Lab 3 — Ripple Carry Adder
CS 2052 Computer Architecture

Dept. of Computer Science and Engineering, University of Moratuwa

Learning Outcomes

In this lab we will design a 4-bit Ripple Carry Adder (RCA). After completing the lab, you
will be able to:

e design and develop a Half Adder, Full Adder, and a Ripple Carry Adder
e build more complex components using several basic components
o verify their functionality via simulation and on the development board

Introduction

The adder/subtractor unit is perhaps the most important element of an Arithmetic and
Logic Unit (ALU) of a microprocessor. In this lab, we will also learn about hierarchical design
where more complex components are built using many basic components. Those high-level
components may be further combined to build even larger components. For example, we will
use 2 Half Adders (Has) to build a Full Adder (FA) and multiple FAs to build the RCA. Later in
the class and labs you will also learn how to extend your RCA to support subtraction.

Building the Circuits
We will first build an HA, then an FA, and finally the 4-bit RCA.
Step 1: Finding the Boolean expressions for HA and FA.

Write the truth table for a HA and FA. Simplify the HA and FA Boolean equations
such that FA can be built using 2 HAs.

Step 2: Building HA.

Create a new project in Xilinx Vivado and name it as Lab 3. Build a HA using
basic logic gates such as AND, OR, XOR, or NOT. Name your file as HA. Label
the inputs to HA as A and B and outputs as S and C.

Test the functionality of the HA by simulating the circuit. Name the Test Bench
File as TB_HA.

Step 3: Building FA.

To add a new source file to the project, click on the + button or press Alt + A in
the Sources pane of the Project Manager panel. Name the file as FA.

Label the inputs to FA as A, B, and C_in and outputs as S and C_out.

To build a FA using HAs and basic logic gates, we need to fist add the already
built HA as a component to our design. Therefore, add the following code after
the line that says architecture Behavioral of FA is:

Page 1 of 8

component HA
port (
A: in std logic;
B: in std logic;
S: out std logic;
C: out std logic);
end component;

A component declaration is used to define the interface to the lower-level design
entity HA. This essentially allow one entity (aka. module) to be used as part of
another entity. The component declaration must be placed in the declaration
section of the architecture body.

Then we need to initiate 2 HAs from this entity. Let us label our HAs as HAO and
HA1. Add the following code after the begin keyword:

HA 0 : HA
port map (
A => A,
B => B,
S => HAO_sS,
C => HAOQ C);
HA 1 : HA
port map (
A => HAO_S,
B => C in,
S => HAl S,
C => HALl C);

Above code initiates 2 instances of the entity HA and connects them to the inputs
and outputs of the FA we are trying build.

HAQ_ S and HAO_C refer to the outputs of HAO while HA1 S and HA2 C refer to
the outputs of HA1. These are internal signals; hence, need to be defined using
signal keyword as follows:

SIGNAL HAO S, HAO C, HAl S, HAl C : std logic;
Make sure the above line is added after declaring the component (i.e., after end
component; line) and before the begin statement.

Then add the relevant VHDL code to define S and C_out of the FA. Now you
have defined the behavior of the FA.

As our project now has a FA and HA we need to define which entity is the higher-
level design (aka. top-level design) so that the Synthesis and Implementation
know which circuit to build. In this case FA is the higher-level entity while HA is
the lower-level entity, as FA is built using HAs.

Click on FA(Behavioral)(FA.vhd). Right click and then select Set as Top
from the popup menu. Once this is done you will see a small icon appearing
before FA(Behavioral)(FA.vhd).

Check the schematic view of the developed FA.

Test the functionality of the FA by simulating the circuit. Name the Test Bench
File as TB_FA.

Page 2 of 8

Step 4: Creating an FA symbol.
We will need FAs in future designs. Therefore, we can create a macro symbol
(referred to as a Block in Vivado) for future use of this FA.
To create a macro circuit, select FA(Behavioral)(FA.vhd) under Design
Sources and then select Tools > Create and Package New IP from the menu.
This will open the Create and Package new IP Wizard dialogue box (see Fig. 1).
Click Next >.
¢ Create and Package Mew IP X
Create and Package New IP
VlVﬁQp This wizard can be used to accomplish following tasks:
Package a new IP for the Vivado IP Catalog
This wizard will guide you through the process of creating a new Vivado IP using source files and information from
your current project, block design or specified directory.
Create a new AXl4 Peripheral
This wizard will guide you through the process of creating a new AXI4 peripheral which includes HDL, driver,
software test application, IP Integrator VIP simulation and debug demonstration design.
- G RAMMABL Click Mext to continue

Figure 1 — Create and package new IP window.

