
UNIVERSITY OF MORATUWA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 CS 4202 – RESEARCH & DEVELOPMENT PROJECT

FINAL YEAR PROJECT REPORT

MANIPULATION DETECTION IN STOCK TRADING USING

MACHINE LEARNING

PROJECT GROUP – STACKSCOUT (GROUP 05)

A.M.N.V Chandrasoma (130078X)

 H.Y Mudalige (130380P)

K.M.S.A Munasinghe (130383D)

B.V Vithanage (130620E)

Internal Supervisor

Dr. H. M. N. Dilum Bandara

External Supervisors

Dr. Rasika Withanawasam

Dr. Ashoka Koralage

Coordinated By

Dr. Charith Chitraranjan

THIS REPORT IS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE OF

ENGINEERING AT UNIVERSITY OF MORATUWA, SRI LANKA

December 20, 2017

ii

Declaration

We, the project group StackScouts (Group 5) hereby declare that except where specified

reference is made to the work of others, the project “Manipulation Detection in Stock Trading”

is our own work and contains nothing which is the outcome of work done in collaboration with

others, except as specified in the text and Acknowledgement.

Signatures of the Candidates

1. ……………………………. A.M.N.V Chandrasoma (130078X)

2. ……………………………. H.Y Mudalige(130380P)

3. ……………………………. K.M.S.A Munasinghe(130383D)

4. ……………………………. B.V Vithanage(130620E)

Supervisor: Project Coordinator:

………………………………… ..…….………………………

(Signature & Date) (Signature & Date)

Dr. H.M.N. Dilum Bandara Dr. Charith Chitraranjan

External Supervisor:

………………………………….

(Signature & Date)

Dr. Rasika Withanawasam

iii

Abstract

Stock traders should respond to a variety of regulations that are meant to ensure proper

functioning of the stock market. However, there are some agents who are eager to violate the

trust of the investors to gain personal benefits. While the stock trading platform is expected to

detect such manipulations, it is a nontrivial task given the volume of data, velocity at which

they arrive, large number of buyers and sellers, and complexity of manipulations. However, it

is sufficient to detect such manipulations at the end of the day, before the orders are settled.

A couple of supervised machine-learning and rule-based techniques are proposed in related

work to detect anomalous trading behaviors. However, such solutions are tight to a specific

trading platform, can detect only the known manipulations, and relay on large volume of

labelled data. We propose an unsupervised methodology to overcome some of these limitations

while focusing on detecting manipulation time or order frames. We focus on Momentum

Ignition based manipulations using a real dataset from one of the world’s largest trading

platforms. The proposed techniques are based on information entropy, clustering, and

visualization. Proposed solution is effective because it does not need labeled data for the

analysis. Moreover, we developed a tool which could be used by surveillance teams to analyze

potential manipulations while simulating the orderbook. The proposed solution was able to

gain a F-measure of 78% based on an analysis conducted using a set of real and synthetic stock

market datasets.

iv

Acknowledgement

First and foremost, we would like to express our sincere gratitude to our project supervisor, Dr.

H.M.N. Dilum Bandara for the invaluable guidance and dedicated involvement at every step

throughout the process.

We would also like to thank our external supervisors Dr. Rasika Withanawasam and Dr.

Ashoka Koralage for the valuable advices and the direction given to us regarding the project.

Apart from that we would like to thank the Surveillance team in MilleniumIT, for the

continuous support, giving us the feedbacks and valuable KT sessions regarding the stock

market domain.

We would like to express our warm gratitude to Dr. Charith Chitraranjan for coordinating the

final year projects.

Finally, we would like to express our greatest gratitude to the Department of Computer Science

and Engineering, University of Moratuwa for providing the support for us to successfully finish

the project.

v

Table of Contents
1. Introduction .. 1

1.1. Background ... 1

1.2. Motivation ... 1

1.3. Problem Description .. 2

1.3.1. Problem Statement ... 2

1.3.2. Objectives .. 2

1.3.3. Contribution ... 2

1.4. Outline ... 3

2. Literature Review... 4

2.1. Stock Market Manipulations ... 4

2.1.1. Pump-and-dump ... 5

2.1.2. Layering ... 5

2.1.3. Momentum Ignition ... 6

2.2. Stock Market Trading Behavior .. 7

2.2.1. Trading types ... 7

2.2.2. Order Book... 8

2.2.3. Message Types ... 9

2.2.4. Auctions ... 10

2.3. Supervised Detection... 11

2.3.1. One Class Support Vector Machine with Hidden Markov Model 11

2.3.2. Trading Networks .. 19

2.4. Unsupervised Detection .. 20

2.4.1. Time Series Contextual Anomaly Detection ... 20

2.4.2. Mathematical Model .. 21

2.4.3. Clustering ... 24

3. Design .. 27

3.1. Workflow Diagram ... 27

3.2. Layered Architecture ... 28

3.2.1. Presentation Layer ... 28

vi

3.2.2. Pre-Processing Layer ... 28

3.2.3. Processing Layer .. 30

3.2.4. Data Access Layer ... 33

4. Implementation .. 35

4.1. Tools and Technologies .. 35

4.2. Preprocessing Module ... 36

4.3. Processing Module .. 39

4.3.1. Clustering Module ... 39

4.4. Dashboard Implementation ... 42

4.4.1. Session File Uploader .. 42

4.4.2. Trading Data File Uploader ... 44

4.4.3. Window Size Chooser.. 45

4.4.4. Entropy Display ... 47

4.4.5. Price Gap Variation Display .. 47

4.4.6. Clustering Display ... 48

4.4.7. Orderbook Simulation Display .. 49

4.4.8. Frame Summary Display ... 49

5. Performance Analysis .. 52

5.1. Data Preparation .. 52

5.2. Performance Measurement .. 53

6. Summary .. 57

6.1. Conclusion ... 57

6.2. Challenges ... 57

6.3. Future Work .. 58

7. References .. 59

vii

List of Figures

Figure 2.1 - Momentum Ignition scenario. .. 7

Figure 2.2 - Layout of an order book. .. 8

Figure 2.3 - Order book message. .. 10

Figure 2.4 - Auction time orderbook behavior. ... 11

Figure 2.5 - Single order disruptive trading. .. 12

Figure 2.6 - Multi order disruptive trading triggers the bid price to increase quickly and drop

also quickly after the spoofing orders are cancelled. ... 12

Figure 2.7 - Detecting system. ... 13

Figure 2.8 - Support vector machine to detect normal and abnormal trading. 14

Figure 2.9 - Joint PDF of price vector component and volume vector component 16

Figure 2.10 - SMOTERUS approach for MSFT data. ... 16

Figure 2.11 - (a) Example states of observed trading behaviors (b) structure of the designed

HMM with diruptive states . .. 17

Figure 2.12 - Graphical illustration of abnormal trading motifs (A)Self-loop (B)Two-node loop

(C)two-node multiple arcs 19

Figure 2.13 - Price variation in a Pump and Dump scenario 22

Figure 2.14 - Spoofing trading example . .. 23

Figure 2.15 - Different cluster boundaries in same set of clusters 24

Figure 3.1 - Workflow diagram. .. 27

Figure 3.2 - High level architecture design. ... 28

Figure 3.3 - Anomaly Score. .. 31

Figure 3.4 - Elbow method to generate dynamic K value. .. 32

Figure 3.5 - Information entropy of execution types. .. 33

Figure 4.1 - The class diagram of the system. ... 35

Figure 4.2 - Window design... 36

Figure 4.3 - Orderbook design. .. 37

Figure 4.4 - Buy orders price points. ... 38

Figure 4.5 - Sell orders price points. .. 38

Figure 4.6 - Dictionary structure of order details. ... 38

Figure 4.7 - Price gap window without manipulations. ... 41

Figure 4.8 - Price gap window with a manipulation. ... 42

Figure 4.9 - Session file uploader. ... 43

file:///D:/Acadamic/Final%20Year%20Research/Final_Year_Project_Report_v5.docx%23_Toc501545225
file:///D:/Acadamic/Final%20Year%20Research/Final_Year_Project_Report_v5.docx%23_Toc501545241

viii

Figure 4.10 - Session details displayed by the tool. ... 43

Figure 4.11 - Trading data file uploader. ... 44

Figure 4.12 - Trading data statistics shown in the tool. ... 44

Figure 4.13 - Window size input fields and other options. .. 45

Figure 4.14 - Tool after the end of pre-processing. ... 46

Figure 4.15 - Entropy variation displayed in the tool. ... 47

Figure 4.16 - Price gap variation display in the tool. ... 48

Figure 4.17 - Clustering result visualization. ... 48

Figure 4.18 - Orderbook Simulation. ... 49

Figure 4.19 - Frame summary. ... 50

Figure 4.20 - Broker summary. .. 50

Figure 4.21 - After generating the processing result.. 51

Figure 5.1 - Synthetic Data Creation. .. 53

Figure 5.2 - Entropy variation of the selected dataset. .. 55

Figure 5.3 - Price gap variation of a normal time frame (Time frame 4). 55

Figure 5.4 - Price gap variation of the manipulated time frame (Time frame 19). 56

ix

List of Tables

Table 4.1 - Session table details. .. 43

Table 5.1 - Tool performance analysis. ... 53

Table 5.2 - Confusion matrix for Entropy. .. 54

Table 5.3 - Confusion matrix for Clustering. ... 54

Table 5.4 - Accuracy measurements. ... 54

x

List of Abbreviations

ADIST Anomaly Detection in Stock Trading

API Application Programming Interface

CAD Contextual Anomaly Detection

FP False Positive

FN False Negative

GMM Gaussian Mixture Model

HMM Hidden Markov Model

HMMAS Hidden Markov Model with Abnormal States

IDE Integrated Developing Environment

MFST Medifirst Stock Trading

OCSVM One Class Support Vector Machine

PSO Particle Swarm Optimization

PDF Probability Density Function

REST Representational State Transfer

RSS Rich Site Summary

RUS Random Under Sampling

SMOTE Synthetic. Minority Oversampling Technique

SOM Self Organizing Map

SSE Sum of Square Error

TN True Negative

TP True Positive

VWAL Volume Weighted Average Lifecycle

1

1. Introduction

1.1. Background

In the stock market domain, the intention of doing trades is to create profit out of the stock

trades. Traders usually refer to the current and historical data of the involving parties before

doing a stock trade. Hence, the look or the behavior of the stock matters in this context. One

can manipulate the stock market using false trading where he/she can trade to change stock

market attributes without targeting actual profit for those trades. Stock market manipulation

refers to the activities of those traders who use carefully-designed trading behaviors to push up

or down the underlying equity prices for making profits. Manipulations can be categorized as

action based (e.g., not bidding in an auction and closing down a plant), information based (e.g.,

spreading false rumors and news), and trade based (e.g., performing a series of trades to mislead

the market). With increasing volumes and frequency of trading, price manipulation can be

extremely damaging to the proper functioning and integrity of capital markets. If every trader

gets all the trading related information immediately and simultaneously, people who win and

lose will be selected randomly and that is the expected behavior of a real stock market.

