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ABSTRACT 

 

Ready-Mixed Concrete (RMC) is a perishable product; hence, specifications such as ASTM 

C94 recommend the delivery of RMC under 1.5-hours to ensure the quality. It is known that 

certain scheduling practices and driving behaviors lead to operational inefficiencies and poor-

quality RMC. We propose a model to schedule RMC trucks while maximizing both the profit 

and job coverage, as well as meeting constraints such as ASTM C94 and continuous casting. 

The proposed solution consists of a rule checker and a scheduler. Rule checker enforces 

constraints such as deadlines, working hours, and ASTM C94 specification for travel time. 

The scheduler uses simulated annealing to assign as many jobs as possible while maximizing 

the overall profit. We consider two scenarios where trucks are attached to a given RMC plant, 

as well as allowed to move across plants as per job requirements. Using a workload derived 

from an actual RMC delivery company, we demonstrate that the proposed solution has good 

coverage of jobs while maximizing the overall profit. For example, compared to the manual 

job allocation, proposed solution in the fixed-plant scenario increases the average job coverage 

and profit by 13% and 9%, respectively. Moreover, the solution could automatically adjust the 

first unload time by a few 10s of minutes to reduce job conflicts, and this further enhances 

average job coverage and profit to 21% and 13%, respectively. Further, free-to-move scenario 

enhances the average job coverage and profit by 16% and 14%, respectively indicating that 

the scheduling could be further optimized by allowing trucks to move across the plants as per 

the job requirements. 

 

Keywords: Fleet Management; Ready-Mixed Concrete; Scheduling; Simulated 

Annealing 
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1. INTRODUCTION 

 

Fleet scheduling is a core strategic decision area of the freight industry to optimize 

the resource allocation of a fleet. Scheduling Ready-Mixed Concrete (RMC) delivery 

is a complex problem as RMC is a perishable product. For example, according to the 

ASTM C94 specification [1], quality of the concrete degrades with time; hence, needs 

to be delivered within 1.5-hours from the time water is added to the concrete mixture 

or 300 drum revolutions. Moreover, time bounds defined by the ASTM C94 

specification for RMC also depend on the properties added into the concrete mix. 

Whereas job site managers usually want RMC trucks to wait in a queue at the 

construction site to avoid discontinuous casting which ultimately creates batch 

behavior of RMC trucks. Environmental factors such as time of the day, the impact of 

peak and off-peak traffic, maximum buffer time allowed by the site, and wash-down 

time of RMC trucks further affect the ability to meet the deadlines such as ASTM C94 

[2]. Therefore, better scheduling patterns and driving behavior of fleets of RMC trucks 

are vital for enhancing the operational efficiency, reducing costs, and preventing 

fraudulent activities. 

The RMC supply process consists of five main steps, namely production, loading, 

delivery, unloading, and vehicle return [3]. An RMC batching plant begins the 

production once a customer places an order, until then trucks are parked. Loading and 

delivery begin immediately after the production of concrete, as the production and 

dispatching of RMC are interrelated due to the perishable nature of the product. Time 

to unload at the job site is critical, as concrete should be thrown away if excessive 

delays are experienced between the production to unload. Moreover, to maintain the 

supply chain at an optimum level truck return also needs to be properly timed. These 

steps urge the fleet manager to schedule the trucks in an efficient manner, as an 

optimized schedule could reduce wastages while decreasing the overall operational 

costs [2].  

With the introduction of Global Positioning System (GPS) based vehicle tracking 

devices and fuel sensors, RMC production has become more automated. Fleet 
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managers could capture real-time data such as vehicle location, speed, travel time, and 

fuel consumption using the sensors [4]. Such data could be used to analyze the impact 

of various scheduling and driver-behavior practices, which could be considered in 

future scheduling decisions. However, it is difficult to analyze vast volumes of GPS 

data generated by multiple RMC trucks over a given period. Moreover, the problem 

gets harder as the locations of the RMC trucks vary depending on the job location, 

where some jobs require continuous casting while others tend to be one-off. 

Alternatively, the job-site manager wants to avoid discontinuous casting by requiring 

several RMC trucks to wait at the construction site. Consequently, the scheduling 

manager usually dispatches RMC trucks based on his/her experience while 

maintaining conservative time gaps between production to unload, which is known to 

be inefficient and lead to loss of potential profit [5]. Therefore, it is imperative to be 

able to optimally schedule RMC trucks and plant operation while satisfying the 

conflicting goals of job coverage, continuous casting, time bounds like ASTM C94, 

and profitability. 

 

1.1 Motivation 

Currently RMC truck scheduling is mostly manipulated manually by an 

experienced batching plant manager, who creates the next day’s schedule at the end of 

the previous working day based on the orders received. He also needs to keep real-

time track of the progress of jobs and make necessary adjustments due to dynamism 

as the day progresses as the continuous casting of the concrete is critical for any 

construction project to avoid cold joints in the concrete casting. However, with the 

increment of the number of jobs, scheduling becomes difficult task for the manager as 

he need to decide on the most appropriate truck and plant for a job such that both the 

customer and company goals are optimally satisfied. Therefore, RMC industry is in 

need for scalable and automated scheduling solutions that increases customer 

satisfaction, efficiency, company profits, and maximum utilization of resources of the 

company. Since the route and vehicle scheduling problems are known to be NP-hard, 

we cannot get an optimal solution within polynomial time [6], [7], [8], [9]. Therefore, 
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it is essential to identify suitable heuristic-based solutions that can still maximize the 

customer satisfaction, efficiency, and company profit. 

