
Page 1 of 6

Lab 9-10 – Nanoprocessor Design Competition

CS 2052 Computer Architecture

Dept. of Computer Science and Engineering, University of Moratuwa

Learning Outcomes

In this lab, we will design a 4-bit processor capable of executing 4 instructions. After
completing the lab, you will be able to:

• design and develop a 4-bit arithmetic unit that can add and subtract integers

• decode instructions and activate necessary components on the processor

• design and develop k-way b-bit multiplexers

• develop and use busses

• verify their functionality via simulation and on the development board

This is a team project and each team consists of 3 students. Therefore, you will also learn team-
working skills such as communication, coordination, sharing responsibilities, and integrating
components developed by different team members. You are free to select lab buddies.

Introduction

We will design a very simple microprocessor (hence, called a nanoprocessor) capable of
executing a simple set of instructions. Block diagram of the nanoprocessor is given in Fig. 1. Set
of instructions supported by the nanoprocessor is given in Table 1. To build this circuit we need
to develop/extend several components/modules:

• 4-bit Add/Subtract unit
o This unit should be capable of adding and subtracting numbers represented

using 2’s complement
o You may implement this component by modifying your 4-bit RCA from Lab 3

• 3-bit adder
o This unit is used to increment the Program Counter
o You may implement this component by modifying 4-bit RCA from Lab 3

• 3-bit Program Counter (PC)
o Program counter need to be reset to 0 when required. Hence build it using D Flip

Flops with a clear input (look for a component named FDC)

• k-way b-bit multiplexers
o A k-way b-bit multiplexer can take in k-inputs, each with b-bits, rather than a

single bit, and the output is a group of b-bits. There are log2 k control bits, and
these control bits are used to select one of the k groups of b bits rather than a
single bit.

o Build a 2-way 3-bit multiplexer
o Build a 2-way 4-bit multiplexer
o Build a 8-way 4-bit multiplexer
o You may implement the component using 8-to-1 multiplexer developed in Lab 4
o Alternatively, instead of multiplexers you may do the same using tri-state buffers

Page 2 of 6

Register 0

Register 1

Register 2

Register 6

Register 7

8-way 4-bit Mux 8-way 4-bit Mux

4-bit Add/Sub Unit

4

Data Bus
Register Bank

Instruction Decoder

3-to-8 Decoder

R
eg

is
te

r
en

ab
le

Clock
From push

button

Im
m

ed
ia

te

va
lu

e

M
u

x

3
3

R
eg

is
te

r
se

le
ct

A
b

b
/S

ub
 s

e
le

ct

O
ve

rf
lo

w

To LEDs

To LEDs

ROM 0

ROM 1

ROM 3

ROM 6

ROM 7

Program ROM

Program Counter

3Memory
select

12

In
st

ru
ct

io
n

 B
us

2-way 3-bit Mux

3-bit Adder

+1
Address to jump

3

Lo
ad

 s
el

e
ct

3

Reset
From push

button

Jump Flag

R
eg

is
te

r
ch

ec
k

fo
r

ju
m

p

4

Ze
ro

Figure 1 – High-level diagram of the nanoprocessor.

Page 3 of 6

Table 1 – Instruction Set.

Instruction Description Format (12-bit instruction)

MOVI R, d Move immediate value d to register R, i.e., R d

R [0, 7], d [0, 15]
1 0 R R R 0 0 0 d d d d

ADD Ra, Rb Add values in registers Ra and Rb and store the
result in Ra, i.e., Ra Ra + Rb

Ra, Rb [0, 7]

0 0 Ra Ra Ra Rb Rb Rb 0 0 0 0

NEG R 2’s complement of registers R, i.e., R – R

R [0, 7]
0 1 R R R 0 0 0 0 0 0 0

JZR R, d Jump if value in register R is 0, i.e.,
 If R == 0
 PC d;
 Else
 PC PC + 1;

R [0, 7], d [0, 7]

1 1 R R R 0 0 0 0 d d d

• Register Bank
o Contains 7, 4-bit registers (named R1 to R7)
o Hardcode value of R0 to all 0s
o You may use 3-to-8 decoder developed in Lab 4
o As we do not have a separate instruction to reset a register, we will use D Flip

Flops with a clear input and connect the clear input to Reset button (not shown
in Fig. 1 for simplicity). This could be connected to the same push button
connected to the Reset input of Program Counter (see Fig. 1)

• Program ROM
o This stores our Assembly program
o This can be build using 12 ROM16×1s. You may modify LUT from Lab 7 to build

this

• Buses
o Use 3, 4, and 12 bit busses to connect components together. This will greatly

simplify your design rather than running so many wires around. Use may use
labels such as D(3:0), I(11:0), M(3:0), and R(3:0). See “A Tutorial on
Using Bus in Xilinx ISE” (available on Moodle and
http://cseweb.ucsd.edu/classes/su06/cse140L/tutorial_bus.pdf) to find out how to
create a bus in Xilinx ISE.