Changing the stock market behavior because of a twitter message can be given as an example

for unstructured data manipulation [1]. Apart from that traders are doing many disruptive

trading in stock market using structured data. Pump and dump, insider trading, Momentum

Ignition and Spoofing Corner are some examples [2]. These names have originated from the

starting behavior of each manipulation.

1.2. Motivation

Currently trading platforms use a set of rules to check whether a trading is a disruptive or not.

Example rules include the following:

1. If a trader pushes the price up with small trades for large number of times within a short

period, trigger an alert.

2. If a trader pushes the price up with small trades for large number of times within a short

period, and if he does that number of times within the day, trigger an alert.

3. If a trader cancels a significant number of orders within a short period of time, and if

he does that number of times within the day, trigger an alert.

There are supervised machine learning techniques such as [3] to detect manipulations in stock

tradings. Both these techniques cannot identify new disruptive trading behaviors that have not

2

occurred earlier. Therefore, by using a system which can detect both observed and unobserved

manipulation patterns will gain a more advantage for users. As this is a manual process the

need of human involvement is too much. Surveillance team has to get different threshold values

for them to differentiate for anomaly behavior and normal behavior. Different types of clients

are trading in stock market. Client’s trust on the trading platform is must needed.

1.3. Problem Description

1.3.1. Problem Statement

The problem that this project plans to address can be formulated as follows:

Automatically detect and analyze fraudulent behaviors in stock trading

Momentum ignition is a scenario which tries to instigate other participants to buy or sell

quickly, the instigator of momentum ignition can profit either having taken a pre-position or

by laddering the book, knowing the price is likely to revert after the initial rapid price move,

and trading out afterwards. Since it tries to change the price movement in trading, we focus on

that manipulation pattern in stock trading manipulation detection in a unsupervised approach

because it is needed to handle large volume of data and visualizing them too.

Moreover, it should be easier to integrate new modules to detect other manipulation patterns in

stock trading.

1.3.2. Objectives

The objectives of this project can be stated as follows:

1. To conduct a comprehensive literature survey to understand common manipulation

patterns in stock market.

2. Identify suitable machine learning algorithms.

3. Design and implement an automated system to detect many disruptive time frames or

order frames which have occurred in a stock market data.

4. Issue alerts when disruptive trading take place.

5. Analyze the performance of the proposed solution based on throughput and detection

accuracy.

1.3.3. Contribution

This project makes the following contributions:

1. Identified different manipulation detection in stock trading in literature survey.

3

2. Applied suitable machine learning techniques and visualization techniques to detect

manipulation.

3. Developed an automated tool to detect manipulated time/order frames with visually.

Our approach is an automated system which only rely on stock market end of the day data.

Data will be fetched into different machine learning techniques and identify which are the time

frames with manipulative behavior. Apart from that, this tool supports visualization techniques

to further analyze and identify whether the given frame can be a fraudulent time frame or not.

1.4. Outline

Rest of the report is organized as follows. Chapter 2 presents the literature review on stock

market manipulations, difference between the normal and manipulated behavior, types of stock

market manipulations, and detection techniques. Chapter 3 presents the proposed design

including the layered architecture of the proposed tool. Implementation details are presented in

Chapter 4. Chapter 5 presents concluding remarks and future work.

4

2. Literature Review

In this chapter we analyze the related work. Understanding stock market manipulation has a

significant value in our project. Section 2.1 presents a detailed description about manipulation

types and their behavior. Section 2.2 will describe trading behavior of the stock market which

explains the message type of order, orderbook behavior and trading types and it is essential to

do because it helps to identify different features. Section 2.3 presents about supervised way of

detecting stock market manipulations followed with Section 2.4 which describes unsupervised

way of detecting manipulation in stock trading.

2.1. Stock Market Manipulations

Allen and Gale [4] classify stock market manipulations into three main categories as follows:

1. Action-based Manipulation – In these sort of manipulation, manipulator abuse

resources so as to influence the estimation of those advantages, or the costs of their

yields or sources of info. For example, American Steel and Wire Company’s directors

short sold the company’s stock, at that point reported a shutdown of its plants which

caused a vast decrease in the stock cost. They at that point secured their short positions

at the low cost, and re-opened the plants. Another illustration could be a power

generator that pronounces a plant blackout keeping in mind the end goal to drive up the

cost of power so as to expand the payout on a power subordinates contract.

2. Information-based Manipulation - This involves the release of false or misleading

information that causes prices to change in a way that benefits the financial position of

the fabricator. Manipulator uses social medias like twitter, Facebook, RSS feeds and

many other forms of communication to send false or misleading announcements to the

public very easily.

3. Trade-based Manipulation - In this case, the manipulator buys or sells in quantity,

knowing that due to asymmetric information and trade processing and inventory costs

prices will move in the direction of his trades.

Detection of manipulation is a complex problem because,

1. One or more manipulators can be involved for a manipulation.

2. Manipulators use different features to do the manipulation.

3. High frequency trading platform.

4. Manipulators frequently change their patterns to do manipulations.

5

However, at the end of the day if there is a manipulation, it should happen after a trade.

Moreover, this is the only form of manipulation that could be initiated within the trading

platform. Therefore, we can keep our focus only on trade-based manipulations. Trade-based

manipulation can be further classified based on their manipulation patterns. Next, some of the

popular ones are discussed next.

2.1.1. Pump-and-dump

Pump-and-dump schemes involve touting a company’s stock through false or misleading

statements in the marketplace to artificially inflate (pump) the price of a stock. Once fraudsters

stop hyping the stock and sell their shares (dump), the price typically falls. Although pump-

and-dump schemes have existed for many decades, the emergence of the Internet and social

media has provided a fertile new ground for fraudsters. False or misleading information can

now be disseminated to many potential investors with minimum effort, anonymously, and at a

relatively low cost.

2.1.2. Layering

In this type of manipulations, securities traders try to manipulate the price of a stock ahead of

transactions that they wish to execute, creating more advantageous executions for themselves.

It is a variety of a stratagem that has come to be called spoofing, itself an element of high-

frequency trading.

Through layering, a trader tries to fool other traders and investors into thinking that significant

buying or selling pressure is mounting on a given security, with the intent of causing its price

to rise or fall. The trader does this by entering multiple orders that he has no intention of

executing but instead plans to cancel.

Buying Example

A trader is looking to buy 1,000 shares of ABC stock, which is trading at LKR 2,000/- per

share. In hopes of pushing its price down, he enters 4 large orders to sell:

1. 10,000 shares at LKR 2,005/- per share

2. 10,000 shares at LKR 2,010/- per share

3. 10,000 shares at LKR 2,015/- per share

4. 10,000 shares at LKR 2,020/- per share

Note that the trader has layered these sell orders at incrementally higher prices above the

current market price. Thus, they will not execute unless the current market price moves upward.

https://www.thebalance.com/securities-trader-1287438
https://www.thebalance.com/day-trading-myths-1031230
https://www.thebalance.com/day-trading-myths-1031230

6

The trader intends to make other market participants believe that selling pressure is mounting

among holders of ABC stock and that the price thus is bound to fall below LKR 2,000/-per

share.

If the scheme works, other traders eager to sell will enter orders below LKR 2,000/, anticipating

that those orders to sell 40,000 shares soon will be re-entered at even lower prices.

The trader then will be able to purchase 1,000 shares of ABC at less than LKR 2,000/- per

share and cancel those layered sell orders.

The trader runs a risk that orders to buy ABC will intervene, instead pushing the price above

LKR 2,000/- per share. In this case, the trader will have to deliver up to 40,000 shares to

buyers, shares that he might have to obtain at yet higher prices, incurring a large loss in the

process.

Selling Example

A trader looking to sell 1,000 shares of ABC stock would do the opposite, to push its price up.

He would enter 4 large orders to buy:

1. 10,000 shares at LKR 1,995/- per share

2. 10,000 shares at LKR 1,990/- per share

3. 10,000 shares at LKR 1,985/- per share

4. 10,000 shares at LKR 1,980/- per share

If the strategy works, people eager to buy will enter orders above LKR 2,000/- per share,

expecting that the layered orders (which they do not know to be a mere ruse) will be re-entered

at yet higher prices. The trader will be able to sell at over LKR 2,000/- per share and cancel

those buy orders. Once again, there is a risk. Genuine orders to sell may intervene at less than

LKR 2,000/- per share, forcing the trader to buy shares that he did not want, as those buy orders

get executed.

2.1.3. Momentum Ignition

This scenario happens when manipulators attempts to trigger many other participants to trade

quickly and cause a rapid price move. By trying to trick other participants to buy or sell quickly,

the manipulator of momentum ignition can profit either having taken a pre-position or by

laddering the book, knowing the price is likely to revert after the initial rapid price move, and

trading out afterwards.

7

Momentum ignition does not happen in a matter of moments, but rather its culprits advantage

from an ultra-quick response time. By and large, the manipulator takes a pre-position, prompts

other traders in the market to exchange forcefully accordingly, causing a rapid price move, at

that point manipulator trades out.

As shown in Figure 2.1, when we follow the blue line it shows a rapid growth in the center

region. That means the trade rate was high in that region. Because of that we can see that the

price has gone down rapidly (shown in dark black line), that is where the manipulator waits for

the opportunity and make some profit out of it.

2.2. Stock Market Trading Behavior

An exchange is a market in which securities, commodities, derivatives and other financial

instruments are being traded. The main function of an exchange is to make sure the fairness

and orderly trading. As well as efficient dissemination of price information for any securities

trading on that exchange. Exchanges give companies, governments and other groups a platform

to sell securities to the investing public. The main purpose of surveillance team of a stock

exchange is to catch any manipulative behaviour which make harm to the fairness of trading in

a stock market.

2.2.1. Trading types

1. On book – sellers and buyers put their orders in the order book and those orders got

matched according to the matching engine.

