
Index No: [CS4532]

Page 1 of 10

UNIVERSITY OF MORATUWA

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

B.Sc. Engineering

2013 Intake Semester 7 Examination

CS4532 CONCURRENT PROGRAMMING

 Time allowed: 2 Hours June/July 2017

ADDITIONAL MATERIAL: None

INSTRUCTIONS TO CANDIDATES:

1. This paper consists of four (4) questions in ten (10) pages.

2. Answer All questions.

3. Answer the questions on the paper itself. DO NOT exceed the given space.

4. For MCQ and True/False questions, select the most appropriate answer. No penalty for

wrong answers.

5. The maximum attainable mark for each question is given in brackets.

6. This examination accounts for 50% of the module assessment.

7. This is a closed book examination.

NB: It is an offence to be in possession of unauthorized material during the

examination.

8. Only calculators approved by the Faculty of Engineering are permitted.

9. Assume reasonable values for any data not given in or with the examination paper.

Clearly state such assumptions made on the script.

10. In case of any doubt as to the interpretation of the wording of a question, make suitable

assumptions and clearly state them on the script.

11. This paper should be answered only in English.

Q1 Q2 Q3 Q4 Total

Question 1 (25 marks)

Circle the correct answer number. [2 × 5 marks]

(i) Which of the following is not a contributing factor for the increased adoption of

parallel/concurrent programming?

a) Availability of many/multi-core processors

b) Enables better utilization of hardware resources

c) High efficiency of parallel/concurrent programs

d) Is the only way to solve some problems on time

(ii) When a high priority task is indirectly preempted by a low priority task effectively

inverting the relative priority of the two tasks, the scenario is called

a) Priority exchange b) Priority inversion

c) Priority inheritance d) Priority modification

(iii) A monitor is a module that encapsulates

a) Procedures that operate on shared data structure

b) Shared data structures

c) Synchronization between concurrent procedure invocation

d) All of the above

(iv) Which of the following mutual exclusion algorithm could lead to lower resource

utilization under high contention?

a) Centralized algorithm b) Decentralized algorithm

c) Distributed algorithm d) Token-based algorithm

(v) MPI style of programming is used in

a) Distributed mutual exclusion problems

b) Distributed memory systems

c) Shared memory systems with uniform memory access

d) Shared memory systems with none uniform memory access

Fill in the blanks. [1 × 5 marks]

(vi) A program with 80% parallelizable code can archive a maximum speed up of ______.

(vii) In r-bounded waiting, a process cannot be overtake by more than ___________ times.

(viii) In ____________________ phase (of parallel algorithm design) tasks are combined

into larger tasks to improve performance and reduce development cost.

(ix) It is not desirable to have a deeper tree in Divide and Conquer solution pattern as it

leads to ____________________ .

(x) Hold and Wait Condition of deadlocks can be avoided by ______________________

___________________________.

Index No: [CS4532]

Page 3 of 10

Tick TRUE or FALSE. Give one sentence justification. [2 × 5 marks]

 True False

(xi) Solutions for concurrency problems must not make any

assumptions on time or speed of execution.

(xii) Throughput can be increased by reducing latency.

(xiii) A semaphore is a shared integer that cannot drop below zero.

(xiv) Loop parallel is an example of Parallelizing a problem by Task.

(xv) Checkpoint and Rollback prevent the occurrence of a deadlock.

Question 2 (25 marks)

(i) Using a suitable example(s) briefly explain each of the following terms in the context

of concurrent/parallel programming. [2 × 2 marks]

(a) Fairness:

(b) Wait free:

(ii) Consider the following program. Assume initially turn = 0.

Process 0

flag[0] = 1

while(flag[1]){

 if (turn == 1){

 flag[0] = 0

 while(turn == 1)

 flag[0] = 1

 }

}

… //critical section

turn = 1

flag[0] = 0

Process 1

flag[1] = 1

while(flag[0]){

 if (turn == 0){

 flag[1] = 0

 while(turn == 0)

 flag[1] = 1

 }

}

… //critical section

turn = 0

flag[1] = 0

(a) Explain whether this code satisfy safetiness property or not. [4 marks]

(b) Explain whether this code satisfy liveness property or not. [4 marks]

Index No: [CS4532]

Page 5 of 10

(c) Is the given code efficient? Explain. [4 marks]

(iii) Consider the following program with two threads.

 int x = 1;

 Thread A Thread B

 while(1) while(1)

 print “A” + string(x) X -= 1
 x += 1 print “B” + string(x)

(a) Provide 2 possible outcomes of the above program, except A0, B0, A0, B0 ... [2 marks]

____ ____ ____ ____ … ____ ____ ____ ____ …

(b) Give a semaphore-based solution to make sure that the program prints only A0, B0,

A0, B0, … . New code can be introduced only to define the semaphore(s) and to

perform up() and down() operations on the semaphore(s). [7 marks]

Question 3 (25 marks)

Map-Reduce is a good example of producer-consumer problem. As seen in the following

figure Master assigns map and reduce tasks to the nodes named workers. Workers running

map function generate intermediate data and store them as files in their local hard disk. Once

writing is over, a file is then read by one or more workers running the reduce function.

Number of workers running map and reduce functions may vary depending on the problem.

Master

Worker

Worker

Worker

Worker

Worker

Assign map
Assign reduce

Local write
Remote read

Map phase Reduce phase
Intermediate files

on local disks

(i) Suppose we want to run map-reduce on a single node with many cores, where each

core acts as a worker. Outline a semaphore-based solution for synchronized file access

between workers running map and reduce functions. [10 marks]

Index No: [CS4532]

Page 7 of 10

(ii) Suppose we want to run map-reduce on a large datacenter, where each worker is a

different node. Outline a solution for synchronized file access between workers

running map and reduce functions. [10 marks]

(iii) Once workers running the map function write files, workers running reduce function

need to process them. Propose a solution to balance the workload of workers running

the reduce function. [5 marks]

Question 4 (25 marks)

Suppose we want to find the total of first 100,000 values of Geometric sequence. Given a

number a and r, the rule is xn = arn - 1. In general, we can write the sequence as:

a + ar + ar2 + ar3 + ar4 + ar5 + …

(i) Outline an MPI program (using pseudo code) capable of calculating the sum of first

100,000 values of the sequence, and sending it to all nodes. Indicate MPI functions

and key parameters (it is not essential to follow exact function signature). [10 marks]

Index No: [CS4532]

Page 9 of 10

(ii) Outline a CUDA kernel to generate the sum of first 100,000 values of the sequence.

Also, show how you would invoke the kernel. [12 marks]

Kernel launch code:

Kernel code:

(iii) Is the load among MPI nodes and GPU blocks balanced? Discuss. [3 marks]

-------------------------- END OF THE PAPER --------------------------