In electronic design a semiconductor Intellectual Property (IP) core, IP core,
or IP block is a reusable unit of logic, cell, or chip layout design that is the
intellectual property of one party and can be used by others in the designs.

Select Package your current project (most probably this will be selected by
default as seen in Fig. 2). Click Next >.

Then in the next window set the IP location to where you want to save the files
(see Fig. 3). Make sure the file path is a location that is accessible to you such
that you can save the files for later use. Click Next >.

Click Finish to close the window.

This opens the Vivado IP packager GUI (see Fig. 4), where you can view
sources, IP name, etc. You name set your name as Vendor:.

If everything is successful you FA should be listed under Vivado’s IP Catalog. To
check this, click on IP Catalog under Project Manager (in Flow Navigator
Pane).

Page 3 of 8

¢ Create and Package New IP

Create Peripheral, Package IP or Package a Block Design

Please select one of the following tasks.

Packaging Options

o Package your current project
Use the project as the source for creating a new IP Definition.

Package a block design from the current project
Choose a block design as the source for creating a new IP Definition.

Select a block design:

Package a specified directory
Choose a directory as the source for creating a new IP Definition.

Create AXI4 Peripheral

Create a new AXl4 peripheral
Create an AXI4 IP, driver, software test application, IP Integrator AXl4 VIP simulation and debug demonstration design.

Pt

Cancel

Figure 2 — Package options window.

¢ Create and Package New IP

Package Your Current Project

Selectthe directory where the IP Definition will be created and the associated options for packaging the current project.

IP location: |dJ/documentsiteaching/bscics2052 - calresources/basys3 labsilab 3flab 3.sres

Packaging IP in the project
* Include xcifiles

Include IP generated files

Ir'_’\l
\ 2 = Back Mex

Cancel

Figure 3 — IP path options window.

Page 4 of 8

Diagram x | HAvhd x | FAvhd

Packaging Steps

+/ Identification

+ Compatibility

~/ File Groups
Customization Parameters

+/ Ports and Interfaces
Addressing and Memory

~/ Customization GUI

Review and Package

% | FASim.vhd

% PackageIP -FA x

oo
Identification
Vendor: Dilum-Bandara
Library: user
Name FA
Version, 10
Display name: FA_W1_0
Description: FA v1_0

‘Vendor display name:
Company url:

Root directory. d:/documentsiteaching/bscics2052 - calresources/basys3 labs/lab 3/ab 3.sres

Xml file name: d:/documentsiteaching/bscics2052 - calresources/basys3 labs/lab 3/ab 3.srcsicomponentxml

Categories

+

MUserlP

Figure 4 — Vivado IP packager view.

This opens the IP Catalog. Right click anywhere on the catalog and select Add
Repository... from the popup menu (see Fig. 5).

Browse to the file path where you save the IP files. Then click Select button. As
seen in Fig. 6 now your IP should get listed under UserlP. This step is not
essential in this lab. But it will be required in future labs.

Diagram x| HA.vhd

Cores | Interfaces
#

- -
= =

Name
w Vivado Repository
b Alliance Pariners

» | FAwhd

% | FASim.vhd x| Package IP - FA » IP Catalog FS

AT A4 Status License VLNV

> Audio Connectivity & Processing

> Automotive & Industrial
? Al Infrastructure

> AXIS Infrastructure

> BaselP

> Basic Elements

> Communication & Networking

> Debug & Verification

> Digital Signal Processing

> Embedded Processing

? FPGA Features and Design

3 Karnale

Details

MName

Properties...
IP Settings...
Add Repository..

Refresh All Repositories

Export to Spreadsheet...

Figure 5 — IP Catalog view.