2. Off book – changing the ownership of equities by discussing among parties and then

inform the exchange about the agreement. (these trades also get visible through

orderbook as a market watch ticker)

Figure 2.1 - Momentum Ignition scenario [5].

8

To keep the fairness of the stock market they always keep track of the prices of off book trades.

But for our project first we are not considering those off-book prices. Also, there cannot be an

off-book trade happens without letting know the Exchange. In the starting phase, we are only

considering about the on-book trades.

2.2.2. Order Book

An order book is an electronic list of buy and sell orders for a specific security or financial

instrument(equity), organized by price points. The order book lists the details of shares being

bid or offered at each price points. It also identifies the traders behind the buy and sell orders,

although some choose to remain anonymous. The order book is dynamic and continuously

updated in real time throughout the day. Exchanges such as Nasdaq refer to this order book as

the “continuous book.” Orders that specify execution only at market open or market are

maintained separately. These are known as the “opening (order) book” and “closing (order)

book,” respectively. Following figure shows an example for a simple orderbook.

Broker ID Bid Volume Bid Ask Ask Volume Broker ID

12 100 $95 $100 50 23

14 50 $90 $110 100 11

Figure 2.2 - Layout of an order book.

1. First three columns of the order book are to represent buy orders. Those columns are

sorted as the maximum bid comes to the top. For differently priced orders it gives a

price priority. For the orders with the same price order book gives the price, time

priority, so that the order which put first given the priority to go up in the order.

2. Next part of the order book represents the sell orders. Those columns are sorted as the

minimum ask comes to the top.

3. There is a separate order book for every equity(Instrument).

The order book information helps traders take better-informed trading decisions, since they can

see which brokerages are buying or selling the stock and whether market action is being driven

by retail investors or institutions. The order book also shows order imbalances, which may

provide clues to the stock’s direction in the very short term. A massive imbalance of buy orders

compared to sell orders, for instance, may shows a move higher in the stock due to buying

pressure.

9

Aggressing orders – When an order comes to the book if there is an existing order in the book

that can be matched with the new order that new order is called as an aggressing order. Those

orders are not visible through the order book since they did not get to the book.

Passive orders – When an order comes to the book if there are no existing orders to get match

with the new order, that new order is called as a passive order. They wait in the order book

until it gets matched or expired.

Limit orders - A limit order is an order placed with the intension to take a profit by a bank or

brokerage to buy or sell a set amount of a financial instrument at a specified price. because a

limit order is not a market order. it may not be executed if the price set by the investor cannot

be met during the period in which the order is left open. Trader specifies the price and the

volume that he need that order to be. So that order will only get executed according to that

values. Limit orders also allow an investor to limit the length of time an order can be

outstanding before being canceled.

Market orders - An investor makes a market order through a broker or brokerage service to buy

or sell an investment immediately at the best available current price. A market order is the

default option and is likely to be executed because it does not contain restrictions on the price

or the time frame in which the order can be executed. A market order is also sometimes referred

to as an unrestricted order.

2.2.3. Message Types

There are various types of messages send by the exchange for the events happening in the

exchange. All the parties interested in the stock market can use this message information to get

an idea about what is going on in the stock markets. for a specific trader or a broker, stock

market gives an access level. So, according to that the amount of detail which is visible for a

specific user may vary.

Order Messages – A message sent these types of message with every order that puts to the

orderbook. These messages consist of,

• Order quantity

• Execution type – new, amend, fill, cancel

• Order ID – unique ID with mix of strings and number.

• Broker ID – Broker firm who has the direct access to the exchange.

• Trader ID

https://www.investopedia.com/terms/m/marketorder.asp

10

• Client ID

• Client account ID

• Executed quantity

• Executed volume

• Tiff – Good till cancel, Fill or kill

Trades Messages - A message sent these types of message with every trade that happens. These

messages consist of,

• Trade ID

• Buy/sell broker’s ID

• Buy/ sell client’s ID

• Trade status – New, Cancel, amend (two parties should agree)

• Tick – Deviation from the top of the book

• Market watch Messages

• Best bid

• Best offer

• Total traded volume

• Open/close price

Time Type Order ID Size Price Direction

34200.025 1 16120456 18 5859100 -1

Figure 2.3 - Order book message.

2.2.4. Auctions

In trading, an auction refers to the process by which the prices of shares are determined before

the open, after the close, or during intraday volatility auctions to build or stabilize the order

book. They allow traders to place market or limit orders directly on an exchange.

The set price of a share on an exchange is represented as the highest amount that a bidder is

willing to pay for it and the lowest amount that a seller is willing to take for it. Because there

are several competing bidders and sellers, there are several offers and asking prices.

11

Liquidity is concentrated during auctions to maximize the volume and minimize the surplus

left by unmatched orders. Orders may be entered, modified and cancelled during an auction

period but no automated execution occurs. The indicative auction price and uncrossing volume

will be updated whenever new orders are created, amended or deleted: resulting in a new

auction price and volume.

Opening Auction - At the start of the day (8.15 A.M. - 8.30 A.M.)

• Chooses the opening price of and equity

• Auction prices are not visible to anyone (Indication price is only visible not the book)

• Using the orders buyers and sellers can affect the opening price (Matching Logic based

on quantity and prices)

• Orders that on the opening price are executed as a bulk at the end of the auction. No

other orders get executes.

Closing Auction - At the end of day (4.15 P.M.-4.30 P.M.)

• Chooses the closing price of and equity

Broker ID Bid Volume Bid Ask Ask Volume Broker ID

12 100 $95 $100 50 23

14 50 $90 $110 100 11

Figure 2.4 - Auction time orderbook behavior.

2.3. Supervised Detection

2.3.1. One Class Support Vector Machine with Hidden Markov Model

This is a model based on both OCSVM (One Class Support Vector Machine) and HMM

(Hidden Markov Model) [7]. This hybrid model analyzes single-order trades and multi-order

trades in two different stages. The OCSVM detects the single order manipulations and the

HMM detects the multi order manipulations. Single-order manipulations are those which occur

at a certain point in time. That addresses the manipulation that happens using a single order.

An example is placing a large sized order at a longer period for creating a special attention to

it.

12

Figure 2.5 - Single order disruptive trading[7].

Multi-order manipulations are related to several other trades in several points in time. These

are as an input sequence with no intention of execution. Such order sequences normally have

successively increasing or decreasing prices.

Figure 2.6 - Multi order disruptive trading triggers the bid price to increase quickly and drop

also quickly after the spoofing orders are cancelled[7].

Figure 2.7 shows the main components of the overall system. In this model, there are three

main engines. The input formulation engine, single-order manipulation detection engine, multi-

order manipulation detection engine. The model detects anomaly behaviors in the following

set of steps:

13

Figure 2.7 - Detecting system [7].

1. The order sequence is first input into the system and a vector containing the attributes

are formulated in the input formulation engine.

2. The trades are then sent into the single order manipulation detection engine consisting

of OCSVM for single order manipulation detection.

3. Then if an anomaly is detected then it can be alerted.

4. Then the orders are sent into the multi order detection engine consisting of HMM and

there the trading are kept in a sliding window and checked for multi order manipulations

scattered in time.

Input formulation

Financial data are considered as non-stationary time series. So, in this section time is taken as

an index. So, we create a vector in the form of δ𝑖 = [δ𝑖
𝑝 , δ𝑖

𝑣, δ𝑖
𝑡 , DIRECT𝑖]

𝑇. This vector is input

into the OCSVM for single order manipulation detection

Let and represent the cancellation and execution time of a limit order, respectively; we can

denote the lifecycle of an order as,

 𝐿𝑖
𝑙𝑖𝑓𝑒

= {
𝐿𝑖
𝑡 − 𝐿𝑖

𝑡,𝐶 , 𝑖𝑓 𝑐𝑎𝑛𝑐𝑒𝑙𝑒𝑑

𝐿𝑖
𝑡 − 𝐿𝑖

𝑡,𝐸 , 𝑖𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑
 (2.1)

Where 𝐿𝑖
𝑡 is the submitted time of the order i, 𝐿𝑖

𝑡,𝐶
 is cancel time of order i and 𝐿𝑖

𝑡,𝐸
 is executed

time of order i. The order execution and cancelation of a limit order are usually correlated with

its volume. Therefore, the Volume Weighted Average Lifecycle (VWAL) of limit orders, in

the prior period is calculated as,

 𝐿𝜏
𝑉𝑊𝐴𝐿 =

∑ 𝐿𝑖
𝑙𝑖𝑓𝑒

∗ 𝐿𝑖
𝑣𝑁

𝑖=1

∑ 𝐿𝑖
𝑣𝑁

𝑖=1

 (2.2)

14

Where 𝐿𝑖
𝑣 is the volume of order i. Therefore, we convert a limit order to a three-dimensional

impulse vector [δ𝑖
𝑝, δ𝑖

𝑣, δ𝑖
𝑡 , DIRECT𝑖]. by the transformation approach as follows,

 δ𝑖
𝑝 =

{

 𝑙𝑛

𝐿𝑖
𝑝

𝐵𝑖
, 𝑓𝑜𝑟 𝑏𝑢𝑦 𝑜𝑟𝑑𝑒𝑟

𝑙𝑛
𝐿𝑖
𝑝

𝐴𝑖
, 𝑓𝑜𝑟 𝑠𝑒𝑙𝑙 𝑜𝑟𝑑𝑒𝑟

 (2.3)

 δ𝑖
𝑣 = 𝑙𝑛

𝐿𝑖
𝑣

𝑣𝜏
 (2.4)

 δ𝑖
𝑡 =

𝐿𝑖
𝑙𝑖𝑓𝑒

𝐿𝜏
𝑉𝑊𝐴𝐿

 (2.5)

Single-order detection

In single order manipulations, manipulators try to tune the quoted price or volume. These kinds

of orders usually designed and placed in the market with no sequential relations. To detect

these kinds of manipulations this modal uses historical data to recognize patterns. In anomaly

detection area, one class support vector machine is the most frequently and ideal algorithm to

provide a better classification. In this support vector machine, two support vectors will be

generated based on the trading. Any trading that is separated from the support vectors will be

identified as anomalies.

Figure 2.8 - Support vector machine to detect normal and abnormal trading [7].

15

Multi-order detection

Then the vectors of trading will be stored in a sliding window for processing for multi order

manipulations detection. In the HMM model that is in that section will observe the vectors in

the sliding window and check for multi order manipulations. From the OCSVM some trading

that are part of a multi order trading can be recognized as a legitimate trading. They are put

into the sliding window for the use of HMM. This is an advantage when a certain trading that

are parts of multi order trading manipulations seem to be not disruptive when analyzed

individually.

