Figure 2.10(b)) 

should not be less than the largest value among k1, k2, and k3, which is k2 in this 

example. But, this will have an effect in queries Q1 and Q3 to have increased latency 

than specified by the user, which violates the latency minimization condition. 

 

A chain of K-Slack buffers can be used to solve the above problem with a single K-

Slack buffer as depicted in Figure 2.10 (c). This approach enables the total effective 

buffer size of the whole chain to be equivalent to the single K-Slack buffer size, and 

hence it still adheres to the K-Slack approach. As shown in Figure 2.10(c), first buffer 

B1 in the chain has the smallest buffer size with the value of k3. Output events of B1 

are dispatched second K-slack buffer B2 to meet the result-quality requirements of the 

other two queries, and concurrently to operator A3 without being delayed further to 
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affect the quality requirements imposed by the Q1. With the introduction to second 

buffer B2, the effective buffer size for Q3 should be k1 (i.e., second smallest buffer), 

but as the first buffer has already had a buffer size of k3, the actual buffer size of the 

B2 will K(B2) = k1 – k3. And then similarly to B1, the output of B2 is also forwarded to 

operators A1 and then consequently to buffer B3. The effective buffer size of the query 

Q2 should be k2, and since the buffers B1 and B2 are placed before B3, last buffer B3 

has K(B3) = k2- k1. Finally, the output of B3 is only forwarded to A2. The total 

effective buffer size of K-Slack chain is (k2− k2) +(k1− k3) +k3 = k2. Therefore, it was 

able to provide the optimal, memory cost as the single K-Slack buffer in Figure 2.10(b) 

while overcoming the drawback with the single buffer and satisfying the latency-

minimization condition.  

 

As this approach uses AQ-K-Slack to determine each buffer size, the disadvantages 

mentioned in the AQ-K-Slack also applies here as well. Also, in this case, as the 

buffers are shared among operators, the operator level optimizations such as filtering 

and only buffering the events that are specified in pattern matching, cannot be applied. 

 

2.3.6. Summary 

Table 2.2 provides a summary of each buffer-based approaches discussed, where each 

of them has its own advantages, as well as disadvantages. K-Slack approach adds a 

fixed amount of delay to all events to handle out-of-order event events. MP-K-Slack 

improves the K-Slack approach by finding the buffer size in runtime without requiring 

a priori fixed delay. However, the MP-K-Slack approach could only increase the buffer 

size; therefore, any burst event delays will affect the latency for all the following 

events. This limitation was overcome by the AQ-K-Slack approach with the ability to 

reduce and increase the buffer size based on the window coverage, but this approach 

is only applicable to aggregation operators.  
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Table 2.2: Comparison of buffer-based approaches. 

Buffer-based 

Approach 
Advantages Disadvantages 

K-Slack Provides a fixed amount of 

delay to handle delayed event 

arrival. 

 

Hard to find a suitable buffer size k for the 

system. 

Inability to adapt to the changes in the 

operating environment. 

Added overhead to all events though the 

events are received in order.  

Events are released from the buffer only 

when an event with largest timestamp is 

arrived.  

MP-K-Slack No requirement of finding a 

priori buffer size k. 

Ability to increase the buffer 

size k based on delay in event 

arrival. 

Overly large buffer size k assigned can 

incur unbearable latency. 

Inability to reduce the buffer size k, when 

the network properties improve. 

Less frequent event delays could dominate 

the latency for all events and hence the 

impact is high. 

Events are released from the buffer only 

when an event with largest timestamp is 

arrived.  

AQ-K-Slack Ability to reduce and increase 

the buffer size k. 

Provides the guarantee on the 

user-defined error threshold 

for the final result produced. 

Manual parameter tuning of Kp and Kd 

which determines the performance. 

Not suitable for operations such as join 

and pattern matching. 

Delayed buffer size adaptation. 

Events are released from the buffer only 

when an event with largest timestamp is 

arrived.  

Latency Distance 

and Purging Time 

based out-of-order 

Event Processing 

Improved memory utilization. 

Well suited for pattern 

matching operations. 

Not suitable for aggregate operations 

where all events are required for 

processing. 

Out-of-order event processing cannot be 

successfully handled with limited memory.  

K- Slack Chain Ability to handle out-of-order 

event arrival from multiple 

event streams. 

Less memory consumption for 

multiple streams. 

Operator-level optimizations are not 

considered. 

Uses AQ-K-Slack to find the buffer size; 

therefore, disadvantages mentioned in AQ-

K-Slack applies here as well. 
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3. METHODOLOGY 

 

Out-of-order event arrival can be experienced within the event stream from both a 

single event source and across multiple event sources. This is more prevalent in cases 

where multiple event sources are publishing within a Local Area Network (LAN) or 

Wide Area Network (WAN) with different time drifts among them. Furthermore, 

given out-of-order arrival, there could be different requirements for accuracy and 

latency based on the use cases. As summarized in Table 2.2, all current approaches 

add the latency to not only to the delayed events but also to in-order events after a late 

arrival, and those do not address the problem of events produced from multiple sources 

where the drift in timestamps are common and not synced. Also, when event sources 

produce events at a high rate (e.g., in IoT domains), larger buffers are required to 

handle out-of-order event arrival.  

 

In this chapter, we discuss the proposed approach where the latency is introduced to 

the event only when an event is delayed. In Section 3.1 relevant definitions are 

described. The details of the proposed solution are provided in Section 3.2. Further, 

Section 3.3 discusses the implementation details of the system. Finally, Section 3.4 

provides the overall summary of the proposed methodology.  

 

3.1. Definitions 

This Section defines the elements in the event stream and the attributes associated with 

the out-of-order event handling problem. First, we define the elements of the problem, 

such as the event sources, event, event stream, and timestamps associated with event 

processing. We then explain the proposed solution for the out-of-order event handling 

problem which includes handling out-of-order events from the single event source, 

multiple events sources, and effect in query operators due to out-of-order event arrival.  

 

The event sources generate the data that are published to CEP as events to be analyzed. 

The event sources could be edge devices such as IoT sensors, mobile phones, smart 

TVs, and wearable devices, to high-end computer systems and network systems. Let 
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us denote the set of event sources that publish events to an event stream as I, which 

consists of n event sources I = {S1, S2, S3, …, Sn} where each of them independently 

collects the events and transmits to the CEP engine. 

 

Event Streams are the grouping of the same type of continuous events that are received 

by the CEP engine. One event source can produce one or more event streams. Let R 

denote the set of event streams and there can be m event streams such that R = {R1, R2, 

R3, …, Rm}, for which the events can be generated from any number of event sources 

in I. 

 

Events are the collection of attributes such as actual payload of the data, the name of 

the data stream it belongs to, and the generated timestamp. Let the set of events be 

denoted as E = {E1, E2, E3, …, Ek} which belong to one of the streams in R.  

 

We consider the following four main types of timestamps: 

1. Source time – The timestamp in which the event was generated at the source. 

This indicates the actual event occurring time. Let source time of event e of 

event source s be denoted as 𝑡𝑒
𝑠. 

2. Reference time – The timestamp at CEP engine when the event is originated at 

the event source. The difference between this timestamp and source time is that 

the reference timestamp is time at CEP engine, and source time is the time at 

event source when the event is generated. Let us denote this timestamp as 𝑡𝑒
𝑟𝑒𝑓

. 

The time difference between the 𝑡𝑒
𝑟𝑒𝑓

 and 𝑡𝑒
𝑠 is the time drift between the CEP 

server and event sources.  

3. CEP arrival time – The time which the event is received by the CEP engine 

and excludes CEP processing time. Let us denote this as 𝑡𝑒
𝑟 . This timestamp 

will include the any delays added to the event from to 𝑡𝑒
𝑠. 

4. CEP start time – The timestamp of the event in which the event has been 

admitted into the CEP engine for further processing. Let us denote this 

timestamp as 𝑡𝑒
𝑝

, i.e., 𝑡𝑒
𝑝
 ＞ 𝑡𝑒

𝑟 ＞ 𝑡𝑒
𝑠. 
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3.2. Proposed Solution 

Next, we discuss the proposed solution to solve the out-of-order handling problem in 

CEP. We propose to address this problem for the events generated from both single 

and multiple event sources. The former problem can be handled by adding a sequence 

number to each event which is used by the CEP engine to put events back in order. 

This is discussed in Section 3.2.1. For the latter problem of ordering the events from 

multiple event sources, we use the timestamp drift of each event sources to find the 

estimated global order of events. In Section 3.2.3, we discuss how the query operators 

can operate on the event stream that is received from multiple event sources while 

reducing any anomalies that are left untreated after the approach proposed in Section 

3.2.2. 

 

3.2.1. Handling Events Produced from Single Event Source 

Out-of-order events within a single event source can be handled to a certain extent in 

the transport level if the events that are sent with TCP or another reliable protocol, 

where the order of the events is preserved. However, if the event source is producing 

a very high number of events, then the event source could use multiple parallel 

connections with the connection pool to send the events. Hence, in-order delivery is 

not guaranteed by the transport protocol. Further, if we consider distributed processing 

at CEP, then the events will be processed separately and will be collected at a node 

which expects the events to be in order, to produce the final results. To solve this 

problem, we can add a sequence number for the events produced by the event source. 

This sequence number is local to the event source and the event stream. Figure 3.1 

shows how the events are buffered and passed to the CEP engine for further processing 

by the query operators. 

 

The events will be ordered based on the sequence number of the events (labeled by the 

source) at the CEP event receiver component which consumes events just after the 

transport socket and before passing the events to the query operators. Once an event is 

received, CEP event receiver will check the sequence number, and an event is released 

to CEP engine only if it matches the next expected sequence number. Any event with 
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a higher sequence number will be added to a buffer and will be released only when the 

expected sequence number is received. For example, let us assume the events from 

event source D1 are received in the order E1, E2, E4, E5, E6, E3, E7. In that case, up to 

E2 the events are received in order; hence, those will be passed to the next level in the 

CEP. The next expected event is E3, but the received event is E4. Therefore, events E4, 

E5, E6 will be buffered without passing to the next stage. Once expected event E3 

arrives, it will be moved immediately to the next stage for further processing, and 

subsequently the next expected events E4, E5, E6 will be released in order immediately 

following E3.  

 

Figure 3.1: Event source S1 sending event stream R1 and event stream R2 to CEP.  

 

To handle the event loss in the network, there is also a wait timeout, so that the CEP 

engine can continue without waiting indefinitely. The timeout value 𝑡𝑡𝑖𝑚𝑒𝑜𝑢𝑡  can be 

calculated based on the following parameters (list of symbols is given on Table 3.1).  

 

1. Inter-arrival time between in-order events (𝑡𝑖𝑛𝑡𝑒𝑟) 

2. Time spent on the buffer (𝑡𝑏𝑢𝑓𝑓𝑒𝑟) 

3. User configured maximum latency threshold (𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦−𝑡ℎ) 

 

The first parameter 𝑡𝑖𝑛𝑡𝑒𝑟 can be calculated by combining average 𝑡𝑎𝑣𝑔 and mean 

deviation 𝑡𝑑𝑒𝑣
  of the inter-arrival time between in-order events as shown in Equation 

3.1. We use mean deviation (mdev) than standard deviation (sdev) because it is a good 

approximation to standard deviation and easier to calculate [17]. Also, for most of the 
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common distributions the factor goes closer to 1 (mdev =√
𝜋

2
 sdev , √

𝜋

2
 ≈ 1.25) as 

discussed in [17] for calculating TCP timeout for retransmission. 

