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Abstract 

 

Measuring and monitoring road conditions is essential to ensure public and vehicle 

safety, promptly maintenance, as well as fuel and time savings. While developed 

countries use sophisticated devices installed on specialized vehicles to measure and 

monitor road conditions, it is cost prohibitive for countries like  Sri Lanka. Moreover, 

diversity of road types and non-standard physical properties make it impractical for 

specialized vehicles to travel on roads in Sri Lanka and many other countries. 

Therefore, we developed a crowdsourced, smartphone-based, and low-cost road 

condition monitoring solution that can be used anywhere and anytime on any road and 

vehicle. 

 

We found crowdsourcing is a viable option because the proposed mobile app can be 

used to detect the road conditions such as potholes and bumps, as well as  estimate 

International Roughness Index (IRI) at a high spatial and temporal granularity. Sensors 

such as 3-axis accelerometer, GPS, and magnetometer and GPRS connections included 

in most smartphones used to collect data. We use a combination of signal processing 

and machine-learning techniques to detect anomalies, estimate IRI, and classify road 

segments based on IRI. Moreover, we developed a map-based dashboard to visualize 

the data, as well as estimate IRI values and location of anomalies. The proposed 

solution can identify road anomalies with a precision of 92% and estimate  IRI  similar 

to a class three road profiling instrument with a MAE of 0.3913. 

 

Keywords. 3-axis accelerometer, Crowdsourced, IRI, Magnetometer, Smartphone-

based.  
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1. Introduction 

1.1. Background 

Due to lack of road condition monitoring and measuring in Sri Lanka pedestrians, 

passengers, drivers and vehicles face to various safety issues. Developed countries use 

sophisticated devices installed on specialized vehicles [1] to measure and monitor road 

conditions. However unfortunately, Countries like Sri Lanka cannot afford those kinds 

of high tech devices mainly due to their cost. Also, due to the diversity of road types 

and non-standard physical properties make it impractical for specialized vehicles to 

travel on roads in Sri Lanka and many other countries. Hence, it is essential to look 

into alternative and cost-effective means of measuring and monitoring the road 

conditions. Recent technological advancements in the domains of smartphones, 

sensors, wireless broadband connectivity, and crowdsourcing could be combined to 

derive low-cost road condition monitoring solution that can be used anywhere, 

anytime, any road, and on any vehicle. 

1.2. Problem Statement 

Low cost and pervasive solutions are desirable to measure and monitor road conditions 

in developing countries while addressing the problems related to diverse road 

structures. Such a solution could be developed using smartphones where sensors such 

as 3-axis accelerometers, gyroscope, and GPS available in the smartphone could be 

used to measure a vehicle’s response to varying road conditions. Aggregation of such 

sensor readings from multiple users that use the same roads again and again through 

crowdsourcing could enhance the accuracy of detection of road conditions as well as 

road quality metrics such as IRI [2]. However, it is not straightforward to use sensor 

readings from 3-axis accelerometers, gyroscope, and GPS to detect and measure the 

road conditions. For example, a time series of acceleration readings needs to be 

converted to IRI to determine road quality. Moreover, different vehicles and 

smartphones will detect somewhat different physical responses when they go over a 

pothole or a bump depending on their quality of suspensions, speed, whether they fully 

or partially went over the pothole, orientation of the phone, and sensor quality. 
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Therefore, it is essential to be able to correct for biases, errors, reorient the smartphone, 

and calibrate the sensors readings with IRI readings from high-precision monitoring 

equipment. Thus, the problem to be addressed by this project can be stated as follows:  

How to develop a smartphone-based, crowdsourced road quality monitoring 

solution that could estimate IRI and location of potholes? 

 

1.3. Objectives 

Following objectives are to be achieved to address the above problem: 

1. Develop an app that can collect sensor data and reorient the acceleration 

vectors of the phone. 

2. Integration with OBD2 for speed & fuel consumption data. Calculate fuel 

consumption of vehicles using engine rpm collected from OBD2 adapters.  

3. Statistics, Signal Processing Machine Learning solutions to find IRI & potholes 

and cluster them according to GPS coordinates.  

4. Calibration and performance monitoring. Use ROMDAS bump Integrator [3] 

device to compare and improve the results of IRI calculating algorithm.  
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2. Literature Review 

Several research work have been carried out to find a method to measure the conditions 

of roads using different data collection approaches. When considering the sources for 

creating road profiles, researchers have used accelerometers in separate circuits and 

accelerometers inbuilt within smartphones. So using a smartphone can be considered 

a more viable option than designing separate circuits to collect acceleration data.  

2.1. Smartphone Sensors 

2.1.1. Accelerometer  

The accelerometer in a smartphone is a circuit based on  MEMS. Forces of acceleration 

caused by the gravity of movement or tilting actions can be sensed by this mechanism. 

MEMS measures these moving or gravitation accelerations of the attached device. 

Acceleration is given according to x, y, z-axes relative to the phone as shown in Figure 

5.1.  

 

Figure 2.1. Three-axis acceleration vectors. 

 

2.1.2. Magnetometer  

The magnetometer is crucial for detecting the relative orientation of a mobile device 

relative to the Earth's magnetic north. It detects Earth's magnetic field along three 

perpendicular axes X, Y, and Z. The hall-effect sensor produces a voltage which is 

proportional to the strength and polarity of the magnetic field along the axis each 

sensor is directed. 
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2.2. Reorientation 

Smartphone also delivers the advantage of easy implementation of a crowd-sourced 

application for data collection. Since a smartphone could be in any arbitrary position, 

issues like disorientation need to be resolved when collecting acceleration data. Road 

quality and Ghats complexity analysis using Android sensors [4] is proposing a 

solution to road quality monitoring using accelerometer and GPS sensors of the mobile 

to implement the system. To keep the mobile phone’s axes and the vehicle axes in the 

same direction they have mounted the mobile into vehicle accordingly. Researchers 

have come up with a solution including an algorithm based on acceleration deviation 

of the x, y, and z-axes. Acceleration deviation on x, y and z-axes is a prominent way 

to identify road conditions because the acceleration deviation is dependent on the road 

condition. The algorithm must be improved to get correct acceleration data when the 

orientation of the mobile is changing which need to be addressed using a reorientation 

mechanism introduced by Nericell [5] and Wolverine [6].  

 

Nericell [5] uses an accelerometer, microphone, GSM Radio and GPS sensors 

available in smartphones. It uses accelerometer readings to achieve virtual 

reorientation on each individual phone. Here Nericell uses Euler angles to find 

orientation and convert accelerations into the proper orientation. 

 

Wolverine [6] has focused on virtually reorienting acceleration vectors of the mobile 

and processing them to identify road conditions. The application first reorients the 

acceleration vectors into geometric directions (North, East, Vertical down) using a 

magnetometer.  Then it reorients the geometrically oriented vectors into vehicle X, Y 

and Z axes by identifying moving direction of the vehicle using GPS and 

magnetometer ( By calculating the angle of the line made by two latitude-longitude 

points with geometric north). This reorientation uses a predefined matrix of 

trigonometric equations to simply calculate the vehicle acceleration from smartphone 

accelerometer vectors. Finally, it identifies the road surface anomalies and braking 

events of the vehicle by processing the acceleration vectors which were reoriented into 

vehicle axes with the use of machine learning techniques.  
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If the system is using an unfixed device, reorientation of the acceleration vectors is the 

first concern. Nericell [5] and Wolverine [6] mechanisms have addressed that concern. 

2.3. Anomaly Detection 

By analyzing these gathered acceleration data road anomalies need to be identified 

with a considerable accuracy. So using thresholds to identify anomalies has been used 

by some researchers while more recent research works are more focused on machine 

learning approaches. So filtering out other disturbances and noise in acceleration 

datasets due to vehicle vibration and sudden vehicle movements has a considerable 

influence on creating optimum prediction model. 

 

To detect anomalies on roads using the sensor readings, Pothole Patrol [7] application 

uses z-peak values (i.e., vertical accelerations) within a selected time interval. If the z-

peak value does not exceed the threshold value, then application rejects that period. If 

some period exceeds the threshold value, then sensor data is sent to the server to 

identify the anomaly as whether a pothole or not, using machine learning. Also, it uses 

GPS location-based clustering to get more accurate results. If data from k vehicles 

suggest a specific GPS location as a pothole, then it suggests that location as a pothole. 

Due to the three to four-meter error range in GPS [8], it suggests a pothole after 

considering a GPS range. Also, it blacklists some GPS locations if they are identified 

as other road anomalies.  



6 

 

Pothole Patrol [7] application sends accepted sensor data with time, speed, location 

and heading to the server for post data processing. Filtering algorithms used by the 

application is capable of filtering out abnormal sensor data using the vehicle’s speed.  

If a vehicle is traveling at a low speed, the mobile application will filter out unrelated 

events like door slams because events like door slams will give a spike in 

accelerometer and led to wrong decisions. Researchers have used high speeds to detect 

braking and turning events detected in accelerometer to ignore them. Also, Pothole 

Patrol can reject veering properties of the vehicle at high speeds. Since it calculates 

speed using GPS, the speed of the vehicle won’t be much accurate. Hence, OBD2 

telematics would be used in iRoads application to get vehicle speed directly from the 

vehicle. As speed is a primary factor to reject abnormal sensor data, Pothole Patrol [7] 

is not very much accurate with speed-related decision making. Also, it hasn’t 

considered a crowdsourced solution whereas Nericell [5] uses smartphone sensors 

which can be crowdsourced. Nericell [5] uses spikes along the vertical direction to 

identify potholes and bumps. To differentiate bumps from potholes Nericell [5] uses 

an external database of bumps. But Pothole Patrol [7] provides a more practical 

solution to distinguish potholes from road bumps. Since only one wheel of the vehicle 

meets the pothole, Pothole Patrol [7] considers spikes along other axes of the 

accelerometer to identify potholes. In a bump, wheels on both sides of the vehicle will 

meet the bump. Hence, a bump will not lead to spikes in the axis which is perpendicular 

to both vertical direction and vehicle’s moving direction.  