Disruptive trading can also be carried out by submitting multiple limit orders to the market as

a sequence with no intention of execution. Such order sequences quick sweeting the market

induces the market impact by successively aggressive quotes or volumes. To further identify

the sequential set of orders the modal should capable of generating the observed temporal

changes, also the probability of the occurrences of that observed temporal changes. So, to

achieve that goal in this modal proposes a hidden Markov modal (HMM). Observable feature

states and hidden mixture component states are used in the Markov modal. These concepts

modeled on a standard Markov process on the assumption that each state is only depend on the

previous states. One type of HMM can be used to identify anomalies. For that first the modal

is trained with the normal activities and the cases tested against that modal.

So as discussed in the previous sections, here the detection of manipulative patterns can be

framed as anomaly detection problem. That should be a system which captures new or

unknown patterns and triggers and alert. To do that an improved version of HMM is needed

that is explained next.

Multi-variable Gaussian mixture model

Financial data are generally considered to be inherently non-stationary, and so it is accepted

that the statistical properties of such data, for example, the mean and variance, vary over time.

To modal that varying data they use probability density function (PDF) of a variable is to

approximate its (unknown) density using a Gaussian mixture model (GMM). Figure 10 shows

the joint probability density functions(PDF) of δ𝑖
𝑣 (volume component of the vector) and δ𝑖

𝑝

(price component of the vector) for the MFST equity.

16

Figure 2.9 - Joint PDF of price vector component and volume vector component [7].

Then they use the traditional hybrid SMOTERUS approach that combines the widely used

over-sampling algorithm SMOTE and under-sampling algorithm RUS together to achieve a

reasonably balanced ratio in the dataset. In this technique the number of samples of the majority

class is reduced to generate a balanced dataset. The majority class is balanced to the equal

number of instances of minority class by randomly choosing instances from majority class.

Therefore, the number of instances of majority and minority class are balanced.

Figure 2.10 - SMOTERUS approach for MSFT data [7].

Figure 2.11 illustrates an example of the SMOTE-RUS approach on the MSFT stock dataset in

a short time interval.

(a) buy side MSFT trading data from 9:00-12:00 am on 24 Jan 2013 with a 15:20000 ratio of

disruptive (red circles) and normal (blue dots) trading data;

17

(b) data examples generated by the hybrid SMOTE-RUS approach on the data in (a) with a

0.95:1 ratio of disruptive (red circles) and normal examples;

(c) sell side MSFT trading data from 9:00-12:00 am on 24 Jan 2013 with a 15:20000 ratio of

disruptive (red) and normal (blue dots) trading data;

(d) data examples generated by the hybrid SMOTE-RUS approach with a 0.96:1 ratio of

minority (red circles and red dots) and majority (blue dots)

HMM-based Model

As discussed earlier they construct the joint PDF of normal and disruptive trading behaviors

separately using GMM, and the two PDFs are represented as PN (normal) and PD (disruptive).

We setup the probability thresholds for PN (normal) and PD (disruptive) following the heuristic

method usually applied in a one-class support vector machine (OCSVM). As the thresholds are

defined, the data are accepted as normal when PN(Ft) ≥ 99% * PN
min. Similarly, for PD, the

threshold is set as 99% of the lowest cumulative probability of disruptive trading examples.

The 1% outlying values are not simply taken as abnormalities but are used to generate the states

for the HMM.

Figure 2.11 - (a) Example states of observed trading behaviors (b) structure of the designed

HMM with diruptive states [7].

Figure 12 shows the model of the HMM that is used with this system. In that model blue colored

part is the data that satisfies PN(Ft) ≥ 99% * PN
min. red colored part is the where observed

disruptive after the threshold is applied and the white area consist of the data that is not goes

to either red or blue. So as the observed states we can calculate the probabilities.

The fundamental property of this design utilizes the inference features of HMM, which could

answer two key questions: 1) what is the most likely sequence of hidden states to generate the

observed sequence (what is the latent intention given a certain observed trading sequence), and

2) what is the probability of an observed sequence (how likely are we to observe a specific

18

trading sequence)? HMM provides answers to the two questions by determining the sequence

of hidden states most likely generating the observations sequences and the occurrence

probability of the observed sequence based on the transition and emission probability matrix

constructed during the training process. Those answers can be used as a measure of disruptive

trading behaviors.

Detection Algorithm

Single-order detection algorithm can be described as below,

1. Select a historical date and construct the training dataset of the transformed vector.

2. Train the OCSVM using the constructed training dataset.

3. Detect the most updated incoming vector using the trained OCSVM.

4. If OCSVM triggers a disruptive trading alert, the most updated vector is stored in the

disruptive trading dataset.

5. If no disruptive trading alert is triggered, the training dataset is slid forward to include

the most updated vector and is fed into the adaptive mechanism module for a model

update check. If a model update is not needed, the algorithm flow goes to step 2.

6. If a model update is not needed, the algorithm flow goes to Step 3.

Multi-order detection algorithm can be explained as below,

1. Select a historical date and construct the training dataset of the transformed vector 𝛿𝑖

2. Calculate and construct the training dataset of 𝛿𝑖 = [δ𝑖
𝑝, δ𝑖

𝑣]𝑇

3. Collect all known disruptive trading records on the selected financial instrument and

construct the dataset of the transformed disruptive vector 𝛿𝑖,𝑑𝑖𝑠𝑟𝑢𝑝𝑡

4. Calculate and construct the training dataset of 𝛿𝑖,𝑑𝑖𝑠𝑟𝑢𝑝𝑡 = [δ𝑖, 𝑑𝑖𝑠𝑟𝑢𝑝𝑡
𝑝 , δ𝑖, 𝑑𝑖𝑠𝑟𝑢𝑝𝑡

𝑣]𝑇

5. Apply SMOTETUS algorithm on the dataset of 𝛿𝑖,𝑑𝑖𝑠𝑟𝑢𝑝𝑡 and construct the over-

sampled dataset of 𝛿𝑖,𝑑𝑖𝑠𝑟𝑢𝑝𝑡,𝑜𝑣𝑒𝑟

6. Calculate the joint PDF of vectors 𝛿𝑖 and 𝛿𝑖,𝑑𝑖𝑠𝑟𝑢𝑝𝑡,𝑜𝑣𝑒𝑟 using GMM. Set the

corresponding thresholds for two joint PDFs.

7. Train the HMM using the constructed vectors and states.

8. For a constructed testing sequence θT, detect disruptive behaviors via the trained HMM

model.

9. If HMM triggers a disruptive trading alert, the corresponding vectors are stored in the

disruptive trading dataset, the algorithm flow goes to Step 5.

19

10. If no alert is triggered, the training dataset is slid forward to include the most updated

vector and is fed into the adaptive mechanism module for model update check. If a

model update is needed, the algorithm flow goes to Step 2.

11. If a model update is not needed, the testing sequence is slid forward to include the most

updated server and the algorithm flow goes to Step 8.

2.3.2. Trading Networks

Firstly, an entire trading network [8] will be constructed for each stock. Each trader who bought

or sold the stock enters the network as a node. A directed link is formed between two traders if

they had transactions and the direction of the link is from the seller to the buyer. When a trader

places an effective market order, it is possible that the order is executed by several orders on

the limit order book submitted by different traders. In this case, the local network structure is

a star-like graph with the central node acting as a source if the trader sells or a sink if the trader

buys.

The constructed trading networks record the patterns of order execution in limit order book and

of the flows of cash and stock shares among investors, which provides a potential opportunity

to detect market manipulations of some traders and to further investigate their influences on

the market’s behaviors’. After scanning all the trading networks, it is easy to find that there are

some motif patterns in contrast with the intuitions, which can be considered as evidence in

favor of market manipulations of some investors.

Mainly there are three types of abnormal trading motifs in stock trading, namely self-loop, two

node loop and two node multiple arcs

Figure 2.12 - Graphical illustration of abnormal trading motifs (A)Self-loop (B)Two-node

loop (C)two-node multiple arcs [8].

20

Motif A in Figure 2.12 is a self-loop, containing a single trader who sells shares to himself.

Such motifs are reminiscent of wash sales, which are improper transactions in which the buyer

and seller are the same person such that there is no genuine change in ownership. If a trader

utilizes the technique of wash sales, his trading behavior will be identified as motif A from the

trading network. Alternatively, a motif A trader is possibly not a manipulator, but the

probability is very low.

Motif B in Figure 2.12 is a two-node loop, in which two traders (or more precisely two stock

accounts) exchange shares of the same stock. Motif B is the simplest structure embedded in the

manipulation technique of stock pools. Stock pools can be identified as a collusive group of

manipulators trading shares back and forth among themselves. Motif B can be observed not

only in cliques and some circular trading sets but also in other pools.

Motif C in Figure 2.12 contains multiple (at least two) links with the same direction, which

happens when one account repeatedly sells to or buys from the same counterparty. The

occurrence of network structure of motif C is more common than motifs A and B. Motif C

might correspond to a normal behavior when a trader buys or sells the same stock several times

and encounters the same counterparty by coincidence. Alternatively, motif C might also appear

between two traders within a same pool.

2.4. Unsupervised Detection

2.4.1. Time Series Contextual Anomaly Detection

Reduction-based Contextual Anomaly Detection (CAD) method for complex time series that

are not described through deterministic models is presented in [9]. First, a subset of time series

is selected based on the window size. Second, a centroid is calculated representing the expected

behavior of time series of the group within the window. The centroid is used along with

statistical features of each time series Xi (e.g., correlation of the time series with the centroid)

to predict the value of the time series at time t (i.e., xit"). Table 2 describes the algorithm. This

is a lazy approach, which uses the centroid along with other features of the time series for

predicting the values of Xi:

 𝑋𝑖𝑡
𝑀 = Ψ(Φ(X), c!) + 𝜖 (2.6)

where 𝑋𝑖𝑡
𝑀 is the predicted values for the time series Xi at time t, Φ(Xt) is a function of time

series features (e.g., the value of Xi At time stamp t-1, drift, autoregressive factor etc.), Ψ

specifies the relationship of a given time series feature with the value of centroid at time t (i.e.,

ct), and ε is the prediction error (i.e., ((Xit" − Xit)
2)1/2). The centroid time series C is the expected

21

pattern (i.e., E(X1, X2,…, Xd)) which can be calculated by taking the mean or weighted mean of

values of time series Xi at each timestamp t. Ψ is defined as the inner product of statistical

features of each time series and its correlation with the centroid. Pearson correlation of each

time series is used with the centroid to predict values of the time series because if the centroid

correctly represents the pattern of time series in a group (i.e., industry sector), the correlation

of individual time series with the centroid is an indicator of time series values.