 

Table 3.1: List of symbols. 

Symbol Description 

𝑡𝑒
𝑠 Timestamp in which event e was generated at event source s 

𝑡𝑒
𝑟𝑒𝑓

 Timestamp at CEP engine when event e is originated at event source s 

𝑡𝑒
𝑟 Time which event e is received by CEP engine and excludes CEP 

processing time 

𝑡𝑒
𝑝
 Timestamp of event e in which events has been admitted into CEP engine 

for further processing 

𝑡𝑖𝑛𝑡𝑒𝑟
  Inter- arrival time between in-order events 

 𝑡𝑎𝑣𝑔 Average inter-arrival time between in-order events 

 𝑡𝑑𝑒𝑣  Mean deviation of inter-arrival time between in-order events 

𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡
  Current timestamp of the event 

∝ Smoothing factor used to find 𝑡𝑎𝑣𝑔and 𝑡𝑑𝑒𝑣  

𝑡 𝑏𝑢𝑓𝑓𝑒𝑟 
  Time spent on the buffer 

 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔 Average time spent on the buffer 

 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣 Mean deviation of time spent on the buffer 

𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑙𝑎𝑦
  Duration that the current event is held in the buffer  

𝛽 Smoothing factor used to find 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔and 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣  

𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦−𝑡ℎ
  User configured maximum latency threshold  

𝑇𝑖  Round trip time of an event source in i-th time sync iteration 

𝑡𝑖
𝑑  Time drift of an event source in i-th time sync iteration 

𝑇𝑠 Round trip time of event source s 

𝑡𝑠
𝑑  Time drift of event source s 
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𝑡𝑖𝑛𝑡𝑒𝑟  =  𝑡𝑎𝑣𝑔  +  2𝑡𝑑𝑒𝑣 (3.1) 

The inter-arrival time of events are measured and monitored for each event source at 

the CEP event receiver component. For the calculations of 𝑡𝑎𝑣𝑔 and 𝑡𝑑𝑒𝑣, the last 

arrived in order event timestamp of that particular source (𝑡𝑙𝑎𝑠𝑡
 ), and the current in-

order event timestamp 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡
  is stored. Then 𝑡𝑎𝑣𝑔

  and 𝑡𝑑𝑒𝑣 will be calculated based 

on Exponential smoothing as in Equation 3.2 and Equation 3.3 where ∝ is a smoothing 

factor. We opted to use the exponential smoothing because we will be using the 

calculated time values to adjust the timeout of the events arriving early. Therefore, we 

need to give more weightage to the recent time measurements, than older 

measurements which can be set via 𝛼. 

tavg = (∝ 𝑡𝑎𝑣𝑔 
 ) + (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡

  - 𝑡𝑙𝑎𝑠𝑡
 ) (1 - ∝)) (3.2) 

tdev = (∝ 𝑡𝑑𝑒𝑣
 ) + |[ (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡

  −  𝑡𝑙𝑎𝑠𝑡
 )  − 𝑡𝑎𝑣𝑔

 ] (1 − ∝)|  (3.3) 

 

Initially 𝑡𝑎𝑣𝑔
  and 𝑡𝑑𝑒𝑣 will be initialized to zero, and the hence the first 𝑡𝑎𝑣𝑔

 will be 

calculated as shown in Equation 3.4. 

tavg = (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡
  - 𝑡𝑙𝑎𝑠𝑡

 )  (3.4) 

Once the first 𝑡𝑎𝑣𝑔
  is calculated, the 𝑡𝑑𝑒𝑣

 can be calculated with the next in-order event, 

and first tdev will be calculated as shown in Equation 3.5.  

tdev = (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡
  - 𝑡𝑙𝑎𝑠𝑡

 ) - 𝑡𝑎𝑣𝑔
  (3.5) 

Second parameter 𝑡𝑏𝑢𝑓𝑓𝑒𝑟 
 , can be deduced by combining both average 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔and 

mean deviation 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣 of the time interval that the early events was held in the 

buffer as shown in Equation 3.6. 

𝑡𝑏𝑢𝑓𝑓𝑒𝑟  =  𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔  +  (2 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣) (3.6) 

 

Initial value of 𝑡𝑏𝑢𝑓𝑓𝑒𝑟 
 will be zero. Any events arriving early (i.e., the expect next 

sequence number x did not arrive but the event with sequence number x + n (n > 1) has 

arrived) will be buffered. Once the event with the expected sequence number is 
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received, the buffered events will be released based on the sequence number order. 

Therefore, when releasing those buffered events, the average time 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔 and 

mean deviation time 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣 that the events was held in the buffer can be 

calculated using Equation 3.7 and Equation 3.8 respectively, where 

𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑙𝑎𝑦
  is the time that the particular event was held in the buffer 

and 𝛽 is buffered delay smoothing factor. 

tbuffer-avg = (𝛽 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔
  ) + (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑙𝑎𝑦

  (1 - 𝛽)) (3.7) 

tbuffer-dev = (𝛽 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣 
 )+|[(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑙𝑎𝑦 

 − 𝑡 𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔 
 ) (1 − 𝛽)]|  (3.8) 

 

In the initial stage of the system 𝑡𝑏𝑢𝑓𝑓𝑒𝑟
 will be initialized to zero, and the first 

𝑡𝑏𝑢𝑓𝑓𝑒𝑟
 will be calculated as: 

𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔
  = 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑙𝑎𝑦

  (3.9) 

Once the first 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔
 is calculated, the 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣

  can be calculated when 

clearing the buffer next time. Hence, the first 𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑣
  will be be calculated as 

shown in Equation 3.10. 

tbuffer-dev = |[ (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑏𝑢𝑓𝑓𝑒𝑟−𝑑𝑒𝑙𝑎𝑦
 )  −  𝑡𝑏𝑢𝑓𝑓𝑒𝑟−𝑎𝑣𝑔

 ] | (3.10) 

The final timeout 𝑡𝑡𝑖𝑚𝑒𝑜𝑢𝑡
  can be calculated as: 

𝑡𝑡𝑖𝑚𝑒𝑜𝑢𝑡
  = Min (𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦−𝑡ℎ

 , Max (tinter, tbuffer))  (3.11) 

Based on Equation 3.11, when the event inter-arrival time is large, the user-defined 

latency threshold dominates for the timeout calculation. However, it is fair to assume 

that out-of-order events are rare for longer event inter-arrival streams as they have 

sufficient time to tolerate network delays and distributed CEP processing. Therefore, 

using user-defined latency threshold for timeout in such cases will not bring any 

negative impact to the solution. 

 

This technique is suitable for continuous stream of high traffic events, where the 

legitimate events will not be having any additional overhead and will be just passing 
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through the system. Only the events which arrive early will be held back to match with 

other event sources. In related work such as MP-K-Slack and AQ-K-Slack events will 

be held in the selected size of buffer even though the event stream is in order. 

 

3.2.2. Handling Events Produced from Multiple Event Sources 

Next, we focus on handling out-of-order event arrival among multiple event sources. 

It is reasonable to assume that the events are ordered within a single event source using 

the sequence-based approach proposed in Section 3.2.1. To handle this problem, we 

propose an approach where the CEP event receiver estimates the time drift between 

the CEP receiver and actual event sources and then ordering the events from multiple 

event sources based on this estimate.  

 

In this approach, the time synchronization will be performed between the event 

receiver and the CEP engine. Event receiver will order events from each event source 

based on sequence number per event stream, and then pass the events to the 

Synchronizing Component. Synchronizing Component is responsible to order the 

events from multiple event sources per event stream and release global ordered event 

stream to the query operators. Each event streams will be handled by different threads 

in the Synchronizing Component. As event sources could be in different time zones 

without using standard time and the clocks may be out of sync, we cannot order the 

events based on the timestamp 𝑡𝑒
𝑠 by the event source. However, to find the global 

order of the event sequence, we need to map the timestamp of the events from different 

sources to a single base clock. As all the event sources send events to the CEP engine, 

events could be ordered by taking the CEP engine’s clock as the reference. Thus, each 

event’s timestamp can be mapped to 𝑡𝑒
𝑟𝑒𝑓

, which is the timestamp at the CEP engine 

at the time of event generation at source. For this, we need to calculate the clock drift 

between the CEP receiver and each event source and store them within the CEP 

receiver.  

 

Therefore, we use an approach similar to the Network Transfer Protocol (NTP) time 

synchronization [18] to calculate the round trip delay and the time drift between the 
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event source and CEP receiver. Here, the CEP server will act as an NTP server, and 

the event source will act as an NTP Client, and it uses UDP transport to calculate the 

time drift. We calculate the round trip delay and time drift for each event source and 

use that to correct the incoming event’s timestamp in the CEP server, without changing 

the event source’s local clock. 

Figure 3.2: Communication between the CEP receiver and event source to calculate 

the timestamp drift. 

 

The time sync process will be initiated first by the event source before transmitting the 

actual events. During the time synchronization process, CEP Server and Event source 

will record the timestamps at the arrival and departure of the time sync packets similar 

to NTP [18] as shown in Figure 3.2. Therefore, in the i-th time synchronization 

attempt, the round trip time 𝑇𝑖 is calculated as per Equation 3.12, and time drift 𝑡𝑖
𝑑 is 

calculated as per Equation 3.13 [18]. 

𝑇𝑖 = ( t4 − t1)  −  (t3  −  t2)  (3.12) 

𝑡𝑖
𝑑 = [(𝑡2  −  𝑡1)  + (𝑡3  −  𝑡4)]/2  (3.13) 

Equation 3.13 assumes that network delays are a stationary random process, but 

practically stochastic network delays are common, and the network queues can grow 

and shrink in a chaotic fashion. Therefore, the accuracy of the time drift can be 

impaired and hence the bounds of the actual time drift 𝑡𝑠
𝑑  can be as Equation 3.14 [18]: 

𝑡𝑖
𝑑 −  

𝑇𝑖

2
≤ 𝑡𝑠

𝑑  ≤  𝑡𝑖
𝑑 +  

𝑇𝑖

2
 

(3.14) 
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Based on Equation 3.14, we can claim that the true time drift of the event source 𝑡𝑠
𝑑 , 

must lie in the interval of size equal to the measured delay and centered about the 

measured time drift.  

 

Event source will send a series of time sync requests to increase the accuracy of the 

round trip delay and time drift calculation. And then we use NTP data filtering method 

- minimum filter [18] in CEP server, which selects the time sync request with lowest 

delay Ti to calculate the final round trip delay, and time drift (𝑇𝑠, 𝑡𝑠
𝑑) for among all the 

time synchronization requests.  

 

Once the time sync process is complete, the event source will start to publish the actual 

events. And hence when a new event arrives, the calculated drift 𝑡𝑠
𝑑for its event source, 

can be added to the event timestamp 𝑡𝑒
𝑠 to find the reference timestamp 𝑡𝑒

𝑟𝑒𝑓
of that 

event. For example, assume there are three event sources, S1, S2, and S3 which 

publishes for event stream as shown in Figure 3.3. The respective calculated time drifts 

are 𝑡𝑠1
𝑑 , 𝑡𝑠2

𝑑 , and 𝑡𝑠3
𝑑 . Therefore, the CEP’s synchronizing component will be adding the 

timestamp drift of the source to each of its events and compare with all events from all 

sources and provide an estimated global order per event stream as shown in Figure 3.3 

and Equation 3.15. 