 

1.2 Problem Statement 

We enforce the constraints of a RMC delivery company with a set of plants and 

trucks that are dispersed around a given geography. We assume the assignment of jobs 

is done by an experienced RMC truck scheduling manager at the end of the previous 

business day. Handling the last-minute jobs is left as future work. Therefore, the 

problem to be addressed can be formulated as: 

Given a set of trucks T and jobs J, how to automatically schedule trucks and plants to 

jobs while maximizing customer satisfaction, efficiency, profit, and job coverage? 

The related optimization problem is formally defined in Chapter 3. 

 

1.3 Objectives 

Following set of objectives are to be achieved to address the above problem 

statement: 

• To identify parameters related to the trucks, plants, and construction sites and 

then formulate the truck scheduling problem as a constrained optimization 

problem with multiple constrains. 

• To solve the constrained optimization problem using a suitable metaheuristic 

technique. 

• To evaluate the performance of the proposed solution using a dataset from a 

real ready-mixed concrete company.  

 

1.4 Outline 

The rest of the thesis is organized as follows. Literature review is presented in 

Chapter 2 including an overview of truck scheduling patterns, RMC truck dispatching, 

machine-learning technique usage in scheduling and usage of genetic algorithm in 

RMC Scheduling. Problem formulation including truck, plant, and job constraints, 

characteristics of problem and optimization of problem are presented in Chapter 3. 
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Solution approach with the proposed rule checker and job scheduler are presented in 

Chapter 4. Performance analysis along with workload creation and simulation results 

is presented in Chapter 5. Summary, future work, and research limitations are 

presented in Chapter 6. 
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2. LITERATURE REVIEW 

 

Concrete is one of the principal materials used in the industry and the development 

of the construction industry has greatly influenced the concrete industry in developing 

countries where the demand for concrete has grown at an increasing rate in recent 

years. As a result, concrete markets are facing both the opportunities of great profit 

and the risks of competition. Greater attention has been given to achieving higher 

efficiency for more benefits to suppliers of Ready-Mixed Concrete (RMC) [3]. Section 

2.1 presents the background of RMC delivery process. Truck scheduling patterns 

including the usage of different algorithms is presented in Section 2.2.  

 

2.1  Ready-Mixed Concrete Delivery 

After the preparation of concrete, the RMC truck cycle begins as shown in Figure 

2.1 by driving to the loading bay of the batching plant to load RMC. If there is no 

queue at the loading bay, truck can immediately load and leave the plant to head to the 

construction site. Else, it needs to wait till its turn. RMC truck may have to again be in 

a queue at the construction site till the previous trucks complete the unloading. Once 

the unloading is completed, truck goes through a quick wash to remove the residuals 

in the concrete holding drum. The truck will leave the construction site and reach the 

plant. If another job is already assigned it will drive to the loading bay. Else, truck will 

park till it gets another job. 

Truck 
Queuing at 

Plant

Loading and 
Leaving Plant

Arriving to 
Site

Queuing at 
site to unload

Unloading
Wash-Up to 

remove 
residual

Leaving Site
Arriving to 

Plant

Hauling

Return Trip

More other JobsParked

No other jobs

 

Figure 2.1. RMC truck cycle. 
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The time since mixing till placing should be no longer than concrete setting time in 

conditions as per ASTM C94 specifications for RMC. Therefore, route optimization 

and truck scheduling practices are needed to deliver the mix within this usability 

window. Unexpected delays and breakdowns may lead to wasting the whole batch and 

having too many trucks queuing for the mix is also not economical [10]. In the ideal 

scenario, arrival time of the next RMC truck need to be overlapped with the unload 

time of the previous truck which just finishes casting concrete [11]. 

Factors affecting RMC truck scheduling have been discussed in several related 

works [5], [10], [11], [12], [13], [14]. According to Bergthaler [12], the planning and 

scheduling of RMC delivery remain very difficult. As RMC is a perishable product, 

the time is considered the main constraint for RMC delivery. As per the ASTM C94 

specification, this time window could be adjusted based on the special properties added 

to the concrete. A RMC truck scheduling solution that considers the travel, casting, 

mixing, and allowed buffer time, as well as the required number of RMC deliveries to 

make dispatching sequence decisions for each RMC truck from a single plant is 

presented in [5]. Biruk [10] analyzed the dispatching problem by considering the 

available number of trucks, batching plant operation time, the time between mixing 

and placing, and maximum breaking in the concreting process. According to [11], 

factors that affect truck routing and scheduling are starting time, traveling duration, 

casting duration, concrete mixing duration, number of trucks, the capacity of a truck, 

required volume of RMC, and buffer time. Moreover, Hill and Böse [13] emphasized 

that the arrival rate to the site and waiting time should be considered in scheduling. 

 

2.2 Truck Scheduling Patterns 

Bishop et al. [14] discussed three truck-scheduling patterns. They are hub-to-hub, 

trucks find each other on the road, and truck stop kiosks. In hub-to-hub scheduling, 

once the freight sorting is complete, trucks with similar dispatching activities can be 

paired at the terminal. In the second scheduling pattern, trucks can be driving on the 

road and automatically discover other linkable trucks. In the third pattern, private truck 

stops enable ad-hoc linking, where trucks that share similar routes are concentrated in 

these facilities. These three scheduling patterns have a certain level of platooning, e.g., 
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in [14] two truck platooning strategies, namely catch-up and slow-down strategy are 

identified. In catch-up strategy, a follower truck increases its speed to catch up with its 

leading truck. In slow-down strategy, leading truck decreases its speed to allow the 

following truck to catch up. Furthermore, the speed variation of trucks in platoons, 

vary with time and distance between trucks. However, from a fuel efficiency point of 

view, neither platooning strategy is recommended, as fuel consumption unnecessarily 

increase during both slow down and speed up. 