Third, authors assign an anomaly score by taking the Euclidean distance of the predicted value

and the actual value of the given time series (the threshold is defined by the standard deviation

of each time series in the window). It has been shown that the Euclidean distance, although

simple, outperforms many complicated distance measures and is competitive in the pool of

distance measures for time series. Then continue this process by moving the window.

Authors have compared this with other competing time series analyzing approaches, KNN and

Random walk and shown that the recall is improved from 7% to 33%. In the manipulation

detection in stock trading, false negatives are costlier as missing a market manipulation period

by predicting it to be normal. So, recall is making a larger impact than the precision. As a future

work they are proposing a second phase would consist of weeding out some of the false

positives by means of a classifier to improve the precision.

2.4.2. Mathematical Model

Pump-and-Dump Model

In pump-and-dump [10], a manipulator places buy orders, increasing the price and volume of

an equity as shown in Figure 2.13. During this period, other investors think that the price is

going up and join the buy orders. A manipulator makes profits by cancelling all remaining buy

orders and executing sell orders at the higher prices than the price before the manipulation.

Therefore, other investors who are not cautious about the fraudulent orders from the

manipulator might have bought the equity at a higher price than the usual price.

22

Figure 2.13 - Price variation in a Pump and Dump scenario [10].

In this model three conditions are defined to detect pump-and-dump as below: one condition

for the pumping state, and two conditions for the dumping state. First two conditions in the

dumping state are the amount of the order cancellations and the matched orders. For the first

dumping condition we classify the activity as a dumping position when the amount of the

cancellation and deletion of buys orders is more than a threshold (50% here) of the average

volume of buy orders. In the second dumping condition, the difference between the highest

price of sell orders and the lowest price of sell orders is more than a threshold (0.15% here). It

is identified as a dumping state when both conditions are satisfied.

If a dumping state is detected with first two conditions, then it is verified with the pumping

condition.

For the pumping condition, it is tested whether the price was going up before the previously

detected dumping period. If such behavior is detected, the price rising activity is defined as the

pumping state when the difference between the highest bid price that have been matched and

the lowest bid price that have been matched at the starting of period is more than a threshold

(0.2% here).

When the mentioned three conditions are satisfied, it is concluded that a pump-and-dump

manipulation has taken place.

Spoof Trading Model

Spoof trading is one of the most popular techniques that a manipulator uses to make a profit.

A manipulator starts placing large spoof ask or bid orders into the market to trick other traders

that there are high demands for that equity. The manipulator has no intention for these spoof

orders to be matched. The orders will be cancelled when they are about to be matched. These

23

orders are called passive orders. The volume of these passive sell or buy orders is usually large.

Spoof orders can be implemented in two ways: the passive sell price is lower than the current

ask price, or the passive buy price is higher than the current bid price. In the Figure 2.14(a), a

manipulator intended to buy an equity at the price lower than the current ask price. He placed

a large-volume order at a passive price, which is lower than the current ask price as shown in

the dashed bar in the Figure 2.14(a). Then, other investors joined into this spoof orders in the

Figure 2.14(b), and they expected that the current ask price will decrease. Afterwards, the

manipulator withdrew the large spoof sell orders and bought all stocks of remaining sell orders

from other investors who were not cautious about this manipulated price as shown in the Figure

2.14(c).

Figure 2.14 - Spoofing trading example [10].

Three conditions were defined for spoof trading: order cancellation has its price close to the

current bid or ask price, high cancellation volume, and high volume matched at the last buy or

sell order.

24

For the first condition to be satisfied, the absolute value of the difference between the price of

cancellation sell orders and the current ask price should be lower than a threshold (0.5% here).

For the second condition, the amount of the cancellation sell orders should be higher than a

threshold, which is five times of the summation of matched orders since the starting point in

this case. For the third condition, the amount of matched buy orders should be higher than a

threshold which is 50% of the summation of matched orders since the starting point. When

these three conditions are met, the set of events are treated as a spoof trading event. Then, it is

used as a desired output in the training data for the neural network model.

 The neural network model consisted of the input layer (25 nodes), the hidden layer (3 nodes),

and the output layer (1 node). This model detected pump-and-dump and spoof trading events.

The output of the neural network was a binary variable that indicates the probability of

manipulation. 1 and 0 for manipulated points and non-manipulated points respectively.

2.4.3. Clustering

Clustering with Particle Swarm Optimization

In general, a cluster can have several cluster boundaries as shown in Figure 2.15. A generic

algorithm can be applied here to find the most suitable cluster boundary among all possible

cluster boundaries. Particle Swarm Optimization [11] which determines the optimum solution

heuristically, could be applied in this kind of clustering approach provided the availability of

an appropriate objective function to determine the optimum cluster boundary.

Figure 2.15 - Different cluster boundaries in same set of clusters [11].

An objective function is defined here for clustering with particle swarm optimization that works

on the entries of U-matrix to locate the best cluster boundary. U-matrix is simply a matrix of

distances between code vectors where lower values indicate code vectors are closer and higher

values indicate code vectors are far apart. Logically, clusters are formed where data density is

25

relatively higher from nearby region so the values from the matrix are used to find the boundary

with maximum average value so that optimum cluster boundary lies where density of code

vectors starts decreasing. In some data sets it has been found that data that are far apart make a

cluster of their own. To cater for this type of data distribution this method automatically

determines if the region near cluster center has lower density, then the opposite is done i.e. find

the boundary with minimum average value so that optimum cluster boundary is where density

of code vectors starts increasing i.e. relative lower values in U-matrix. This proposed novel

algorithm is called Expanding Cluster Boundary Algorithm which has been described below:

In some approaches Shrinking Cluster Boundary approach has been used which is entailed with

few shortcomings that has been tried to overcome in this new approach of Expanding Cluster

Boundary algorithm. Shrinking Cluster Boundary does not perform well if a proper initial

cluster boundary is not specified manually whereby the Expanding Cluster Boundary algorithm

is insensitive to initializations because it does not require the initial cluster boundary to be

specified. This algorithm starts with automatic assignment of a unit square cluster boundary

outside manually chosen cluster center anywhere in the region of the expected cluster using

graphical U-matrix which grows until the optimum cluster boundary has found or the edge of

the u-matrix has reached. There are some other existing methods too, to determine cluster

centers automatically that utilizes K-means algorithm with minimal user interference. The

clustering algorithm proceeds as follows:

1) Initialization: After specifying the cluster center, PSO automatically initializes a unit

principal cluster boundary i.e. closest square boundary outside cluster center along with a set

of neighboring boundaries. Additional boundaries help in better acquisition of dispersion of

data near the boundary. The cluster centers are approximated as middle point of denser regions

through visual inspection of U-matrix. Now for each iteration of PSO:

2) Adjust ranks: PSO generates particles’ positions (sequence/array of numbers) and changes

their positions by picking 2 indices and swapping them. These indices are called ranks. These

sequences have constant size; they are utilized as cluster boundary whose size changes

iteratively. The ranks are simply arranged corresponding to the size of expanded cluster

boundary i.e. mathematically:

 𝑁𝑒𝑤 𝑅𝑎𝑛𝑘 = 𝑐𝑒𝑖𝑙(
𝑟𝑎𝑛𝑘 ∗ 𝑆𝑂𝑀 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑆𝑖𝑧𝑒

𝑃𝑆𝑂 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑆𝑖𝑧𝑒
) (2.7)

26

3) Expand cluster boundary: Expand the cluster boundary in the U-matrix gradually away from

cluster center by picking both ranks (indices) and moving them one row and/or column

outwards.

4) Calculate average weight of cluster boundaries (fitness function): Since the initial principal

boundary is extracted from U-matrix, each weight unit is the distance between clusters or

neighborhood distance. Additionally, some neighboring boundaries are calculated; this

improves the search for cluster boundaries. If a matrix entry is promising to be good cluster

boundary, then we change the weight to make it closer to the maximum value of the matrix

according to its quality and if the matrix entry is not promising then we change the weight

towards the minimum value of the matrix. The higher the average weight the better the cluster

boundary. For example, if matrix entry has smaller weight unit_weight near the boundary then

it is promising, and it is changed to: unit_weight = max_val – unit_weight where, max_val is

the maximum value of the U-matrix and unit_weight is the weight of a single entry of U-matrix

which is part of a cluster boundary. The fitness function is simply the average weight of cluster

boundaries. The objective function of clustering algorithm uses these values of U-matrix to

find maximum average weight through PSO. If the weight unit of an outer boundary, i.e. a

boundary that is further away from the corresponding cluster center than the principal

boundary, is higher than the weight unit of the principal boundary, then it is added to the weight

since it is likely to be a cluster boundary. If weight units for the principal boundary is lower,

then again, the corresponding weights are increased. In some cases, the weights can also

decrease; for example, if the weights for some outer boundary are lower than the corresponding

values for the principle boundary, then the outer boundary is in fact not a boundary; instead, it

belongs to the interior of another cluster. Similarly, inner boundaries (interior part of cluster)

whose weights are higher than the corresponding values of the principal boundary in fact do

not belong to the interior of the cluster; rather it is part of the cluster boundary. Hence the

fitness function is simply the average weight of the cluster boundaries. Each particle of a swarm

consists of the value of this fitness function which is simply the average weight of cluster

boundaries. Each particle of a swarm consists of the value of this fitness function which is

simply the average weight of cluster boundaries.

5) Solution: Repeated application Steps 2 to 4 results in a maximum average weight, which

corresponds to the best cluster boundary. The best boundary is the one which has highest

average value of distances between points and their neighbors.

27

3. Design

This chapter describes the design of the proposed stock market manipulation detection tool.

The proposed tool consists of a client web portal and a server.

We analyze the order events by time based windows or order event based windows. Window

can be considered as chunk of order messages for a particular equity. Mainly three approaches

have used to detect the manipulation in stock trading. Manipulator will slightly increase the

price for an equity. We have used price gap visualizer because, if we get the price difference

for all the windows, it will be easier to visualize the manipulated frame in a different view.