 

According to researchers of Road condition monitoring and alert application [8], raw 

data gathered from different sensors at a low sampling rate helps to reduce the power 

usage of the application. Also, an efficient classifier algorithm was used by them to 

provide reasonably accurate results and a confidence score was generated for each of 

the identifiers like pothole, bump etc. Then those results including location, score and 

identifier were sent to the web server to store in a remote database.   

 

The backend server of this system [8] consists of a geospatial database that is able to 

store the location as points and the identifier, score as attributes to those points. Since 

there can be miscalculations and false readings in the data received by the back-end 
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server, multi-user fusion algorithm is used to mark the locations as anomalies after 

aggregating data from multiple users. Based on a threshold value, the application 

decides whether the condition indicated by the score exists on that location and if the 

answer is yes then that location is plotted as an anomaly on the map. This approach of 

the researchers helps to increase the reliability of the system which is critical to make 

decisions on the maintenance work. Other than the designs used in Nericell [5] and 

Road condition monitoring and alert application [8], iRoads focused on precise 

anomaly identification by using machine learning techniques on collecting data. 

2.4. IRI Calculation 

There was no significant amount of research carried out on calculating or predicting 

IRI for given road segments. So this research has looked into providing a road profiling 

solution similar to ROMDAS Bump Integrator which is a standard class 3 road 

profiler. Previous research work [9] has proven that the IRI value has a considerable 

correlation with the deviation of acceleration data. Based on that founding discovery, 

this research has used that correlation to predict the IRI values for a given road 

segment. Also, with the intention of improving the accuracy of the IRI prediction 

values and showing the correlation between fuel consumption of a vehicle and the IRI, 

vehicular data was collected using OBD2 adapters. 

 

Research work on Pavement roughness evaluation method for low volume roads [9] 

suggests a technique to estimate road roughness using smartphone sensors. 

Accelerometer and GPS location data was obtained from both Roadroid [10] and 

Androsensor [11] applications. Authors performed regression analysis to identify a 

relationship between eIRI taken from Roadroid [10] application for every 20-meter 

road section and resultant acceleration has taken from Androsensor [11] application. 

Roadroid application can only calculate eIRI when driving speed of the experiment 

vehicle is 20 km/h or faster. Resultant acceleration is the resultant of the x, y and z 

accelerometer readings are taken from Androsensor application for 20-meter road 

sections. From the analysis, it has been found that acceleration data from smartphones 

has a linear relationship with road roughness condition. Hence, it opens the way to 

develop a system to measure road roughness using smartphone sensors. 
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Since there is no robust implementation of these researches, there is a need for 

designing a more reusable and accurate way of monitoring the condition of road 

networks.  

3. Methodology 

We believe crowdsourcing is a viable option as a well-crafted mobile app could be 

used to measure the road conditions such as potholes, bumps, speed breakers, and 

estimate International Roughness Index (IRI) at a high spatial and temporal 

granularity. Sensors such as 3-axis accelerometer, GPS and magnetometer included in 

most smartphones could be used to detect potholes and bumps, as well as estimate IRI 

and classify road segments based on IRI values using a combination of signal 

processing and machine-learning techniques. Moreover, we plan to and visualize this 

information using a map-based dashboard. 

 

Figure 3.1. Smartphone in an arbitrary position. 

 

We use 3-axis accelerometer as the main source for road profile evaluations. Because 

our solution is based on crowdsourcing, a reorientation mechanism is essential to 

convert accelerometer data from any arbitrary smartphone position as shown in Figure 

6.1 respect to the vehicle’s axis. We use a reorientation mechanism proposed by 

Nericell [5] and Wolverine [6] to overcome this dis-orientation issue. To remove noise 

in sensor inputs we use signal processing mechanisms to filter out the sensor noise. 
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Also, raw data and reoriented data collected from the mobile app are sent to backend 

servers for further processing. Finally, machine-learning and signal processing 

happens in the backend servers for detection of potholes and bumps as well as to 

estimate IRI. Finally, road segments will be classified based on IRI and a map will be 

annotated based on the IRI values. Moreover, we will improve the IRI calculation 

process to get more accurate results by comparing IRI values from our solution with 

ROMDAS bump integrator [3]. We further plan to identify the correlation between IRI 

and fuel efficiency of vehicles. 

3.1. High-Level Architecture 

Figure 3.2 shows the high-level architecture design of the monitoring system which 

consists of a mobile application and backend servers. The mobile application which is 

capable of collecting sensor data and database server is syncing through a sync 

gateway.  Backend server is providing an API service to access collected data and 

processed data by machine learning models and signal processing approaches. 

Frontend is visualizing the data providing by the backend API. 

 

Figure 3.2. High-level architecture. 
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3.2. Mobile Application Architecture 

Since the mobile application needs to utilize a lot of sensors and other native 

functionalities in the mobile device, the app is developed as an Android application. 

Also, Android is more supportive with external libraries [13, 14] that are required for 

the app development. As shown in Figure 3.3 the mobile application is designed with 

the objective of fulfilling both data gathering and in-app data processing capabilities. 

Average filtering and noise removal operations are carried out on raw sensor data like 

accelerometer readings. GPS coordinates are used to calculate the speed of the vehicle 

or OBD adapters can be used to get more accurate vehicular data. All these raw, filtered 

and processed data received from sensors are send to device storage and store there 

until a network connection is available to sync with the remote database server.  

 

Figure 3.3. Architecture diagram of iRoads mobile. 
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3.2.1. Signal Processing 

Using signal processing inside the mobile, the system eliminates the noise generated 

by the smartphone and vibration due to the vehicle engine. Here system uses a simple 

moving average filter on raw accelerations. Also, the system calculates average 

constant noise caused by the vehicle engine using a simple moving average filter. As 

the final step system reduces this constant noise from the filtered accelerations to 

obtain more refined values. 

3.2.2. Reorientation Mechanisms 

The system is capable of reorienting acceleration along any axis into a stable position. 

During the reorientation process system first applies a signal filtering process in order 

to remove the noise. As the next step system performs the reorientation using one of 

the following methods. Then again system performs a signal filtering process to 

remove constant noise caused by the vehicle engine.  

3.2.2.1. Nericell 

Through this reorientation mechanism, the system uses only acceleration vectors of 

the mobile. Using the acceleration vectors, the system calculates Euler angles for the 

mobile’s orientation. Then with these Euler angles, the system converts the 

acceleration vectors into the stable position of the mobile. 

3.2.2.2. Wolverine 

Through this method of reorientation, the system uses the rotation vector generated by 

the mobile. The mobile device generates this rotation vector using magnetometer 

readings. Using the rotation vector, the system converts any acceleration vector from 

any arbitrary position to geometrical coordinates. Then the system uses the GPS 

bearing of the vehicle to convert these accelerations to the coordinate system of the 

vehicle.  
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3.2.3. GPS speed calculation 

The system calculates vehicle speed using GPS to use in scenarios where the vehicle 

doesn’t support OBD2. In order to calculate speed, the system calculates the distance 

between two GPS coordinates using the haversine formula[15]. By using this distance 

and time difference between two GPS coordinates system calculates vehicular speed. 

3.2.4. Automatic Activity Recognition 

With the intention of making the application more user-friendly, Pathsense [14] 

Activity SDK was integrated into the mobile application. This Activity Recognition 

tool currently supports activities such as Walking, Driving, Holding, Still, Shaking, 

and In-Vehicle Holding. So the sensor data will only be saved in the local database if 

the current activity is Driving. Therefore, users do not require to tell the application to 

start collecting data and when to stop manually. This also helps to reduce unnecessary 

data collection and transmission. 

3.2.5. Database 

Every iRoads mobile application has its own Couchbase Lite NoSQL database 

instance. All sensor data save in that local database and automatically syncing to online 

Couchbase database when the network is available. Couchbase Lite local databases 

syncing with online Couchbase database using Couchbase sync gateway. Couchbase 

supports both cloud database to local databases and local databases to cloud database 

data syncing. But in iRoads application, it uses only local databases to cloud database 

syncing functionality.  

3.3. Anomaly Detection 

Anomaly detection is done inside the backend servers. Before identifying anomalies 

system performs signal processing step. In order to detect anomalies, the system uses 

two approaches. The first approach is based on machine learning. The second approach 

is based on a threshold. After detecting anomalies system performs a clustering process 

to more accurately identify anomalies. 
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3.3.1. Signal Processing 

Using signal processing techniques System more precisely differentiate road 

anomalies from normal road segments.  As signal processing techniques following 

techniques are used by the system: 

● Average Filtering 

● First Derivative 

● Second Derivative 

● Fourier Transform 

● Wavelet Transform 

We applied Fast Fourier Transform for vertical acceleration and horizontal 

acceleration which is perpendicular to the vehicle’s moving direction. Then we 

analyzed the real and imaginary components obtained for each acceleration using 

graphs.  

In Wavelet Transform we went up to four levels of signal differentiation into frequent 

and infrequent components. Then we analyzed those components using graphs. 