Fuel consumption rate, vehicle speed, and engine RPM were analyzed by Verwer 

et al. [15] to identify the driver behavior of a vehicle fleet. Such understanding of driver 

behavior can be used to regulate driving patterns to increase efficiency, reduce 

excessive idling, meet time constraints, and prevent fraudulent activities of RMC 

delivery. Moreover, Xiao and Konak [16] found that the average speed between origin 

and destination are time-dependent. Hence, time of day should also be a factor in 

determining a suitable schedule and while accepting a new job.  

 

2.2.1 RMC Truck Dispatching 

Currently, ready-mixed concrete truck dispatching is mainly handled manually by 

an experienced RMC batching plants staff [10]. Inefficient production scheduling and 

truck dispatching are crucial issues for a RMC plant and construction site management, 

as the batching plant manager needs to address both timeliness and flexibility while 

satisfying construction site operating constraints and environmental constraints such 

as traffic and breakdowns [17]. In practice, trucks must be cautiously dispatched to 

avoid cold joints in the casting of concrete. Subsequently, RMC production scheduling 

and truck dispatching affects the operating cost owing to the many complex factors 

and constraints [17]. Systematic optimization approaches to solve such an integrated 

problem have rarely been developed [17]. 

 

2.2.2 Machine-learning Based Techniques 

M. Maghrebi et al. [18] illustrated that ready-mix concrete truck dispatching can be 

automated through Machine Learning (ML) techniques. Most construction related 
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operational tasks are performed by humans due to the complexity of the tasks. 

Additionally, it is very difficult to accurately predict performance and unavoidable 

errors. Batching plant managers or senior engineers play a key role in ready-mixed 

concrete industry and their positions are replaced by an automated process in rare cases 

due to the complexity of the highly dependent on specific project constraints, 

environmental conditions, and must adapt quickly based on incomplete, as well as 

rapidly changing information. Feasibility of automation in RMC dispatching was 

studied using six ML techniques, namely decision tree J48 (implementation of 

algorithm ID3), PART, Artificial Neural Network (ANN), Sequential Minimal 

Optimization (SMO), Naive Bayes Classifier (NB), and Instance-Based Learner 

(IBK). Those techniques were selected and tested on data that was extracted from a 

developed simulation model. The results were compared by a human expert to ensure 

the accuracy of solutions. The simulation model consists of a single batch plant and 

three projects in a day.  

A metropolitan area consisting seven suburbs including one batching plant were 

selected to simulate the model proposed. The 200 instances are prioritized by the 

dispatching manager in two stages with each time involving 100 instances. All six 

algorithms were evaluated using the same data set and the ten-folds cross-validation 

was selected for the evaluation. Therefore, the data set was divided into ten-folds with 

around 90% of each fold used for training and the remaining 10% of data being used 

for testing. ANN achieved the best performance while IBK had the worst accuracy 

which is the most important feature of an algorithm, as it reflects the ability to identify 

the correct decisions that are the main task of a classifier.  

There is no significant difference between SMO, ANN, J48, NB, and PART apart 

from IBK which was outperformed by most of the other techniques. It reflects the 

strength of ML techniques in predicting human minds. In terms of solution building 

time J48 and NB gives better performance than PART, SMO, and ANN. In conclusion, 

authors demonstrated that the decision trees and k-nearest neighbor techniques give 

better results with lesser time than neural network and support vector machine-based 

solutions while automating the scheduling of RMC Trucks using ML techniques. 
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2.2.3 Genetic Algorithm for RMC Scheduling 

Combined discrete-event simulation and genetic algorithms (GA) are applied in 

HKCONSIM to model and further optimize the one plant-multisite RMC plant 

operations in Hong Kong [19]. Further, Feng et al. [20] and Liuhenyuan et al. [3] 

introduced a solution where better optimization could be achieved by a Genetic 

Algorithm (GA) while focusing on scheduling RMC production across an environment 

with a single plant and single mixer where they further suggested to focus on multiple 

plant condition as a crucial research gap to be filled in future. Whereas, our work 

focusses on multiple plants, trucks, and construction sites.  

 

2.2.4 Simulated Annealing for Scheduling 

Simulated Annealing (SA) is a probabilistic, single-solution-based search method 

inspired by annealing process where a solid is slowly cooled until its structure reaches 

a minimum energy configuration [21]. SA is a type of local search algorithm that starts 

with an initial solution which is chosen at random. Then a neighbor of this solution is 

then generated and the change in cost is calculated. The current solution is replaced by 

the generated neighbor, if the reduction in cost is found during the comparison, 

otherwise the current solution will be retained. The process will be repeated until no 

further improvement can be found in the neighborhood of the current solution and so 

the descent algorithm terminates at a local minimum [22]. 

SA has its own technique to avoid converging to local optimums which is a 

commonly known disadvantage of other optimization algorithms. SA avoids local 

optimums by accepts worst solutions at higher temperatures by setting its acceptance 

probability to a higher value. Initial temperature, a rule for accepting a worse solution 

(i.e., lower profit solution), the cooling rate which is the rate of the temperature 

decrement, and a stop criterion are the key parameters of the algorithm [23].   

