
Index No: [CS4532]

Page 1 of 14

UNIVERSITY OF MORATUWA

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

B.Sc. Engineering

2014 Intake Semester 8 Examination

CS4532 CONCURRENT PROGRAMMING

 Time allowed: 2 Hours December 2018

ADDITIONAL MATERIAL: None

INSTRUCTIONS TO CANDIDATES:

1. This paper consists of four (4) questions in fourteen (14) pages including Annex.

2. Answer All questions.

3. Answer the questions on the paper itself and within the given space.

4. For MCQ and True/False questions, select the most appropriate answer. No penalty for

wrong answers.

5. The maximum attainable mark for each question is given in brackets.

6. This examination accounts for 50% of the module assessment.

7. This is a closed book examination.

NB: It is an offence to be in possession of unauthorized material during the

examination.

8. Only calculators approved by the Faculty of Engineering are permitted.

9. Assume reasonable values for any data not given in or with the examination paper.

Clearly state such assumptions made on the script.

10. In case of any doubt as to the interpretation of the wording of a question, make suitable

assumptions and clearly state them on the script.

11. This paper should be answered only in English.

Q1 Q2 Q3 Q4 Total

Index No: [CS4532]

Page 2 of 14

Question 1 (25 marks)

Tick TRUE or FALSE. Give one sentence justification. [2 × 4 marks]

 True False

(i) Any mutual exclusion solution that satisfies Liveness Property also

satisfy Safety Property.

(ii) The maximum speedup achievable with n processes while

multiplying m×n and nxl matrices is ml.

(iv) Checkpoint and rollback always guarantee recovery from a deadlock.

(v) While a Volatile variable in Java simplifies concurrent programming

(as it maintains only one copy in memory), it has lower write

performance compared to a static variable.

One of the biggest hurdles in scaling existing multi-threaded applications to benefit from larger

number of computing elements provided by the GPUs and MPI is the need to re-write part of

the code to fit those platforms. One alternative is to use a distributed Operating System (OS)

that provides a single system view across multiple nodes. That way, an application would see

a significant increase in the available number of cores/CPUs and just needs to create more

threads to benefit from them. Suppose there is an idea to develop such a distributed OS to run

existing multi-threaded applications without any code changes or recompilations.

(vi) While such a distributed OS could increase the speedup, additional overheads will be

introduced due to message passing and coordination among nodes. Suppose this

overhead is proportional to the sequential fraction of the application. Let the

proportional factor be .

Propose a simple modification to the Amdahl’s Law to accommodate such additional

overheads introduced by the distributed OS. Justify your answer. [3 marks]

Index No: [CS4532]

Page 3 of 14

Hint: Amdahl’s law in the context of concurrent programming is given as 1/(1 – p +

p/n), where n is the number of processors and p is the fraction that can be parallelized.

(vii) Suppose a weather forecasting program that typically takes 18 hours to run is planning

to use the proposed distributed OS. 30% of the weather forecasting program cannot be

parallelized in terms of their contribution to the execution time. The remaining code is

parallelized.

How much time will be required to generate a weather forecast, if the proposed

distrusted system uses 8 nodes each with 8 cores? Use the equation derived in section

(vi). Assume  = 0.1. [3 marks]

(viii) How practical is to the achieve the speedup you obtained in question (vii)? Briefly

discuss. [4 marks]

Index No: [CS4532]

Page 4 of 14

(ix) OSs provide various concurrency primitives to make the implementations of mutual

exclusion and synchronization easy (e.g., locks and semaphores). As existing

applications may already use such primitives, it is important that the new distributed

OS support those. Suppose you are assigned the task of developing a solution to

emulate semaphores in the new OS. Outline a solution to provide the basic semaphore

functionality (i.e., up() and down()) for the new distributed OS. [7 marks]

Index No: [CS4532]

Page 5 of 14

Question 2 (25 marks)

Consider the following 2 threads:

int v1 = 10;

int v2 = 20;

Thread 1

v1 = v1 - 5;

v2 = v2 + 5;

Thread 2

v2 = v2 - 2;

v1 = v1 + 2;

(i) Can the final values be v1 = 5, v2 = 23? Justify your answer. [4 marks]

(ii) Can the final values be v1 = 5, v2 = 25? Justify your answer. [4 marks]

(iii) Following is an implementation of the producer-consumer problem with an

unbounded buffer. Modify the program to work with a bounded buffer of size 10. Add

additional statements and use arrows to indicate where they need to be added to the

existing code. [3 marks]

Index No: [CS4532]

Page 6 of 14

mutex = Semaphore(1)

items = Semaphore(0)

Producer:

item = produceItem()

mutex.wait()

buffer.add(item)

mutex.signal()

items.signal()

Consumer:

items.wait()

mutex.wait()

item = buffer.get()

mutex.signal()

consumeItem(item)

A monitor implementation for handling a warehouse is given below. Warehouse keeps track of

quantities of each item in a map named items. Items can be added to the warehouse using the

addItems() method. Items can be taken from the warehouse using the getItems() method. If the

required quantity from the specified item is available, requested quantity will be removed from

the items map. If not, caller is blocked until the request is fulfilled.

Conditional variable (i.e., newItems) has a signalAll() method, which unblocks all currently

blocking threads on that variable. Although all waiting threads are unblocked, only one of them

(chosen randomly) can acquire the monitor and run inside monitor methods at a given time.