3.3.2. Threshold-based Approach 

By using a threshold value system can identify anomalies on roads. In order to identify 

anomalies system searches for spikes larger than a threshold value. After finding 

locations those have spikes greater than the threshold value, the system removes 

duplicate locations identified as anomaly locations. Then these GPS locations are 

transferred to the clustering process. 

3.3.3. Machine Learning Approach 

Using a classification process system identifies anomalies on roads. After detecting 

road anomalies, the system identifies GPS coordinates of those anomalies. For the 

classification process system requires a training dataset classifying each data point 

collected from the mobile app into an anomaly or a normal road. Classification model 

Random Forest Classifier [16] is used for the classification process.  
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3.3.4. Clustering Process 

For the clustering process, the system uses GPS coordinates of anomalies identified 

through the classification process and threshold-based approach. Here system clusters 

GPS coordinates within a radius of five meters to a single cluster. In the end, the system 

identifies these cluster centers as the GPS coordinates with road anomalies. The system 

uses clustering model DBSCAN [17] for clustering. The system considers the number 

of times that data has collected for a particular road segment as the sample size for the 

DBSCAN clustering algorithm. 

3.4. IRI Estimation 

Currently, the Civil Engineering Department is using specified equipments installed 

into a vehicle to collect IRI values. Through our application, IRI values are predicted 

from the acceleration data and GPS data collected only using a smartphone application.  

3.4.1. International Roughness Index (IRI) 

IRI indicates how much vertical movement would be experienced by a standard 

passenger vehicle body if driven over a 1 mile of a road segment at a speed of 50 mph 

[18]. Hence, higher IRI values indicate rougher road surfaces. 

3.4.2. Pulse counting 

When considering the IRI calculation in miniRomdas it mainly depends on bump 

integrator raw roughness value. This raw roughness value is a pulse count which 

indicates movement of the vehicle body with respect to the vehicle axle. System’s 

pulse counting algorithm is a very simple one. If vertical acceleration value is greater 

than a threshold value that data point considered as a pulse(spike).  

3.4.3. Machine Learning Approach 

Data collected from both iRoads mobile application and ROMDAS equipments are 

used to create a dataset that is used to train a prediction model. Random Forest 

Regressor [19] from the sklearn library is used as the model used to predict IRI values. 
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3.5. Web Application 

The web application is designed with 3 tiered architecture to independently provide an 

API service in a way that even a 3rd party can access iRoads service. 

 

API service is responsible for providing 

processed data to frontend API and providing 

service to other parties. This includes the 

following functions. 

 

 

 

  Figure 3.4. Three-tiered Architecture  

           of the web application. 

● Getting journey names and ids 

● Getting journey data according to journey id (json or csv) 

● Getting acceleration graph of a journey as segments divided by a time period 

● Getting GPS path of a journey by id 

● Getting anomaly tags 

● Uploading predicted anomalies json 

● Getting predicted anomalies 

● Getting journey as segments including 

○ Segment average speed 

○ Segment average RMS acceleration 

○ Segments with  

○ Standard deviation of vertical acceleration in the segment  
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4. Implementation 

4.1. Mobile application 

The main source for data gathering is the mobile application in iRoads. Here we have 

developed an android application for this purpose. Following subsections will illustrate 

how the mobile application is implemented. 

4.1.1. Signal Processing 

Using signal processing inside the mobile, the system eliminates the noise generated 

by the smartphone and vibration due to the vehicle engine. Here system uses a simple 

moving average filter on raw accelerations. Also, the system calculates average 

constant noise caused by the vehicle engine using a simple moving average filter. As 

the final step system reduces this constant noise from the filtered accelerations to 

obtain more refined values. 

 

Figure 4.1. Average filtered y-axis accelerometer.  
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We maintain a queue inside the mobile application to implement the average filter. 

This is a fixed size queue. Hence, when each new accelerometer reading joins the 

queue, the oldest accelerometer reading is automatically removed from the queue. The 

value given from the average filter is the mean of the sensor readings in the queue. 

When considering the queue size it can be adjusted. But as the default size, we have 

given five which is a good value to remove sensor noise as well as provide sufficient 

sensitivity to identify that phone has changed its position. For each sensor, the system 

maintains separate average filters. 

 

To remove constant noise system maintains a separate queue for each average filter. 

This queue takes sensor data only when the vehicle is stable. For this queue system 

takes only reoriented accelerometer readings. The mean value of this queue is reduced 

from the mean value obtained from the normal queue to obtain average filtered 

constant noise removed accelerometer readings. 

4.1.2. Reorientation 

The system is capable of reorienting acceleration along any axis into a stable position. 

During the reorientation process system first applies a signal filtering process in order 

to remove the noise. As the next step system performs the reorientation using one of 

the methods Wolverine or Nericell. Then again system performs a signal filtering 

process to remove constant noise caused by the vehicle engine.  

4.1.2.1. Wolverine 

In the reorientation technique based on Wolverine the system uses the rotation vector 

generated by the accelerometer. This rotation vector is generated using magnetometer 

readings. Using the rotation vector, the system converts any acceleration vector from 

any arbitrary position to geometrical coordinates. Then the system uses the GPS 

bearing of the vehicle to convert these accelerations to vehicular coordinates.  
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In Android we can obtain rotation matrix from following code: 

 

float[] rotation = new float[9]; 

float[] inclination = new float[9]; 

float[] gravity = {xValueA,  yValueA,  zValueA};  

//here  xValueA means accelerometer x axis reading 

float[] geomagnetic = {xValueM, yValueM, zValueM};  

// here xValueM means magnetometer x axis reading 

SensorManager.getRotationMatrix(rotation, inclination, 

gravity,  geomagnetic); 

 

With the above code rotation matrix will be generated accordingly to the orientation 

of the smartphone. 

 

Using following code we can convert accelerometer readings into geometrical 

coordinates: 

float geometryAx = rotation[0]*gravity[0] + 

rotation[1]*gravity[1] + rotation[2]*gravity[2]; 

float geometryAy = rotation[3]*gravity[0] + 

rotation[4]*gravity[1] + rotation[5]*gravity[2]; 

float geometryAz = rotation[6]*gravity[0] + 

rotation[7]*gravity[1] + rotation[8]*gravity[2]; 

 

Generated rotation matrix will be used to transform acceleration vectors into 

geometric axes with the above code. These vectors will be used to generate correct 

predefined positioned vectors showing in the Figure 2.1 which will be the vehicular 

coordinates with the below codes. 

 

Using following code we can find magnetic inclination and GPS bearing of the 

vehicle: 

 

GeomagneticField geomagneticField = new 

GeomagneticField(latitude, longitude, altitude,timeMilis); 

float magneticDeclination = geomagneticField.getDeclination(); 

float bearing  = previousLocation.bearingTo(location); 

float teta = bearing - magneticDeclination; 
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Using following code we can convert accelerations from geometrical coordinates to 

vehicular coordinates: 

double ay = geometryAy * Math.cos(teta) - geometryAx * 

Math.sin(teta); 

double ax = geometryAy * Math.sin(teta) + geometryAx * 

Math.cos(teta); 

double az = geometryAz; 

 

These ay, ax, az are the reoriented vectors that is based on vehicles coordinates. 

 

Figure 4.2 illustrates how Wolverine mechanism reorients accelerations into a stable 

position. 

 

Figure 4.2. Reoriented y-axis acceleration with Wolverine. 

 

The actual implementation of Wolverine mechanism can be found at [20].  
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4.1.2.2. Nericell 

Through this reorientation mechanism, the system uses only acceleration vectors of 

the mobile. Using the acceleration vectors, the system calculates Euler angles for the 

mobile’s orientation. Then with these Euler angles, the system converts the 

acceleration vectors into the stable position of the mobile. 

In this implementation first, we need to calculate ‘teta’ and ‘pie’ angles when a vehicle 

is not moving. Using the following code we can calculate ‘teta’ and ‘pie’ angles: 

double teta = Math.acos(y / 9.800); 

double pie = Math.atan(z/x); 

 

Using ‘teta’ and ‘pie’ angles we can reorient accelerations along x, y, z axes. Using 

following code we can obtain reoriented acceleration along x axis: 

double xPie = x*Math.cos(pie) - z*Math.sin(pie); 

double yPie = y; 

double zPie = x*Math.sin(pie) + z*Math.cos(pie); 

double xTeta = xPie*Math.cos(teta) + yPie*Math.sin(teta); 

double zTeta = zPie; 

double alpha = Math.atan(xPie/zPie); 

double xReoriented = xTeta*Math.cos(alpha) - 

zTeta*Math.sin(alpha); 

 

Using following code we can obtain reoriented acceleration along y axis: 

double xPie = x*Math.cos(pie) - z*Math.sin(pie); 

double yPie = y; 

double yReoriented = -xPie*Math.sin(teta) + 

yPie*Math.cos(teta); 

 

Using following code we can obtain reoriented acceleration along z axis: 

double xPie = x*Math.cos(pie) - z*Math.sin(pie); 

double yPie = y; 

double zPie = x*Math.sin(pie) + z*Math.cos(pie); 

double xTeta = xPie*Math.cos(teta) + yPie*Math.sin(teta); 

double zTeta = zPie; 

double alpha = Math.atan(xPie/zPie); 

double zReoriented = xTeta*Math.sin(alpha) + 

zTeta*Math.cos(alpha); 
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Figure 4.3 illustrates how Nericell mechanism reorients accelerations into a stable 

position. Implementation of Nericell mechanism can be found at [20].  