ST A4 Status License VLNV

hd User Repository (d/Documents/Teaching/BSo/C52052 - CA/Resources/Basys3 Labs/Lab 3)

hd UserlP
T FALVI_O
b Vivado Repository

Production Included wilink.comiuserFA1.0

Figure 6 — UserlP listed in IP Catalog.

Page 5 of 8

Step 5:

Build a 4-bit RCA.

Create a new schematic file and save it as RCA_4. Now build a 4-bit RCA using
multiple FAs. Label the inputs to RCA as A0-A3, BO-B3, and C_.in. Label the
outputs as S0-S3 and C_out.

Create 4 instances of the FA as FAO, FA1, FA2, and FA3. Connect the inputs
and outputs as required. Make sure to set C_in of FAO to ground. Your final
VHDL code should look similar to the following:

entity RCA 4 is

Port (A0
Al
A2
A3
BO
Bl
B2
B3

C in

S0
Sl
S2
S3

C_out

end RCA 4;

in STD_LOGIC;
in STD_ LOGIC;
in STD_ LOGIC;
in STD_ LOGIC;
in STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC;
out STD LOGIC;
out STD LOGIC;
out STD_ LOGIC;
out STD_ LOGIC;
out STD_ LOGIC) ;

architecture Behavioral of RCA 4 is

component FA

port (

A: in std logic;

B: in std logic;

C in: in std logic;

S: out std logic;

C _out: out std logic);
end component;

SIGNAL FAO S, FAO C, FAl S, FAl C, FA2 S,

std logic;
begin
FA 0 : FA
port map (
A => A0,
B => BO,
C in => '0', -- Set to ground
S => s0,
C _Out => FA0 C);
FA 1 : FA
port map (
A => Al,
B => BI1,
C in => FAQ C,
S => S1,

C_out => FAL C);

FA2 C,

FA3 S,

FA3 C

Page 6 of 8

Step 6:

Step 7:

Step 8:

A => A2,

B => B2,

C _in => FAl C,
S

C

A => A3,
B => B3,
C in => FA2 C,
S => 83,
C _Out => C out);
end Behavioral;

Now we need to set RCA as the top-level entity, as it is built using multiple FAs.
For this right click on RCA_4(Behavioral)(RCA_4.vhd) and then select Set

as Top from the popup menu. This is also essential as input and output pins
from BASYS 3 are connected only to the top-level design which is the RCA.

Simulate the RCA and make sure it functions correctly. Name the Test Bench
File as TB_4_RCA. It is not essential to try all the possible combinations of
inputs. Instead, you should at least try the following input combinations:

e Consider the 6 digits of your index number. Then convert your index
number to binary. Then take 4 Least Significant Bits (LSBs) and add them
with the next 4 LSBs. Then try the next set of 4-bits (ignore any remaining
bits). For example, suppose your index number is 123456R. Then its
binary representation is 01 1110 0010 0100 0000 (ignoring the check
digit). Then try 0000 + 0100 and 0010 + 1110.

e 0101 +1011 and 0111 + 1111

e Any 4 other unique combinations

Connecting inputs and outputs.

Connect switches SW0-SW3 as the inputs A0-A3 and SW12-SW15 as the
inputs BO-B3. Connect outputs S0-S3 to LED LDO0-LD3 and C_out to LED
LD15.

Check the schematic view.
Test on BASYSS.
Generate the programming file (i.e., bitstream) and load it to the BASYS 3 board.

Change the switches on the board and verify the functionality of your RCA (check
the output of LEDs).

Demonstrate the circuit to the instructor and get the Lab Completion Log singed.
Lab Report
You need to submit a report for this lab. Your report should include the following:

e Student name, index number, and group. Do not attach a separate front
page
e State the assigned lab task in a few sentences

Page 7 of 8

e Truth tables and steps involved in simplifying the Boolean expressions

e All VHDL files

e All timing diagrams. Show all possible inputs for HA and FA. For 4-bit
RCA provide at least the inputs listed under Step 5

o Discuss why some of the input combinations results in outputs that
cannot be represented using LED LDO-LD3. Discuss the role of LD15

e Other conclusions from the lab

Submit the lab report at the beginning of the next lab.

Prepared By

¢ Dilum Bandara, PhD — Feb 26, 2014
e Updated on Sep 27, 2018

Page 8 of 8

