
Page 1 of 5

Lab 9-10 – Nanoprocessor Design Competition

CS 2052 Computer Architecture

Dept. of Computer Science and Engineering, University of Moratuwa

Learning Outcomes

In this lab, we will design a 4-bit processor capable of executing 4 instructions. After
completing the lab, you will be able to:

• design and develop a 4-bit arithmetic unit that can add and subtract signed integers

• decode instructions to activate necessary components on the processor

• design and develop k-way b-bit multiplexers or tri-state busses

• verify their functionality via simulation and on the development board

This is a team project, and each team consists of 2 students. Therefore, you will also practice
team-working skills such as communication, coordination, sharing responsibilities, and
integrating components developed by different team members. You are free to select lab
buddies.

Introduction

We will design a very simple microprocessor (hence, called a nanoprocessor) capable of
executing a simple set of instructions. Block diagram of the nanoprocessor is given in Fig. 1. Set
of instructions supported by the nanoprocessor is given in Table 1. To build this circuit, we need
to develop/extend several components/modules:

• 4-bit Add/Subtract unit
o This unit should be capable of adding and subtracting numbers represented

using 2’s complement
o You may implement this component by modifying your 4-bit RCA from Lab 3

• 3-bit adder
o This unit is used to increment the Program Counter
o You may implement this component by modifying 4-bit RCA from Lab 3

• 3-bit Program Counter (PC)
o Program counter needs to be reset to 0 when required. Hence build it using D

Flip Flops with a clear/reset input. You may use the D Flip-Flop from Lab 5

• k-way b-bit multiplexers
o A k-way b-bit multiplexer can take in k-inputs, each with b-bits, rather than a

single bit, and the output is a group of b-bits. There are log2 k control bits, and
these control bits are used to select one of the k groups of b bits rather than a
single bit.

o Build a 2-way 3-bit multiplexer
o Build a 2-way 4-bit multiplexer
o Build a 8-way 4-bit multiplexer
o You may implement the component using 8-to-1 multiplexer developed in Lab 4
o Alternatively, instead of multiplexers, you may do the same using tri-state

buffers. You need to research how to build a tri-state buffer in VHDL.

Page 2 of 5

Register 0

Register 1

Register 2

Register 6

Register 7

8-way 4-bit Mux 8-way 4-bit Mux

4-bit Add/Sub Unit

4

Data Bus
Register Bank

Instruction Decoder

3-to-8 Decoder

R
e

gi
st

er
 e

n
ab

le

Clock
Im

m
ed

ia
te

va

lu
e

M
u

x
3

3

R
eg

is
te

r
se

le
ct

A
bb

/S
u

b
 s

el
ec

t

O
ve

rf
lo

w

To LEDs

To LEDs

ROM 0

ROM 1

ROM 3

ROM 6

ROM 7

Program ROM

Program Counter

3Memory
select

12

In
st

ru
ct

io
n

 B
u

s

2-way 3-bit Mux

3-bit Adder

+1
Address to jump

3

Lo
ad

 s
el

ec
t 3

Reset
From push

button

Jump Flag

R
e

gi
st

er
 c

h
ec

k
fo

r
ju

m
p

4

Ze
ro

Figure 1 – High-level diagram of the nanoprocessor.

Page 3 of 5

Table 1 – Instruction Set.

Instruction Description Format (12-bit instruction)

MOVI R, d Move immediate value d to register R, i.e., R  d

R  [0, 7], d  [0, 15]
1 0 R R R 0 0 0 d d d d

ADD Ra, Rb Add values in registers Ra and Rb and store the
result in Ra, i.e., Ra  Ra + Rb

Ra, Rb  [0, 7]

0 0 Ra Ra Ra Rb Rb Rb 0 0 0 0

NEG R 2’s complement of registers R, i.e., R  – R

R  [0, 7]
0 1 R R R 0 0 0 0 0 0 0

JZR R, d Jump if value in register R is 0, i.e.,
 If R == 0
 PC  d;
 Else
 PC  PC + 1;

R  [0, 7], d  [0, 7]

1 1 R R R 0 0 0 0 d d d

• Register Bank
o Contains 8, 4-bit registers (named R0 to R7)
o Hardcode value of R0 to all 0s
o You may use 3-to-8 decoder developed in Lab 4
o As we do not have a separate instruction to reset a register, we will use D Flip

Flops with a reset input and connect the reset input to Reset button (not shown
in Fig. 1 for simplicity). This could be connected to the same pushbutton
connected to the Reset input of Program Counter (see Fig. 1)

• Program ROM
o This stores our Assembly program
o This can be built by extending the ROM-based LUT developed in Lab 7

• Buses
o Use 3, 4, and 12-bit buses to connect components. This will greatly simplify your

design rather than running so many wires around. Use may use labels such as
D(3 downto 0), I(11 downto 0), M(3 downto 0), and R(3 downto 0).