Traders are using different events in market. If a trader uses different number of events in a

window the randomness will be changed, and it can be detect using entropy. If a window has

major changes compare to other windows, when the windows are clustered anomalous

windows can be identified using the proposed clustering approach.

Section 3.1 describes the workflow diagram which explains how the communication is

happening between components. Section 3.2 describes the layered architecture diagram and all

the components briefly.

3.1. Workflow Diagram

Figure 3.1 - Workflow diagram.

Figure 3.1 illustrates the workflow diagram of the proposed manipulation detection tool. We

assume that user will uploaded the stock market trading data to the tool as two files, namely

session data file (i.e., all stock trading sessions) and stock trading data file (all stock trading

order data) to the server. After uploading those files, user will be shown the statistics of the

28

files. Then the user has to select options needed to process the files and after processing the

user will be redirected to another view by displaying the most suspected window as a result of

the processing (either by order or by time) with a detailed description.

3.2. Layered Architecture

Figure 3.2 shows the high-level architecture of the proposed system.

3.2.1. Presentation Layer

Presentation Layer of the system handles all the communication with the user. It uses a REST

API to communication with the server and provides functionalities to upload files, select

analysis options, view statistics, etc. Use REST API decouples the client and the server

connections. Hence, with the initial URI, the client does not require the routing information,

client can have generic ‘listener’ interface for notifications, etc. The presentation layer also

includes input validation and guide the user from making false operations on the application.

3.2.2. Pre-Processing Layer

Preprocessing layer reads trading data, check whether the dataset is in given format and inform

user about basic statistics related to the dataset such as no of buy and sell orders. Moreover,

preprocessing phase extracts relevant features from the dataset which are used to develop the

model in the processing stage. Different machine learning models need different features and

transformations to detect the manipulation time frames. Furthermore, when we follow feature

Data Access Layer

User Interface

Entropy

Windows

Files | Database

Clustering

Price Gap

Orderbook

Average

Attributes

Presentation Layer

Process Layer Preprocess Layer

Figure 3.2 - High level architecture design.

29

extraction techniques (eg.. probability value of order events and normalization) and prepare the

data, sometimes some algorithms can deliver better results without the preprocessing. But for

the model used in this application requires the outcomes of a preprocessing stage.

Therefore, by adding many different preprocessing techniques to this data, we exercise a

handful of algorithms on each view of the dataset. This helped us to feed the better preprocessed

data to the machine learning models in the system.

Windows

For analyzing the data, we basically divide the dataset into windows because windows allow

us to detect particular manipulation within each area and we assume that all windows should

have the same properties (eg.. execution type average, price volume average, etc..).

We are using two types of windows to process. They are,

1. Event based windows

2. Time based windows

In event based windows, we specify what is the number of orders to be included inside a

window. So that the data is divided into chunks of the desired amount and in each pre-

processing technique different types of values are calculated for that window.

In each type of pre-processing we are going to calculate a value for a window.

 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑒𝑣𝑒𝑛𝑡 𝑡𝑦𝑝𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝑡𝑦𝑝𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑣𝑒𝑛𝑡𝑠
 (3.1)

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑_𝑝𝑟𝑖𝑐𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑝𝑟𝑖𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑢𝑛𝑡
 (3.2)

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑_𝑣𝑜𝑙𝑢𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑢𝑛𝑡
 (3.3)

Equation 3.1 will calculate the average events (new orders, amend orders, cancelled orders and

executed orders). Equation 3.2 will calculate the average executed price for a window and

Equation 3.3 will calculate the average executed volume for a window. The reason for

calculating executed quantities for windows is that we are assuming that manipulators are

directly focusing on executed quantities rather than amending and cancelling.

30

 𝜇 =
∑ 𝑥𝑖
𝑁
𝑖=1

𝑁
 (3.4)

 𝜎 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2
𝑁

𝑖=1

 (3.5)

 𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋 − 𝜇

𝜎
 (3.6)

Equation 3.5 and 3.6 have used for calculating mean and standard deviation for a window.

Then normalized value can be calculated from equation 3.7 [12].

 Δ𝑃𝑡𝑖𝑚𝑒 = 𝑃𝑡+1 − 𝑃𝑡 (3.7)

Equation 3.4 is used to calculate the price gap between order messages. For processing phase,

only the values calculated for each window is considered. Then the whole window acts like a

value point among the others.

Orderbook

Orderbook module is used to generate the model of the actual orderbook according to the order

messages data file. This order book lists the number of shares being bid or offered at each price

point, or market depth and this will help to identify how the market behaves in a particular

time/order frame. Orderbook simulation process is done in every time frame if it is requested

by the user.

3.2.3. Processing Layer

This phase consists with different machine learning algorithms and visualization components

and preprocessed data will be filtered to this phase. After analyzing preprocessed data, the

anomaly time/order window will be displayed with relative parties.

Clustering

K-means clustering algorithm with a dynamic k value was used in the data analytic module of

the tool. Anomalous clusters were identified according to an anomaly score.

31

Figure 3.3 - Anomaly Score.

If the number of data points in each cluster are n1, n2 and n3 and distances between them are

d1, d2, d3, anomaly score of n1 cluster is,

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =
𝑑1 + 𝑑2

2
 (3.8)

 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑆𝑐𝑜𝑟𝑒 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒

𝑁𝑜 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
 (3.9)

 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑆𝑐𝑜𝑟𝑒 =
𝑑1 + 𝑑2

2⁄

𝑛1
 (3.10)

32

Figure 3.4 - Elbow method to generate dynamic K value.

Figure 3.4 shows how the usage of elbow method to calculate the dynamic K value. The idea

of the elbow method is to run k-means clustering on the dataset for a range of values of k, and

for each value of k calculate the sum of squared errors (SSE).

Then, plot a line chart of the SSE for each value of k. If the line chart looks like an arm, then

the "elbow" on the arm is the value of k that is the best. The idea is that we want a small SSE,

but that the SSE tends to decrease toward 0 as we increase k (the SSE is 0 when k is equal to

the number of data points in the dataset, because then each data point is its own cluster, and

there is no error between it and the center of its cluster). So, our goal is to choose a small value

of k that still has a low SSE, and the elbow usually represents where we start to have

diminishing returns by increasing k.

Entropy

Entropy, as it relates to machine learning, is a measure of the randomness in the data being

processed. The higher the entropy, the harder it is to draw any conclusions from that

information. For an example, imagine the situation of flipping a coin which is an action that

33

provides information that is random. For a coin that has no affinity for 'heads' or 'tails', the

outcome of any number of tosses is difficult to predict. Why? Because there is no relationship

between flipping, and the outcome. This is the essence of entropy. The entropy can explicitly

be written as,

 𝐻(𝑋) = ∑𝑃(

𝑛

𝑖=1

𝑥𝑖) 𝐼(𝑥𝑖) = −∑𝑃(𝑥𝑖) 𝑙𝑜𝑔𝑏

𝑛

𝑖=1

𝑃(𝑥𝑖) (3.11)

Relation between the entropy concept and our problem lies with the trading patterns that are in

the providing data. Here, order execution types are considered. If the data has these order

execution types randomly distributed over the whole dataset, we can identify an evenly valued

entropy value set. But if any time window has a weighted arrangement of a certain execution

type, we have that time window with a more biased entropy value. That kind of a result is

obtained by applying the entropy concept in the processing layer. Figure 3.5 shows the entropy

variation graph.

Figure 3.5 - Information entropy of execution types.

Price Gap Analysis

Consecutive price gaps will be calculated in this phase. After normalizing those values, the plot

will be displayed in the user interfaces. It would be easy to differentiate anomaly price gap

window and other windows.

3.2.4. Data Access Layer

The main advantage of keeping a separate data access layer is to keep the code we use to pull

data from your data store (files and database) separate from business logic (Pre-processing

layer and processing layer) and presentation (User interface) code. This way, it is easy to

34

change data stores and no need to rewriting the whole thing. In this system, data access layer

is used to access the files (.csv format) and database(MySQL).

Data Files

Mainly, there are two data files. Session file where all the session states are included in a day

and a data file where all the trading are included. If a user needs to detect manipulation, he

needs to upload both files to the server.

Database

Database is used to track the uploaded file names, output file names and file accessing times.

Main benefit of this part is to upload the files which are used recently.

35

4. Implementation

This chapter gives a detailed description about implementation of our system. Section 4.1

describes the tools, languages and technologies used. Section 4.2 describes the implementation

details of each component in the system.

Figure 4.1 - The class diagram of the system.

4.1. Tools and Technologies

Our system is developed having two main sections, frontend and the backend. The backend or

the server is written entirely in Python3 using the Flask framework [13]. This enabled us to

define and call REST API endpoints and communicate through a client. The client or the

frontend is written in Javascript using AngularJS framework. Third party solutions like Pandas,

Amcharts, etc. are used to create functionalities in the project. We used the PyCharm IDE by

Jetbrains to organize, edit the codebase. To keep the file’s local history, we have used MySQL

36

as a database service. For version controlling we used Git and Github. Our project is hosted at

Github[14]. It is easier to maintain the versions and do collaborative work using Git services.

4.2. Preprocessing Module

Window

As we discussed previous chapter window is a chunk which consists with orders or time. In

time-based windows, we can specify the time in minutes. Then the data is divided into chunks

based on the time. By looking at the transact_time attribute of the Order, it will be allocated to

a window. Not like event windows there can be time windows which does not have an order

inside it.

Figure 4.2 - Window design.

For each type of pre-processing we are parsing a window object with it. So, all the pre-

processing work happens using that window object.

Orderbook

Orderbook is the central entity of all the entities of the project. Orderbook has the record of the

buy and sell amounts of equity amounts. By looking at the orderbook at a given time, we can

get a snapshot of the market situation at that time. So, we decided to simulate the orderbook as

a part of the data processing.

First, we have a model class for an Order. An order is an entry at the Orderbook where the

transactions are recorded. For every order message that is in the orderbook message, we create

an order instance and pass it to the orderbook simulation to process the order.

37

Figure 4.3 - Orderbook design.

According to the execution_type attribute there are four main types,

1. New orders - A new buy or sell order that a trader has put in to the orderbook for future

processing. Denoted by the "0" value in the program.

2. Cancel orders - Deletion of an order that was in the orderbook. Denoted by the "4" value

in the program.

3. Amend orders – Changing an order in the orderbook. Denoted by the "5" value in the

program.

4. Fill orders – Execution happened for an order that was in the orderbook by matching

with another order. Denoted by the "15" value in the program.