 

 

Figure 4.3. reoriented y-axis acceleration (Nericell). 

 

4.1.3. GPS Speed Calculation 

The system calculates vehicle speed using GPS to use in scenarios where the vehicle 

doesn’t support OBD2. The most popular way to calculate GPS-based speed is to use 

the Haversine formula [15]. Haversine formula provides distance between two GPS 

coordinates along the earth's surface. By keep tracking the time between two position 

changes it is possible to calculate the speed of an object. Hence, we can directly apply 

that mechanism to our solution to calculate vehicle speed. Implementation of GPS 

based speed calculation using Haversine formula can be found at [20].  
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Figure 4.4. GPS Speed. 

 

4.1.4. Mobile app UI 

Following user interfaces are designed to achieve more user-friendliness when using 

the mobile application. Almost all the functionalities are automated to provide the best 

user experience.  
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                  Figure 4.5. Home Screen.        Figure 4.6. Navigation drawer. 

  
                      Figure 4.7. Dashboard.        Figure 4.8. Settings. 
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4.2. Database  

4.2.1. Local Database 

In applications such as iRoads data is doing a main role. So that data collecting and 

saving those data into a database is a vital task. When considering the local data saving 

in Android applications there are several approaches we can take.  

Android SharedPreferences [20] can save data as key-value pairs. But this method 

suitable only for a small amount of data. Without using third-party libraries, the 

application can save data as .txt, .json files in internal or external storage. But such a 

method wants more developments in data syncing with an online database. Because of 

this row data saving method has not any database schema there are difficulties in 

accessing data again inside the mobile application. With built-in support for SQLite 

[21] databases in  Android, SQLite gives service of data saving and accessing for 

structured data. Then there are several NoSQL database providers for android. iRoads 

application collects unstructured sensor data so NoSQL databases are the most suitable 

databases to save such data. All these NoSQL database schemes provide the 

functionality of document-based data saving. Noodle [22] and  Paper [23] database 

projects give such NoSQL database schemas. Firebase Database [24] provide the 

functionality of automatic data syncing across other instances. Also, gives offline data 

saving functionality with saving data in phone storage. iRoads application doesn’t need 

the functionality of data syncing across multiple devices. 

CouchBase Lite [25] databases give document-based data storage, online-offline data 

syncing with cloud database. This data syncing can be done both one way or two way. 

But Iroads application only wants one-way data syncing functionality. So when 

considering the NoSQL database scheme for Android, Couchbase Lite gives efficient 

and easy to implement service than other solutions. This system uses CouchBase 

databases for data storage. Offline first behavior and automatic syncing with the online 

database are the main reasons to choose Couchbase as the database in this project. 
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4.2.2. Backend Database 

Couchbase project gives online Couchbase database server. It communicates with 

local Couchbase database instances using Couchbase sync gateway. Couchbase sync 

gateway is also deployed on the same server. The following figure shows a data sample 

stored in the cloud database. All the data objects created in the local database and 

synced to the online database. 

 
Figure 4.9. Data item format. 

 

Other than sensor data from mobile application also we store configuration data in 

the cloud database. 

4.3. Anomaly detection 

In anomaly detection process we used python as the programming language for 

implementation. We used Anaconda [26] platform to perform machine learning tasks. 

Also, we used several python libraries in our anomaly detection process. 

Implementation of the anomaly detection process can be found at [25]. 

 

During the anomaly detection process, we mainly used two python libraries, namely 

Pandas and Numpy. Pandas [27] library gives the capability of handling data as data 
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frames. Our backend database consists of data in the form of JSON objects. Hence, 

using the following code we can convert JSON objects into a pandas dataframe for 

further processing. 

4.3.1. Signal Processing 

We used python libraries installed on Anaconda [26] platform for signal processing. 

Other than two main python libraries mentioned above, we used following two 

libraries for data visualization, namely Pyplot and Seaborn. 

Pandas provides the capability to find moving average for its data frames. Hence, we 

can use that feature to our average filtering process. Pandas library provides the first 

derivative functionality for a data frame. Hence, we can directly apply that to our 

accelerometer signal which is in the form of a data frame. By applying derivative 

functionality of Pandas on results obtained from the previous step, we can obtain the 

second derivative. To analyze wavelet transform of acceleration signal we used 

PyWavelets [31], open source wavelet transform python library. In order to perform 

Fourier transform we had to use another library. SciPy [32] provides a fast Fourier 

transform to Pandas data frames. Hence, we used it to find fast Fourier transform of 

accelerometer signals. 

SciPy provides a Fourier transform in the form of complex numbers. We analyzed the 

real part and imaginary part of the Fourier transformed signal separately. To obtain 

real and imaginary parts, we used functionalities of Numpy [28] library called Real 

part and Imaginary part. 

4.3.2. Threshold-based Approach 

In threshold based approach we checked data points where vertical acceleration greater 

than ten. Then those GPS coordinates were identified as anomalies. After detecting 

anomalies we had to remove duplicated GPS coordinates. Then we removed duplicated 

GPS coordinates. 
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4.3.3. Machine Learning Approach 

During the machine learning process, we used the scikit-learn [33] library. To do 

oversampling we used SMOTE [34]. We used Random Forest Classifier [16] as our 

classification model. Reoriented accelerometer readings, GPS speed and anomaly type 

was used as features to train the model. We used Grid Search [35] to fine tune the 

parameters of the Random Forest Classifier [16] model. Using the tuned parameters 

we created a model to predict anomalies as follows: 

4.3.3.1. Parameter Tuning 

forestModel = RandomForestClassifier(bootstrap=True,       

class_weight=None, criterion='gini' max_depth=1, 

max_features='auto', max_leaf_nodes=None, 

min_impurity_decrease=0.0,min_impurity_split=None,min_samples_

leaf=0.01, min_samples_split=2, min_weight_fraction_leaf=0.0, 

n_estimators=1, 

n_jobs=1,oob_score=False,random_state=None,verbose=0,warm_star

t=False) 

 

As the next step we trained the model. As final step we predicted anomalies for new 

datasets. In this approach also, we need to remove duplicate GPS coordinates detected 

as anomalies similarly using an approach like in threshold based approach. 

4.3.4. Clustering 

In order to cluster anomalies we used DBSCAN [17] clustering. Clustering model 

needs a sample size and a radius. Here we used radius as five meters. And sample size 

as number of times that data has collected for a particular road segment. For an 

example if we collected seven times for Moratuwa to Katubedda segment in Galle 

road. We performed predictions for all seven datasets. And clustered them to get to a 

single cluster, if at least seven data points in the predicted datasets are in five meter 

radius. 
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kms_per_radian = 6371.0088 // Earth radius 

epsilon = 0.005 / kms_per_radian // five meter in GPS terms 

coords = raw_data.as_matrix(columns=['lat', 'lon']) 

db=DBSCAN(eps=epsilon,min_samples=7,algorithm='ball_tree',metr

ic='haversine').fit(np.radians(coords)) 

 

As final step cluster centers were identified as anomaly locations. The implementation 

to find cluster centers can be found at [xx]. 

4.4. IRI estimation 

Data collected from both ROMDAS equipment and iRoads mobile application is 

analyzed and used for training prediction models. 

4.4.1. IRI Data Collection from ROMDAS  

For the IRI data collection, we used miniRomdas [36] system. MiniRomdas is a 

streamlined version of the full ROMDAS system. With compared to other IRI 

calculating options this system is easy to install and cost-effective solution. According 

to the manufactures, the system is unaffected by wet, unpaved and rough conditions. 

Even with a minimum operating speed (10km/h). This system consists of a central data 

logger, odometer and Bump Integrator module as shown in Figure 4.11.  

 

Fig 4.10. miniRomdas components. 
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The central data logger is a Microsoft Windows mobile pc and it connects to hardware 

interface using a Bluetooth dongle and take odometer and bump integrator data. At the 

end of the data gathering, we can collect those data by connecting the mobile PC to a 

Laptop or a desktop computer.   The odometer is fixed to a wheel of the vehicle and it 

connects to hardware interface using a cable. 

 

Bump integrator is fixed to the vehicle and it connects to the middle of the axle as 

shown in Figure 4.12. Bump integrator sends data to hardware interface using a cable. 

After fixing the miniROMDAS system to the vehicle we have to calibrate this system 

for the vehicle. For the calibration process, we have to collect data for five different 

roads using this miniROMDAS  system. Then for the calibration, we have to find IRI 

values of those roads and for that, we used Z-250 Reference Profiler [37] 

 

Fig 4.11. Bump Integrator connected to a vehicle axle 

. 

Z-250 Reference Profiler is a class one IRI measuring instrument that has been 

developed to measure high accuracy reference profiles. We measured IRI values of 

300m road segments using this device and collected miniRomdas data using the 

vehicle. Using those data we created a calibrated profile for Mitsubishi Delica vehicle 

in miniRomdas software. Then we collected IRI data for different road segments using 
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Mitsubishi Delica vehicle. In every ride, we also collected acceleration and GPS data 

using mounted smartphones. MiniRomdas system outputs collected data as Microsoft 

Access (.mdb) files. These files contain both raw data (chainage, roughness, time) and 

calculated data (IRI, vehicle speed).  

 

Figure 4.12. Z-250 Reference Profiler. 

 

   

  Figure 4.13. Data collecting using mounted smartphones. 
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Table 4.1 shows a sample of miniRomdas output data. SPEED column indicated the 

average speed of the vehicle for the considered road segment. Here data is collected 

for 100m road segments. ROUGH_1 is the pulse count received from the bump 

intregrator. C_ROUGH_1 is the calculated IRI value for that road segment using the 

pulse count. Also this table shows the time taken for cover each road segment. 