Monitor warehouse {

 condition newItems;

 Map<string, int> items = new HashMap();

 function getItems(string item, int quantity) {

 boolean fulfilled = false;

 while (!fulfilled) {

 int count = items.get(item);

 if (count >= quantity) {

 items.put(item, (count - quantity));

 fulfilled = true;

 } else {

 newItems.wait();

 }

 }

 }

 function addItems(string item, int quantity) {

 int count = items.get(item);

 items.put(item, (count + quantity));

 newItems.signalAll();

 }

}

Index No: [CS4532]

Page 7 of 14

(iv) Tick TRUE or FALSE. Give one sentence justification. [2 × 4 marks]

 True False

(a) The proposed monitor implementation can work with any number of

threads who may call addItem and getItem functions.

(b) The proposed monitor implementation is based on busy waiting.

(c) The proposed monitor algorithm satisfies mutual exclusion.

(d) The proposed monitor algorithm can cause a deadlock.

Threads T1, T2, and T3 run the code given below. R1, R2, and R3 are non-preemptible

resources that require mutually exclusive access. Each thread has run up to the point indicated

by current.

Thread T1:

Acquire R1

----------- current

position

Acquire R3

Release R1

Release R3

Thread T2:

Acquire R2

Acquire R3

----------- current

position

Acquire R1

Release R2

Release R3

Release R1

Thread T3:

Acquire R3

----------- current

position

Acquire R2

Release R3

Release R2

(v) Model above situation using a resource allocation graph. [3 marks]

Index No: [CS4532]

Page 8 of 14

(vi) Propose a method to prevent the deadlock in this code. [3 marks]

Question 3 (25 marks)

Assume that you must write a program to check spellings in large documents. Program should

perform the following steps:

• Read step: Read documents from the hard disk

• Spell check step: Underline misspelled words

• Upload step: Upload the processed document to a file server over a network.

On average reading a 100 MB document takes 10 seconds. Underlining misspelled words of a

1 MB document fragment takes 1 second. Uploading a 100 MB document takes 15 seconds.

Both reading and uploading documents to/from the file server are I/O intensive. Spell checking

is CPU intensive. Assume that operating system and other background task overheads on CPU

cores are negligible and memory is unlimited. Further assume that no hardware optimizations

are available in the CPU and a CPU core runs one instruction at a time.

(i) If we have to process a large number of documents, propose a solution to efficiently

run this program by combining concurrency patterns as appropriate. [3 marks]

Index No: [CS4532]

Page 9 of 14

(ii) If all 3 steps are performed on a single 100 MB document, calculate the total time

required to complete the program. Briefly show calculation steps. [3 marks]

(iii) Calculate the minimum time required to complete all 3 steps on a single 100 MB

document using a 4-core processor? Show calculation steps. [3 marks]

Index No: [CS4532]

Page 10 of 14

(iv) What is the best speedup you can gain based on the concurrency pattern proposed in

section (i) for 2 files, compared to section (ii)? Discuss. [3 marks]

Intel Optane is a non-volatile memory technology introduced to further extend the memory

hierarchy by bridging the speed gap between RAM and Hard Disk. However, specialized

motherboards are needed to connect Optane chips. Optane shows the highest speedup in gaming

applications.

Suppose Intel licenses the technology to company OX to build the Optane chips while license

to build motherboards is given to companies MY and MZ. 3 OEM vendors HP, Dell, and Asus

are planning to sell gaming PCs based on Optane technology. However, as the technology is

new production by OX, MY, and MZ is limited. Suppose Optane chips are released to OEMs as

a batch of 100 chips while MY and MZ release motherboards as batch of 50 each. Each batch is

released once in every 3 days. Given all components it takes another day to release a batch of

50 gaming PCs. Alternatively, 3 OEMs are rushing to introduce Optane-based gaming PCs as

the customers may lose the interest if products are not available in the market.

(v) Using an example, explain a scenario where none of the 3 OEMs will be able to

release a new batch of gaming PCs at least before 7 days. [3 marks]

Index No: [CS4532]

Page 11 of 14

(vi) Outline a semaphore-based solution that guarantees at least one of the 3 OEMs will be

able to release a batch of gaming PCs after 4 days. [10 marks]

OX:

My/MZ:

HP: Dell:

Asus:

Question 4 (25 marks)

Exponential function is given as:

𝑒𝑥 =∑
𝑥𝑘

𝑘!

∞

𝑘=0

= 1 + 𝑥 +
𝑥2

2
+
𝑥3

6
+
𝑥4

24
+⋯

(i) “Regardless of whether we use PThreads, OpenMP, CUDA, or MPI balancing the

load among multiple threads/nodes is a difficult problem.” Do you agree or disagree

with this statement? Justify. [3 marks]

Index No: [CS4532]

Page 12 of 14

(ii) Outline CUDA-based solution to estimate e (i.e., x = 1) using first one million

numbers in the sequence. [11 marks]

Index No: [CS4532]

Page 13 of 14

(iii) Outline an MPI program (using pseudo code) to estimate e (i.e., x = 1) using first one

million numbers in the sequence. Indicate MPI functions and key parameters (it is not

essential to follow exact function signature). Result need to be in node 0. [11 marks]

Index No: [CS4532]

Page 14 of 14

Appendix – MPI Functions

int MPI_Init(int *argc, char **argv)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Finalize()

int MPI_Send (void *buf,int count, MPI_Datatype datatype, int dest, int

 tag, MPI_Comm comm)

int MPI_Recv (void *buf,int count, MPI_Datatype datatype, int source, int

 tag, MPI_Comm comm, MPI_Status *status)

int MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype

 datatype, MPI_Op op, int root, MPI_Comm comm)

int MPI_Allgather(void *sendbuf, int sendcount, MPI_Datatype sendtype, void

 *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allreduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype

 datatype, MPI_Op op, MPI_Comm comm)

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,

 MPI_Comm comm)

int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void

 *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,

 MPI_Comm comm)

int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void

 *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,

 MPI_Comm comm)

-------------------------- END OF THE PAPER --------------------------