Genetic Algorithm (GA) is a technique used for estimating computer models based 

on methods adapted from the field of genetics in biology. Possible model behaviors 

need to be encoded into ''genes" to use this technique and current models are rated and 

allowed to mate and breed based on their fitness after each generation. Genes are 
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exchanged in the process of mating to allow crossovers and mutation. Next generation 

is formed from the offspring of the current population and it is discarded after the 

formation. of modeling or optimization techniques are described by the Genetic 

Algorithm which mimics some aspect of biological modeling in choosing an optimum 

[24]. 

Adewole et al. [24] compared the performance of two algorithms. When the 

population size increases, GA can provide quality solutions. On the other hand, it 

increases the runtime significantly. It was revealed that both algorithms are very good 

solvers and can provide optimal solutions if the right set of parameters are set. Cooling 

rate closer to one should be set for simulated annealing to increase the quality of the 

solution which ultimately increases the no of iterations the algorithm will perform 

while affecting the runtime of the model  [24]. Moreover, Wolpert and Macready [25] 

derived a number of “No Free Lunch” (NFL) theorems that demonstrate the danger of 

comparing algorithms by their performance on a small sample of problems. It also 

revealed the importance of embedding the specific knowledge into the behavior of the 

algorithm. Every sample was mapped to a unique new point because a search algorithm 

is deterministic.  

 

2.2.5 Particle Swarm Optimization for RMC Scheduling 

For use in real-number spaces, the particle swarm optimization algorithm has been 

introduced as an optimization technique where potential solution to a problem is 

represented as a particle having coordinates and rate of change in a D-dimensional 

space [26]. An improved Discrete Particle Swarm Optimization (DPSO is proposed to 

solve scheduling problem. A systematic approach including a mathematical model for 

the scheduling of dispatching RMC trucks was presented using an improved Discrete 

Particle Swarm Optimization (DPSO) by introducing swapping operators in [27]. Liu 

et al. [27] revealed that their approach is valuable in scheduling of dispatching RMC 

trucks and there is a promising future for the improved DPSO in the scheduling arena. 

Further, authors suggested that a more dynamic approach may be useful to deal with 

the uncertainty. 



11 

 

 

2.2.6 Ant Colony Optimization for RMC Scheduling 

The Ant Colony Optimization (ACO) algorithm is one of the most recent meta-

heuristic-based optimization technique that has been successfully used in complex 

routing problems [28]. Silva et al. [28] presented a new approach regarding job-to-

truck assignment and the consequent truck routing as the routing problems are usually 

large combinatorial optimization problems. Therefore, it cannot be handled by the 

simple heuristics where the best known solutions for most of routing problems were 

obtained with meta-heuristics. ACO algorithms have demonstrated that they are 

competitive meta-heuristics for optimization problems which can be modeled in a 

graph environment. 

 

2.3  Summary  

During our literature review, we explored different truck scheduling patterns, 

current context of RMC truck dispatching and evaluation of the different machine-

learning techniques used for RMC truck scheduling. Also, the literature revealed that 

the performance of simulated annealing algorithm outruns results of the genetic 

algorithm which also proved the efficiency of SA algorithm in solving travelling 

salesman problem.   However, as the route and vehicle scheduling problems are known 

to be NP-hard, we cannot get an optimal solution within polynomial time [6], [7], [8], 

[9]. Therefore, it is essential to identify suitable heuristic-based solutions that can still 

maximize the customer satisfaction, efficiency, and company profit. 
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3. PROBLEM FORMULATION 

 

Formulating the problem by identifying all parameters and constraints related to 

ready-mixed concrete truck scheduling process is presented in this chapter. 

Subsequently, constraint-based approach was used to filter out the possible search 

space as reducing the search space is important to achieve an acceptable solution to 

NP-hard problems [8]. Section 3.1 identifies the characteristics of the problem and 

Section 3.2 defines the constraints related to our problem while Section 3.3 

summarizes the optimization problem of RMC truck scheduling. 

 

3.1 Characteristics of Problem 

Let J be the set of jobs, where each job j ∈ J has a delivery location and time of 

first unloading, volume, and buffer duration (list of symbols is given in Table 3.2). 

These jobs are to be processed by a set of plants P and set of trucks T, where each 

plant p ∈ P has a fixed location and load time, and each truck t ∈ T has a volume and 

fuel consumption rate with/without load. Moreover, industry specifications such as the 

ASTM C94 and regulatory requirements such as the maximum number of 

driving/working hours per driver per day need to be met. Let fj be the fee for job j, 

which typically depends on the distance between pickup and delivery locations of the 

job. Cost per a volume of concrete is fixed regardless of the job; hence, not considered 

in our model. Our objective is to cover all jobs J with plants P and trucks T, such that 

profit is maximized across all the jobs. We use a constraint-based approach to filter 

out the possible search space as reducing the search space is important to achieve an 

acceptable solution to NP-hard problems [8].  

Table 3.1 lists the characteristics of our problem which summarizes the nature of 

our problem. Table 3.2 lists the symbols related to job, plant, truck, and solution, 

respectively. epeak  and eoff_peak represent the traffic impact factor on fuel consumption 

and the peak hour starts in morning from 6:00am - 9:00am and evening from 4:00pm - 

8:00pm. espeed_max capture specific constraints such as speed regulations for special 

purpose vehicles. Maximum time between two consecutive truck loads which is defined 
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to avoid cold joints in the concrete is represented as jbuffer. rtime is the time restriction on 

the delivery of RMC and it varies according to the special properties added to the RMC. 