𝑡𝑒
𝑟𝑒𝑓

 = 𝑡𝑒
𝑠+ 𝑡𝑠

𝑑  (3.15) 

There could be also local clock drift at event sources and CEP with time; hence, we 

also need to periodically re-calculate the drift for each event source. This could be 

achieved by repeating the same process which could update the record drift maintained 

at the event receiver. The period in which the calculation can occur can be set during 

the event source initialization. 
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Figure 3.3: Out-of-order event handling with multiple event sources for  

event stream R1. 

 

As shown in Figure 3.3, the ordered events received from each source is globally 

ordered by the Synchronizing Component. Each event stream is handled by a separate 

thread in the Synchronization Component, which also corrects the time based on the 

estimated drift. As shown in Figure 3.3, the events of an event stream are already sorted 

based on the sequence number. Therefore, the synchronizing component will fetch the 

first event (i.e., the lowest sequence and timestamp event) of each event sources that 

publish to the particular event stream. The reference timestamp of the fetched events 

will be calculated by adding the estimated time drift as explained in Equation 3.15. 

The event which has the lowest reference timestamp among all fetched events will be 

released to the next process. Then, the component will fetch the next event from the 

same event source that the last released event belongs to. It then calculates the 

reference timestamp for the newly fetched event and continues the same comparison 

and releasing process.  

 

However, not all event sources will have events during the synchronization process. 

Therefore, if one of the event sources does not have an event during the 

synchronization process, then the component will wait until the timeout defined for 

that event source as per Equation 3.11. If an event arrives for that particular event 

source before the timeout, then it will be fetched and used in the comparison and 

releasing process along with other event sources. But in case, if the event did not arrive 



 

 40 

within the timeout, then the synchronization component will flag the event source as 

timed out. This flag will be down once a new event arrives for the source. When the 

flag is up for a particular source, the synchronization component can skip it without 

waiting, e.g., the event source may have gone offline or stopped publishing events.  

 

However, overall with this approach, the event source with the highest out of order 

event distribution dominates the latency incurred in the events whereas, for larger 

event inter-arrival event sources, the user-defined latency threshold dominates. 

 

3.2.3. Query Operators with Out-of-order Events 

Once the out-of-order events are ordered as per the mechanisms discussed in Section 

3.2.1 and 3.2.2, the ordered events are presented to the query operators to perform the 

actual query execution on those events. Due to timeout-based buffers, a few events 

may still be out-of-order; hence, need to be handled further. Next, we focus on two 

query operators such as aggregation operator and pattern operator, which depend on 

the order of the event arrivals when processing within a window of events. 

  

3.2.3.1. Time Batch Window and Aggregation Operators 

Based on the multiple source out-of-order approach, we calculate the time drift 𝑡𝑠
𝑑for 

each event source, and event timestamps are adjusted accordingly. As mentioned in 

Equation 3.14, the calculated drift 𝑡𝑠
𝑑can vary ±(𝑇𝑠

 /2). In that case, there exists an 

ambiguous range of events in a window which may or may not actually correspond to 

that window. Therefore, we cannot have a window which has the size less than the 

𝑇𝑠 
 because all the events that are included on the window will be in the ambiguous 

range.  

 

Let us consider 𝑇𝑎
 as the maximum round-trip time of all event sources.  

𝑇𝑎
 = 𝑀𝑎𝑥(𝑇𝑠

 )  (3.16) 

Let w be the windows length in time. As seen on Figure 3.4, the events from 𝑡 to 𝑡 −

(
𝑇𝑎

2
) and from 𝑡 − (

𝑇𝑎

2
) + 𝑤 to 𝑡 + 𝑤 are in the ambiguous range. Similarly, the events 
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from 𝑡 − (
𝑇𝑎

2
) to 𝑡 and from 𝑡 + 𝑤, and 𝑡 + (

𝑇𝑎

2
) +  𝑤 maybelong to the time window, 

though that is out of the window time. Therefore, when query operators are used along 

with the window of events, there are five different kinds of events produced at the end 

of the window, they are:  

1) Events between the 𝑡 − (
𝑇𝑎

2
) and 𝑡. 

2) Events between 𝑡 and 𝑡 + (
𝑇𝑎

2
). 

3) Events between 𝑡 + (
𝑇𝑎

2
) and 𝑡 − (

𝑇𝑎

2
) + 𝑤. 

4) Events between 𝑡 − (
𝑇𝑎

2
) + 𝑤 and 𝑡 + 𝑤. 

5) Events between 𝑡 + 𝑤, and 𝑡 + (
𝑇𝑎

2
) + 𝑤. 

 

Figure 3.4: Multiple time batch windows to cover the events from ± (𝑇𝑎
 /2) of 

original time batch window w. 

 

As per Figure 3.4, the events between time  𝑡 + (
𝑇𝑎

 

2
) and   𝑡 − (

𝑇𝑎
 

2
) + 𝑤 corresponds 

to the window 𝑤. But the events from 𝑡 − (
𝑇𝑎

 

2
) to 𝑡 + (

𝑇𝑎
 

2
) and events from 𝑡 − (

𝑇𝑎
 

2
) +

𝑤 to 𝑡 + (
𝑇𝑎

 

2
) + 𝑤 may or may not belong to this window. Therefore, given the 

knowledge about different kind of events passed to the query operators, users can write 

their CEP queries to accommodate this behavior. Hence, we can have three time batch 

windows that range from 𝑡 − (
𝑇𝑎

 

2
) to 𝑡 − (

𝑇𝑎
 

2
) + 𝑤, from 𝑡 to 𝑡 + 𝑤, and from 𝑡 + (

𝑇𝑎
 

2
) 

to 𝑡 + (
𝑇𝑎

 

2
) + 𝑤. This multiple window can be used for the aggregation calculation to 
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reduce the inaccuracies that could have been introduced by the time drift calculation. 

Therefore, we can perform the aggregations for three windows of events 𝑡 − (
𝑇𝑎

 

2
) 

to 𝑡 − (
𝑇𝑎

 

2
) + 𝑤,  𝑡 to 𝑡 + 𝑤, and 𝑡 + (

𝑇𝑎
 

2
) to 𝑡 + (

𝑇𝑎
 

2
) + 𝑤 and emit the average of all 

three windows as the final aggregated results, which will be more accurate than 

considering the single estimated window 𝑡 to 𝑡 + 𝑤. 

  

This method reduces impact due to any inaccuracies in the time drift calculation and 

increases the accuracy of the query result after the window and aggregation operation. 

However, the disadvantage of this method is that the users have to be aware of this 

condition and rewrite the query to make use of the three time windows, as this will not 

be handled automatically within the CEP engine.  

 

3.2.3.2. Pattern Matching 

The order of the events significantly influences the pattern matching decision. 

Therefore, once the events are ordered with the sequence-based approach, we can use 

the pattern matching operator directly to detect the pattern. However, as mentioned in 

Section 3.2.3.1, due to the uncertainty in calculating the exact drift there will be a 

certain ambiguous time range of the event in which it could have actually occurred. 

Therefore, we need to consider the time difference of the events which contributed to 

the pattern matching to evaluate its correctness of the general pattern matching 

decision. Let us consider an example, where e1 and e2 as two events and the actual 

pattern to detect is event e1 followed by event e2. The pseudocode to detect the pattern 

in this case that handles the inaccuracies in drift is shown in Pseudocode 3.1. 

 

As shown in Pseudocode 3.1, we try to detect both combinations of pattern e1 followed 

by e2, and e2 followed by e1. In both cases, we evaluate the time difference of the event 

occurrences, and if the time difference is less than time 𝑇𝑎
  mentioned in Equation 3.16, 

then we can mark it as Uncertain pattern detection because it could be actually correct 

decision or false positive. If it is greater than 𝑇𝑎
 , then we can be certain about our final 

decision, and we can conclude as the pattern is detected or not.  
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if e1 -> e2,  

if(e2.timestamp - e1.timestamp <= 𝑇𝑎 )  

then  

PRINT ‘Uncertain Pattern Detection’ 

else 

PRINT ‘Confirmed Pattern Detection’ 

 

if e2 -> e1,  

if(e1.timestamp - e2.timestamp <= 𝑇𝑎) 

then  

PRINT ‘Uncertain Pattern Detection’ 

else  

PRINT ‘Pattern Not Detected’ 

Pseudocode 3.1: Pattern detection code for pattern event e1 followed by e2.  

 

 

The main advantage of this method is that it makes sure that there are no false negative 

pattern decisions; therefore, it is very suitable for domains such as finance, health care, 

and fraud detection, where false negative is not acceptable at all. Since the pattern 

matching result is provided with additional information about the uncertainty, the final 

decision can be taken by the end users based on the business context of the pattern 

matching query. The disadvantage of this method is that the users will have to rewrite 

the pattern matching query by utilizing the time drift calculation, and it is not handled 

within the CEP engine automatically. If the pattern has more events, then the modified 

pattern matching query will be more complex. 

 

3.4. Summary 

This Chapter discussed the terminology and proposed a solution to handle out-of-order 

events. Our proposed approach contains three primary steps, that includes ordering the 

events for single sources based on the sequence numbers, ordering the events with 

multiple sources with time drift calculations, and finally presenting the events to 

window and query operators. In our proposed approach, the incoming events are 

initially ordered based on the sequence numbers which are injected into the events by 

the event sources, and then the ordered events of a single source are added to the queue 

for multiple source synchronization. The time drift is calculated at the time of event 

source initialization by using the NTP like technique, and it is used to calculate the 

reference time of the event received based on its event source ID. Further, this 
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calculated reference timestamp is used to order the events among multiple sources. As 

there could be irregularities in the calculation of the reference time of a source, we 

have proposed multiple window approach where additional two windows are 

maintained in the difference of the max delay time of all sources for the event stream. 

This information needs to be utilized explicitly when writing the aggregator and 

pattern matching queries. The aggregator operators can be written in a way that it can 

utilize multiple windows and increase the accuracy of the final result. Similarly, 

pattern matching query can also be written to consider max delay time into its final 

pattern matching decision and increase its accuracy of the decision with an additional 

attribute to specify about the confidence level of the pattern matching result.  
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4. IMPLEMENTATION  

 

To demonstrate the proposed solution, it is implemented on the WSO2 CEP Siddhi 

engine [19]. Siddhi is selected as it is open-source, has low latency, and capable of 

analyzing millions of events per second [19]. The main reasons for selecting Siddhi 

CEP are: 

1. Known to consume minimum resources such as memory and CPU.  

2. It has throughput high as 30 Million events/sec and latency ranges from 1 ms 

to 130 ms for most of the cases such as pass-through, filter query, and time 

windows [19], [20].  

3. Have multiple extension points such as Stream Function Extension, Stream 

Processor Extension, and Window, Aggregate and Custom Function 

Extensions [21], [22].  

4. Easy-to-use and Open Source CEP engine under Apache Software License 

v2.0 

 

Figure 4.1: Out-of-order event flow of an event stream within siddhi engine. 