 

Table 4.1. Sample output data table of miniRomdas system. 

CHAINAGE SPEED LRP_NUMB

ER 

ROUGH_1 ROUGH_2 TIME C_ROUGH_1 

100.16 27.4244 0 1214 0 13.148 3.95 

200.31 36.5919 0 1403 0 23.001 4.17 

300.3 40.743 0 1268 0 31.836 4.02 

400.19 43.0097 0 943 0 40.197 3.64 

500.03 6.03081 0 1715 0 99.795 4.54 

600.05 26.8751 0 1282 0 113.193 4.04 

700.14 39.1231 0 1098 0 122.403 3.82 

4.4.2. Linear Regression approach 

Using collected iRoads and ROMDAS data, different features were extracted. As a 

result of we found a set of features give good  correlation with romdas IRI values. 

Then we calculated best-fit lines using linear regression algorithms and calculated 

iRoads IRI using those equations. 

4.4.3. Machine Learning approach 

Considering the results from correlation analysis and threshold selection process, 

primary features from the dataset were selected to train the Machine Learning model. 



32 

 

According to the above correlation matrix in Figure 47.15, there are only few features 

with significant relation to the IRI values. They can be listed as follows: 

● ‘calSpikesY’ - Calculated spikes from y-axis for a given road segment. 

● ‘speed’ - The Actual speed of the vehicle recorded through Odometer. 

● ‘gpsSpeed’ - The Calculated speed of the vehicle using GPS 

coordinates. 

 

 

Figure 4.14. Correlation Analysis. 
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4.5. Data Visualization 

Due to the scarcity of reliable and revised data on the condition of road networks, 

authorities are in lack of insight when implementing road maintenance programs or 

making road design guidelines. With proper visualization of road condition through a 

dashboard, these problems can be addressed. Visualization part consists of data 

accessing from the database through API and visualizing in the frontend. Architecture 

design of the project is shown in Figure 6.1. 

Here the data are managed as journeys. Every time a journey starts when someone 

starts traveling in a vehicle with iRoads application. Those journeys are saved with 

journey ID and journey stops when the vehicle stops. This starting stopping behavior 

is controlled by pathsense [14] android library. Because of having a limited amount of 

data, visualizations are mostly done according to those journeys at the moment. 

4.5.1. API  

To access raw data and predictions from the database and processing required 

visualization data is done by iRoads API service. This spring boot application is 

running on a tomcat server that has been integrated with it. 

Here we have used Spring boot for development of this API. Mainly due to default 

configuration management and better dependency management in spring boot were 

the reasons to choose it for backend developments. Database handling is managed with  

Couchbase data accessing dependencies.  API service is providing these services: 

● Getting journey names and ids 

● Getting journey data according to journey id (json or csv) 

● Getting acceleration graph values of a journey as segments divided by a time 

period(in seconds) 

● Getting GPS path of a journey by id 

● Getting anomaly tags 

● Uploading predicted anomalies json 

● Getting predicted anomalies 
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● Getting journey as segments including 

○ Segment average speed 

○ Segment average RMS acceleration 

○ Segments with  

○ Standard deviation of vertical acceleration in the segment 

4.5.2. Front-end 

The front-end of iRoads has developed using Angular. Angular was used for better 

division of components and reusing the existing code. This angular application is 

running on an apache server.  In the front-end part of the web application, there are 

mainly two types of visualizations, namely graph view, and map view 

4.5.2.1. Graph view 

Graph view has implemented using D3 and ng2-nvd3 libraries. In graph view, it is 

showing acceleration x,y,z vectors of raw and reoriented data. These are the 

accelerations gathered while traveling with mobile application running. Accelerations 

are the main considering data for predictions. So, acceleration graph view is important 

to tagging data and check moves in anomaly situation. The graph in Figure 4.16  is 

shown as segments for smooth interaction. 

  

Figure 4.15. Acceleration graphs. 
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4.5.2.2. Map view  

Map view has been developed using OpenStreetMap [38].  In map view following 

details are shown.  Routes are shown according to journey names. Names are 

automatically assigned by considering starting GPS location with the help of 

OpenStreetMap API.  To visualize predictions there is an option to check tagged 

anomalies. The figure below shows the tagged anomalies in a given route. 

   

Figure 4.16. Tagged anomalies view. 
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Predicted anomalies are shown in Figure 4.18 by considering a given route. These GPS 

locations were clustered to find one location from several journeys that we collected 

data on the same route.  

 

Figure 4.17. Predicted anomalies view. 

Figure 4.19 shows the tagged anomalies and predicted anomalies on one map. This 

can be used to measure the accuracy of the prediction models. 

 

Figure 4.18. Tagged anomalies with Predicted anomalies. 

Currently, IRI calculation is being done by calibrating with ROMDAS values. Average 

vertical movement (Acceleration Y) is shown by color codes in the below diagram. 
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Average acceleration RMS value is shown in the Figure 4.20. These are shown in 

segments that were divided by 100m. 

    

Figure 4.19. Average vertical acceleration of a journey. 

 

     

Figure 4.20. Average x,y,z acceleration RMS of a journey. 

 

The standard deviation of the vertical acceleration is shown by getting the total mean 

value to calculate the standard deviation here. Figure 4.22 shows the standard deviation 

of the segments by getting mean of those specific segment. 
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Figure 4.21: Standard deviation of vertical acceleration of a journey with segment 

mean. 

    

Figure 4.22. The standard deviation of a journey with the full mean. 

The average speed of the vehicle in the journey shown in Figure 4.24 as iRoads 

showing in the web. 
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Figure 4.23. The average speed of a journey. 

4.5.3. Summary 

Visualizing the data processed to get useful information is an important task in this 

project. Mainly for RDA, it is a requirement to check the routes with their current 

situation and continuously monitor them. By providing a web-based solution, we can 

achieve this requirement without access limitations. From any smartphone, tablet or 

PC anyone can check this information with the responsive user-friendly interface 

developed by us.  
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4.5.4. Contribution in implementation 

While everyone has contribute to solve problems in each part by discussing U.M.J 

Abeywikrama was mainly doing IRI correlation analysis and IRI linear regression 

analysis. P. T. Amarasinghe was mainly doing anomaly detection and signal 

processing. H.M.A Abeywardana was mainly maintaining the mobile application and 

developing IRI machine learning approach. Dushan was mainly doing frontend, 

backend developments, and road segment feature calculating. Contributions 

mentioned in the following table are not limited only to the mentioned parts but these 

were the rough division of tasks to members. 

Table 4.2. Individual Contribution. 

 H.M.A 

Abeywardana 

U.M.J 

Abeywikrama 

P. T. 

Amarasinghe 

R. P. D. 

Kumarasinghe 

Mobile application 55% 15% 15% 15% 

IRI Data gathering with 

ROMDAS 

20% 40% 20% 20% 

Anomaly detection 10% 10% 70% 10% 

Anomaly Data 

Collection 

25% 25% 25% 25% 

Feature analysis 10% 70% 10% 10% 

IRI prediction 40% 40% 10% 10% 

Road segment  creation 

and feature calculating 

10% 10% 10% 70% 

Backend and frontend 

development 

10% 10% 10% 70% 

Signal processing 10% 20% 60% 10% 

Report writing and 

literature finding 

25% 25% 25% 25% 
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5. Performance analysis 

5.1. Mobile Application 

We use a mobile app as the data collection mechanism in our solution. We collect 

accelerometer readings, magnetometer readings and GPS readings from the mobile 

phone and send them to the backend servers for further processing. Our mobile app is 

capable of detecting whether the mobile is in a moving vehicle and it only collects data 

relevant to scenarios where the mobile is in a moving vehicle. Hence, the user only 

needs to turn on our mobile app and do his or her normal driving routing. Therefore, 

our mobile app is pretty much user-friendly. Currently, this mobile app is available in 

the Google play store. 

Our mobile app has a local database and it automatically syncs with the remote 

database. Therefore, the user does not need to connect to the internet while our mobile 

app is turned on. Hence, this data syncing mechanism has increased the user-

friendliness of our mobile app. 

5.1.1. Signal Processing 

In order to remove mobile phone sensor noise, we used several signal processing 

mechanisms inside the mobile app. We have implemented a simple average filter to 

smoothen the accelerometer reading and a constant noise removal mechanism after the 

reorientation process. With the use of these signal processing mechanisms, we have 

been able to send a more stable accelerometer reading for further processing. 

Therefore, we were able to completely remove smartphone accelerometer noise. Also, 

when we consider the noise caused by the vehicle, we were able to reduce it to some 

extent by using this signal processing technique. But we cannot remove the larger noise 

caused by the vehicle’s engine when the vehicle is moving compared to noise caused 

by the engine at stable time from this technique.   
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5.1.2. Reorientation Mechanisms 

Since our solution is a crowd-sourced solution, our system should be capable of 

collecting acceleration data from any arbitrary position. Therefore, we needed a 

reorientation mechanism to reorient disorient acceleration vectors. We have 

implemented two mechanisms for reorientation. Both mechanisms have strengths and 

weaknesses. But both mechanisms gave excellent results to identify spikes caused by 

an anomaly with adequate sensitivity. 

 

When we compare and contrast two reorientation mechanisms. We observed that 

Wolverine mechanism showed more sensitivity compared to Nericell mechanism. 

