
Page 1 of 4

Lab 8 – Assembly Programming

CS 2052 Computer Architecture

Dept. of Computer Science and Engineering, University of Moratuwa

Learning Outcomes

In this lab, we will learn Assembly programming and interfacing simple input and output
devices. After completing the lab, you will be able to:

• design and develop simple Assembly programs to achieve given objectives

• interface simple input and output devices to the microprocessor

• verify their functionality via simulation

Introduction

Assembly is the most basic programming language available for any microprocessor. In
some cases, it is the only language for programming simple microprocessors and
microcontrollers. While Assembly lacks high-level conveniences such as variables and functions,
as well as it is not portable among various families of microprocessors, it can produce efficient
code that runs faster. It also gives programmers the insight required to write effective code in
high-level languages. Therefore, learning assembly language is well worth the time and effort of
every serious programmer.

In this lab we will use the Microprocessor Simulator (a.k.a. smz32), developed by Neil
Bauers, to develop and simulate Assembly programs. BASYS 3 board, we have been using so
far, can also be programmed in Assembly. However, it requires installing and configuring the
Xilinx PicoBlaze microcontroller core designed for FPGA devices. This requires a deeper
understanding of embedded systems, VHDL or Verilog programming, and its own instruction set.
We will not take this route, as those concepts are beyond the scope of this class. Interested
students may look at the “Lab 3: Xilinx PicoBlaze Flow Lab” by Xilinx (available on Moodle).

The smz32 simulator emulates an 8-bit CPU that is similar to the lower 8-bits of the 80x86
family of microprocessors. It has 4, 8-bit general purpose registers (namely AL, BL, CL, and DL)
and 256 bytes of RAM. smz32 has 16 input/output ports, and several simulated peripherals (e.g.,
keyboard, 7-segments, signal lights, and stepper motor) are attached to ports 0 to 5. It has its
own assembler too. You can single step through programs or continuously run programs while
varying CPU clock speed. Refer “Microprocessor Simulator V5.0 Help” for further details
(available on Moodle).

In this lab we will first try a couple of examples given with smz32. We then modify some
of those examples to implement detailed behavior (e.g., one using signal lights). Finally, you will
develop a new Assembly program to calculate the products of integers from 1 to 5 and show the
results on 7-segment displays.

Getting Familiar with smz32

Step 1: More on smz32.

Page 2 of 4

To get a better idea about the smz32 simulator carefully read pages 2 - 6 on
“Microprocessor Simulator V5.0 Help”.

Step 2: Running smz32.

Create a new folder and name it as Lab 8. Download smz32v50.zip file from
Moodle and extract it to Lab 8. Files can be also downloaded from
http://www.softwareforeducation.com/sms32v50/

Double click on sms32v50.exe to execute the program.

Identify different components of the interface. Refer pages 11 - 13 on
“Microprocessor Simulator V5.0 Help” for details.

Running Examples

Step 3: Load 01FIRST.ASM file using File → Open menu.

Try to understand the source code. Some of the sample programs are explained
in “Microprocessor Simulator V5.0 Help”. Summary of Assembly instructions is
given on page 55 (topics can be accessed from the links given on page 1).

Step 4: Stepping through the program.

Run the program one instruction at a time using Step button. As you step through
the program, carefully observe how the register values change.

The entire program can be executed using the Run F9 button (or F9 function key).
In this mode, the speed of execution can be controlled using Slower and Faster
buttons. This can also be accomplished through the Configuration tab. Use the
Cpu Reset button to reset the CPU and in turn the program.

Step 5: Modifying Assembly code.

Modify the Assembly code to subtract, divide, and multiply the 2 numbers using
SUB, DIV, and MUL instructions. Save each as a separate Assembly (.asm) file,
e.g., you may use file names like 01FIRSTSub.asm and 01FIRSTMul.asm.

Once you modify a program, it needs to be reassembled using the Assemble

button. Rerun the program and make sure it functions correctly.

Step 6: Run several more samples.

Get familiar with the simulator and Assembly programming by at least running
03MOVE.ASM, 04INCJMP.ASM, and 99Heater.asm examples.

Modifying Existing Examples

Step 7: Open 02TLIGHT.ASM program. Carefully observe how the registers change
while you simulate the program to understand how it works.

Step 8: Making signal lights do what they are supposed to do.

In this example, signals lights flash with every run. This is usually the faulty
behavior of signal lights. Let us make it real by controlling the time that each light
stays on. Suppose vehicles facing the signal lights on the right has a high priority
(i.e., the Green light stays on for a long time).

http://www.softwareforeducation.com/sms32v50/

Page 3 of 4

Change 02TLIGHT.ASM program to simulate the following behavior:

Time (CPU Cycles) Lights on Left Lights on Right CPU Cycles

t Red Green 10

t + 10 Yellow Yellow 1

t + 11 Green Red 5

t + 16 Red Green 10

t + 26 Yellow Yellow 1

t + 27 Green Red 5

t + 32 Red Green 10

… … … …

To simplify the implementation, you may ignore the time (CPU cycles) used by
other instructions.

For more efficient ways of introducing a delay to a code see 06PROC.ASM file.
You get full marks for using a loop to introduce longer delays.

Make sure to comment the code too.

Save your assembly code as 02TLIGHT_new.ASM.

Step 9: Open 99SEVSEG.ASM program, simulate and understand how it works.

Step 10: Modify the program to show the last 2 digits of your index number.

For example, if your index number is 151234Z, then you should display 34. Save
the file as 99SEVSEG_new.ASM.

Creating a New Program

Step 11: Write a new assembly program to multiply all integers from 1 to 5.

While an equation can be derived to do this calculation, let us use a loop to perform
the multiplication 1 x 2 x 3 x 4 x 5. Show the final answer as a hexadecimal value
using 2, 7-segment displays. Make sure to comment the code too.

Name the source file as multi.asm. Test the program by assembling and
simulating it.

Demonstration and Lab Report

Step 12: Demonstrate solutions to Steps 8, 10, and 11 to the instructor.

Make sure to get the Lab Completion Log singed.

Step 13: Lab Report

You need to submit a report for this lab. Your report should include the following:

• Student name and index number. Do not attach a separate front page

• State the assigned lab task in a few sentences

• All Assembly files that you are required to either modify or create.

Page 4 of 4

• Selected screenshots of signal lights and 7-segment displays to
demonstrate your solution works.

Submit the lab report at the beginning of the next lab.

Prepared By

• Dilum Bandara, PhD – Jan 20, 2015.

• Updated on Oct 25, 2018.