Usually the time restriction is 90 minutes as per the ASTM C94 specification [29] for 

RMC if no special property is added. Fuel consumption of a truck is represented with 

and without load using 𝑡𝑓𝑢𝑒𝑙_𝑐𝑜𝑛𝑠
𝑙𝑜𝑎𝑑  and 𝑡𝑓𝑢𝑒𝑙_𝑐𝑜𝑛𝑠

𝑛𝑜_𝑙𝑜𝑎𝑑
 and it is measured using liters per 

kilometer. The fuel consumption of a truck while idling at site or plant (with engine 

on), 𝑡𝑓𝑢𝑒𝑙_𝑐𝑜𝑛𝑠
𝑖𝑑𝑙𝑖𝑛𝑔

 is measured using liters per minute. tmaintenance is the maintenance cost 

factor which captures the depreciation of the parts of a RMC truck occurs during each 

trip. Maximum travel time per truck on a given day is represented by 𝑡𝑡𝑖𝑚𝑒
𝑚𝑎𝑥⁡_𝑑𝑎𝑦

⁡and it 

was calculated as per the road safety regulation published by the authorities which 

enforces adequate resting time for both driver and truck in continuous work. It supports 

in reducing the road accidents by providing the drive a fatigue free environment. 

twash_down is the time taken to remove the residuals in the concrete mixing barrel of the 

RMC truck and it occurs immediately after each unloading of RMC. 

 

Table 3-1. Characteristics of the problem. 

Attribute Characteristic of Problem 

Number of Plants Multiple 

Size of Available Fleet Multiple 

Type of Available Fleet Homogeneous  

Capacity of Available Fleet Homogeneous 

Nature of Demand Pre-defined Delivery Time 

Location of Demand Known (Geographically Dispersed) 

Costs Vehicle Operating Cost, Waiting Cost 

 

 

3.2 Constraints  

To be eligible for a job, trucks and plants need to satisfy the following set of 

constraints: 
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Table 3-2. List of symbols related to job, plant, truck, and solution. 

Symbol Description 

cj Cost for a job j 

fj Fee for a delivery of job j 

cliter Cost per liter 

ctravel Cost of travel for a job j  

cwaiting Cost of waiting for a job j 

cunit_distance Cost per one kilometer 

epeak / eoff_peak Traffic impact factor on fuel consumption during peak / off-peak time 

espeed_max Maximum speed allowed for a truck 

jbuffer Maximum time between 2 consecutive unloads of j 

𝒋𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆
𝒉𝒂𝒖𝒍  Distance to job site while hauling 

𝒋𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆
𝒓𝒆𝒕𝒖𝒓𝒏

 Distance to job site while returning 

jfirst_unload Time to unload first load for job j at construction site 

jid Job ID 

jlocation Job location 

jtotal_distance Total distance traveled for job j 

jvolume Required volume of concrete in m3 for job j 

jnum_truckloads Required number of truckloads for job j 

pid Plant ID 

plocation Batch plant location 

pload_time Time to load mix to a RMC truck at plant p 

prange Maximum serving range of plant p 

rtime Time restriction on delivery of RMC, e.g., as per ASTM C94 specification 

𝒕𝒇𝒖𝒆𝒍_𝒄𝒐𝒏𝒔
𝒍𝒐𝒂𝒅   Fuel consumption (l/km) of truck t with load 

𝒕𝒇𝒖𝒆𝒍_𝒄𝒐𝒏𝒔
𝒏𝒐_𝒍𝒐𝒂𝒅

 Fuel consumption (l/km) of truck t without load 

𝒕𝒇𝒖𝒆𝒍_𝒄𝒐𝒏𝒔
𝒊𝒅𝒍𝒊𝒏𝒈

 Fuel consumption (l/minute) of t while idling 

thaul_time Hauling time 

𝒕𝒉𝒂𝒖𝒍_𝒕𝒊𝒎𝒆
𝒋

 Hauling time of j-th truck 

tid Truck ID 

tload_time / tunload_time Loading/ Unloading Time 

tmaintenance Maintenance cost factor of truck t 

𝒕𝒓𝒆𝒕𝒖𝒓𝒏_𝒕𝒊𝒎𝒆
𝒋

 
Return time of j-th truck 

𝒕𝒕𝒊𝒎𝒆
𝐦𝐚𝐱⁡_𝒅𝒂𝒚

 Maximum travel time per truck on a given day 

tunload_wait Waiting time (unloading) 

tvolume Maximum volume of truck t in m3 

twash_down Wash-down time of truck t 
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Time Constraint  

Time restriction on delivery (rtime) as per ASTM C94 specification depends on the 

properties of the concrete, where it varies according to the special properties added to 

concrete during the mixing stage. Therefore, the time constraint for a truck t can be 

specified as: 

 tid, pload_time + thaul_time + tunload_time ≤ rtime   (3.1) 

 

Range Constraint  

The maximum speed of a truck (espeed_max) should not exceed the speed limits set by 

regulators (this is an environmental parameter which is set by the business 

environment that RMC delivery operates). Therefore, a plant cannot serve jobs that are 

too far away to reach on time. Thus, range constraint for a plant p can be defined as 

follows: 

 prange = espeed_max × rtime    (3.2) 

 

Job Area Constraint 

Selecting a plant for a job depends on the maximum range of the plant. Therefore, 

job area constraint can be defined as follows: 

 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
ℎ𝑎𝑢𝑙  ≤ prange    (3.3) 

 

Job Duration Constraint 

If one job is allocated to a plant, another job with overlapping job duration cannot 

be allocated to the same plant. Hence, following job duration constraint needs to be 

satisfied: 

𝑗𝑗𝑜𝑏_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑖 ≠⁡ 𝑗𝑗𝑜𝑏_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑗
, ∀𝑖 ≠ 𝑗    (3.4) 
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Travel Time Constraint per Truck 