Since Wolverine mechanism uses GPS to find vehicle moving direction there is an 

error when the vehicle travels in a road which has bends. This is the main drawback of 

Wolverine mechanism. But this issue is not a major concern because most of the time 

we consider vertical acceleration and it is not affected by this error. Also, Wolverine 

mechanism cannot be applied in every mobile phone because some mobile phones do 

not exist magnetometers. Nericell has overcome above drawbacks. But it’s gravity-

based Euler angle calculation cannot be done when the vehicle is moving. Therefore, 

we need to assume that the mobile phone position is unchanged when the vehicle is 

moving. But we have tested this issue and we observed that there is no huge variation 

in reoriented values. Therefore, considering these issues we recommend drivers to use 

a phone holder to collect data when they use Nericell as reorientation mechanism. 

5.1.3. GPS Speed Calculation 

Another important process we conduct inside the mobile app is that we calculate speed 

using GPS coordinates. In anomaly detection and IRI, calculation speed plays a vital 

role. Hence, we need to send current speed of the vehicle with other sensor data to 

backend servers.  

Due to errors in GPS readings speed calculated using GPS is bit inaccurate. But we 

observed that between the range 30kmp/h to 60kmp/h GPS based speed is similar to 
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actual vehicle speed. Since we have OBD2 based speed as an option as well, we can 

use GPS based speed in vehicles that do not support OBD2. 

5.1.4. Summary 

The mobile app is fully developed and currently, it is in the Google play store. We 

have collected data using this mobile app several times and it is properly syncing with 

backend servers. Signal processing mechanisms and reorientation mechanisms provide 

processed sensor data with adequate sensitivity to identify road anomalies and 

calculate IRI values. Due to automatic syncing option, no data is lost and the user does 

not need to always connect to the internet. Hence, there is an efficient power usage as 

well. The mobile app has developed to achieve maximum user-friendliness. Also, due 

to the automatic motion detection capability of the mobile app user only needs to turn 

on the mobile app when he or she is driving. The mobile app can be run as a 

background app. Hence, the user has no burden of always keeping the mobile app on 

the screen. 

5.2. Anomaly Detection 

Anomaly detection is done inside the backend servers. We have tried several signal 

processing approaches to identify the difference between a pothole and a bump. We 

have tried average filtering, first derivative, second derivative, Fourier transform, and 

Wavelet transform.  

After performing a signal processing step we performed anomaly detection. In order 

to detect anomalies, we used two approaches. The first approach is based on machine 

learning. In the first approach, we train a  classification model to identify anomalies. 

The second approach is based on a threshold. In the second approach, we use a 

threshold to identify spikes in vertical acceleration. We considered these spikes as 

anomalies on the road.  

After detecting anomalies we perform a clustering process. Since our solution is a 

crowd-sourced one same anomaly detected by multiple times. Hence, by performing a 

clustering step improved the accuracy of predicted anomaly locations.  
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5.2.1. Signal Processing Application 

Using signal processing techniques we tried to differentiate road anomalies from 

normal road segments. Also, we tried to differentiate potholes from bumps using the 

observations we got from signal processing. We considered the vertical acceleration 

signal and horizontal acceleration signal which is perpendicular to the vehicle’s 

moving direction as our main data sources. We did not use accelerations along the 

vehicle’s moving direction because those accelerations were affected by braking and 

accelerating actions done by the driver. Followings are the signals we got for a pothole 

and a bump. 

 

Figure 5.1. Raw y-axis acceleration for the bump. 

  

Figure 5.2. Raw y-axis acceleration for the pothole. 
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As we can observe there is no difference between the two vertical acceleration signals. 

But we can clearly identify an anomaly from a normal road segment. Hence, we tried 

different signal processing techniques to differentiate potholes from bumps. Also, we 

tried to check whether there is a relationship between horizontal accelerations and 

potholes. Followings are the signals we observed for bumps and potholes along the 

horizontal axis which is perpendicular to vehicle’s moving direction. 

 

Figure 5.3. Raw x-axis acceleration for the bump. 

 

Figure 5.4. Raw x-axis acceleration for the pothole. 

As we can see there is no clear evidence to differentiate potholes from bumps in 

accelerations along the horizontal axis which is perpendicular to vehicle’s moving 

direction.  
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5.2.1.1. Average filtering 

We tried a simple moving average to the raw signal to check whether we can 

differentiate a pothole form a bump. Followings are the signals we obtained after 

applying a moving average filter. 

 

Figure 5.5. Reoriented y-axis acceleration for the bump. 

 

 

Figure 5.6. Reoriented y-axis acceleration for the pothole. 

As we can see that there is no clear difference in vertical acceleration between a 

pothole and a bump. This is similar to the acceleration along the horizontal axis which 

is perpendicular to vehicle’s moving direction. But we have identified that by applying 

a moving average filter helps to easily identify anomalies from vertical accelerations. 
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5.2.1.2. First derivative 

With the assumption that in a pothole vertical acceleration first goes down and then 

up. And in a bump vertical acceleration first goes up and then down. We tried the first 

derivative of the vertical acceleration. According to the assumption, we should get a  

positive first derivative value for a pothole and a negative first derivative value for a 

bump. Followings are the signals we obtained for the first derivative.  

 

Figure 5.7. The first derivative of raw y-axis acceleration for the bump. 

 

Figure 5.8. The first derivative of raw y-axis acceleration for pothole. 

As we can observe there is no clear difference between in the signals for potholes and 

bumps. This is similar for accelerations along the horizontal axis which is 
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perpendicular to vehicle’s moving direction. Hence, we cannot differentiate potholes 

and bumps using the first derivative. 

5.2.1.3. Second Derivative 

We tried the second derivative to check whether there is a clear evidence to 

differentiate a pothole form a bump. These are the signals we obtained for the second 

derivative for vertical acceleration. 

 

Figure 5.9. The second derivative of raw y-axis acceleration for the bump. 

 

Figure 5.10. The second derivative of raw y-axis acceleration for pothole. 

As we can see there is no clear evidence for a pothole or a bump in the second 

derivative of the vertical acceleration. This is similar for the acceleration which is 
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perpendicular to the vehicle’s moving direction. Hence, there is no direct relationship 

between the second derivative and pothole bump differentiation. 

5.2.1.4. Fourier Transformation 

We checked whether we can use Fourier transformation to differentiate potholes and 

bumps. We applied Fourier transformation for vertical acceleration and horizontal 

acceleration which is perpendicular to the vehicle’s moving direction. Followings are 

the results we obtained. 

 

Figure 5.11. Fast Fourier transform of raw y-axis acceleration for the bump (real 

part). 

 

Figure 5.12. Fast Fourier transform of raw y-axis acceleration for pothole (real part). 
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As we can see there is no real difference between the two real parts of vertical 

accelerations for pothole and bump. This is similar to imaginary parts as well. Also, 

we observed that this is similar for the Fourier transformation for the horizontal 

acceleration which is perpendicular to the vehicle’s moving direction. Hence, we 

decided that we cannot differentiate potholes form bumps using Fourier 

transformation. 

5.2.1.5. Wavelet transformation 

We analyzed acceleration y signals of potholes and bumps and wavelet transformed 

signals of those signals. The following figure shows original and wavelet transformed 

Y acceleration signals for two bumps. 

 

Figure 5.13. Wavelet transformed signals for bumps. 

 

Figure 5.14 shows original and wavelet transformed y-axis acceleration signals for 

two potholes. So we can see that there is a fixed signal pattern in both original and 

wavelet transformed signals. So we decided that we cannot use wavelet 

transformation for classification of potholes and bumps. 
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Figure 5.14. Wavelet transformed signals for potholes. 

 

 

5.2.2. Threshold-based Approach 

By using a threshold value, the system can identify anomalies on roads. Here we used 

average filtered vertical acceleration to identify anomalies. We used 10 as the 

threshold value and identified GPS coordinates where vertical acceleration is greater 

than the threshold value. Then we removed duplicated GPS coordinates from the 

selected anomalies because we need to give a sample size for the clustering model. By 

removing duplicates we can give the number of times that data have collected for a 

particular road segment as the sample size for the clustering model. What we have 

observed from the threshold-based approach is that we cannot find a logic behind 

deciding the threshold value. Threshold value depends mainly on the vehicle. 

Therefore the threshold-based approach is not very much suitable for a crowdsourced 

anomaly detection. The following figure shows the results we obtained after clustering 

anomalies identified from the threshold-based approach. 
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Figure 5.15. Resulted anomalies from clustering 

 

The actual number of anomalies on the road: 109  

Table 5.1. Results of Threshold based approach. 

Scenario Count 

System correctly predicted an anomaly 70 

System incorrectly predicted an anomaly 12 

System missed an anomaly 39 

Precision 0.854 

Recall 0.642 

 

   

:   
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5.2.3. Machine Learning Approach 

In the machine learning approach, we detected anomalies using a classification 

process. Classification process was done using a Random Forest Classifier [16]. Here 

we used vertical acceleration, horizontal acceleration which is perpendicular to 

vehicle’s moving direction and vehicular speed as the features for the machine learning 

model. Also, we used moving average filter for every feature to smooth them.  

When preparing the training dataset. Anomalies were tagged manually while other data 

points were tagged as normal data points. Timestamps of the anomalies were recorded 

to increase the efficiency of the tagging process. Then those timestamps and the sudden 

peak values visible in the acceleration graph were used to identify the data points 

containing anomalies. We tagged a single point as an anomaly. Also, we make sure 

that this training data set contains data from different vehicles, different roads, and 

different phones. Hence, it has a good combination. Since we got a skewed training 

dataset, we had to do oversampling to remove the skewness. Otherwise, we observed 

that the classification model does not identify anomaly points in the training dataset. 

