

UNIVERSITY OF MORATUWA

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

B.Sc. Engineering

2010 Intake Semester 7 Examination

CS4532 CONCURRENT PROGRAMMING

 Time allowed: 2 Hours September 2014

ADDITIONAL MATERIAL: None

INSTRUCTIONS TO CANDIDATES:

1. This paper consists of 5 questions in 7 pages.

2. Answer any 4 questions.

3. Start answering each of the main questions on a new page.

4. The maximum attainable mark for each question is given in brackets.

5. This examination accounts for 60% of the module assessment.

6. This is a closed book examination.

NB: It is an offence to be in possession of unauthorised material during the

examination.

7. Only calculators approved by the Faculty of Engineering are permitted.

8. Assume reasonable values for any data not given in or with the examination paper.

Clearly state such assumptions made on the script.

9. In case of any doubt as to the interpretation of the wording of a question, make suitable

assumptions and clearly state them on the script.

10. This paper should be answered only in English.

[CS4532]

Page 2 of 7

Question 1 (25 marks)

(i) Explain three factors that contributed to the migration from uniprocessor systems to

shared memory multiprocessor/multi-core systems? [6]

(ii) Amdahl’s law is used to find the maximum expected improvement to an overall system when

only part of the system is improved. In the context of concurrent programming, we can present

it as follows:

n

p
p 1

1

where p is the parallel fraction and n is the number of processors.

 Suppose a computer program has a method M that cannot be parallelized. M accounts for 20%

of the program’s execution time. The remaining code is parallelized.

 a) How much speedup can we gain, if we implement the above program on an 8-core

CPU? [2]

 b) Is it really worth investing an 8-core CPU to solve this problem? Briefly explain. [3]

(iii) Suppose you belongs to a team of developers developing a new programming language that

supports threads. The new language also provides a print() function with the following

function prototype:

void print(String s);

This function is expected to send the given string s to the terminal/console via Standard

Output Stream (stdout) buffer. In a typical system, stdout buffer is shared among all threads

and processes in the system. Moreover, bulk atomic memory copying is not supported in

typical systems.

 a) Provide four possible outcomes of the following program written using the new

language. Clearly state any assumptions.

Thread one{

 print("Blue");

}

Thread two{

 print("Red");

}
[4]

 b) Provide a suitable pseudo code for the implementation of print(). Make sure there

are no race conditions. [6]

 c) Given the possibility that many threads may simultaneously call print(), discuss

about the efficiency of your implementation in (b). [4]

[CS4532]

Page 3 of 7

Question 2 (25 marks)

(i) Compare and contrast (i.e., identify the similarities and dissimilarities) locks,

semaphores, and monitors. [6]

(ii) Consider the following programs.

Thread 1

 while(true){

 print “Red” + math.rand(10);

 }

Thread 2

 while(true){

 print “Blue” + math.rand(10);

 }

 Math.rand(10) generates a random value between 1 and 10.

Change the above program to make sure the sum of all Red values it had printed so far

is always less than the sum of all Blue values it has printed. For example, if Blue had

printed 1, 5, and 7 then it is OK for Red to print 2 and 9 because 2 + 9 < 1 + 5 + 7.

Your implementation should be efficient. [14]

(iii) Following implementation of Account class is to be used to keep track of customers’

accounts in a bank. Discuss whether this implementation is free from deadlocks.

class Account {

 double balance; //account balance

 int id; //accounts no

 void withdraw(double amount){ // withdraw money

 balance -= amount;

 }

 void deposit(double amount){ //deposit money

 balance += amount;

 }

 //Transfer money between accounts

 void transfer(Account from, Account to, double amount){

 lock(from);

 lock(to);

 from.withdraw(amount);

 to.deposit(amount);

 release(to);

 release(from);

 }

}
[5]

[CS4532]

Page 4 of 7

Question 3 (25 marks)

(i) “A semaphore is a counter capable of providing mutual exclusion and synchronization”.

Briefly explain the meaning of this statement. [4]

(ii) Consider the following program with 2 threads.

Thread 1

 while(true){

 print “Red”;

 }

Thread 2

 while(true){

 print “Blue”;

 print “Blue”;

 }

 a) Provide four possible outcomes of the above program.
[2]

 b) Rewrite the above program using a semaphore(s) and only one print statement

per thread such that we get the following sequence of outputs.