When assigning a new job j, the travel time constraint per truck can be defined as 

follows: 

(∑ (𝑡ℎ𝑎𝑢𝑙_𝑡𝑖𝑚𝑒
𝑖 + 𝑡𝑟𝑒𝑡𝑢𝑟𝑛_𝑡𝑖𝑚𝑒

𝑖 )𝑛−1
𝑖=1 ) + (𝑡ℎ𝑎𝑢𝑙_𝑡𝑖𝑚𝑒

𝑗
+⁡𝑡𝑟𝑒𝑡𝑢𝑟𝑛_𝑡𝑖𝑚𝑒

𝑗
) ≤ ⁡ 𝑡𝑡𝑖𝑚𝑒

max⁡_𝑑𝑎𝑦
    (3.5) 

 

3.3 Optimization Problem 

Given a set of jobs J, trucks T, and batching plants P, our main objective is to cover 

as many jobs as possible. This is required to improve customer satisfaction as the 

majority of customers are engaged in a long-term business relationship. Further, there 

is a secondary objective to maximize RMC company’s overall profit while minimizing 

the cost by allocating the most appropriate truck and batching plant to the job within 

the customer requested time frame. Dead runs and idling of the trucks and plants should 

be minimized to maximize the profit of the company. Therefore, the objective function 

can be formulated as follows: 

∀jid ∈ J, ∀pid ∈ P, Max (|j with assigned p|)   (3.6) 

𝑀𝑎𝑥⁡ ∑ (𝑓𝑗 − 𝑐𝑗)𝑗∈𝐉
𝑝∈𝐏

     (3.7) 

Constraint (3.6) maximizes the number of jobs with an assigned plant. fj – cj is the 

profit for job j which we attempt to maximize in (3.7). Hauling and returning distances 

are the decision variables in our objective function. Because both fj and cj are depending 

on the hauling and returning distance, our objective function is bounded as both 

distances are limited by the range constraint and job area constraint which ultimately 

limits the search space for the job scheduler.   
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4. PROPOSED SOLUTION 

 

We assume that every evening, the next day’s schedule is determined based on the 

already confirmed jobs and available plants and trucks [9]. However, there is an 

ambiguity upon the job end time due to the delays at the job site and during travel, 

which depends on traffic and other environmental conditions such as weather and road 

closures that are hard to predict. Moreover, the route is planned to utilize the full 

truckload to avoid wastage and dead runs of the truck. Dynamic scheduling to 

overcome last-minute changes is left as future work. The solution consists of a rule 

checker that enforces the constraints mentioned in Section 3.1 and an optimization 

phase that attempts to cover as many jobs as possible while maximizing the overall 

profit. Section 4.1 presents the rule checker which enforces the constraints and the job 

scheduler which uses the simulated annealing to optimize the scheduling process is 

presented in Section 4.2. 

 

4.1 Rule Checker 

In NP-hard problems, search space reduction is essential to achieve an acceptable 

solution, which is achieved through the rule checker. Therefore, given a set of jobs, 

trucks, and plants, we developed a rule checker to first evaluates the constraints given 

in Section 3.2 and then to identify a potential list of plants and trucks for a given job. 

All the distances from the location of the job to available plant (within the range) are 

taken from Google Distance API [30] to achieve more reliable and accurate estimates. 

Timings were calculated using the distance taken from Google Distance API and 

maximum allowable speed for special-purpose vehicles. 

As illustrated in Figure 4.1, when a new job is to be assigned, all plants and trucks 

are evaluated. Rule checker runs through the constraints from top to bottom and filters 

the eligible set of plants and trucks gradually. When it goes through a constraint, it 

simultaneously outputs the possible set of plants and trucks for all jobs. During the 

initial steps, rule checker proceeds with constraints such as time, range, and job area. It 

then checks whether the jobs are clashing to ensure job duration constraint. Jobs are 



18 

 

randomly selected to enhance the search space to get all possible combinations and 

continuously checked to ensure start and end time of jobs do not overlap. If jobs are 

overlapping, it will eliminate the overlapping jobs and create a new matrix for the job 

scheduler. In the final step, rule checker runs through the travel time constraint to ensure 

that a truck is not exceeding the maximum allowed travel time per day as the driver of 

a truck should take adequate rest time to maintain road safety. 

 

Figure 4.1. Solution model for rule checker. 
 

 

4.2 Job Scheduler 

Simulated Annealing (SA) algorithm is broadly used in global optimization 

problems including limousine renting [5] and vehicle delivery [31]. SA provides a 

reasonably optimized solution within a reasonable time and can be optimized according 

to the context [9]. Also, Maghrebi et al. [32] revealed that SA has the highest accuracy 

when comparing the solutions obtained from Bayesian network when both SA and 

Genetic Algorithm (GA) are set as search algorithms. Adewole et al. [24] compared the 

performance of SA and GA algorithms and concluded that as the population size 

 

∀ pid ∈ 𝑃, 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
ℎ𝑎𝑢𝑙 ≤ 𝑝𝑟𝑎𝑛𝑔𝑒  → Pset_1 

 

 

New Job j 

∀ tid ∈  𝑃𝑠𝑒𝑡 _1, 

∑ (𝑡ℎ𝑎𝑢𝑙 _𝑡𝑖𝑚𝑒
𝑖 +  𝑡𝑟𝑒𝑡𝑢𝑟𝑛 _𝑡𝑖𝑚𝑒

𝑖 )𝑛−1
𝑖=1 +  (𝑡ℎ𝑎𝑢𝑙 _𝑡𝑖𝑚𝑒

𝑗
+  𝑡𝑟𝑒𝑡𝑢𝑟𝑛 _𝑡𝑖𝑚𝑒

𝑗
) ≤  𝑡𝑡𝑖𝑚𝑒

max⁡_𝑑𝑎𝑦
→ Tset_1 

 