• Instruction Decoder
o We need to design and build the Instruction Decoder circuit to activate

necessary components based on the instructions we wish to execute
o First design the internal logic such that instructions in Table 1 will execute

properly
o Be careful to activate only the necessary modules. For example, while executing

MOVI instruction only the required register should be enabled, and the
immediate value needs to be placed on the data bus. For ADD and NEG
instructions, relevant inputs should be selected from the multiplexers and output
should be sent to the correct register (register needs to be enabled). To simplify
the implementation of NEG instruction, we can hardwire register R0 to be 0 (i.e.,
this will be a read-only register). Moreover, NEG require setting Add/Sub select

We wish to execute an Assembly program like the following in our nanoprocessor:

MOVI R1, 10 ; R1  10

MOVI R2, 1 ; R2  1

NEG R2 ; R2  -R2

Page 4 of 5

ADD R1, R2 ; R1  R1 + R2

JZR R1, 7 ; If R1 = 0 jump to line 7

JZR R0, 3 ; If R0 = 0 jump to line 3

As the microprocessor only understands machine language, we need to provide those
instructions as a binary value. We will hard code our program to ROM. One of the pushbuttons
should be used to reset the PC and Register Bank (this enables us to restart the program at any
time).

We will use the slow-clock to drive our nanoprocessor. Therefore, to be able to see the changes
as our program executes reduce the clock rate such that it ticks every 2 or 3 seconds.

Students are encouraged to share the workload and work on different PCs in the lab while
building different components. For example, while one extends the Register Bank other can
work on the 8-way 4-bit multiplexer.

Building the Circuits

Step 1: Design the internal structure of the Instruction Decoder. Clearly identify the role
of each of the output pins and how to activate them when necessary.

Step 2: Build the necessary sub-components. Test each component using simulation. As
in previous labs, test inputs should be derived from team members’ index
numbers.

Step 3: Build the top-level design and test using simulation.

Step 4: Write an Assembly program to calculate the total of all integers between 1 and 3
(unfortunately, we cannot work on a larger problem as our processor is only 4-bit
wide). Make sure the final answer is stored in Register R7. Remember we can
use only the instructions in Table 1 and our PC is only 3-bits long. Convert the
Assembly program to machine code and hard code it to ROM.

Step 5: Connecting inputs and outputs.

 Output of R7 should be connected to a set of LEDs (LD0 – LD3 outputs) and 7-
segment display, as our result will be stored on R7. Connect LD14 and LD15 for
zero and carry flags, respectively.

Step 6: Test on BASYS 3 and verify the functionality of your nanoprocessor.

Demonstrate the circuit to the instructor and get the Lab Completion Log signed
by Nov 29. Be ready to explain how your design work and each team member’s
contribution.

Step 7: Lab Report

You need to submit a report for this lab. Your report should include the following:

• Student names and index numbers. Do not attach a separate front page

• State the assigned lab task in a few sentences

• Assembly program and its machine code representation

• All VHDL codes

• All timing diagrams

• Conclusions from the lab

• Clearly describe the contribution of each team member to project and
number of hours spent

Page 5 of 5

• Attach Lab Completion Log

Submit the lab report by Nov 29.

Extra Credit

You may claim extra credits under the following categories:

• Design with least number of basic logic gates:
o 1st place – 3 marks
o 2nd place – 2 marks
o 3rd place – 1 mark

• Other creative designs – up to 3 marks
o You may consider opportunities to support large registers, extra flags, more

instructions, hardware optimizations, etc.
o Students need to justify the advantage(s) of their creative design.

• These extra features need to be demonstrated during the demo to claim the extra
credits. Get the instructor to indicate any extra credits on the Lab Completion Log and
get it signed.

Bibliography

• Mihir Kedia and Aseem Kishore, "Optional: Building a processor from scratch", MIT
Open Courseware, 2008

Prepared By

• Dilum Bandara, PhD – Apr 29, 2014

• Updated on Nov 01, 2018