 

Figure 4.1 shows the main components and the event flow to handle out-of-order 

events of an event stream in Siddhi engine. Note that the entire process is executed per 

event stream by a different thread, and there are no resources shared among multiple 

event streams including the event buffers and queues. Sequence-Based Reorder 

Extension is the heart of solution where out-of-order events are ordered by sequence 
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numbers for a single event source, and reference timestamps for multiple event sources 

for a particular event stream. Source-based Information Store holds the information 

about the time drift, inter-arrival time and time spent on buffer per event stream. And 

this information is used by Sequence-based Reorder Extension to find the global order 

of the events in the event stream from multiple sources, and Source Drift Variation 

based Window Processor to maintain multiple windows as explained in Section 

3.2.3.1. If the user-defined CEP query has time batch window query, then the output 

events from Sequence-based Reorder Extension will be first passed to the Source Drift 

Variation based Window Processor, and then the events expired from the windows are 

presented to the query operator such as aggregator operators to produce the actual 

result of the query for events within the time window. If the user-defined CEP query 

does not involve any time batch window operators, then the output events from 

Sequence-based Reorder Extension will be directly fed into the query operators such 

as pattern matching, filter queries, and pass through queries. 

 

As depicted in Figure 4.1, the following steps are followed when handling the out-of-

order events in Siddhi CEP Engine:  

1. As a first step, the event sources will send initialization Time Sync events to 

Siddhi CEP Server along with its source ID to calculate the source drift and 

reference timestamp 𝑡𝑒
𝑟𝑒𝑓

as mentioned in Section 3.2.2. Once the initialization 

is successfully performed, the event source will start to publish its actual event 

stream.  

2. The actual events are passed into the Sequence-based Reorder Extension, that 

orders the events based on the sequence number of each source ID and 

synchronizes the events across all the event sources based on the reference 

timestamp 𝑡𝑒
𝑟𝑒𝑓

as mentioned in Equation 3.12. 

3. If the user has used time batch window as the CEP query, then the output events 

from the Sequence-based Reorder Extension are fed into the Source Drift 

Variation based Window Processor. Else, the output events from the Sequence-

based Reorder Extension are directly fed into the intended query operators 

(e.g., pattern matching) of the defined CEP query.  
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4. If the events are fed into the Source Drift Variation based Window Processor, 

then it maintains multiple windows to cover the events from ± (𝑇𝑎
 /2) of 

original time batch window w as mentioned in Section 3.2.3.2. Once the events 

are expired from time batch window, those are presented to the query operators 

(e.g., aggregator operator) to produce the final results as discussed in Section 

3.2.3.1. 

 

Next, we explain the detailed implementation on top of WSO2 Siddhi CEP engine. We 

use TCPNettyClient [23], [24] to publish events into an event stream in a remote CEP 

server. But this client does not have the time syncing process that we discussed in 

Section 3.2.2. Therefore, the new client was implemented by extending the existing 

TCPNettyClient [23] to include the time syncing process. The client can be initialized 

as shown in Sample Code 4.1.  

 
TCPNettyClient tcpNettyClient = new TCPNettyClient(); 

//Host: 10.100.1.138 

//Actual Event Receiver Port:9892 

//Time Sync Receiver UDP Port: 7452 

//Source ID: “Sensor1” 

//Number of Time Sync Attempts: 10 

tcpNettyClient.connect("10.100.1.138", 9892, 7452, ”Sensor1”, 10); 

 

Sample Code 4.1: Extended TCPClient initialization with time syncing. 

 

A new UDP (User Datagram Protocol) Time Sync Server was implemented to receive 

the time sync events in the Siddhi CEP server. It calculates the time drift based on the 

event source and updates the Source-based Information Store as shown in Figure 4.1. 

This data is later used when reordering events in the Sequence-based Reorder 

Extension and Source Drift Variation based Window Processor. Once the initialization 

is successful, the event sources can send the actual events. The event stream defined 

to handle out-of-order events should consist of additional attributes to specify the 

source ID of the event source and sequence number of that event. For example, Query 

4.1 and 4.2 introduce additional attributes sourceId and seqNum to handle the out order 

events. Because the stream definition consists of additional attributes sourceId and 
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seqNum, the events published to the event stream from event sources also should 

consist of the same data.  

 
define stream inputStream (timestamp long, temperature 

double); 

Query 4.1: Stream definition without out-of-order handling. 

  
define stream inputStream (timestamp long, temperature double, 

sourceId string, seqNum long); 

Query 4.2: Stream definition with out-of-order handling. 

 

Once the actual events are received, those are passed to the Sequence-Based Reorder 

Extension which is the main component of the out-of-order event handling. This is 

developed by extending the Stream Processor extension without modifying the core 

Siddhi CEP code. The stream can be enabled with this reorder extension as shown in 

Query 4.3.  

 
from inputStream#reorder:sequence(sourceId, seqNum, timestamp, 

10L, 0.6, 0.6, false) 

select timestamp, temperature 

insert into inOrderStream; 

Query 4.3: Query with sequence based reorder extension. 

 

There are mainly seven configurable parameters for this extension as indicated in 

Query 4.3, namely: 

1. Attribute name of the event stream definition that denotes the source ID field 

sourceId 

2. Attribute name of the event stream definition that denotes the sequence number 

field seqNum. 

3. Attribute name of the event stream definition that denotes the timestamp field. 

If this is not provided, then the event’s default timestamp is taken 

4. The user-defined timeout in ms and this will be used to control the maximum 

time the events are kept in the buffer. 
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5. The value for smoothing factor ∝which can be a decimal number between 0 to 

1. This value is used to calculate event inter-arrival time as explained in Section 

3.2.1.  

6. The value for smoothing factor 𝛽 which can be a decimal number between 0 

to 1. This value is used to calculate the duration of early events spent in the 

buffer as explained in Section 3.2.1. 

7. The Boolean parameter to configure whether to drop or pass late arrival events 

after the timeout. 

 

Once the event is received by the Sequence-based Reorder Extension, the flow 

illustrated in Figure 4.2 is executed to order the events based on sequence numbers per 

event source. When an event is received, the event’s sequence number (seqNum) is 

checked against next expected sequence number (expSeqNum = last seen in-order 

sequence number + 1) for the event source. If it is equal, the event is passed to multi-

source synchronization, and subsequently, release all buffered events that follow the 

current event’s sequence number. If the sequence number is greater than expected 

sequence number, then it will put the event into the buffer. If the sequence number is 

less than the expected sequence number, then based on the user-defined configuration 

of the Sequence-based Reorder Extension, the event will be dropped or put into multi-

source synchronization immediately. The in-order event arrival time and buffered 

event time are calculated (Section 3.2.1) respectively when an event arrived in order 

(i.e., seqNum == expSeqNum), and when the buffered events are released after the 

expected sequence number has arrived. These values are used to calculate the timeout 

as explained in Section 3.2.1 when an event is added into the buffer. Once the events 

are ordered for each event sources, the events are added to the source specific event 

queues for multi-source event synchronization.  

 

Once the events are added into the source specific queues, those are picked up by 

multi-source synchronization, which orders the events based on 𝑡𝑒
𝑟𝑒𝑓

. Effectively it 

collects the smallest 𝑡𝑒
𝑟𝑒𝑓

event from all event queues and releases it to the next process. 

It then polls the next event from the same queue which had the smallest 𝑡𝑒
𝑟𝑒𝑓

and 
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continue the same iteration. In case, if the event queue is empty, then it will wait till 

the same timeout calculated by Equation 3.11 then continue the synchronization 

process. 

Figure 4.2: Sequence-based ordering in sequence-based reorder extension. 

 

If the user-defined CEP query consists of time batch window, then in the ordered event 

stream is passed to the Source Drift Variation based Window Processor. This custom 

window processor [22] implementation will retrieve 𝑇𝑎
 as per Equation 3.16 from the 

Source-based Information Store, and will maintain three different windows as follows: 
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1. Low window – The window events from event from 𝑡 − (
𝑇𝑎

2
) to 𝑡 − (

𝑇𝑎

2
) + 𝑤. 

2. Middle window – The window events from event from 𝑡 to 𝑡 + 𝑤. 

3. High window – The window events from event from 𝑡 + (
𝑇𝑎

2
) to 𝑡 + (

𝑇𝑎

2
) + 𝑤. 

 

The window can be defined as in Query 4.4 along with the Sequence-based Reorder 

Extension.  

from inputStream#reorder:sequence(sourceId, seqNum, timestamp, 

10L, 0.6, 0.6, false)#reorder:externalTimeBatch(timestamp, 1 

sec, false) 

select timestamp, temperature 

insert into inOrderWindowedStream; 

  Query 4.4: Reorder time batch window. 

 

The window can have three different configurations as follows: 

1. The timestamp field name in which the external time batch window should 

operate, i.e., timestamp field. 

2. Time window Size (e.g., 1 sec). 

3. Boolean parameter to configure whether immediately emit the windowed 

events as the time elapsed. The Low window will be elapsing first and the High 

window will be elapsing last. And this configuration controls whether the 

events of the window needs to be released immediately when that specific 

window is elapsed, or to hold those are release together at time 𝑡 + (
𝑇𝑎

2
) + 𝑤. 

According the Query 4.4, this parameter set to false. 

 

The expired events from the time window will have an additional attribute as 

windowType to specify which type of time window that the event belongs to.  

 

Now we will focus on using the query operators after the time window. Let us consider 

the sum operator as a sample query operator, and with the above window of events 

that can be used as shown in Query 4.5. The individual sum is calculated for each 

window of events, and the average of those are considered into the final output, which 

reduces the effect of irregularities in calculating the event source’s time drifts.  
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from inputStream#reorder:sequence(sourceId, seqNum, timestamp, 

10L, 0.6, 0.6, false)#reorder:timeBatch(1 sec, false, false) 

select  

(sum(ifThenElse(windowType=='LOW',price, 0.0f))+  

sum(ifThenElse(windowType=='MIDDLE',price,0.0f))+ 

sum(ifThenElse(windowType=='HIGH',price, 0.0f)))/3 as 

totalPrice 

insert all events into outputStream; 

Query 4.5: Sample siddhi query to calculate average of aggregated results among 

different windows. 

 

If the user-defined CEP query does not consist of time batch window, the output events 

from the Sequence-based Reorder Extension will be directly fed into the query 

operators without passing through the Source Drift Variation based Window 

Processor. Pattern matching is one type of query operator which does not require to 

be used along with time batch window. Now let us focus on using the pattern matching 

query operator with out-of-order event arrival with Siddhi CEP Engine. 

 

For pattern matching, we have to consider the actual intended pattern and the other 

combinations of the event sequence of the pattern and incorporate all those into the 

pattern matching query. Once the pattern is detected we will have to compare the time 

difference of the events that participated in detecting the pattern, with the max delay 

(𝑇𝑎
 /2) of the event sources, and decide whether the pattern detection is confirmed, or 

uncertain as explained in Section 3.2.3.2. Therefore, we have implemented a new 

function maxDelay to retrieve the max transport delay of the event sources that publish 

events to the intended original event stream. Let us consider an example of detecting 

the pattern where an event e1 which has temperature greater 30 is followed by an event 

e2 which has temperature greater than 35 in the event stream inOrderStream. Query 

4.6 shows how the pattern-matching query operator can utilize the maxDelay function 

and produce the result with additional field confidence as explained in Section 3.2.3.2.  