Then using this training dataset we trained our machine learning model. Using this 

trained model we predicted results for a road segment in which we periodically 

collected data. Then we sent these predicted anomaly coordinates to the clustering 

process. 

The actual number of anomalies on the road: 109 

Table 5.2: Results of  anomaly detection using Random Forest Classifier. 

Scenario Count 

System correctly predicted an anomaly 38 

System incorrectly predicted an anomaly 3 

System missed an anomaly 71 

Precision 0.926 

Recall 0.349 
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5.2.4. Clustering 

For the clustering process, the system uses GPS coordinates of anomalies identified 

through the classification process. Here system clusters GPS coordinates within a 

radius of five meters to a single cluster. We used five-meter range because of GPS 

error. In the end, the system identifies these cluster centers as the GPS coordinates 

with road anomalies. The following figure shows the result we obtained for a road 

segment which we collected data seven times. Here we use sample size as seven for 

the DBSCAN [17] clustering model. 

 

Figure 5.16. Resulted anomalies from clustering. 

5.2.5. Summary 

During our research, we were able to successfully identify anomalies using 

accelerometer readings of a mobile phone. Also, using a clustering approach we were 

able to identify GPS coordinates of anomalies more accurately. Since this is a 

crowdsourced solution system capable of more accurately identifying anomalies with 

time. In our research, we didn’t differentiate bumps from potholes because we didn’t 

observe any relationship to differentiate them. We use several signal processing 

techniques to identify a special characteristic to differentiate a pothole form a bump. 

Since this research is very much connected to practical scenarios it is very hard to 

differentiate a pothole from a bump because in Sri Lankan roads drivers always try to 
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bypass anomalies. Therefore, an actual bump may give a sensor reading that cannot be 

clearly distinguished as a bump. 

5.3. IRI Prediction 

5.3.1. Linear Regression Analysis 

When considering the IRI calculation in miniROMDAS it mainly depends on bump 

integrator raw roughness value. This raw roughness value is a pulse count which 

indicates movement of the vehicle body with respect to the vehicle axle. In our 

application, the vehicle body movement measures are accelerometer readings. 

Following graph shows how acceleration along Y-axis changes in different scenarios.  

 

Figure 5.17: y-axis acceleration in different scenarios. 

 

According to Figure 8.17, we can see a significant change in acceleration of Y-axis 

when the vehicle is moving. But still, there are  y-axis acceleration changes when the 

vehicle is not moving. But in romdas, bump integrator is not increasing raw 

roughness(pulse count) when the vehicle is not moving. Because there is no relative 

movement in the vehicle body with the vehicle axle. So to match this pulse count to 

the acceleration y values we need threshold based pulse counting mechanism.  

Our Pulse counting algorithm is a very simple one. If acceleration value is greater than 

the threshold value that data point considered as a pulse(spike). To analyze the 
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collected data we did correlation analysis for different features. In Table 5.1, we can 

see that the system gives roughness values for every 100m road segments. So we 

segmented rides into 100m road segments and analyzed the pulse count. Following 

graphs show how correlation coefficient between, bump integrator pulse count and 

iRoads calculated pulse count changes with accelerometer threshold value. 

Figure 5.18. Acceleration threshold vs. correlation coefficient. 

 

Following table shows, at what threshold value these correlations give the highest 

value. 

Table 5.3. Highest correlation values of three axes for 100m road segments. 

Axis Highest correlation Value  Threshold(ms-2) 

Y 0.7616 0.16 

X 0.6052 1.2 

Z 0.3982 0 

 

Then we increased the distance of road segments and check the correlations. From 

that, we identified that correlations are much better for the 500m road segments. 

Following table shows those obtained correlation values. 

Table 5.4. Highest correlation values of three axes for 500m road segments. 

Axis Highest correlation Value  Threshold(ms-2) 

Y 0.9135 0.15 

X 0.7686 1.2 
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Z 0.5833 0 

Then we divided data set into sections according to speed (average speed) of the 

vehicle. Figure 5.19 shows ROMDAS pulse count vs iRoads calculated pulse count.  

 

Figure 5.19:  ROMDAS pulse count vs iRoads calculated pulse count for 100m road 

segments. 

  



58 

 

The correlation coefficients for the above speed ranges are included in below table. 

According to these results, we can see that when speed is in 10km/h - 40km/h range 

acceleration Y pulse count is leading to better correlation.  

So according to above results we can see that acceleration y pulse count and 

acceleration x pulse count have better correlation with ROMDAS pulse count, 500m 

road segments give higher correlation than 100m road segments and dividing data 

into speed regions give different correlation for them. 

Table 5.5: Correlation with speed ranges for 100m road segments. 

Speed Range(km/h) Correlation Coefficient  

0 - 10 0.4588 

10 - 20 0.7840 

20 - 30 0.8393 

30 - 40 0.8326 

40 - 50 0.4770 

50 -  0.2698 

 

So we obtain the best fit line for the calculate IRI value for: 

● 100m road segments 

● 300m road segments 

● 500m road segments  

The ROMDAS pulse count is a raw value obtained from bump integrator. That pulse 

count depends on the vehicle. But using the calibration profile in ROMDAS software 

we can obtain vehicle independent IRI values for road segments. This IRI value and 

ROMDAS pulse count have a linear relationship. So we used iRoads pulse count to 

calculate IRI values of road segments. 

Figure 8.20 shows results obtained from best-fit line calculations. Table 5.6 shows 

slope, intercept and mean absolute error for above three   lines. This mean absolute 

error is calculated using the same dataset that used for calculating best-fit lines.  
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Figure 5.20:  Best fit line calculation results.  

Table 5.6: Attributes of best fit lines. 

Segmentation  Slope Intercept Equation Mean Absolute Error 

100m 0.05558 3.8329 y=0.05558x + 3.8329 0.4312 

300m 0.02293 3.6975 y=0.02293x + 3.6975 0.3186 

500m 0.01553 3.6380 y=0.01553x + 3.6380 0.2285 

 

Then we calculated mean absolute error using new data set collected from same delica 

vehicle. Following table shows MAE of those data. To reduce this MAE further we 

calculated best-fit lines for speed ranges. Following Table 5.7 shows those best fit lines 

calculation results. 

Table 5.7: MAE of best-fit lines. 

Segmentation  Mean Absolute Error 

100m 0.6430 

300m 0.5798 

500m 0.4970 
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Table 5.8: Attributes of best-fit lines with speed ranges. 

Segmentation  Speed 

Range(km/h) 

Slope Intercept Mean Absolute 

Error 

Mean Absolute 

Error (Different 

Data) 

 

 

 

 

100m  

0 - 10 0.02409 4.9104 0.9066 1.4033 

10 - 20 0.07085 4.1012 0.4143 0.5633 

20 - 30 0.05501 4.07506 0.3858 0.4339 

30 - 40 0.05790 3.8860 0.2772 0.4227 

40 - 50 0.04132 3.5925 0.2711 0.4054 

50 -  0.08400 3.321 0.35 0.4270 

 

 

 

 

300m 

0 - 10 - - - - 

10 - 20 0.01774 4.2725 0.4513 0.3199 

20 - 30 0.01629 4.1677 0.4128 0.8760 

30 - 40 0.02254 3.7641 0.1457 0.3697 

40 - 50 0.01579 3.5481 0.2432 0.3734 

50 -  - - - - 

 

 

 

500m 

0 - 10 - - - - 

10 - 20 0.01325 4.2369 0.2403 - 

20 - 30 0.01173 3.9747 0.1995 0.3056 

30 - 40 0.01385 3.6488 0.1987 0.3779 

40 - 50 0.01697 3.4254 0.1587 0.4981 

50 -  - - - - 
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Table 5.9 shows the total MAEs when best fit lines calculated for speed ranges. 

Table 5.9: Total MAE for different segment lengths. 

Segmentation Total MAE Total MAE(Different 

Data) 

100m 0.2593 0.4408 

300m 0.2688 0.4347 

500m 0.1911 0.3977 

 

According to these results, we can see that we can reduce error by dividing dataset into 

speed ranges and calculate IRI for speed ranges using unique equations for a speed 

range.  

5.3.2. Machine Learning Prediction 

Figure 5.21 shows the prediction results when using actual vehicle speed and y-axis 

spike count as the training features. This trained model gives MAE score of 0.3224. 

 

 

Figure 5.21: Prediction using actual vehicle speed. 

 

Figure 5.22 shows the results when using GPS speed and y-axis spike count as the 

training features. This trained model gives MAE score of 0.4316. 
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Figure 5.22. Prediction using GPS speed. 

 

When comparing the above results from Machine Learning process, predictions are 

more accurate when using actual vehicle speed. So using OBD adapters actual vehicle 

speed could be collected and used in prediction for better results. MAE score of 0.4316 

is considerably enough since the predicted values have only varied from the actual 

values averagely from +0.4 or -0.4 units. 

 

 

Figure 5.23. Prediction for 500m road segments. 

 

 

In both of the above mentioned scenarios, the segment size of 300m was used in the 

training prediction model. Figure 8.23 shows the prediction results obtained from a 

model trained with 500m road segments. Here MAE has reduced to 0.3913 which is 
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less than the value given from 300m road segments. According to the results from 

models trained using different road segment sizes, we could see the MAE reduces with 

the increasing of road segment size as shown in table 8.10. 

