
Page 1 of 14

Lab 1 – Introduction to Development Environment

CS2052 Computer Architecture

Dept. of Computer Science and Engineering, University of Moratuwa

Learning Outcomes

In this lab, we will learn how to develop logic circuits using an FPGA (Field-
Programmable Gate Array). After completing the lab, you will be able to:

• design a simple logic circuit using VHDL

• connect the inputs and outputs of your circuit to switches and LEDs

• generate the bitstream

• configure the FPGA using the generated bitstream

• verify the functionality on the development board

Introduction

The laboratory assignments will use the Digilent BASYS 3 development board shown
in Fig. 1. BASYS 3 is a circuit design and implementation platform that can be used to gain
experience in building real digital circuits. Built around a Xilinx Artix-7 FPGA, the BASYS 3
provides complete, ready-to-use hardware suitable for hosting circuits ranging from basic
logic devices to complex controllers. The board comes with a large collection of on-board
Input/output (I/O) devices such as switches, push buttons, LEDs, 7-segments, VGA port, etc.

Figure 1 – Digilent BASYS 3 Artix-7 FPGA development board.

An FPGA (Field-Programmable Gate Array) is an integrated circuit designed to be
configured by a designer after manufacturing; hence, referred to as “field-programmable”.
BASYS 3 uses an Artix-7 35T FPGA from Xilinx. The FPGA configuration is generally

Page 2 of 14

specified using schematics or Hardware Description Language (HDL). In our labs, we will
only use the HDL to configure/program the FPGA, as the Vivado development suite
supported by BASYS 3 works only with VHDL and Verilog HDLs. While HDLs take a bit more
time to lean, much more complex circuits can be built in less time.

We use Xilinx Vivado Design Suite software to program the FPGA using VHDL. The
laboratory assignments are based on version 2018.2 of the Xilinx Vivado WebPack edition.

Note As you are new to digital design, do not be surprised if it appears intimidating at first.
 Do not despair. We will selectively introduce the features as needed while ignoring
 others that we do not need. As the semester progresses, you will understand more
 and more features, and by the end of the semester, you will be able to design
 complex circuits using many features of the Vivado Design Suite.

Tips In addition to using the computers in the lab, you can also install the Vivado WebPack
 edition on your computer. Size of installation files vary from 6 GB to 20 GB depending
 on the collection of tools you wish to download, and typical installation requires
 ~25 GB disk space. Hence, obtain the installation files from the instructor rather than
 downloading them from the web.

Design Flow

Typical steps involved in programming an FPGA are depicted in Fig. 2. Following is a
brief description of steps involved:

• Create Design – We first create an Vivado Design Suite project and then, create
or add source files to that project. Projects can contain many types of source files
and design modules, including HDL, embedded processor, and digital signal
processing modules. We will use only the HDL for our laboratory assignments.

• Simulate Design – At various points during the design flow, we can verify the
functionality of the design using a simulation tool. We use XSim, which is
delivered with the Vivado. This step will be covered in a later lab.

• Synthesize Design – During synthesis, the synthesis engine compiles the design
to transform HDL sources into an architecture-specific design netlist (i.e.,
connectivity of an electronic design). The Vivado supports the use of Xilinx Design
Constraints (XDC), which is delivered with the Vivado.

• Implement Design – After synthesis, we implement the design by mapping the
logical design to resources on the FPGA device, while meeting logical, physical,
and timing constraints.

• Program Device – Then the implemented design needs to be transferred to the
development board to program the FPGA. For this a bitstream that could be
downloaded to the selected FPGA (a.k.a., device) is generated as a file. This
bitstream tells how to configure the given FPGA to build the desired circuit. Once

Figure 2 – Design flow overview.

Step 1:
Create
Design

Step 2:
Simulate
Design

Step 3:
Synthesize

Design

Step 4:
Implement

Design

Step 5:
Program
Device

Page 3 of 14

generated, the device is programmed by transferring the programming file (i.e.,
bitstream) to the device.

My First Circuit

Step 1: Starting Vivado Design Suite

Start Vivado 2018.2 by locating the icon on the Windows Desktop, Start
menu, or Search box.

You should see a display similar to the one in Fig. 3. This display consists of
several options that provide access to various features of the Vivado software.

Most of the commands provided by the Vivado can be accessed using a set of
menus that are located below the title bar.

Figure 3 – Vivado Project Navigator window.

Step 2: Starting a New Project

To create a new project either click on the Create Project > link on the
Start panel or File → Project → New from the menu.

Then you will see the Create a New Vivado Project wizard dialog box. Click on
the Next button.

