

UNIVERSITY OF MORATUWA

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

B.Sc. Engineering

2010 Intake Semester 8 Examination

CS4532 CONCURRENT PROGRAMMING

 Time allowed: 2 Hours March 2015

ADDITIONAL MATERIAL: None

INSTRUCTIONS TO CANDIDATES:

1. This paper consists of 5 questions in 7 pages.

2. Answer any 4 questions.

3. Start answering each of the main questions on a new page.

4. The maximum attainable mark for each question is given in brackets.

5. This examination accounts for 60% of the module assessment.

6. This is a closed book examination.

NB: It is an offence to be in possession of unauthorised material during the

examination.

7. Only calculators approved by the Faculty of Engineering are permitted.

8. Assume reasonable values for any data not given in or with the examination paper.

Clearly state such assumptions made on the script.

9. In case of any doubt as to the interpretation of the wording of a question, make suitable

assumptions and clearly state them on the script.

10. This paper should be answered only in English.

[CS4532]

Page 2 of 7

Question 1 (25 marks)

(i) Suppose a weather forecasting program typically takes 18 hours to produce tomorrow’s

weather forecast. Therefore, the Meteorology department is forced to run it sufficient time

ahead and only once a day. As more severe weather events are reported recently,

meteorology department is interested in producing weather forecasts more frequently and

with less turnaround time. They are thinking of achieving this by benefiting from more

advanced hardware. Before deciding to upgrade their computing facility, the meteorology

department wants your feedback on the following concerns they have.

 a) “Should we go for an n-core processor while parallelizing our weather forecasting

program or should we find a faster processor without modifying the program?”

Suggest your recommendation while considering the advantages and

disadvantages of each approach. State any assumptions. [3]

 b) “We want to provide a new weather forecast every 6 hours. In case we decide to

go for an n-core design with a modified program, how many cores are needed?”

It was also noted that a fraction f of the weather forecasting program cannot be

parallelized. f accounts for 25% of the program’s execution time. The remaining

code p is parallelized.

Hint: Amdahl’s law in the context of concurrent programming can be given as:

n

p
p 1

1

[3]

 c) “Should we upgrade our server to n-cores or should we replace the server with a

cluster of nodes having a total of n-cores?”

Suggest your recommendation while considering the advantages and

disadvantages of each approach. State any assumptions. [4]

(ii) Consider the following program with 3 threads.

 Lock l1, l2, l3;

 Thread 1

 while(1)

 l1.lock()

 l2.lock()

 print “Red”

 l3.unlock()

 l1.unlock()

Thread 2

 while(1)

 l2.lock()

 l3.lock()

 print “Green”

 l1.unlock()

 l2.unlock()

Thread 3

 while(1)

 l3.lock()

 l1.lock()

 print “Blue”

 l2.unlock()

 l3.unlock()

 a) Provide 3 possible outcomes of the above program. [3]

 b) Will this code lead to a deadlock? Explain using a Deadlock Modelling graph. [4]

 c) Rewrite the above program using a semaphore(s) such that we get the sequence

Red, Green, Blue, Red, Green, Blue, …. [8]

[CS4532]

Page 3 of 7

Question 2 (25 marks)

(i) Compare and contrast (i.e., identify the similarities and dissimilarities of)

semaphores, monitors, and conditional variables. [6]

(ii) Consider the following program with 3 threads.

Thread 1

 while(1){

 print “Red” + math.rand(5);

 }

Thread 2

 while(1){

 print “Green” + math.rand(5);

 }

Thread 3

 while(1){

 print “Blue” + math.rand(5);

 }

 Math.rand(5) generates a random value between 1 and 5.

Change the above program to make sure the sum of all the Red values (SumRed) it had

printed so far is always greater than the sum of all the Green values (SumGreen) it has

printed. Similarly, SumGreen must be always greater than the sum of all Blue values

(SumBlue).

SumRed > SumGreen > SumBlue

For example, if Red had printed 3 and 5 then it is OK for Green to print 4 and 3.

Similarly, Blue may print 2, 1, and 2 because 3 + 5 > 4 + 3 > 2 + 1 + 2. [16]

(iii) Can you implement the solution for part (ii) using a conditional variable(s)? Briefly

discuss your answer. [3]

[CS4532]

Page 4 of 7

Question 3 (25 marks)

(i) What are the advantages and disadvantages of using GPUs for solving embarrassingly

parallel programs? [4]

(ii) n-body interaction is one of the most common simulations run using GPUs. It can be

used to simulate movement of objects such as planets during the Big Bang. For

example, given the masses and locations of planets following equation can be used to

calculate the forces that a planet i experience due to another planet j.

