
Index No: [CS4532]

Page 1 of 11

UNIVERSITY OF MORATUWA

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

B.Sc. Engineering

2014 Intake Semester 6 Examination

CS4532 CONCURRENT PROGRAMMING

 Time allowed: 2 Hours February 2018

ADDITIONAL MATERIAL: None

INSTRUCTIONS TO CANDIDATES:

1. This paper consists of four (4) questions in eleven (11) pages including Annex.

2. Answer All questions.

3. Answer the questions on the paper itself. DO NOT exceed the given space.

4. For MCQ and True/False questions, select the most appropriate answer. No penalty for

wrong answers.

5. The maximum attainable mark for each question is given in brackets.

6. This examination accounts for 50% of the module assessment.

7. This is a closed book examination.

NB: It is an offence to be in possession of unauthorized material during the

examination.

8. Only calculators approved by the Faculty of Engineering are permitted.

9. Assume reasonable values for any data not given in or with the examination paper.

Clearly state such assumptions made on the script.

10. In case of any doubt as to the interpretation of the wording of a question, make suitable

assumptions and clearly state them on the script.

11. This paper should be answered only in English.

Q1 Q2 Q3 Q4 Total

Index No: [CS4532]

Page 2 of 11

Question 1 (25 marks)

Fill in the blanks using one of the following terms. [1 × 5 marks]

Agglomeration | Banker’s Algorithm | Barrier | Deadlock |

Efficiency | Mapping | Multiplex |

Ostrich Algorithm | Race Condition | Utilization |

(i) When 2 or more processes read/write a shared resource and the final result depends on

who runs correctly, it is referred to as _____________________ .

(ii) Parallel Programming let us get faster results at the cost of ___________________ .

(iii) In ___________________ phase tasks may be combined into larger tasks to improve

the performance and reduce development costs.

(iv) ____________________________ is a dynamic strategy for dealing with deadlocks.

(v) ________________ is a generalized form of Rendezvous.

A forecasting program that predicts the path of a thunderstorm typically takes 6 hours to run

on the current uniprocessor system. The Meteorology department plans to run this program in

1 hour (saving 5 hours), as it can provide advanced warning to the public who may get affected

due to the thunderstorm. They are thinking of achieving this by benefiting from parallel

programing on multi-core processors. Meteorology department noted that the fraction of the

forecasting program that can be parallelized is 80%. Following 2 options are suggested to them:

(a) Purchase a 32-core server where the specification of a new CPU core is similar to the

specification of the current uniprocessor. Price per core is $80.

(b) Purchase a 32-core server where the specification of a new CPU core is 1.5× faster than

the specification of the current uniprocessor. Price per core is $125.

(vi) Compare pros and cons of options (a) and (b), and then recommend the most suitable

option to achieve the above speed up target. [7 marks]

Hint: Amdahl’s law in the context of concurrent programming can be given as 1/(1 – p + p/n),

where n is the number of processors and p is the fraction that can be parallelized.

Index No: [CS4532]

Page 3 of 11

Consider the following 3 threads used to control 3 lights L1, L2, and L3:

Thread 1

While(True){

 L1.on()

 Wait(5)

 L1.off()

 Wait(5)

}

Thread 2

While(True){

 L2.on()

 Wait(5)

 L2.off()

 Wait(5)

}

Thread 3

While(True){

 L3.on()

 Wait(5)

 L3.off()

 Wait(5)

}

(vii) List 3 possible sequences that the lights may glow, except the case where all lights are

on or off. [3 marks]

(viii) Propose a semaphore-based solution to make sure in each round L2 will not switch on

before L1, and L3 will not switch on before L1 and L2. [7 marks]

Index No: [CS4532]

Page 4 of 11

(ix) Could the same result be achieved, if we replace the semaphore(s) with condition

variables? Briefly discuss. [3 marks]

Question 2 (25 marks)

A Proof of Work (PoW) is a piece of data which is difficult (costly and time-consuming) to

produce but easy for others to verify whether it satisfies certain requirements. PoW is useful in

several applications such as mitigating denial of service attacks, reduction of spam mails, and

crypto currencies. You can attack/break these solutions if you can perform PoW very fast.

Following is a possible implementation of a PoW solution using hashing. Given a m-bit data, a

node needs to find a n-bit nonce (m >> n) that produces a hash where all l Most Significant Bits

(MSBs) are zeros. This is typically achieved by trying all possible combinations of nonce (from

0 to 2n-1) until a hash with the desired number of zero MSBs is found. Suppose we need to

figure out a way to speedup up this process.

Tick TRUE or FALSE. Give one sentence justification. [2 × 3 marks]

 True False

(i) This is an embarrassingly parallel problem.