In the next screen (Fig. 4) set the Project name as Lab 1. Use Project

location textbox (or ... button) to a set a suitable location to store your project
files. Make sure to store your file on a location that can be easily located.

Page 4 of 14

Figure 4 – Project name dialog box.

Then click on the Next button to continue.

Step 3: Project Type

Next, we need to select the type of project we wish to create. Choose RTL

Project as wish to build our circuits using RTL (Resistor–Transistor Logic).

Also, tick Do not specify sources at this time checkbox as we do not plan
to import any existing files into the project (we will do so in a later lab).

Click Next button to continue.

Figure 5 – Project type dialog box.

Page 5 of 14

Step 4: Development Board

Next, we need to select the development board we plan to use.

Click on the Boards tab. Select Basys3 and click on the Next button to
continue. If Basys3 does not appear see tip below.

Figure 6 – Project part dialog box.

Tips In case Basys3 does not appear under Boards; you need to add the Board Files to

 Vivado. For this follow step “3. Installing Digilent Board Files” at

 https://reference.digilentinc.com/vivado/installing-vivado/start. Another option is to

 download the files from vivado-boards Github repository (link available in above URL

 or fies in LMS/Moodle) and copy the vivado-boards-master\new\board_files\basys3

 folder to <Xilinx installation path>\Vivado\2018.2\data\boards\board_files\. After this

 you need to close and open the Vivado again and follow al steps up to this point.

Then you will see the project summary. Click on the Finish button to create
the project files.

Once the new project has been created, Vivado opens the project in Project
Navigator as in Fig. 7. Navigator can be split into three areas as Flow
Navigator (located on the left), Console panel (on the bottom), and Project
Manager (on the right). Project Navigator allows us to go through the
simulation, synthesis, implementation, and programming processes in
sequence. Console panel displays status messages, including error and
warning messages. Project Manager displays HDL and simulation code or the
schematic corresponding to the given HDL code.

https://reference.digilentinc.com/vivado/installing-vivado/start

Page 6 of 14

Figure 7 – Project Navigator view.

Step 5: Adding New Source Files

We need to add our circuit design to the project. Circuit design files are
referred to as source files. In these labs we will develop our circuits using
VHDL (Very High Speed Integrated Circuit Hardware Description Language).
VHDL is a language that is used to describe the behavior of digital circuits. For
example, rather than drawing a schematic symbol of a 2-input AND gate, we
could describe the same using a statement like a AND b. VHDL also

supports hierarchical design (e.g., building a Full Adder using 2 Half Adders);
hence, enables rapid development of complex digital circuits. The circuits
defined in VHDL can be simulated and translated into a form suitable for
hardware implementation such as FPGA. We will introduce various VHDL
commands and keywords in different labs. Also, explanation of certain VHDL
commands and behaviours are left for future labs to make the labs easier to
follow.

To add a new or existing source file to a project, click on the + button or press
Alt + A in the Sources pane of the Project Manager panel as seen in Fig.
8.

This will open up the Add Sources wizard dialog box. Select Add or create

design sources and click Next > button.

Then in the next dialog box click on the Create File button. From the popup
select VHDL as the File type and set Lab1 as File name as seen in Fig. 9.
Then click Ok button to close the popup, and then click Finish button to close
the dialog box.

Page 7 of 14

Figure 8 – Adding a new source file.

Figure 9 – Source file properties.

Step 6: Building the Circuit

While creating the VHDL file we need to indicate the inputs and outputs of the
digital circuit. Let us create the logic circuit depicted in Fig. 10. As the circuit
has 3 inputs A, B, and C and an output X, fill Define Module dialog box as
seen in Fig 11. Ports A to C are defined as in (i.e., inputs) and port X is
defined as out (i.e., output). To add a new line for port X click on the + button.
Then click Ok button.

You can open the new VHDL file by double-clicking Lab1(Behavioral)

(Lab1.vhd) by expanding Design Sources under Project Manager –
Sources. Resulting VHDL code would look similar to Fig. 12.

Page 8 of 14

Figure 10 – Schematic view of the circuit.

Figure 11 – Setting inputs and outputs of the module.

First 20 lines or so on the VHDL are comments. Add your name, project

name, target device, and description under the comments.

The line library IEEE indicates the use of IEEE library which consists of a

set of packages, components, and functions that are prebuilt to simplify the
task of hardware design. Whereas use IEEE.STD_LOGIC_1164.ALL;

indicate the use of all data types and subprograms available under the
IEEE.STD_LOGIC_1164 package. These 2 lines are required in all our labs.