• Instruction Decoder
o We need to design and build the Instruction Decoder circuit to activate

necessary components based on the instructions we wish to execute
o First design the internal logic such that instructions in Table 1 will execute

properly
o Be careful to activate only the necessary modules. For example, while executing

MOVI instruction only the required register should be enabled, and the
immediate value needs to be placed on the data bus. For ADD and NEG
instructions, necessary inputs should be selected from the multiplexers and
output should be sent to the given register (register needs to be enabled). To
simplify the implementation of NEG instruction we can hard wire register R0 to
be 0 (i.e., this will be a read-only register). Moreover, NEG require setting
Add/Sub selection.

http://cseweb.ucsd.edu/classes/su06/cse140L/tutorial_bus.pdf

Page 4 of 6

We wish to execute an Assembly program similar to the following in our nanoprocessor:

MOVI R1, 10 ; R1 10

MOVI R2, 1 ; R2 1

NEG R2 ; R2 -R2

ADD R1, R2 ; R1 R1 + R2

JZR R1, 7 ; If R1 = 0 jump to line 7

JZR R0, 3 ; If R0 = 0 jump to line 3

As the microprocessor only understands machine language, we need to provide those
instructions as a binary value. We will hard code our program to ROM as we have only 8
switches on the BASYS 2 board (where as each instruction is specified using 12-bits).
Pushbutton (BTN0) is used as the clock input and BTN3 is used to reset the PC and Register
Bank (this enables us to restart the program at any time).

Students are encouraged share equal workload and work on different PCs in the lab
while building different components. For example, while one extends the Register Bank other
can work on the 8-way 4-bit multiplexer.

Building the Circuits

Step 1: Design the internal structure of the Instruction Decoder. Clearly identify the role
of each of the output pins and how to activate them when necessary.

Step 2: Build necessary sub-components. Test each component using simulation. As in
previous labs, test inputs should be derived from team members’ index numbers.

Step 3: Build the top-level design. Your design may look somewhat similar to Fig. 2.

Step 4: Write an Assembly program to calculate the total of all integers between 1 and 3
(unfortunately, we cannot work on a larger problem as our processor is only 4-bit
wide). Make sure the final answer is stored in Register R7. Remember we can
use only the instructions in Table 1 and our PC is only 3-bits long. Convert the
Assembly program to machine code and hard code it to ROM.

Step 5: Connecting inputs and outputs.

 Output of R7 should be connected to a set of LEDs (LD0 – LD3 outputs), as our
final result will be stored on R7. Connect LD6 and LD7 for zero and carry flags,
respectively.

Step 6: Test on BASYS2 and verify the functionality of your nanoprocessor.

Demonstrate the circuit to the instructor and get the Lab Completion Log singed
by Nov 23. Be ready to explain how your design work and each team member’s
contribution.

Step 7: Lab Report

You need to submit a report for this lab. Your report should include the following:

• Student names and index numbers. Do not attach a separate front page

• State the assigned lab task in a few sentences

• All schematic circuits

• All timing diagrams

• Assembly program and its machine code representation

• Conclusions from the lab

Page 5 of 6

Figure 2 – A possible design of the nanoprocessor.

• Clearly describe contribution of each team member to project and
number of hours spend

• Attach Lab Completion Log

Submit the lab report by Nov 24.

Extra Credit

You may claim extra credit under following categories:

• Visualizing the output of R7 in decimal using 7-segments – 1 mark

• Speeding up your computation using BASYS2’s clock – 1 mark

• Design with least number of basic logic gates:
o 1st place – 3 marks
o 2nd place – 2 marks
o 3rd place – 1 marks

Page 6 of 6

• Other creative designs – up to 3 marks
o You may consider opportunities to support large registers, extra flags, more

instructions, hardware optimizations, etc.
o Students need to justify the advantage(s) of their creative design.

• These extra features need to be demonstrated during demo to claim the extra credits.
Get instructor to indicate any extra credits on the Lab Completion Log and get it signed.

Bibliography

• Mihir Kedia and Aseem Kishore, "Optional: Building a processor from scratch", MIT
Open Courseware, 2008

Prepared By

• Dilum Bandara, PhD – Apr 29, 2014

• Updated on Dec 06, 2015

• Updated on Dec 01, 2016

• Updated on Nov 08, 2017