2
,

,

ji

ji

ji
d

mGm
f 

Where G is the gravitational constant, mi and mj are masses of the 2 planets, and di,j is

the distance between the 2 planets. These pairwise forces can be represented as a

matrix F.

































0

0

0

0

1,1,0,

,11,10,1

,11,10,1

,01,01,0

nnnn

nnnn

nn

nn

fff

fff

fff

fff

F











Where n is the number of planets. Once the force matrix is calculated, it can be used to

calculate the acceleration of each planet using Newton’s second law (i.e., F = ma).

Which intern can be used to calculate the velocities and new locations of planets after

a given time t. Then this process can be repeated again and again to calculate the

location of planets at time t, 2t, 3t, and so on.

 a) Outline a CUDA kernel to calculate the force matrix F. Your solution should also

include the code required to invocate the Kernel function. Assume n = 1,000,000.

Hint: a typical CUDA supported GPU can only handle 1,024 threads per block. [15]

 b) During the n-body simulation, one round of computation of matrix F needs to

finish before initiating another round of computations (as the location of planets

will change with time). How can we ensure that different rounds of calculating F

will not overlap with each other? [3]

 c) Is it worthwhile to calculate both fi,j and fj,i in a GPU? Briefly discuss. [3]

[CS4532]

Page 5 of 7

Question 4 (25 marks)

(i) Consider the following 3 single-lane, one-way roads joining just before a bridge which is

one way but has 2 lanes. To reduce congestion on the bridge, vehicles from only 2 access

roads are allowed at a time.

Road 1

Road 3

Road 2

Bridge

 a) In this problem, what is the shared resource and who are the accesses trying to access

that resource? [2]

 b) Propose a solution to this problem using a semaphore(s) while assuming this is a

shared memory problem. Pseudo code is sufficient.
[8]

 c) How would you solve the same problem, if it is interpreted as a distributed mutual

exclusion problem, where you do not have access to a shared memory?
[5]

(ii) The following table shows the current allocation of resources for 3 processes (P, Q,

and R) and their maximum resource requirements. Is the current state is safe or

unsafe? Show the steps. [4]

 Has Max

P 2 9

Q 1 4

R 2 5

Free: 3

(iii) Static or dynamic load balancing is essential in most systems to increase the resource

utilization. What type of load balancing would you recommend for the following

problems?

 a) Indexing web pages found by web crawlers. [3]

 b) Calculating the area under a given curve (i.e., integration) by breaking it into a large

set of trapezoids. [3]

[CS4532]

Page 6 of 7

Question 5 (25 marks)

(i) Recommend a suitable solution pattern to parallelize the following code snippets. Provide a

suitable justification for each case. State any assumptions.

 a) for(k = 1, k < 500; k++){

 x[k] = y[k – 1] + 1;

} [3]

 b) for(k = 1, k < 500; k++){

 x[k] = y[k – 1] + 1;

 y[k] = z[k – 1] + 2;

} [3]

 c) x = readData(“xIn.txt”);

y = readData(“yIn.txt”);

for(k = 1, k < x.getSize()(; k++){

 x[k] = x[k] + y[k - 1];

}

writeData(“xOut.txt”, x); [4]

(ii) The Contraharmonic mean is one of the several kinds of averages. It is often used in image

processing and Bioinformatics. Contraharmonic mean of n real numbers x1, x2, x3, ... xn can

be calculated as follows:

 
n

n
n

xxxx

xxxx
xxxxC











321

22
3

2
2

2
1

321 ,,,,

 Outline an MPI program (using pseudo code) that can be used to calculate the

Contraharmonic mean of one million real numbers. Once the calculation is complete,

mean should be stored on a variable at process 0. Use relevant MPI functions that are

given in the Appendix. Note that it is impractical to create one million concurrent

processes/threads. [15]

[CS4532]

Page 7 of 7

Appendix – MPI Functions

int MPI_Init(int *argc, char **argv)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Finalize()

int MPI_Send (void *buf,int count, MPI_Datatype datatype, int dest, int

 tag, MPI_Comm comm)

int MPI_Recv (void *buf,int count, MPI_Datatype datatype, int source, int

 tag, MPI_Comm comm, MPI_Status *status)

int MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype

 datatype, MPI_Op op, int root, MPI_Comm comm)

int MPI_Allgather(void *sendbuf, int sendcount, MPI_Datatype sendtype, void

 *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allreduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype

 datatype, MPI_Op op, MPI_Comm comm)

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,

 MPI_Comm comm)

int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void

 *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,

 MPI_Comm comm)

int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void

 *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,

 MPI_Comm comm)

-------------------------- END OF THE PAPER --------------------------

