
Page 1 of 3

Lab 6 – Arithmetic Unit

CS 2052 Computer Architecture

Dept. of Computer Science and Engineering, University of Moratuwa

Learning Outcomes

In this lab, we will design a 4-bit arithmetic unit that can add 2 numbers stored in
registers. After completing the lab, you will be able to:

• design and develop a 4-bit register

• design and develop a 4-bit arithmetic unit

• verify their functionality via simulation and on the development board

Introduction

Registers are used to store a set of bits inside a microprocessor. In this lab, we will
design a 4-bit Arithmetic Unit (AU) that can add numbers stored in 2 different registers. High-
level diagram of the AU is given below.

Register A Register B

Dec
oder

Register
select

4-bit RCA

LEDs

4 4

4

Clock

Switches

4

Enable

CarryZero

A

S

We will build a 4-bit register using D Flip Flops. Register also has an Enable input and a
Clock input. 2 registers are then connected to our 4-bit Ripple Carry Adder (RCA) developed in
Lab 3. This forms a simple AU.

Registers are loaded with a 4-bit binary value specified via 4 switches. Which register to
load is determined by the input to the Enable pin of a register which is controlled via Register
select. The output of the RCA is connected to a set of LEDs. Clock input is used to synchronize
the behavior of the circuit.

Page 2 of 3

Building the Circuits

Step 1: Building 4-bit Register.

 Create a VHDL file and name is as Reg. Label the inputs as D, En, and Clk.
Label the output as Q. Both D and Q should be 4-bit busses.

 While we could build a D Flip Flop with En and Clk and then connect 4 of them to
build the 4-bit register, we could use the following VHDL code to build a 4-bit
register in one step:

process (Clk) begin

 if (rising_edge(Clk)) then -- respond when clock rises

 if En = '1' then -- Enable should be set

 Q <= D;

 end if;

 end if;

end process;

Step 2: Importing RCA.

Import HA, FA, and RCA VHDL files from Lab 3. For this, click on the + sign to
add a new Design Source. Then select Add File. Locate the files from Lab 3 (file
should be inside Lab3.srcs → sources_1 → new). Make sure you will be copying
these files to your new project. Click on Finish button.

Step 3: Building 4-bit Arithmetic Unit.

Create a new VHDL file and name it as AU. Inputs should be labelled as A (4-
bits), RegSel, and Clk, while the outputs should be labelled as S (4-bits), Zero,
and Carry.

Build the circuit given in the above diagram. You need to derive the Boolean
expressions for 1-to-2 decoder and Zero flag. You may also need some internal
signals (e.g., directly connecting output from RCA to S may not give you an
opportunity to calculate Zero flag. If you do so, you may see an error in VHDL
syntax).

You will also need the Slow_Clk developed in Lab 5 to slow down the clock.
Otherwise, while you change the RegSel from 0 to 1 or vice versa, both registers
may ended up getting the same value or intermediate value may read as input
while you set input A. Therefore, further slow-down the clock to 0.5 Hz (in Lab 5
we used 1 Hz).

Verify the functionality of the AU using the simulator. Use your index number for
some of the input combinations.

Step 4: Connecting inputs and outputs.

 Connect switches SW0-SW3 as the D inputs and SW15 as the RegSel input.
Connect outputs S to LEDs LD0-LD3, Carry to LD14, Zero to LD15. Use
BASYS 3’s internal clock for Clk.

Step 5: Test on BASYS 3.

Generate the programming file (i.e., bitstream) and load it to the BASYS 3 board.

Change the switches on the board and verify the functionality of your circuit. Try
different number combinations including ones that produce carry and zero.

Page 3 of 3

Demonstrate the circuit to the instructor and get the Lab Completion Log singed.

No lab report is due for this lab.

Prepared By

• Dilum Bandara, PhD – Mar 20, 2014.

• Updated on Oct 17, 2018.