 

 

from every e1=inOrderStream [temperature > 30]  

-> e2=inOrderWindowedStream [temperature > 35] 

select ifThenElse(e2.relativeTimestamp - 

e1.relativeTimestamp<=reorder:MaxDelay(‘inputStream’) 
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,'UncertainPatternDetected', ‘Confirmed’) as confidence, 

e2.temperature, e2.timestamp  

insert into patternStream; 

 

from every e2=inOrderStream [temperature > 35]  

-> e1=inOrderWindowedStream [temperature > 30] 

select ifThenElse(e1.relativeTimestamp - 

e2.relativeTimestamp<=reorder:MaxDelay(‘inputStream’) 

,'UncertainPatternDetected', ‘Not Matched’) as confidence, 

e2.temperature, e2.timestamp 

having confidence == 'UncertainPatternDetected'  

insert into patternStream; 

Query 4.6: Pattern matching query with maxDelay function. 

 

Though we are interested in single pattern (e1 followed by e2), Query 4.6 consists of 

two pattern matching queries. It is because, as we discussed in Section 3.2.3.2, the 

relative order of the events cannot be accurately decided if the time difference between 

them is less than maxDelay. Therefore, we write the pattern matching query for both 

event sequence, e1 followed by e2 (first part of Query 4.6) and e2 followed by e1 

(second part of Query 4.6). In both pattern matching cases, we check the time 

difference of the events in the pattern with maxDelay and add the confidence attribute 

to express the level of confidence about the pattern detection. As the first part of Query 

4.6 consists the actual pattern, if the event time difference is less than or equal 

maxDelay, then the confidence attribute is set to UncertainPatternDetected, else it is 

set to Confirmed. Since the second part of the Query 4.6 consists of the alternate event 

sequence of the actual pattern, if event time difference is less than or equal maxDelay, 

then the confidence attribute is set to UncertainPatternDetected, else it is set to 

NotMatched. Finally, with the second part of the Query 4.6, we only trigger the pattern 

detection if the confidence attribute is equal to UncertainPatternDetected, and ignore 

pattern detected with NotMatched. 

 

4.1. Summary 

This Chapter discussed the implementation details of the proposed methodology. We 

have implemented many custom extensions for WSO2 Siddhi CEP Engine, to 

implement the proposed methodology. A new UDP based Time Sync Server is 

developed to calculate the time drift and round trip time as explained in Section 3.2.2. 
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Also, a new TCP-Netty-Client is implemented to include the time syncing process 

which transmits a series of UDP time sync messages before transmitting the actual 

events stream. The event sources should use the new implementation of the TCP-

Netty-Client and add two additional attributes to specify the event sequence number 

and the source ID when publishing each event. The Sequence-based Reorder Extension 

is the custom extension developed to handle the out-of-order event arrival, and it is the 

core part of the implementation. The events received for an event stream are passed 

into this extension as the first step before it is processed by any query operators. This 

extension orders events from both single and multiple event sources. The Source Drift 

Variation based Window Processor is custom window extension implemented to 

handle the multiple windows as explained in Section 3.2.3.1, and it is used when the 

user had defined the time batch window in the CEP query. We also discussed how 

Siddhi queries for aggregation and pattern matching operators can be modified as 

discussed in Section 3.2.3.1, and 3.2.3.2.  
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5. PERFORMANCE EVALUATION 

 

In this Chapter, we will evaluate the performance of the proposed sequence based 

reordering approach. Section 5.1 presents the dataset and how it is used for the 

evaluation. Section 5.2 discusses the experimental setup and hardware configurations. 

Section 5.3 compares the performance of the proposed solution with other reordering 

techniques such as AQ K-Slack and MP-K-Slack. Section 5.4. presents in-depth 

information on accuracy and latency. 

 

5.1. Dataset 

The datasets used for this evaluation were derived from the football dataset used in 

DEBS (Distributed Event-based Systems) 2013 Grand Challenge [25]. A football field 

of the Nuremberg Stadium in Germany was equipped with real-time locating system 

that collects data about location of ball and players. And it contains 47 Million rows 

of events. Data originates from mainly two types of sensors; one located near the shoes 

of the players (single sensor per leg) and another one in the ball (single sensor). 

Further, two sensors (one at each hand) are attached with the goal keeper. The sensors 

attached to players can produce data with 200 Hz frequency, while the sensor attached 

to the ball produces data with 2,000 Hz frequency. 

Figure 5.1: Playing field and its dimensions in mm [25]. 
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The overall total data rate produced by all sensors is 15,000 position events/sec. Every 

event produced by illustrates the position in a 3D coordinate system. Figure 5.1 depicts 

the coordinates of the kickoff and dimensions of the playground. The event schema is 

given below, and the description of each attributes are provided in Table 5.1.  

sid, ts, x, y, z, |v|, |a|, vx, vy, vz, ax, ay, az 

    

Table 5.1: Description of event attributes. 

Symbols Description  

sid Sensor Id- Produced the position event 

ts 

Timestamp- Defined in picoseconds e.g.: 10753295594424116 (with the value 

of 10753295594424116 designating the start and 14879639146403495 the end 

of the game) 

x, y and z Position of the sensor in mm 

|v| Velocity of the ball in μm/s 

|a| Absolute acceleration of the ball in μm/s&sup2 

vx, vy and vz Direction by a vector with size of 10,000 (in m/s) 

ax, ay and az Constituents of absolute acceleration in three dimensions 

 

The original dataset contains the events that are generated from the sensors and ordered 

by the timestamp. We extracted a smaller dataset of roughly 500,000 events from this 

original dataset and prepared three different datasets by introducing completely 

different out-of-order event distributions into them. Table 5.2 shows the total number 

of events and the number of events that were out-of-order from those.  

Table 5.2: Input Dataset and out-of-order events. 

Dataset Name Total Events  No of Out-of-order Events 

Dataset 1 499982 62473 

Dataset 2 499499 62409 

Dataset 3 999499 83212 
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The distribution of latencies introduced in out-of-order event dataset 1, 2, and 3 are 

shown in Figure 5.2 to 5.5. 

Figure 5.2: Average events inter-arrival time with out-of-order event Dataset 1 and 

Dataset 2. 

Figure 5.3: Maximum events inter-arrival time in Dataset 1 and Dataset 2.  
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Figure 5.4:Average events inter-arrival time with out-of-order event Dataset 3 

Figure 5.5: Maximum event inter-arrival time in seconds for Dataset 3.  

 

Dataset 1 has mainly two significant late arrivals and average late event inter-arrival 

time is between 0.1 to 0.3 ms. Also, the significant late arrival events in the Dataset 1 

were having a max delay from 750 to 1000 ms. Whereas Dataset 2 had a much wider 
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distribution of out-of-order events and average late inter-arrival time is less than 1 ms. 

The maximum delay of the out-of-order events were less than 2 seconds. Dataset 3 

was created with a larger average late inter-arrival time ranging from 1 ms to 7 ms. 

Also, the maximum delay of out-of-order events ranges in seconds and goes up to 30 

seconds.  

 

5.1.1. Dataset for Single Source 

All three datasets were tagged with additional attribute sourceId and seqNum to denote 

the identifier of the event source that the event belongs to and the sequence number of 

the event. For the single source performance evaluation purpose, all three dataset 

events were added with the same source ID and the sequence number is added in the 

increasing order of the event’s timestamp. The stream definition defined in Query 5.1 

was used on these datasets. 

 
@source(type='tcp', @map(type='binary'))  

define stream inputStream (sid int, ts long, x int, y int, z 

int, v_abs int, a_abs int, vx int, vy int, vz int, ax int, ay 

int, az int, sourceId string, seqNum long); 

Query 5.1: Stream definition for datasets. 

 

5.1.2. Dataset for Multiple Sources 

The evaluation of the proposed methodology is performed for 2, 5, 10, and 20 event 

sources. Dataset 3 was used for this evaluation, as it has comparatively large average 

late inter-arrival time compared to the other two datasets and has relatively wider out-

of-order event distribution. Also, we used multiple clients to simulate multiple event 

sources. Additionally, the actual timestamp of the event was increased by 3 ms with 

increasing source ID. For example, let us assume an event was published at timestamp 

t (in milliseconds) with single source, then with multiple sources the source ID 0 will 

be publishing the same event at timestamp t, source ID 1 will be publishing the same 

event with timestamp t + 3, source ID 2 will be publishing the event at timestamp t + 

6, and so on. This modification was made to the dataset to make more realistic test 
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with multi sources and to evaluate the effect of multi-source event synchronization. 

The stream definition defined in Query 5.1 was used for this evaluation as well. 

 

5.1.3. Dataset with Time Drift for Event Source 

The same Dataset 3 was improved to evaluate the effect of time drift. A new field was 

injected into the dataset as driftedTs which will have the (actual timestamp + time 

drift). Therefore, when an event source is initiated, based on the time drift provided 

for the evaluation purpose, it will add the new field driftedTs to the event, and publish. 

For example, let us assume t is reference timestamp of an event and d is the drift for 

the event source. Therefore, the client will send two timestamp attributes, where ts 

attribute will be having the value t and driftedTs will be having the value t + d. Further, 

the CEP server will be using the driftedTs to actually order events between the event 

sources, and ts will be used to evaluate the accuracy of the re-ordering approach. Since 

we modified the attributes in the original dataset, the stream definition is modified as 

shown in Query 5.2.  

 
@source(type='tcp', @map(type='binary'))  

define stream inputStream (sid int, ts long, x int, 

y int, z int, v_abs int, a_abs int, vx int, vy int, 

vz int, ax int, ay int, az int, sourceId string, 

seqNum long, driftedTs long); 

Query 5.2: Stream definition for Dataset with time drift. 

 

5.1.4. Dataset for Pattern Matching 

A new dataset, namely Dataset 4, was generated for pattern matching which has the 

events in the pattern in out-of-order fashion. The dataset consists of a pattern of goal 

score event, which is triggered based on the events from sensors located on the ball 

and on the shoes of the football players. The two events which participate in this 

pattern matching is having ~44 ms time difference. To simulate the multiple event 

sources condition with drift, the Dataset 4 is also published similar to the manner 

explained in Section 5.1.3. 
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5.2. Experimental Setup 

The entire experiment was primarily performed on a single machine with specification 

listed in Table 5.3. The machine was configured with Oracle JDK 1.8.0_101. All the 

tests were carried out without having any restriction on memory 

 

Table 5.3: Specification of the machine that was used for the valuation. 

Processor Name Intel(R) Core(TM) i7-4770HQ CPU  

Processor Speed 2.2 GHz 

Number of Processors 1 

Total Number of Cores 4 

L2 Cache (per Core) 256 KB 

L3 Cache 6 MB 

 Memory 16 GB 

Hyper Threading Enabled Yes 

 

5.2.1. Prototype 

Tests were carried out using the implementation described in Chapter 4. We used 

Siddhi version 4.2.33 to implement the proposed solution. The Siddhi server is started 

with extensions and queries, that are required for each experiment. Further, we have 

created a Java based application to simulate the event sources, that reads from the 

datasets discussed in Section 5.1. As we required to evaluate the proposed solution 

with multiple event sources, the simulated client program will spawn different threads 

to act as different event sources for the Siddhi engine. To simulate real-world 

condition, the in order events were published with actual intervals that were present in 

the dataset. 

 

5.2.2. Analysis of Out-of-order Events Handling Solution 

Recall that our primary objective is to have high accuracy and low latency for the 

incoming events while solving the out-of-order events and having a minimal impact 

on the in-order events. As mentioned in Chapter 4, the implementation was done to 
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handle the main cases of the out-of-order events with single and multiple event 

sources. In this Section, we will be focusing on latency and accuracy of the proposed 

solution, compared to other buffer based techniques such as MP-K-Slack and AQ-K-

Slack that was discussed under Section 2.3.2 and 2.3.3, respectively.  