Volume – volume is expressed as three fields. Each order has quantity values has a different

meaning to that. total_qty shows the total volume of the order. visible_size shows the amount

of the volume that is visible to the orderbook. executed_qty is the volume that has been get

executed when a fill order happened.

Side – Side denotes whether the order is a buy order or a sell order. "1" denotes a buy order

and "–1" denotes a sell order.

Value – value is the price of the order that has been chosen by the trader. Since the market

orders are placed without denoting a price this fields comes empty. Executed value is the actual

price that the order gets executed with another order.

38

For every order that fed in to the orderbook is been processed by its type. If it is a new order,

then it gets processed and the price point of that order put in to the corresponding ArrayList

either buy or sell as shown figure 4.4.

Figure 4.4 - Buy orders price points.

Figure 4.5 - Sell orders price points.

These price points are the details which actually shown in the orderbook simulation. Buy order

list is reverse sorted so that the largest buy order come to the front. Sell order list is sorted so

that the smallest order come to the front. If an order came with a price point that is already

there in the corresponding list, nothing needs to happen in the above two lists. That details kept

in a dictionary data structure. It keeps the price point and the list of order ids that of the orders

corresponds to that price point.

Figure 4.6 - Dictionary structure of order details.

When the details needed for a specific order_id it fetched from a data frame that maintains to

keep track of all the details.

39

4.3. Processing Module

4.3.1. Clustering Module

K-means clustering

The idea of this algorithm is to find groups in the data, where the number of groups is

represented by the variable K, then separate most different groups or anomalous groups as

fraudulent behaviors. The algorithm works iteratively to assign each data point to one of K

groups based on the features that are provided. Data points are clustered based on feature

similarity. The results of the K-means clustering algorithm are:

1. The centroids of the K clusters, which can be used to label new data

2. Labels for the training data (each data point is assigned to a single cluster)

Rather than defining groups beforehand, dynamic k-means clustering allowed us to find and

analyze the groups that have formed organically. The following section describes how the

number of groups can be determined.

Therefore, in our approach, the market data of a single day were divided into frames of user's

choice and normalized mean values of different features during these time intervals were used

as data.

A vector combining all these features was used as a data point. These vectors were clustered

using the clustering algorithm.

Dynamic K value

The K-means algorithm is somewhat naive as it clusters the data into k clusters given the k is

determined early and provided at the start, even if k is not the right number of clusters to use.

Therefore, when using k-means clustering, we had to use some way to determine whether they

are using the right number of clusters.

The method used to find the number of clusters is the elbow method as described in section

3.2.3.

Anomaly Score

After clustering the market data, we had to differentiate anomalous clusters from normal

clusters. For this we used an Anomaly score which we calculated as follows.

40

First, we selected one cluster and calculated the mean of the distances between the centroid of

that cluster and centroids between every other cluster. Then that mean distance value is divided

by the number of elements in the cluster. The idea behind this is, for a cluster to be anomalous

the data points in that cluster should differ from other data points i.e. they should be distant

from other data points. To take this factor into account we had to take a distance measure into

anomaly score calculation. Also, manipulative behaviors do not appear in stock market data in

huge numbers. There may be few fraudulent behaviors among millions of normal transactions.

Therefore, the amount of data points in a cluster should also be considered when calculating

the anomaly score.

Here, for clusters which are far away from the rest of the data set, distance score value is high.

When the distance score is high, and the no of data points is low, those type of clusters get the

highest anomaly scores.

Entropy Module

As the second data analytic module we analyzed the Information Entropy of several features

of the stock market data. Generally, entropy refers to disorder or uncertainty. Information

entropy is the average amount of information produced by a probabilistic stochastic source of

data. The measure of information entropy of data value is the negative logarithm of the

probability mass function for the value. Therefore, when the data source has a lower-probability

value (i.e., when a low-probability event occurs), the event carries more information than when

the source data has a higher-probability value. The amount of information of each event

becomes a random variable whose expected value is the information entropy.

Information entropy of four execution types and two sides of orderbook were calculated. Four

execution types: new orders, amend orders, fill orders and cancel orders gave the most accurate

results when the information entropy values were used for the analysis. As shown in the Figure

3.5, during the time frame of the manipulation the information entropy of execution types have

decreased rapidly. Meaning that the trading behavior in that time frame is different compared

to the other time frames.

When most the manipulations take place only one or two types of execution types are executed

for the buildup of the manipulation. For example, in pump and dump manipulation type mostly

new orders or amend orders are used to create an artificial demand for an equity. Then the

information entropy of execution types in that time interval decreases rapidly. This is the reason

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Probability_mass_function
https://en.wikipedia.org/wiki/Random_variable

41

for the drastic change in entropy in the Figure 3.5 during the manipulated time frames. Apart

from the lowest entropy value, we can also see several local minima and their occurrences.

Price Gap Analysis

Some manipulation types like Momentum Ignition scenario, manipulators try to increase the

price of the equity gradually. Then normal traders will see it like a high trading equity. Then

they will try to trade on those equities. After visualizing price gap graph with respect to time,

manipulated time frame or order frame shows the significant difference compare to other

windows. Therefore, this method can be used as a visualization approach in this tool.

Figure 4.7 - Price gap window without manipulations.

42

Figure 4.8 - Price gap window with a manipulation.

4.4. Dashboard Implementation

This dashboard application has functionalities from uploading the necessary files to the

backend server and getting processed results out of the system. There are several visualizations

to get a visual feedback about the data, even for the statistics of the uploaded files. All the

visualizations can be saved in one of the selectable file formats.

4.4.1. Session File Uploader

Every time user must choose the corresponding session file for the corresponding day. The tool

allows the user to upload session details of the corresponding day before uploading the trading

data. A typical session file can be defined as follows.

43

Transaction Time Session Name

2016-04-29 06:00:00.015 Pre-Trading

2016-04-29 06:50:00.004 Pre-Trading

2016-04-29 06:50:00.004 Opening Auction Call

2016-04-29 07:00:11.102 Opening Auction Call

2016-04-29 07:00:11.102 Regular Trading

2016-04-29 11:00:00.005 Regular Trading

2016-04-29 11:00:00.005 Periodic Auction Call 1

2016-04-29 11:02:16.102 Periodic Auction Call 1

2016-04-29 11:02:16.102 Regular Trading 1

2016-04-29 15:30:00.006 Regular Trading 1

2016-04-29 15:30:00.006 Closing Auction Call

2016-04-29 15:35:13.102 Closing Auction Call

2016-04-29 15:35:13.102 Closing Price Publication

2016-04-29 15:35:14.060 Closing Price Publication

2016-04-29 15:35:14.060 Closing Price Cross

2016-04-29 15:40:00.102 Closing Price Cross

2016-04-29 15:40:00.102 Post Close

2016-04-29 16:15:02.186 Post Close

Table 4.1 - Session table details.

Figure 4.9 - Session file uploader.

Figure 4.10 - Session details displayed by the tool.

44

It is easy for users to view spreading of trading times in a day. After viewing the Gantt chart,

he can decide the size of the time window or order window. This lets the user to get an idea

about the distribution of each session though the day's total trading time.

4.4.2. Trading Data File Uploader

Figure 4.11 - Trading data file uploader.

The user has to upload the trading data file next. This step processes the data initially to get a

graphical view to the user. It visualizes the number of new orders, cancelled orders, amended

orders and executed orders both in pie chart and as a quantity. This graphical view shows how

many new orders got executed, amended or deleted during the regular trading time of the day.

Figure 4.12 - Trading data statistics shown in the tool.

45

User can decide whether to select order chunks or time-based chunks. If the number of trading

orders are much lower, then user must choose order by option. If he selects order by time, then

non-manipulated time frames will be detected as manipulated ones because number of orders

in a particular time frame is a lesser value. Also, the results can be vary depending on the

window size that user chooses. Then there is an opportunity to test the data on two different

time windows and compare the results.

4.4.3. Window Size Chooser

Figure 4.13 - Window size input fields and other options.

This window allows users to select either an order-based window or time-based window. Apart

from that it allows to select orderbook simulation. Assume a user needs to verify whether the

recognized manipulation could be happening with given time/order frame orderbook scenario.

Then he/she needs to select this option and do the process. With this the user can visualize the

orderbook in the next window. Since the processed files will be cleaned after each process,

user must select save processing information option to keep his processed data for future. His

first operation costs a lot of processing time and the second operation costs space for generated

files. Hence both the operations are added as optional check boxes to be selected if needed.

The results generated for the same data set could be vary depending on what option was chosen

for the time interval. So, there is a comparability between the results generated by selecting the

two options.

46

Figure 4.14 - Tool after the end of pre-processing.

47

4.4.4. Entropy Display

Figure 4.15 - Entropy variation displayed in the tool.

This is in the second page that user is redirected with the processed data and results. This line

graph shows the entropy variation between the different windows and the values. On hover,

the user can read the different entropy values and the local minimums of the graph are shown

on the right side of the line graph. These local minimums are the suspicious time frames in the

given data set resulted by different patterns of trading related to surrounding time frames.

4.4.5. Price Gap Variation Display

Price gap variation display is the line graph showing the price gap variation in each time or

order frames. There is a navigation between the time frames to visualize any price gap variation

in the given data set. In the tool the user can zoom in and out to specially focus any point on

an axis.

48

Figure 4.16 - Price gap variation display in the tool.

4.4.6. Clustering Display

As mentioned in section 4.3.1 the clustering module has developed. Highest anomaly score

points will be displayed as suspicions frames. Figure 4.17 suggests that highest anomaly score

is 19.06801 and there are four points in that cluster. Timeframe 7, 17,18 and 19 are the most

suspicious frames suggested by the cluster result.

Figure 4.17 - Clustering result visualization.

49

4.4.7. Orderbook Simulation Display

As describes in section 4.2 dynamic orderbook has integrated to the system which shows the

highest ten buy order prices and sell order prices. When a user selects a time frame, order book

simulation for that will be display. There is a sliding bar as shown in Figure 4.18 to slide the

orderbook in 30 seconds time gaps.

Figure 4.18 - Orderbook Simulation.

4.4.8. Frame Summary Display

When a user clicks on a point in Entropy display chart (Figure 4.15) the Figure 4.19 display

will be shown. It shows the percentage of order types in that frame and a table which consists

of broker identification codes in descending order of order count to make it easy for the user to

identify who has done the trades in a high frequency manner.

50

Figure 4.19 - Frame summary.