A VHDL design consists of entities, architectures, and configurations. An
entity is a specification of a design’s/module’s external interface. It typically
specifies the name and a set of inputs and outputs of the entity. In out case
Lab1 is the name of the entity. Ports A to C are marked as input while port X is
marked as output (this is based on the configuration we added in Fig. 11). In A

: in STD_LOGIC A is the port name, in indicates it is an input port, and

STD_LOGIC indicate input enables single-bit basic logic operations.

Page 9 of 14

Figure 12 – Contents of Lab1.vhd.

Architecture defines the internal design of the entity/model. Thus, it defines
the functionality of the entity. The same entity may have multiple designs
based on the number of logic gates used, performance, power consumption,
and use of FPGA area. The entity to architecture mapping is achieved using
configurations. However, this does not matter to us as our labs focus on
building only a single architecture for an entity.

Let us build the circuit in Fig. 10 using two logic gates. For this, we need to
keep track of the output from AND gate which needs to be fed into the OR
gate. As in any programming language we can use variables in VHL to keep
track of such intermediate values. Declaration of a variable should follow the
following format:

signal <variable name> : <type of logic>;

Note that each VHDL line terminates with “;”. For example, variable could be
defined as follows:

signal AND_out_sig : std_logic;

Variables need to be defined before the begin keyword inside the

architecture block. Then we can define the X = (A . B) + C

behaviour of our circuit as follows:

AND_out_sig <= A AND B;

X <= AND_out_sig OR C;

VHDL is case sensitive; therefore, be consistent with the entity, variable, input,
and output names. The completed VHDL code should be similar to Fig. 13.

To save your code use shortcut Ctrl + S or click on the Save icon.

Tips Do not cut and paste VHDL from PDF files, as it may introduce hidden characters

 which Vivado is not able to interpret correctly. Copying from .vhd and text files is

 usually ok.

Page 10 of 14

Figure 13 – Completed VHDL code.

Step 7: Creating Design Constraints File

A Xilinx Design Constraints (.xdc) file defines user constraints like the physical
pin to circuit net mappings (i.e., mapping the buttons and LEDs on the BASYS
3 board to inputs/outputs in the circuit). It informs the software what physical
pins on the FPGA that you plan on use or connect them your VHDL code. The
.xdc file can be created and modified inside Vivado using a text editor.

Rather than writing a new .xdc file for every lab, you can use a predeveloped
.xdc file with all the BASYS 3 pins and enable and rename only the required
pins.

Download the Basys3Labs.xdc from LMS (i.e. Moodle) and import it to your
project using the following steps.

Click on the + button on the Sources pane. Then select Add or create

constraints. Click Next > button.

Click on Add Files button and locate the Basys3Labs.xdc file that you
downloaded. Click Ok button. Click Finish button.

Expand Constraints – constrs_1 in the Sources pane and then double click
on Basys3Labs.xdc to open the file. The entire file is commented (a
comment starts with # symbol) and you need to uncomment only the relevant
lines and update them as needed.

As we use A, B, C, and X in our circuit, port names need to be replaced with
those labels. For our project, let us assign three inputs A, B, and C to switches
0 through 2 (SW0 – SW2) and output X to LED0 (LD0) on the BASYS 3 board.

Download “Basys 3 FPGA Board Reference Manual” from LMS and note that
switch 0 (SW0) is connected to pin A17 on Atrix-7 FPGA on BASYS 3 (see pg.
15). Similarly, SW1 and SW2 are connected to V16 and W16, respectively.
LED 0 (LD0) is connected to pin U16. Therefore, you need uncomment the
relevant lines under ## Switches and ## LEDs. You need to uncomment
both the set_property PACKAGE_PIN and set_property IOSTANDARD
lines.

The .xdc file labels the ports as an array of switches and LEDs (which is very
useful when working with a set of input or output wires buses). However, as

Page 11 of 14

we use A, B, C, and X those labels need to be replaced. Fig. 14 show the
changes that you need to do on the .xdc file. Once the changes are over
make sure to save the file.

Switches

set_property PACKAGE_PIN V17 [get_ports {A}]

 set_property IOSTANDARD LVCMOS33 [get_ports {A}]

set_property PACKAGE_PIN V16 [get_ports {B}]

 set_property IOSTANDARD LVCMOS33 [get_ports {B}]

set_property PACKAGE_PIN W16 [get_ports {C}]

 set_property IOSTANDARD LVCMOS33 [get_ports {C}]

LEDs

set_property PACKAGE_PIN U16 [get_ports {X}]

 set_property IOSTANDARD LVCMOS33 [get_ports {X}]

Step 8: Generating the Programming File

Now we are ready to create a programming file (a.k.a. bitstream, .bit file) for
the FPGA in BASYS 3.