 
∀ pid ∈  𝑃𝑠𝑒𝑡 _1, tid ∈  𝑇𝑠𝑒𝑡 _1, jid ∈  𝐽𝑠𝑒𝑡 _1,     Max (𝑓𝑗 −  𝐶𝑗 ) 

 

∀ jid ∈ 𝐽,  𝑗𝑗𝑜𝑏 _𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑖 ≠  𝑗𝑗𝑜𝑏 _𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑗
,∀𝑖 ≠ 𝑗  → Jset_1 
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increases, GA can provide a better quality solution. However, this comes at a significant 

increase in computational time compared to SA. 

Recently, researchers have expanded on the original idea of PSO with alterations 

fluctuating from minor parameter adjustments to complete revamp of the algorithm and 

used PSO for comparison tests of other global optimization algorithms including GA 

[27]. Also, the intelligent optimization algorithms including GA, SA, and ant colony 

algorithms have been used to solve the question of process route optimization in recent 

researches. 

Compared to SA, several shortages are experienced when the basic ant colony 

algorithm is used to solve practical problems. For example, higher search time is 

required with large search space and especially its tendency to converge early at local 

optimum while stopping the search process [33]. It has been shown that the process of 

convergence to the optimal solution is more express if the initial solution is taken by 

means of a good heuristic [34]. Whereas SA is a type of iterative improvement 

algorithm that provides a way to escape local optima. It is of non-deterministic type and 

is based upon the probability to obtain an optimal solution comparing the current 

situation of the objective function to the possible improvement bound to a controlled 

movement in the space of the feasible solutions [34]. 

Therefore, we chose SA for the optimization step in the job scheduler. Alternatively, 

other meta-heuristic techniques could be used for said optimization depending on how 

well the properties of the problem and technique matches. For example, we evaluate 

the suitability of PSO compared to SA in Chapter 5.  

Once a candidate list of plants and trucks are identified for a job, we use the 

Simulated Annealing (SA) algorithm to schedule a plant and a truck for a job while 

satisfying the objective function in Eq. 3.6 and 3.7. Moreover, as the solution needs to 

be built to support many constraints and the data maybe chaotic and noisy, SA is a 

better fit for RMC scheduling because it is known to be a robust technique that can deal 

with such conditions [35]. SA algorithm was chosen for optimization as it is used in 

global optimization problems [36], provides a reasonably optimized solution within a 

reasonable time [24], and it can be optimized according to the context and application 
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[35]. Furthermore, SA is quite versatile, as it does not rely on any restrictive properties 

of the model.  

The identified job, plant, and truck combinations (jid, pid, and tid) are then fed to run 

through simulated annealing algorithm to find an optimal schedule while maximizing 

the job coverage and overall profit. SA algorithm picks a job randomly and then 

allocates a plant based on its availability. Because our goal is to maximize both job 

coverage and profit, SA will check different plant combinations for a single job as the 

availability of that plant will change for other jobs once it is assigned to a job which 

ultimately affects the overall profit and job coverage. For example, once a job is 

assigned, the plant is not eligible for another job with a job duration which overlaps 

with the job duration of the current job. Moreover, this will depend on the job picking 

sequence as it is randomized when inputting to the SA algorithm. Therefore, different 

job to plant combinations are compared again and again through rule checker, while 

assigning new jobs to plants using the SA algorithm. Cost for a job cj is calculated based 

on the job distance, estimated total job time, fuel consumption, and environmental 

factors experienced by the job as follows: 

cj = (ctravel + cwaiting) × cliter   (4.1) 

ctravel = (((𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
ℎ𝑎𝑢𝑙

 / 𝑡𝑓𝑢𝑒𝑙_𝑐𝑜𝑛𝑠
𝑙𝑜𝑎𝑑 ) × epeak / eoff_peak ) +     

(( 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑟𝑒𝑡𝑢𝑟𝑛  / 𝑡𝑓𝑢𝑒𝑙_𝑐𝑜𝑛𝑠

𝑛𝑜_𝑙𝑜𝑎𝑑 ) × epeak / eoff_peak)) × tmaintenance   (4.2) 

cwaiting = ((⁡𝑡𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒
𝑢𝑛𝑙𝑜𝑎𝑑 + twash_down) / 𝑡𝑓𝑢𝑒𝑙_𝑐𝑜𝑛𝑠

𝑖𝑑𝑙𝑖𝑛𝑔
 ) × tmaintenance  (4.3) 

All distances from job to available plants (within the range) are taken from Google 

Distance API [30] to achieve more reliable and accurate estimates. 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
ℎ𝑎𝑢𝑙  and 

𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑟𝑒𝑡𝑢𝑟𝑛

 are the decision variables as the other factors affecting cj and fj are constant 

for a job/trip.  Timings were calculated using the distance taken from Google Distance 

API and maximum allowable speed for special-purpose vehicles. Fee for a job fj is 

calculated based on the estimated total job distance and is calculated as follows: 

fj = jtotal_distance × cunit_distance     (4.4) 

jtotal_distance =⁡𝑗𝑛𝑢𝑚_𝑡𝑟𝑢𝑐𝑘𝑙𝑜𝑎𝑑𝑠 × (⁡𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
ℎ𝑎𝑢𝑙

 + 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑟𝑒𝑡𝑢𝑟𝑛

 )    (4.5) 
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|𝑗𝑛𝑢𝑚_𝑡𝑟𝑢𝑐𝑘𝑙𝑜𝑎𝑑𝑠| = 
𝑗𝑣𝑜𝑙𝑢𝑚𝑒⁡

𝑡𝑣𝑜𝑙𝑢𝑚𝑒
    (4.6) 

 

Initially, we consider that a job is fully served by a single plant and all the trucks 

will return to the respective plant after unloading. Also, we supported the option of 

either advancing or delaying a job by a certain time window to reduce conflicts between 

the overlapping job durations. In such cases, only one job can be covered even if the 

two jobs overlap by only a few tens of minutes. Rather than completely rejecting one 

of the jobs, it maybe possible to contact the client and renegotiate the delivery time. 