Figure 4.20 - Broker summary.

51

After clicking on a broker ID in Figure 4.19, Figure 4.20 will be display. It describes how the

broker trade on that selected frame.

Figure 4.21 - After generating the processing result.

52

5. Performance Analysis

5.1. Data Preparation

Trading data set and session data set are the two main datasets we have used for data analysis.

To complete the performance analysis, we had to create a synthetic dataset where we add

manipulated frames to the normal trading data set.

We had datasets with Momentum Ignition and Layering manipulation behaviors.

Trading dataset consists with twelve columns. They are,

1. Instrument ID – Identification code of the trading equity.

2. Broker ID – Identification code of the broker who involves with the particular trading.

3. Executed value – Executed price value when buy and sell orders are matched.

4. Value – Price of a new order

5. Transaction time – Time of the order has placed (yyyy-mm-dd hh:mm:ss.ms)

6. Execution type – Type of the order placed (either new, cancel, amend or fill)

7. Order quantity – Volume of the order

8. Executed quantity – Volume of the order which has executed

9. Total quantity – Total volume of the order

10. Side – Whether the order is buy or sell

11. Visible size – Remaining order size

12. Order ID – Identification code of the order

Table 4.1 is an example for session file and it has following columns,

1. Transaction time – Session start or end time

2. Session name – Name of the start or ending session

53

Figure 5.1 - Synthetic Data Creation.

As in Figure 5.1 shows, we have a non-manipulated trading data set and it is possible to add

manipulated time frames as follows.

1. Identify different trading datasets which are having different manipulations.

2. Divide those dataset into equal sized frames.

3. Identify the frame which has the manipulation.

4. Take p% of trading messages in a random way from the manipulated frame.

5. Identify a random frame from non-manipulated data frame and replace step 4 data

(except transaction time) in a random manner.

6. Repeat step 1 to step 5 until getting the synthetic data set.

5.2. Performance Measurement

Tool Performance

No of Orders Time Window(minutes) Event Window (order count)

10 15 20 1000 3000 5000

201332 28.35 28.37 33.04 22.54 24.81 31.37

134672 20.43 20.33 24.61 17.85 19.48 21.51

47345 7.61 8.96 10.21 5.31 7.38 8.21

Table 5.1 - Tool performance analysis.

Different trading data has different number of orders. Therefore, the system will respond to

those inputs with different ways as shown in Table 5.1

54

Accuracy Measurement

All = 30 Classified: NO Classified: YES

Actual: NO TN = 19 FP = 1 20

Actual: YES FN = 3 TP = 7 10

 22 8 30

Table 5.2 - Confusion matrix for Entropy.

All = 30 Classified: NO Classified: YES

Actual: NO TN = 20 FP = 0 20

Actual: YES FN = 4 TP = 6 10

 24 6 30

Table 5.3 - Confusion matrix for Clustering.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5.1)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.2)

 𝐹 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5.3)

We have identified 30 frames and injected manipulated frames using the method describes in

section 5.1. We have injected 50% of a manipulated time frame randomly to a non-manipulated

time frame. Results of those data is given in the tables 5.2, 5.3 and 5.4.

Figure 5.2 shows the results obtained by testing real stock market data with the application.

The real manipulation inside the data has identified manually and the momentum ignition

behavior starts at 1.08pm. This dataset was processed by dividing it into timeframes of 20

minutes. The dataset is thus divided in to twenty-four timeframes.

 Precision Recall F Measure

Entropy 87.5% 70% 77.78%

Clustering 100% 60% 75%

Table 5.4 - Accuracy measurements.

55

Figure 5.2 - Entropy variation of the selected dataset.

This is the entropy value graph after the processing. We can see the significant drop of the

entropy value at the 19th timeframe which starts at 1.00pm and ends at 1.20pm. After analyzing

the results furthermore, we can see the cause of the low entropy value in the price gap

distribution chart.

Figure 5.3 - Price gap variation of a normal time frame (Time frame 4).

56

Figure 5.4 - Price gap variation of the manipulated time frame (Time frame 19).

Here we can see the difference between a normal timeframe and the manipulated timeframe.

In a normal timeframe there is a uniform randomness in the price gap variation. But in the 19th

timeframe we can see the significant difference in the price gap distribution. This is caused by

the momentum ignition behavior at 1.08pm. With the price gap distribution chart, we can see

the starting time of the behavior and the time indicated by the graph are the same.

Like this the tool identifies which timeframe has the most anomalous behavior related to the

trades in the timeframe and points out that to the user.

57

6. Summary

6.1. Conclusion

When we look back at the incidents in the stock trading history, we can see collisions between

the traders, benefitting people illegally by using market manipulations. These manipulators

have gone undetected or the manipulation is not even known by anyone because there is no

progressive way of detecting the manipulative behaviors in the stock markets. As the project

outcome we are introducing an end-of-the-day stock market data processing technique using

machine learning that can point out the exact time interval that the manipulation has taken

place.

When tested on a synthetic dataset, the Entropy method was more accurate than the Clustering

method. The precision was 100% in Entropy method when tested on real stock market data.

All the timeframes which were detected with the Entropy method were real manipulation

scenarios.

Using the proposed solution, suspicious time intervals in the stock trading can be pointed out

easily to be further investigated. It is time effective because there is no need to go through the

whole dataset which can be very large at sometimes. Also thinking about the financial benefits,

huge losses that can be taken place because of the market manipulations can be averted. So,

both the resource management benefits and the financial benefits taken through this project is

valuable for the stock market domain.

6.2. Challenges

First and the most important challenge was finalizing a methodology for the solution. There

were so many supervised methods to detect anomalies in a given dataset. Even for time series.

But we had to use an unsupervised machine learning method because there was no labeled

stock market data and manipulations were very infrequent. and the occurrence of a stock

manipulation taking place was very rare.

Also, we could not use market watch data used by our supervising company because that was

specific to the company and we had to design and simulate the orderbook model by ourselves.

Running the simulation was costly regarding both time and the processing power.

The lack of the open source projects that can help the implementation in this kind of

applications was another problem. Therefore, we had to create the structure of the project from

scratch.

58

6.3. Future Work

There are several future works that we have identified as improvements to our research

outcome and the analysis tool. As an application that runs machine learning mechanisms the

performance and the accuracy of the application can be increased. For this we have to optimize

the underlying algorithms and test the application against many datasets. Also, the solution can

be extended to be adaptive to real time manipulation detection, where for now, it is only an

end-of-the-day process of stock market data. We can improve this to match more manipulation

types by adding more processing models to the system. Then we will be able to detect any

anomalous behavior in any given dataset.

The data was used for processing after a preprocessing stage. There we extracted certain

properties from the dataset. The more we analyze extracted properties, the more we can get

results from the processing stages. So as an improvement we can extract more properties and

try them in processing module to get better at producing accurate results.

There is only the time window information provided by the tool when a manipulation is

detected. The tool can be improved to backtrack to the origin of the manipulation. That

information might be the original trading's order ID, or the trader information, or other related

trading data. This tool can only detect the several manipulation types. Hence this tool can be

improve to detect other manipulation types too.

59

7. References

[1] “Momentum Ignition: Arson for Financial Markets » Neurensic,” Neurensic, 10-Nov-

2016. [Online]. Available: http://neurensic.com/momentum-ignition-arson-financial-

markets/. [Accessed: 11-Nov-2017].

[2] “Unstructured Data in a Big Data Environment,” dummies. [Online]. Available:

http://www.dummies.com/programming/big-data/engineering/unstructured-data-in-a-big-

data-environment/. [Accessed: 11-Nov-2017].

[3] “Market Manipulation Examples & Cases | More Market Manipulation Examples | Girard

Gibbs LLP,” & Cases | More Market Manipulation Examples | Girard Gibbs LLP. [Online].

Available: https://www.girardgibbs.com/securities-fraud/stock/market-

manipulation/examples/. [Accessed: 11-Nov-2017].

[4] C. Pirrong, “The economics of commodity market manipulation: A survey,” Journal of

Commodity Markets, vol. 5, pp. 1–17, 2017.

[5] “"Momentum Ignition" - The Market's Parasitic 'Stop Hunt' Phenomenon Explained,”

ZeroHedge, 06-Jan-2013. [Online]. Available: http://www.zerohedge.com/news/2012-12-

14/momentum-ignition-markets-parasitic-stop-hunt-phenomenon-explained. [Accessed: 16-

Nov-2017].

[6] Y. Cao, Y. Li, S. Coleman, A. Belatreche, and T. Mcginnity, “A Hidden Markov Model

with Abnormal States for Detecting Stock Price Manipulation,” 2013 IEEE International

Conference on Systems, Man, and Cybernetics, 2013.

[7] Zhai, Jia & Cao, Yi & Yao, Yuan & Ding, Xuemei & Li, Yuhua. (2016). Computational

intelligent hybrid model for detecting disruptive trading activity. Decision Support Systems.

[8] Z.-Q. Jiang, W.-J. Xie, X. Xiong, W. Zhang, Y.-J. Zhang, and W.-X. Zhou, “Trading

networks, abnormal motifs and stock manipulation,” Quantitative Finance Letters, vol. 1, no.

1, pp. 1–8, 2013.

[9] K. Golmohammadi and O. R. Zaiane, “Time series contextual anomaly detection for

detecting market manipulation in stock market,” 2015 IEEE International Conference on Data

Science and Advanced Analytics (DSAA), 2015.

60

[10] T. Leangarun, P. Tangamchit, and S. Thajchayapong, “Stock Price Manipulation

Detection Based on Mathematical Models,” International Journal of Trade, Economics and

Finance, vol. 7, no. 3, pp. 81–88, 2016.

[11] L. E. B. D. Silva and J. A. F. Costa, “Clustering of the self-organizing map using particle

swarm optimization and validity indices,” 2014 International Joint Conference on Neural

Networks (IJCNN), 2014.

[12] “Normalization (statistics),” Wikipedia, 22-Oct-2017. [Online]. Available:

https://en.wikipedia.org/wiki/Normalization_(statistics). [Accessed: 16-Nov-2017].

[13] “Welcome,” Welcome | Flask (A Python Microframework). [Online]. Available:

http://flask.pocoo.org/. [Accessed: 11-Nov-2017].

[14] SupunArunoda, “SupunArunoda/Final_Year_Project,” GitHub, 16-Nov-2017. [Online].

Available: https://github.com/SupunArunoda/Final_Year_Project. [Accessed: 16-Nov-2017].