Go to the Flow Navigator panel and click Run Synthesis. It will popup
Launch runs window. Keep the default options as it is and click Ok button.
This initiates the synthesis process (see Fig. 2) which may take a couple of
minutes to complete depending on the complexity of the circuit and
performance of your computer.

If the synthesis is successful, you will get a window similar to Fig. 14. Select
Run Implementation and click Ok button.

If the synthesis failed check the message under Tcl Console and Messages
tabs of the Console panel at the bottom. VHDL syntax errors usually result in
failures at this stage. If there are any errors your VHDL file name(s) will be
underlined in Sources panel. Any pending errors need to be corrected. Then
reinitiate the synthesis by clicking on Run Synthesis button again.

Figure 14 – Results of synthesis phase.

Then Launch runs window will appear again. Click Ok button to proceed. This
process may also take a couple of minutes to complete. If the implementation
is successful, you will get a window similar to Fig. 15. Select Open

Page 12 of 14

Implemented Design and click Ok button. This will show how your
synthesized design is arranged on the FPGA, which is not essential to
understand at this stage.

If any errors are reported by implementation process those need to check and
corrected. Then rerun the implementation by clicking on Run

Implementation on Flow Navigator panel.

You can also see the schematics of your circuit by clicking on Schematic

under Implementation dropdown list on Flow Navigator panel. This should
show a logic circuit similar to Fig. 16. We can see A, B, C, and X as inputs and
outputs. LUT is our combinational circuit which takes in 3 inputs and produce
one output. All inputs and outputs are connected through buffers (IBUF and
OBUF), which we will discuss in a later lab.

Figure 15 – Results of implementation phase.

Figure 16 – Schematic representation of the circuit.

One both the synthesis and implementation are successfully complete we can
generate the bitsteam to be downloaded to the device. Use following steps to
generate the bitstream and transfer that to device.

Go further down on Flow Navigator panel and click on Generate Bit

Stream. Click Ok button on the popup window. This process may also take a
couple of minutes to complete. Once complete a window similar to Fig. 17 will
popup. Click Ok button.

Page 13 of 14

Figure 17 – Results of bitstream generation phase.

Step 9: Configuring the Board

Talk to the instructor to get access to BASYS 3 board. Connect the BASYS 3
to the computer using the USB cable. Following steps should be carried out
only on a computer with BASYS 3 attached.

Warning Never touch/hold the development board from the top, bottom, or middle.
 Static charges can ruin the small electronic components. Always hold the
 board from the sides as shown in Fig 18.

Figure 18 – How to hold a circuit board.

Make sure BASYS 3 is connected to the computer using a USB cable. Also,
make sure JP1 jumper on the board is set to JTAG. This tells the program to
be loaded from the computer not from ROM.

Set the POWER switch to ON.

Then click on Open Hardware Manager at the bottom of Flow Navigator
panel. Then expand the dropdown list and click on Open Target. Then from
the popup click Auto Connect. Now Vivado try to connect to the BASYS 3
board. If successful, it will get listed under Hardware manager as in Fig. 19.

Page 14 of 14

Figure 18 – Hardware manager when successfully connected to the board.

Click on Program Device (see the bottom of Flow Navigator panel) and then
select xc7a35t_0 which is the name of the FPGA. Click on Program button
from the popup window. If any errors are experienced in this process, they will
be notified.

Step 10: Change the switches (SW0 – SW2) on the BASYS 3 and verify the
functionality of your circuit (check the output on LED LD0).

Note As we did not program the ROM, the board will lose the FPGA configuration once
 the power is switched off. For the labs, we do not need to permanently program the
 board. Hence, even in future labs, we will not program the ROM.

Demonstrate the circuit to the instructor and get the Lab Completion Log
singed.

Congratulations!!! for successfully completing your first lab!

If you finish a bit early, replace lines 45 and 46 in Fig. 13 with only a single
line to perform X = (A . B) + C. In this case you do not need the variable

in line 42. These lines can be commented using --. Return the synthesis,
implementation, and bitstream generation and test on the board.

Bibliography

• Digilent Inc., “Basys 3 Programming Guide.

• Digilent Inc., “Basys 3 FPGA Board Reference Manual,” Mar. 23, 2017.

• Xilinx, “Vivado Tutorial – Lab Workbook,” 2015.

Prepared By

• Dilum Bandara, PhD on Jan 26, 2014

• Last Updated on Sep 20, 2018

Note This lab is not compatible with the previous version of this document as this replaces

 BASYS 2 with BASYS 3, ISE with Vivado, and schematic design with VHDL.