 

As we will be focusing mainly on the latency and accuracy, let us first define how 

those are calculated.  

1. Latency – The latency was calculated as the total time duration an event took 

to reach the pass-through output stream from the time that event was actually 

published from the client.  

2. Accuracy – A current event is considered as out-of-order, if the last received 

event is having the timestamp greater than the current event. Therefore, the 

accuracy is the percentage of the total corrected events out of the total out-of-

order events that were injected into the stream. 

 

5.2.2.1. Performance and Accuracy with Single Event Source  

In this Section, we analyze the performance and accuracy of the proposed out-of-order 

handling approach for a single source. The Siddhi query that was executed during this 

evaluation is shown in Query 5.3, 5.4, and 5.5 for sequence-based approach, MP-K-

Slack approach and AQ-K-Slack approach respectively for input stream definition 

mentioned in Query 5.1.  

from inputStream#reorder:sequence(sourceId, seqNum, driftedTs, 

500L,0.6, 0.6, false)  

select sourceId, seqNum, eventTimestamp() as 

relativeTimestamp,ts  

insert into outputStream; 

Query 5.3: Siddhi query with sequence based reorder extension 

from inputStream#reorder:kslack(ts)  

select sourceId, seqNum, eventTimestamp() as 

relativeTimestamp,ts  

insert into outputStream; 

Query 5.4: Siddhi query with MP-K-Slack extension 
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from inputStream#reorder:reorder:akslack(ts, v_abs) 

select sourceId, seqNum, eventTimestamp() as 

relativeTimestamp,ts  

insert into outputStream; 

Query 5.5: Siddhi query with AQ-K-Slack extension. 

 

As shown in Query 5.3, we have used 0.6 as the smoothing factor to calculate event 

inter-arrival time and duration of early events spent in the buffer as defined in Section 

3.2.1. This value was producing less latency and improved accuracy for the datasets. 

 

The average and max latencies incurred with different approaches are shown in Figure 

5.6 and 5.7. Among all three approaches, the highest latency was experienced when 

there was a high delay on the out-of-order event as per dataset distribution described 

in Figure 5.2 and 5.3. As per Table 5.4, we can see that the sequence-based approach 

has an overall average latency of 4 ms, whereas MP-K-Slack and AQ-K-Slack 

approaches are having an overall average latency of 400 ms and 79 ms, respectively. 

Similarly, sequence-based approach has an overall average maximum latency of 10 

ms. Whereas an overall maximum latency for MP-K-Slack is 465.37 ms, and for AQ-

K-Slack is 133.27. Therefore, we can clearly see that the sequence-based approach has 

much lower latency compared to MP-K-Slack and AQ-K-Slack with respect to both 

the overall average and maximum latencies introduced to the events. As per the 

summary listed in Table 5.4, the sequence-based approach is 9600% faster than MP-

K-Slack and 1800% faster than AQ-K-Slack. Whereas the maximum latency is 4100% 

and 1100% lower than MP-K-Slack and AQ-K-Slack, respectively. 
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Figure 5.6: Average and maximum latency of events for Dataset 1 with proposed 

sequence-based approach. 

 

Figure 5.7: Average and max latency of events for Dataset1 with MP-K-Slack, AQ-

K-Slack and sequence-based approach 
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Table 5.4: Overall summary of latency incurred for events in Dataset1 with all out-

of-order handling approaches 

Out-of-order Handling 

Approach 

Overall Average Latency 

(ms) 

Overall Average Max 

Latency (ms) 

Sequence Based 4.09 10.98 

MP-K-Slack 399.56 465.37 

AQ-K-Slack 79.04 133.27 

 

Table 5.5: Total number of out-of-order events with Dataset 1 with all out-of-order 

handling approaches. 

Out-of-order Handling Approach Total Out-of-order Events Accuracy 

Sequence Based 5 99.99% 

MP-K-Slack 5 99.99% 

AQ-K-Slack 5 99.99% 

 

As shown in Table 5.5, all three approaches resulted in the same number of out-of-

order events. Therefore, with respect to the accuracy, all three approaches perform at 

the same level at 99.99% (compared to all events being in order). But when comparing 

latency and accuracy, the sequence-based approach provides greater performance. 

Figure 5.8: Average latency of all three approaches with respective to the dataset. 
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Table 5.6: Average latency for all three approaches along with datasets. 

Dataset Sequence Based (ms) MP-K-Slack (ms) AQ-K-Slack (ms) 

Dataset 1 4.09 399.56 79.04 

Dataset 2 6.52 1397.52 176.48 

Dataset 3 398.12 62507.29 10462.98 

 

As shown in Figure 5.8 and Table 5.6, we can see the latency had increased from 

Dataset 1 to 2 and then from 2 to 3. This is because, as mentioned in Section 5.1, the 

Dataset 1 has less variant distribution of out-of-order events compared to Dataset 2 

and Dataset 3. Also, for Dataset 2 the maximum event inter-arrival time can be as high 

as 1800 ms with very high variations, whereas Dataset 1 has only two peaks of up to 

1000 ms. Similarly, Dataset 3 has more high inter-arrival times between the out-of-

order events, and maximum is 30 seconds. Therefore, it is expected that the latency 

will increase from Dataset 1 to Dataset 3. 

  

Further, based on Figure 5.8 we can see, that MP-K-Slack has high latency while it is 

relatively less in AQ-K-Slack. As AQ-K-Slack is having an adaptive buffer (see 

Section 2.3.3), latency is less compared to MP-K-Slack. Whereas sequence-based 

approach has drastically less latency compared to the other two approaches. Therefore, 

based on these results, we can see that the sequence-based approaches latency is lower 

than MP-K-Slack by 21300% and AQ-K-Slack by 2600% for Dataset2. Similarly, 

sequence-based approach performs faster than MP-K-Slack as 15600% and AQ-K-

Slack as 2500% for Dataset 3.  

 

Table 5.7: Accuracy of all three approaches with datasets. 

Datasets Sequence-Based (%) MP-K-Slack (%) AQ-K-Slack(%) 

Dataset 1 99.99 99.99 99.99 

Dataset 2 99.97 99.98 99.96 

Dataset 3 99.98 99.99 99.98 
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Figure 5.9: Total number of out-of-order events for all three approaches and the 

respective datasets. 

 

Next, we evaluate the accuracy of these all three methods under all three datasets. The 

total number of out-of-order events encountered for these datasets are shown in Figure 

5.9 and Table 5.7.  As shown in Figure 5.9, overall MP-K-Slack produces the lowest 

number of out-of-order events and AQ-K-Slack approach produces the highest number 

of out-of-order events in all three datasets. Also, we can see the MP-K-Slack has high 

accuracy compared to the other two methods and has accuracy high as 99.99% for all 

datasets as shown in Table 5.7. This is because the K-Slack set the buffer size to be 

high as the maximum late arrival time interval (see Section 2.3.2). Hence, it results in 

high accuracy and also high latency. Because the AQ-K-Slack can adjust its buffer size 

based on the sampled statistics, it is resulting in less latency compared to MP-K-Slack 

but has lower accuracy. The accuracy of the AQ-K-Slack was 99.99% for Dataset1, 

but then reduced to 99.96% with Dataset 2, and 99.98% with Dataset 3. Further, the 

accuracy of the sequence-based approach was 99.99% with Dataset1 but reduced to 

99.97% in Dataset2, and 99.98% with Dataset 3. The proposed sequence-based 

approach has the lowest latency compared to all three approaches and has acceptable 

accuracy which is in between of MP-K-Slack and AQ-K-Slack.  
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5.2.2.2. Performance and Accuracy with Multiple Event Sources 

Next, we consider the performance when publishing with multiple event sources. To 

evaluate the behavior of multiple sources we used Dataset 3 as explained in Section 

5.1.2. As per Figure 5.10 and Table 5.8, the sequence-based approach has the lowest 

latency compared to the other two approaches. MP-K-Slack is having a higher latency 

compared to AQ-K-Slack, as AQ-K-Slack dynamically changes the buffer size based 

on the runtime window coverage. The average latency of MP-K-Slack does not 

increase with the increasing number of sources because its buffer size had been already 

increased to the maximum latency of out-of-order events. As we are using the same 

out-of-order event distribution for multiple event sources, the maximum time interval 

for out-of-order event arrival does not have an impact. However, when we increase the 

event sources, the latency of the AQ-K-Slack increases. This is because, with multiple 

event sources, AQ-K-Slack buffer minimization logic did not reduce the buffer size 

drastically since the runtime window coverage was low due to the increase of the out-

of-order events after passing through AQ-K-Slack as shown in Table 5.9. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Variation of average latency in ms of all three approaches with number 

of event sources 
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Table 5.8: Average latency with varying number of events sources. 

No of Event 

Sources 

Sequence Based 

(ms) 

MP-K-Slack 

 (ms) AQ-K-Slack (ms) 

1 398.12 62507.29 10462.98 

2 412.23 67274.41 12634.21 

5 552.72 72937.56 13432.69 

10 652.34 66178.05 16134.3 

20 963.54 78200.31 19313.43 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Average latency for sequenced-based approach across all event sources. 

 

Figure 5.11 shows the average latency variation for sequence based approach from 

Figure 5.10. Based on Table 5.8 and Figure 5.11, we can claim that the average latency 

is linearly increasing when increasing the number of event sources. The sequence 

based approach, have to synchronize the ordered events coming from multiple sources 

based on the event’s timestamp. As discussed in Section 3.2.2, during this process, the 

synchronization component will wait for an event to be received for each event sources 

to make sure the lowest timestamp event is received and considered for the 

synchronization process. Therefore, when the number of event sources is increased, 

more time will be spent on waiting for events from all event sources. Therefore, the 

latency has linearly increased when we increase the number of event sources. 
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 Figure 5.12 and Table 5.9 shows the variation of the out-of-order events, and the 

accuracy of each approaches. We can see that AQ-K-Slack is having less accuracy 

compared to the other two methods, as the dynamic buffer size was not big enough to 

get all late arrival events, and it drops to 99.02%. Whereas MP-K-Slack continues to 

have high accuracy for most of the cases. This is because MP-K-Slack adjusts the 

buffer size based on the maximum delay seen up to that point in time. While this 

increases accuracy, it also highly increases the average latency of events. The accuracy 

of the sequence-based approach has between AQ-K-Slack and MP-K-Slack. More 

importantly, the accuracy does not change with the number of event sources. 

Figure 5.12: Total out-of-order events with multiple event sources for all three 

approaches. 

 

Table 5.9: Accuracy of all three approaches when publishing events with multiple 

sources. 

No of Event 

Sources 

Sequence Based 

(%) 

MP-K-Slack  

(%) 

AQ-K-Slack  

(%) 

1 99.98 99.99 99.98 

2 99.97 99.98 99.47 

5 99.97 99.99 99.12 

10 99.97 99.99 99.02 

20 99.97 99.99 99.08 
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Therefore, based on the results of average latency incurred with the multiple sources, 

we could see that the sequence-based approach is 15600% faster than K-Slack, and 

2500% faster than AQ-K-Slack. Also, the accuracy remained higher as 99.97% with 

the sequence-based approach, AQ-K-Slack dropped down to 99.02%, and MP-K-

Slack remained high as 99.98%. Therefore, we can conclude that the sequence-based 

approach performed well with respect to the latency and accuracy when comparing the 

other two methods for both single and multiple sources scenarios. 