Table 5.10: Total MAE by segment size. 

Segmentation Total MAE 

100m  0.6508 

300m  0.4316  

500m  0.3913 

5.3.3. Conclusion 

Following table 8.11 illustrate the comparison between the linear regression method 

and the machine learning approach used for prediction IRI values.  

Table 5.11: Total MAE by segment size. 

Segmentation MAE from Machine Learning MAE from Linear Regression 

100m segments 0.6430 0.6508 

300m segments 0.5798 0.4316  

500m segments 0.4970 0.3913 

 

According to the MAE values, we could conclude that both Machine Learning 

approach and Linear regression method are more accurate in IRI prediction when road 

segment size is increasing. Also the overall accuracy of the Linear regression method 

is lower than the Machine Learning approach. 

6. Conclusion 

6.1. Summary 

As an outcome of this research and development project, we were able to develop a 

system to measure and monitor road conditions in Sri Lanka. This is a low-cost 

solution compared to existing solutions because this solution uses only a smartphone. 

This developed system is capable of detecting anomalies on roads and visualize them 
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on a map. Also, this system is capable of calculating IRI values in a more simpler and 

cheaper way compared to the currently existing method in Sri Lanka. Backend servers 

of the system can collect data related to the road network in Sri Lanka for a longer time 

period. Hence, this would be a good data source to analyze traffic patterns, road 

deterioration in Sri Lankan roads. Since this is a crowdsource solution where the 

general public also can contribute to the system by collecting data. And it would be a 

good initiative for a better road network in Sri Lanka. Though we mentioned that we 

are going to measure the relationship between roughness and fuel consumption in Sri 

Lankan roads, we didn’t research on that aspect due to time limitation. As the final 

conclusion, we can say that this system can be further calibrated to gain more accurate 

results when predicting anomalies and calculating IRI values. 

6.2. Limitations 

Dependency evaluation needs more data according to each scenario. We faced 

limitations on data collecting. Creating quantitative analysis on depending factors 

needs more data and precise concern on tools that are used throughout the data 

gathering process such as mounting brackets. 

6.2.1. Dependency Evaluation 

As iRoads a crowdsourced solution there are several factors to be considered 

when collecting data from different environments. We have identified those scenarios 

as, 

1. different vehicles 

2. different phones 

3. different speeds  

Our project focused on doing research in these scenarios by collecting data for all these 

situations as much as possible. 

6.2.1.1. Experimental Evaluation & Discussion of Results 

There is a notable difference in the graphs in Figure 6.1 and 6.2. Data point density 

has changed between these two scenarios within one minute (in Figure 6.1 Point count 

is 597 and in Figure 6.2 Point count is 1042). So, different phones have different 
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frequencies for their sensors. This provides different densities in different devices and 

it affects the calculation of IRI than anomaly detection.  

 

Figure 6.1. Acceleration data from HTC device in a Honda Vezel. 

 

 

Figure 6.2. Acceleration data from Xiaomi device in a Mitsubishi Delica. 

 

When checking the similarity of the graphs with same speeds, same vehicle, and 

different phone within one minute in Figure 6.3 and Figure 6.4, different data point 
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densities were noticed and it shows different peak points and we noticed that value of 

gravity line (approximately 9.8) has changed. 

 

Figure 6.3. Acceleration data from Xiaomi device in a Mitsubishi Delica. 

 

Figure 6.4. Acceleration data from HTC device in a Mitsubishi Delica. 
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6.3. Future Work 

Dependency evaluation and calibrate the system accordingly is yet to be done. As this 

mainly affect in IRI calculation, the system needs to be improved to remove vehicle 

dependency and phone dependency. At the moment we can calibrate IRI for different 

vehicles by manually calculating correlation with bump integrator values. Speed 

dependency may affect in several ways because correlation scores well in some speed 

ranges. So, removing speed dependency may require more research work.  

Current system identifies the potholes and bumps as anomalies. So, classifying 

anomalies into bumps and potholes is yet to be done. Bumps and potholes 

identification became a complex task because the expected behavior of potholes and 

bumps were not actually existed as ups and downs wise. 

To create more precise IRI estimation we can train a model with more IRI data 

including a wide range of IRI values.  

 

Table 6.1. Limitations and Future Work 

Limitation Future work 

IRI calculation is dependent on vehicle 

& smartphone used for the analysis 

Collection of a large dataset covering 

multiple vehicles & smartphones 

Device errors affected accuracy of 

calibrator 

Use Class 1 & 2 IRI measuring devices 

Estimate relationship between fuel 

consumption & IRI 

Gather fuel consumption data from 

OBD and analyze 

Differentiation of anomalies was not 

implemented 

Look for advanced techniques to 

differentiate potholes & bumps 
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Appendix 

Appendix A - Extended Abstract published in TRF 2018 

iRoads: Smartphone-Based Road Condition Monitoring 

H.M.A. Abeywardana1 , U.M.J. Abeywickrama2, P.T. Amarasinghe3, 

R.P.D. Kumarasinghe4 , H.M.N. Dilum Bandara5, and H.R. Pasindu6 

Abstract 

Measuring and monitoring road conditions are essential to ensure public and vehicle 

safety, promptly maintenance, as well as fuel and time savings. While developed 

countries use sophisticated devices installed on specialized vehicles to measure and 

monitor the road conditions, it is cost prohibitive for countries like Sri Lanka. 

Moreover, diversity of road types and non-standard physical properties make it 

impractical for specialized vehicles to travel on roads in Sri Lanka and many other 

countries. Therefore, a system that is low cost and practically usable on roads with 

non-standard physical properties will be a useful solution for road condition 

monitoring. 

 

Sensors such as 3-axis accelerometer, gyroscope, GPS, and magnetometer in most 

smartphones could be used to detect potholes and bumps, as well as estimate 

International Roughness Index (IRI) at a much lower cost. Related work has shown 

that acceleration data from smartphones have a linear relationship with road roughness. 

Hence, it opens the way to develop a system to measure road roughness using 

smartphone sensors. While the accuracy of such a solution is relatively low, with the 

increasing number of motorists with smartphones, crowdsourcing could be used to 

collect data at a high spatial and temporal resolution that has been hitherto possible. 

Such massive volume of data collected through crowdsourcing could be processed 

using machine-learning and signal processing algorithms such that the limitations and 

low accuracy of a single smartphone could be overcome by data analytics of the same 

road condition again and again. 

A crowdsourced mobile app is proposed to measure the road conditions such as 

potholes, bumps, speed breakers, and estimate IRI at a high spatial and temporal 

granularity. The proposed solution collects data over a broadband connection to a 



73 

 

cloud-computing-based backend where machine-learning and signal processing 

algorithms are used to determine different road conditions and estimate IRI. Moreover, 

the solution provides visualization of this information using a map-based dashboard. 

 

3-axis accelerometer is used as the main source for road profile monitoring. However, 

in a crowdsourced model, many practical problems need to be solved in addition to 

technical problems, as motorists may use vastly different types of smartphones with 

varying features and accuracy. For example, they may mount the smartphone in 

various orientations or orientation may change as the trip progresses. Therefore, a 

reorientation mechanism is essential to convert accelerometer data from any arbitrary 

smartphone position to the vehicle’s axis. The solution implements two reorientation 

mechanisms. The first mechanism is using Euler angle-based algorithm.  

 

The second mechanism uses magnetometer and GPS bearing readings to reorient the 

acceleration vectors of the mobile device. Signal processing techniques are used to 

filter out the sensor noise for more accurate data gathering. Moreover, the magnitude 

of sensor reading tends to correlate with acceleration and deceleration of the vehicle. 

Thus, vehicle speed data are also needed to capture road conditions accurately. 

Therefore, the proposed app connects to an OBD2 (On-Board Diagnostic) ELM327 

adapter to collect vehicular data such as fuel consumption and speed of the vehicle. 

OBD2-based vehicle speed estimation is more effective than GPS-based estimation 

due to low resolutions and slow sampling in GPS. 

 

Random-forest algorithm is used in the backend to detect road anomalies (e.g., pothole 

or bump), while the pulse calculating algorithm is designed for estimating IRI values. 

Road segments are classified based on IRI and a map is annotated based on the IRI 

values. Due to varying accelerometer accuracy levels, as well as low resolution and 

slow sampling in GPS, it is difficult to estimate the exact location of the road anomaly. 

Therefore, a clustering algorithm is used to identify the location of an anomaly by 

clustering GPS locations estimated from different trip data provided by users. 

Moreover, vehicular data will be used in the future to estimation the relationship 

between fuel consumption and IRI of Sri Lankan roads. Furthermore, the visualization 
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of bad road segments could provide insights for drivers to bypass bad road segments 

while the authorities could use the dashboard to prioritize maintenance and policy 

marking. 

 

An Android-based mobile app, namely iRoads, is developed and already used with a 

few data collection trails. The research currently focuses on calibrating the mobile app 

and related algorithms to accurately estimate IRI and detect road anomalies. For 

example, efforts are currently underway to calibrate estimated IRI values with the IRI 

readings from a ROMDAS Bump Integrator. The goal is to improve the accuracy to 

such a level that iRoads could measure roughness like a class-3 road profiling 

instrument. Another app is also developed to label road anomalies on the go such that 

a large, labeled training dataset could be gathered for training and evaluation of 

machine-learning and signal processing algorithms. Based on this dataset model 

parameters are to be tuned to more accurately estimate road anomalies. 

 

keywords:  IRI, road anomaly, accelerometer, signal processing, machine learning 
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