Blue, Blue, Red, Blue, Blue, Red, Blue, …. [9]

(iii) The geometric mean is one of the several kinds of averages. It is often used when

comparing different items where each item has multiple properties, e.g., while

comparing the performance of two database servers. Geometric mean of n real numbers

x1, x2, x3, ... xn can be calculated as follows:

n
n

n
n

i

i xxxxx 321

/1

1












Outline an MPI program (using pseudo code) that can be used to calculate the

geometric mean of one million real numbers. Once the calculation is complete, all

process involved in the computation need to know the value. Use relevant MPI

functions that are given in the Appendix. Note that it is impractical to create one

million concurrent processes/threads.
[10]

[CS4532]

Page 5 of 7

Question 4 (25 marks)

(i) Using a suitable diagram illustrate the process of finding concurrency in a given

problem. Briefly explain each step. [6]

(ii) Explain how a Dependency Graph helps to evaluate the design of a concurrent

solution. [5]

(iii) Consider the following SQL-like query.

 Query: MODEL = “Honda Civic” AND YEAR = 2001 AND

 (COLOR = “Green” OR COLOR = “White”)

 Evaluate the Dependency Graph of the above query using criteria mentioned in

Question (ii). Your evaluation should consider the degree of concurrency and critical

path. [8]

(iv) Static or dynamic load balancing is essential in most systems to increase the resource

utilization and quality of service. What type of load balancing would you recommend for the

following problems? Justify your recommendation.

 (a) Matrix-Matrix multiplication. [3]

 (b) While cracking 10,000 password-protected word documents found from a

suspected terrorist’s laptop. Assume brute-force approach is used to crack

passwords. [3]

[CS4532]

Page 6 of 7

Question 5 (25 marks)

(i) There are several techniques to convert a colour image to grayscale. The lightness technique

averages the most prominent and least prominent colours using the following equation:

2

),,min(),,max(BGRBGR 

where R, G, B refers to three fundamental colours of a pixel. A grayscale image is obtained

by applying this equation to each pixel separately.

 Outline a CUDA program to convert a given colour image to grayscale using the

lightness technique. Your solution should include the code for the Kernel function and

the code required to invocate the Kernel function.

Hint: a typical CUDA supported GPU can only handle 1,024 threads per block. [13]

(ii) Outline a solution to each of the following problems. Explain how it will address the given

problem while satisfying safety and liveness properties (formal proofs are not required).

 (a) SETI is one of the largest volunteer computing platforms that remotely executes

jobs using idle computing resources. These jobs include analysing images/data

from optical and radio telescopes for the presence of extra-terrestrial life. Over

200,000 SETI volunteer nodes are active at any given time. Each node contacts the

SETI server and asks for a new job based on its computing capabilities. The same

job is submitted only to two nodes to increase the reliability while maintaining

better resource utilization (volunteers nodes may fail at any time). Once the job is

completed, node submits the answer and asks for another job. You are required to

design a concurrent job dispatching solution that allocates only two copies of the

same job to volunteer nodes. [6]

 (b) Clustering is a fundamental approach to manage Mobile Ad-hoc Networks

(MANETs). In clustered networks, nodes are classified as cluster members and

cluster heads. A cluster member is an ordinary node which sends its request to its

cluster head. A cluster head is responsible for managing the cluster, handling intra-

cluster requests, and participating in inter-cluster operations. While all nodes may

be willing to become a cluster head, only one of the nodes in a given neighbour

should be selected as a cluster head. You are required to design a cluster head

selection solution for a given neighbourhood. [6]

[CS4532]

Page 7 of 7

Appendix – MPI Functions

int MPI_Init(int *argc, char **argv)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Finalize()

int MPI_Send (void *buf,int count, MPI_Datatype datatype, int dest, int

 tag, MPI_Comm comm)

int MPI_Recv (void *buf,int count, MPI_Datatype datatype, int source, int

 tag, MPI_Comm comm, MPI_Status *status)

int MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype

 datatype, MPI_Op op, int root, MPI_Comm comm)

int MPI_Allgather(void *sendbuf, int sendcount, MPI_Datatype sendtype, void

 *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allreduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype

 datatype, MPI_Op op, MPI_Comm comm)

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,

 MPI_Comm comm)

int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void

 *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,

 MPI_Comm comm)

int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void

 *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,

 MPI_Comm comm)

-------------------------- END OF THE PAPER --------------------------