 

5.2.2.3. Accuracy with Time Drifted Event Sources 

We further focus on the effect of the time drift in the event sources. For this evaluation, 

we do not consider MP-K-Slack and AQ-K-Slack as those approaches do not consider 

this problem, and we noticed once we introduced the time drift the accuracy reduced 

significantly as these approaches only consider event timestamp to order the events. 

We used the dataset explained in Section 5.1.3 for this evaluation. We evaluated the 

effect of time drift between two event sources, by introducing a time drift for one event 

source and having another event source without any time drift.  

 

Table 5.10: The total number out-of-order events produced and accuracy in sequence 

based approach with and without time syncing of event sources. 

 

Time Drift 

Without Initial Time Sync With Initial Time Sync 

No of Out-of-order 

events 
Accuracy (%) 

No of Out-of-order 

events 
Accuracy (%) 

0ms 52 99.97 52 99.97 

1ms 502560 -201.98 78 99.95 

5ms 505235 -203.58 75 99.95 

10ms 539849 -224.38 72 99.96 

1min 441979 -165.57 74 99.96 

1hour 18001 89.18 73 99.96 

 

As seen in Table 5.10, once we introduced the time drift between the sources, a very 

high number of out-of-order events was produced without having initial time sync 

operation. Actually, the number of out-of-order events produced in this case was 

higher than the original number of out-of-orders presented in the dataset. The original 
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number of out-of-order events with two event sources is 166424 (83212 x 2) based on 

Table 5.2. But based on Table 5.10, we can see that once we introduced the time drift, 

the total number of out-of-order events is more than 3 times higher than the original 

number of out-of-order events, which resulted in accuracy to be in negative value and 

low as -224.38%. This is because the drifted timestamp is used without any correction. 

Therefore, the events from a source with less time drift will be getting the precedence 

over events produced by sources with higher drift. This is the same reason for having 

a significant drop in the total out-of-order events to 18000 for 1 hour time drift. With 

time drift high as 1 hour, the most of the events from lower time drift sources are first 

released until the event timestamps from lower time drift event source meets the first 

event’s timestamp of higher drifted event sources. Once we introduce the time syncing, 

the total number of out-of-order events is reduced, and it stabilized around 75 out-of-

order events regardless of the change in the time drift. 

Figure 5.13: The number of out-of-order events with amount of time drifts for 

Sequence based approach.  

 

As shown in Figure 5.13, the sequence-based approach has the same number of out 

order events while having different time drifts. But there is a small increase in the 

number of out-of-order events when there are no time drifts and having the time drift 

between the event sources. The reason for this behavior is the inaccuracies in 

calculating the time drifts as mentioned in Section 3.2.2. 
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5.2.3. Analysis of Query Operators under Out-of-order Events 

Based on the above evaluations, we noticed that inaccuracies in the transport delay 

calculation had increased the number of out-of-order events with multiple event 

sources. Therefore, in this Section, we will focus on the effect of those with query 

operators and the final results.  

 

5.2.3.1 Aggregator Operator 

Let us focus on using an aggregation operator with out-of-order events from multiple 

event sources. To evaluate this, we enhanced the setup mentioned in Section 5.2.2.3 

by adding further transport delay of 0.125 ms. This value was selected as this was able 

to introduce a considerable difference in the final result of the aggregation with the 

time window and practically feasible transport delay. We used Query 5.6 to calculate 

the average velocity of 10 seconds time batch window.  

 
from inputStream#reorder:sequence(sourceId, seqNum, driftedTs, 

500L, 0.6, 0.6, false) select sourceId, seqNum, 

eventTimestamp() as relativeTimestamp, ts as occuredTime, 

v_abs  

insert into outputStream; 

 

from outputStream#window.externalTimeBatch(occuredTime, 10 

sec)  

select avg(v_abs) as AvgVelocity, occuredTime  

insert into aggregateOutputStream; 

Query 5.6: Calculating average velocity. 

 

This evaluation was carried forward with two event sources, and the outputs were 

obtained for the following two cases: 

1) Event sources do not have any drift and no inaccuracies in the transport 

delay. The dataset used for this was mentioned under Section 5.1.2. 

2) Event sources have a drift of 5ms and 0.125ms is the calculated max delay for 

these event sources.  

 

The average output values from the time batch windows for these cases are listed in 

Table 5.11, where we could see small irregularities between the expected and actual 

averaged values.  
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Table 5.11: The differences between the expected and actual average values. 

Time Batch 

Window ID 
Average velocity without 

drift & transport delay 

(μm/s) 

Average velocity with 

drift & transport delay 

(μm/s) 

Difference of 

Expected vs Actual 

Average 

1 144123.87 144123.87 0 

2 133834.17 133834.29 -0.12 

3 138424.12 138422.58 1.54 

4 157036.12 157037.65 -1.53 

5 154401.79 154401.73 0.06 

6 138580.31 138580.56 -0.25 

7 443901.59 443900.16 1.43 

 

As this is attributed to the time drift and transport delay calculations, we further 

evaluated the method proposed in Section 3.2.3. Query 5.7 was used to evaluate the 

effect of this method. As shown in Query 5.7, the average was calculated for each 

LOW, MIDDLE, HIGH window independently, and the average of those was taken as 

a final average value.  

 
from inputStream#reorder:sequence(sourceId, seqNum, driftedTs, 

500L,0.6, 0.6, false) select sourceId, seqNum, 

eventTimestamp() as relativeTimestamp, ts as occuredTime, 

v_abs  

insert into outputStream; 

 

from outputStream#reorder:externalTimeBatch(10 sec, 

occuredTime, false)  

select (avg(ifThenElse(windowType=='LOW',v_abs, 0))+ 

avg(ifThenElse(windowType=='MIDDLE',v_abs, 0)) 

+avg(ifThenElse(windowType=='HIGH',v_abs, 0)))/3 as 

avgVelocity, occuredTime  

insert into aggregateOutputStream; 

Query 5.7: Average velocity calculation by using reorder based external time batch 

window. 

 

Table 5.12 shows the difference between the average velocity calculated in an ideal 

environment with no time drift and transport delay and the average velocity calculated 

with drift and transport delay by using Query 5.7. We can see the difference between 

the actual and expected values is reduced after using the reorder based time batch 

window as mentioned in Query 5.7.  
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Table 5.12: The average value of the velocity after using the reorder based time batch 

window.  

Time Batch 

Window ID 
Average velocity without 

drift & transport delay 

(μm/s) 

Average velocity with 

drift & transport delay 

(μm/s) 

Difference of 

Expected vs Actual 

Average 

1 144123.87 144123.87 0 

2 133834.17 133833.95 0.22 

3 138424.12 138423.91 0.21 

4 157036.12 157036.48 -0.36 

5 154401.79 154401.22 0.57 

6 138580.31 138580.91 -0.60 

7 443901.59 443901.55 0.04 

 

 

Figure 5.14: Difference between the of average values for normal time batch 

window, and reorder based time batch window.  

 

Figure 5.14 shows the actual variation of the difference in the final output when using 

the general time batch window and the reorder-based time batch window. We can see 

that the reorder-based time batch window is closer to the x-axis, in other words, closer 
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to the expected value. Also, it reduces the deviation of the results by ~ 50% compared 

to the value obtained by using the normal window. 

 

5.2.3.2. Pattern Matching Operator 

For the evaluation of the pattern matching, we use the Dataset 4 described in Section 

5.1.4. In this case, the goal score event needs to be detected based on the sensor events 

from the ball and the shoes of the football players as defined by the pattern matching 

query in Query 5.8. The query involves two events e1 and e2 which should occur one 

after the other with some preconditions being satisfied such as the position and 

acceleration of the ball. The x and y values in query indicate the boundary points of 

the goal region. The attribute sid corresponds to the sensor ID which is a unique 

identifier of the sensor which produced a signal used for the calculation of the position 

event as explained in Section 5.1. Further, as we are using two event sources to match 

this pattern where we consider the e1 to be matched form Source ID 0, and e2 to be 

matched in Source ID 1.  

 
from inputStream#reorder:sequence(sourceId, seqNum, driftedTs, 

500L, 0.6, 0.6, false)  

select sid, ts, x, y, z, v_abs, a_abs, sourceId, seqNum, 

eventTimestamp() as eventTime, driftedTs, relativeTimestamp  

insert into outputStream; 

 

from every e1=outputStream [sourceId == '0' and (x>29880 or 

x<22560) and y> (-33968) and y <33965 and (sid==4 or sid ==12 

or sid==10 or sid==8)] 

-> e2=outputStream [sourceId == '1' and (x<=29898 and x>22579) 

and y<= (-33968) and z<2440 and a_abs>=55000 and (sid==4 or sid 

==12 or sid==10 or sid==8)] 

select e2.sourceId, e2.ts, e2.driftedTs, e1.ts as e1Ts, 

e1.driftedTs as e1drift  

insert into patternStream; 

Query 5.8: Pattern matching query to match the goal events. 

 

The query was run against multiple cases and the pattern matching results are listed in 

Table 5.13. The pattern is correctly detected until the transport delay increased up to 

50 ms. This is because the timestamp of events e1 and e2 have a difference of 44 ms. 

Therefore, the drift correction is effective only up to 50 ms. Therefore, to handle this 
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situation, the pattern matching query can be rewritten as shown in Query 5.9 (as 

described in Section 3.2.3.3). 

 

Table 5.13: Results of the pattern matching dataset. 

Test Case Pattern Matching Detected or Not 

Two event sources without any Drift Pattern Detected 

Two event sources with 1 second Drift  Pattern Detected 

Two event sources with 1 Seconds Drift and Transport 

delay of 0.125 ms  

Pattern Detected 

Two event sources with 1 Seconds Drift and Transport 

delay of 1 ms  

Pattern Detected 

Two event sources with 1 Seconds Drift and Transport 

delay of 10 ms  

Pattern Detected 

Two event sources with 1 Seconds Drift and Transport 

delay of 50 ms  

Pattern Not Detected 

 

The modified query captures two possibilities of the pattern, which are e1 followed by 

e2 and e2 followed by e1. It then compares the time difference of the events that 

matched the pattern and verify whether it is less than the maximum delay calculated 

for the event sources that publish to the input event stream. In the pattern e1 followed 

e2 case, we trigger a pattern matches event, with the confidence attribute set to indicate 

the confidence level of the pattern matching decision based on the time difference and 

the max delay of the event sources. If the time difference between e1 and e2 is greater 

than maxDelay, then we trigger pattern matched event with confidence level set to 

Confirmed, else with confidence level set to UncertainPatternDetection. However, for 

the e2 followed by e1 pattern, we trigger the pattern matching event only if the 

differences between the event is less than the maximum delay of the event sources 

with confidence level set to UncertainPatternDetection. Therefore, we reduce 

unnecessary false positives by following the above approach. With this approach, the 

pattern was able to be detected for the last test case in Table 5.13 with the confidence 

level set to UncertainPatternDetection. 
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from inputStream#reorder:sequence(sourceId, seqNum, driftedTs, 

500L, 0.6, 0.6, false)  

select sid, ts, x, y, z, v_abs, a_abs, sourceId, seqNum, 

eventTimestamp() as eventTime, driftedTs, relativeTimestamp  

insert into outputStream; 