Index No: [CS4532]

Page 5 of 11

 True False

(ii) Given k processors to solve the problem, maximum speedup is 2n.

(iii) Dynamic load balancing is desirable in this solution.

(iv) Outline a solution to speed up the calculation of PoW using one of the Solution

Patterns for Parallelism discussed in the class. Your target is to find a suitable nonce

as fast as possible. [6 marks]

(v) Outline a GPU-based solution to speed up the calculation of PoW to find a

suitable nonce. You solution should include a kernel and how to invoke it. Assume

you have access to inbuilt CUDA_Hash(data) function. [13 marks]

Kernel launch code:

Index No: [CS4532]

Page 6 of 11

Kernel code:

Question 3 (25 marks)

With the popularity of electric cars one of the biggest challenges the electricity providers face

is the large increasing in power consumption throughout the day. For example, some cars

charge at normal rate consuming ~16 A while rapid charging draw ~32 A from the power grid.

Aggregation of total current drawn by multiple cars on a neighborhood introduces a significant

load to the power grid. Moreover, controlling the current aggregation is difficult as cars are

charged from the respective houses and the car owners do not have any visibility on what other

cars are charged at the same time.

Source: http://www.cenex.co.uk/vehicle-to-grid/

Index No: [CS4532]

Page 7 of 11

As a way of solving this problem CEB is proposing to allocate a guaranteed 100 A and 400 A

for a given neighborhood to charge cars during peak and off-peak hours, respectively. To utilize

this capacity an agent-based module is to be attached to the charging (V2G) unit at a house.

Agent-based modules at each V2G unit are expected to negotiate with each other to decide who

will charge and when. The proposed unit will switch on the V2G units only if there is sufficient

current capacity in the power grid. If not, agent-based module will retry with a random delay.

You are required to develop a solution for the concurrent allocation of charging current.

Tick TRUE or FALSE. Give one sentence justification. [2 × 6 marks]

 True False

(i) In the context of this problem safety property should ensure that

current drawn from the electricity grid is within the allocation.

(ii) In the context of this problem liveness property should ensure that

each car eventually gets an opportunity to charge.

(iii) It is sufficient to provide 3-boundard waiting in the proposed

negotiation algorithm among agents.

(iv) A timetable specifying the charging time of each car satisfy the

safety, liveness, and efficiency properties.

(v) There is a possibility that an agent-based solution may lead to a

deadlock.

(vi) This is a shared-memory mutual exclusion problem.

Index No: [CS4532]

Page 8 of 11

(vii) Give pseudo code of a negotiation solution designed to ensure concurrent charging

of multiple cars (both normal and rapid charging) while satisfying peak and off-

peak maximum current consumption limits. [13 marks]

Index No: [CS4532]

Page 9 of 11

Question 4 (25 marks)

Faulhaber’s formula, expresses the sum of the p-th powers of the first n positive integers. We

can write the sequence as:

f(p, n) = 1p + 2p + 3p + 4p + … + np

(i) “Regardless of whether we use PThreads, OpenMP, CUDA, or MPI balancing the

load among multiple threads/nodes is a difficult problem.” Do you agree or disagree

with this statement? Justify. [4 marks]

(ii) Outline PThread or OpenMP based solution to calculate Faulhaber’s formula f(p, n)

for a given p (1 ≤ p ≤ 1,000) and n (1 ≤ n ≤ 100,000). Each thread should take a

number n, calculate np, and then add it to the total to calculate f(p, n). [9 marks]

Index No: [CS4532]

Page 10 of 11

(iii) Outline an MPI program (using pseudo code) capable of calculating Faulhaber’s

formula f(p, n) where 1 ≤ p ≤ 1,000 and 1 ≤ n ≤ 100,000. Indicate MPI functions and

key parameters (it is not essential to follow exact function signature). Result need to

be in node 0. [12 marks]

Index No: [CS4532]

Page 11 of 11

Appendix – MPI Functions

int MPI_Init(int *argc, char **argv)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Finalize()

int MPI_Send (void *buf,int count, MPI_Datatype datatype, int dest, int

 tag, MPI_Comm comm)

int MPI_Recv (void *buf,int count, MPI_Datatype datatype, int source, int

 tag, MPI_Comm comm, MPI_Status *status)

int MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype

 datatype, MPI_Op op, int root, MPI_Comm comm)

int MPI_Allgather(void *sendbuf, int sendcount, MPI_Datatype sendtype, void

 *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allreduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype

 datatype, MPI_Op op, MPI_Comm comm)

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,

 MPI_Comm comm)

int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void

 *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,

 MPI_Comm comm)

int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void

 *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,

 MPI_Comm comm)

-------------------------- END OF THE PAPER --------------------------