 

from every e1=outputStream [sourceId == '0' and (x>29880 or 

x<22560) and y> (-33968) and y <33965 and (sid==4 or sid ==12 

or sid==10 or sid==8)]  

 -> e2=outputStream [sourceId == '1' and (x<=29898 and 

x>22579) and y<= (-33968) and z<2440 and a_abs>=55000 and 

(sid==4 or sid ==12 or sid==10 or sid==8)]  

select ifThenElse(e2.relativeTimestamp - 

e1.relativeTimestamp<=reorder:getMaxDelay(‘inputStream’) 

,'UncertainPatternDetection', 'Confirmed') as confidence, 

e2.sourceId, e2.ts, e2.driftedTs, e1.ts as e1Ts, e1.driftedTs 

as e1drift  

insert into patternStream; 

 

from every e2=outputStream [sourceId == '1' and (x<=29898 and 

x>22579) and y<= (-33968) and z<2440 and a_abs>=55000 and 

(sid==4 or sid ==12 or sid==10 or sid==8)]  

 -> e1=outputStream [sourceId == '0' and (x>29880 or x<22560) 

and y> (-33968) and y <33965 and (sid==4 or sid ==12 or 

sid==10 or sid==8)] 

select ifThenElse(e1.relativeTimestamp - 

e2.relativeTimestamp<=reorder:getMaxDelay(‘inputStream’) 

,'UncertainPatternDetection', 'NotMatch') as confidence, 

e2.sourceId, e2.ts, e2.driftedTs, e1.ts as e1Ts, e1.driftedTs 

as e1drift  

having confidence == 'UncertainPatternDetection'  

insert into patternStream; 

Query 5.9: Pattern matching query to remove the effect of the time drift calculation 

inaccuracies.  

 

5.3. Summary  

This Chapter discussed the details related to the performance evaluation and the results 

obtained through tests. We used the dataset from the DEBS 2013 football game to 

evaluate different cases of the proposed methodology. We focused on the latency and 

accuracy of different out-of-order event handling approaches, with single and multiple 

event sources without and with different time drifts. In all cases, we observed that the 

proposed sequence-based approach provided significantly low latency where it was 

9600%-15600% lower compared to MP-K-Slack and 1200% -2500% lower compared 

to AQ-K-Slack. We also observed that accuracy of the proposed method was between 

99.97% - 99.99% for different cases and this is relatively less than MP-K-Slack which 



 

 79 

always gives 99.99% accuracy but greater than AQ-K-Slack which has accuracy as 

low as 99.02% in several cases. Therefore, when we compare both accuracy and 

latency, the proposed sequence-based approach performed well compared to the other 

two approaches. We also looked into the possible errors that can be caused by drift 

calculation and the effect of those in time batch window based aggregation and pattern 

matching operators. We were able to bring down the difference of the aggregated time 

batch window and expected results, by 50% after using the multiple window average 

method. We also observed that the pattern matching query was able to provide correct 

results after including the max delay time into the consideration, regardless of the 

increased error in the drift calculation.  
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6. CONCLUSION 

 

6.1. Summary 

Complex Event Processing Engines (CEP) is heavily used in many domains such as 

IoT, Banking Systems, Telecommunication and Networking Systems, and Health care 

to analyze data produced in these systems and produce the results accurately in real 

time. We often use query operators such as aggregators on time windows and pattern 

matching to analyze the data in CEP. But the accuracy of these query operators highly 

dependent on the order of the events received. The event sources used in some domains 

(e.g., IoT) produce a very high rate of events, and those data could be in different 

networks and time zones without using the standard time. Hence, the events can be 

bundled together and transmitted via connection pool and could be transmitted with 

UDP protocols. Therefore, we cannot expect the events will be received in the same 

order as they were produced at the event sources. Such out-of-order events could lead 

to inaccurate decisions depending on the types of CEP queries that process those 

events. Also, this problem exists in distributed CEP processing, where the data will be 

analyzed by multiple CEP nodes. When those events are transmitted from peer CEP 

nodes to a single node for the final aggregation, the order of the events received by 

that node will not be following the actual order in which the events were produced in 

the event source.  

 

We analyzed several approaches to solving this problem, but those approaches either 

increase the latency or reduce accuracy. Also, those approaches do not solve the 

problem with multiple event sources which will have time drifts among them. 

Therefore, we proposed an approach based on the event sequence numbers to achieve 

a good balance between latency and accuracy. Moreover, the proposed technique 

works with multiple event sources that may have time drifts. The sequence-based 

approach requires adding two attributes to the event data namely, the source identifier 

and sequence number. Here the source identifier is the specific value assigned to the 

event source, and sequence number is an incremental number that is assigned to the 

event based on the time it was generated at the event source per event stream. In the 
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multi-source case, the event source will first send initialization time sync requests to 

CEP in order to calculate the event source’s time drift. This solves the problem of 

having event sources with different time zones. Once the initialization is completed, 

the actual events are ready to be transmitted to the CEP engine with the two additional 

attributes mentioned above. Once the event is received, the CEP receiver first orders 

the events of the particular event stream based on the sequence number for each event 

source separately. It then orders the events among multiple event sources based on the 

reference timestamp that was deduced by adding the time drift that was calculated 

during the initialization step. The global ordered events after the synchronization 

process are fed to the query operators. As any errors in estimating time drift could 

compromise the accuracy of the final global ordered events, we introduced multiple 

windows approach. Because the drift calculation can differ as much as the maximum 

delay time from the event sources to the CEP server, we produce an additional two 

windows that could cover this ambiguous time range. Therefore, rather than using the 

single aggregator operation on a single window, we can use the aggregator operator 

on all three windows and obtain an average value of that. This reduces possible 

inaccuracies in calculating the drift of the event sources. Similarly, for pattern 

matching query operator, we can write multiple pattern matching queries with other 

different combinations of the event sequence that could exist and compare the 

timestamp difference with max delay time to obtain the confidence level of the pattern 

detection.  

 

The proposed sequence-based approach was implemented in Siddhi CEP server as an 

extension. Several tests were then performed to obtain its latency and accuracy of the 

results produced. For comparison, we also considered MP-K-Slack and AQ-K-Slack 

approaches which are buffer based techniques and can be used for aggregation and 

pattern matching query. In all cases, we observed the proposed methodology, provided 

very low latency. For example, the latency of the proposed approach was 9600%-

15600% lower compared to MP-K-Slack and 1200% -2500% lower compared to AQ-

K-Slack. We also observed that the accuracy of the proposed method was 99.97% - 

99.99% in all cases analyzed, and this is relatively lower than MP-K-Slack which 
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always give 99.9% accuracy. However, it was greater than AQ-K-Slack which has 

accuracy low as 99.02% in some cases. Therefore, when we compare both accuracy 

and latency, the proposed sequence-based approach has a good balance compared to 

the other two approaches. Because MP-K-Slack and AQ-K-Slack cannot handle the 

time drifts, we evaluated the effect of the time drift with the sequence-based approach. 

With time drift calculation included, we were able to order the events to get closer to 

100% accuracy compared to not having the time drift included in the system. We also 

looked into the possible errors that could be caused by drift calculation and the effect 

of those in time batch window based aggregation and pattern matching operators. We 

were able to reduce the difference between the aggregated time batch window and 

expected results by 50% after using the proposed multiple window average method 

that covers the ambiguous time range due to the possible inaccuracies in the drift 

calculation. We also observed that the pattern matching query was able to provide 

correct results regardless of the increased error in the drift calculation after including 

the ambiguous time into the consideration.  

 

6.1. Research Limitations 

The proposed approach depends on sequence number that is produced by event 

sources, and therefore, the solution assumes that the event sources can be modified to 

accurately generate and accommodate the sequence number attribute to the raw event 

stream. 

 

The proposed approach is using the time synchronization technique to find the time of 

the event source, and we have moved the possible inaccuracies of this approach to 

query operators and handled them separately. Therefore, each query operator needs to 

be written considering this problem and handle it independently. Currently, we have 

only considered time batch windows, aggregator operators, and pattern matching 

operator, and we have not considered other windows such as sliding time window, 

event batch window, and other operators such as join operator.  

 



 

 83 

The proposed solution only considers out-of-order events until the final output is 

produced by the query operators. And this has not considered the very late out-of-order 

event that is received after producing the result of the query operator. For example, in 

the time batch window case, there can be an event received after the window is elapsed.  

 

The proposed technique includes the changes in the event sources where it should use 

the special client which includes the time sync process before sending the actual 

events. Also, this technique expects the event sources to send two additional attributes 

such as sequence number and source ID with the actual event. In case if the event 

sources cannot be modified to use such client, and send these additional attributes, then 

we cannot use this technique for such use cases.  

 

This technique requires the CEP query to be written with conscious knowledge about 

the time drift inaccuracies with multiple sources. For example, pattern matching query 

should have written to consider all alternate event sequences of the pattern and trigger 

the pattern matched event by comparing the time of difference of the events in the 

matched pattern with transport delay of the event sources. This is not handled 

automatically by the CEP server, and users should use the information about the 

transport delay and rewrite the query manually to increase the accuracy of the proposed 

technique.  

 

The evaluation was performed in a LAN network with simulated event sources, but in 

reality, the multiple event sources will belong to WLAN with different geographical 

regions and will have varying transport delay. We have not evaluated the behavior of 

with very dynamic environment, with different kind of event sources.  

 

The datasets used in the evaluations were generated by introducing random out-of-

order events to the original DEBS 2013 dataset which does not have any out of order 

events. Though we have introduced the delays ranging from milliseconds to seconds 

with different out-of-order distributions, we haven’t evaluated in the real environment.  
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6.2. Future Work 

As mentioned under research limitations, the system only considers certain query 

operators, and we need to extend the solution to other query operators such as sliding 

time window, event batch window, and join operators. We can implement the sliding 

time batch window and event batch window to maintain multiple windows to cover 

the ambiguous time range from time drift calculation as similar to the time batch 

window in the proposed technique. With this, when we are joining the events to 

another window of events, we should perform multiple joins with all active windows. 

With these implementations, all the operators can be used without any limitation along 

with this approach.  

 

The current system can be extended to handle very late event arrival as well. For this 

we need to persist some information from the query operators; therefore, we could 

produce the corrective event once the very late event has arrived. Because we do have 

knowledge about when an event is missing from the sequence number order, we can 

decide when to store the details beforehand without storing all the information. 

However, this functionality needs to be handled per query operator so that it can persist 

its state and restore it when needed to produce the corrective event. For aggregation 

operators, the information to be stored might be very less, but for pattern matching 

operator, we may need to store the entire window which could be intense operation.  

 

We can absorb the complexity of rewriting the queries to reduce the inaccuracies in 

the time drift calculations, by implementing the extended reorder based query 

operators. For pattern matching operator, we can implement the extended version of 

pattern matching query operator which can find the all alternate sequence of the events 

in the pattern matching internally and perform the comparison of the timestamps of 

the events with transport delay before triggering the matched event as proposed 

technique. Similarly, the aggregation operator can also be extended to get average of 

all windows which covers the ambiguous time range without letting the user write that 

logic. Therefore, the users do not have to worry about rewriting the query to increase 
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the accuracy, and it will be handled internally within the extended version of the query 

operator.  

 

The technique should be evaluated with real-world dynamic environments with 

multiple event sources, and the performance and accuracy of the technique should be 

evaluated.  
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