This is in fact practiced in the industry and advancing or delaying the jfirst_unload by an 

hour is not uncommon. Therefore, we checked the possibility of adjusting jfirst_unload by 

a given time window to check whether the job coverage and profit could further 

increase. 

SA is a probabilistic, single-solution-based search method inspired by annealing 

process where a solid is slowly cooled until its structure reaches a minimum energy 

configuration [21]. SA has its own technique to avoid converging to local optimums 

which is a commonly known disadvantage of other optimization algorithms. SA avoids 

local optimums by accepting worst solutions at higher temperatures by setting its 

acceptance probability to a higher value. Initial temperature, a rule for accepting a 

worse solution (i.e., lower profit solution), the cooling rate which is the rate of the 

temperature decrement, and a stop criterion are the key parameters of the algorithm 

[23]. This nature of the algorithm avoids the local minima as our search space is large. 

When considering our solution, the primary objective is to maximize the job coverage 

and then the secondary objective is to optimize cost matrix to maximize the overall 

profit. In SA implementation, we prioritize to cover all possible jobs while maximizing 

the overall profit of the RMC company. As SA algorithm target global optimization, 

we even allow jobs with negative profit to gain maximum job coverage. However, in 

practice, it was noted that no jobs with negative profit were scheduled by the SA-based 

scheduler.   
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Table 4-1. Comparison of different solution scenarios. 

 

Table 4.1 summarizes the solution approaches of four solutions including the manual 

solution and three SA based solutions. In comparison, “Manual Solution”, “Solution 1” 

and “Solution 2” uses job to truck/plant allocation basis where the “Solution 3” uses 

trip to truck allocation. It differs the “Solution 3” from other three solutions (Manual 

Solution, Solution 1 and Solution 2) which allows a truck to move freely across the 

plants and a single job is served by multiple plants where the other three solutions are 

based on single plant while creating the job schedule for the RMC company. 

 

 

Manual Solution 

Solution 1 Solution 2 Solution 3 

Fixed Plant 
Fixed Plant with 

Time Window 
Free to Move 

Job to plant/truck 

allocation basis 

Job to plant/truck 

allocation basis 

Job to plant/truck 

allocation basis 

Trip to truck 

allocation basis 

Sort jobs according to 

First Unload Time in 

ascending order 

Enforce constraints 

and conditions 

“Time of first 

unload” is adjusted 

with time windows to 

eliminate the job 

duration clashes 

Enforce constraints 

and conditions with 

enhanced search 

space 

Select plant which 

makes maximum profit 

for given job and 

assign to the plant 

Randomly assign a job 

to plant/trucks 

Same conditions and 

steps followed as 

same as “Fixed 

Plant” solution 

Randomly assign a 

trip to truck 

Eliminate the 

overlapping jobs 

Job will be completely 

served by the assigned 

plant 

Truck can move 

freely to another plant 

after completing a job 

Repeat the process for 

all jobs while 

eliminating 

overlapping jobs at 

each step 

Assigned plant will be 

available for another 

job only after 

completing the 

assigned job 

Single job is served 

by multiple plants 
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5. PERFORMANCE ANALYSIS 

 

We evaluate the performance of the rule engine and Simulated Annealing (SA) 

based solution using a set of workloads derived from a real RMC company. Section 5.1 

presents the workload creation which was derived after a comprehensive descriptive 

analysis from real RMC company data set. Section 5.2 illustrates the results of the 

simulation. 

 

5.1 Workload Creation 

We did a descriptive analysis to a dataset given by a real RMC Company to 

understand the characteristics of the RMC truck scheduling. The data set we got from 

the company consisted the data of nine RMC trucks with the information of following 

parameters including latitude, longitude speed, engine status, real-time clock, bearing, 

device status, ignition status and fuel level. Truck were assigned to two plants and 

Figure 5.1. shows the areas served by two plants. 

 

Figure 5.1. Areas served by the two plants. 
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A comprehensive data analysis was conducted to understand the total fuel usage, 

total travel distance, number of inactive days, and average fuel consumption of each 

truck. As shown in Figure 5.2, fuel consumption of each day was plotted, and it includes 

the consumption of idling at plant (after loading), trip (one way and return), and idling 

at construction site of a RMC truck.   

 

Figure 5.2. Daily fuel consumption plot of an RMC truck. 
 

Moreover, we plotted each trip of the truck and it was found that many trips are 

violating the ASTM C94 regulation where 1.5 hour is the standard time to deliver RMC 

if no special property is added to the concrete. Figure 5.3 illustrates how different trips 

are violating the ASTM C94 regulation while delivering RMC. 
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Figure 5.3. Travel time of a RMC truck (5 trips). 

Based on our descriptive analysis, we used a dataset with 158 jobs with 735 

truckloads during the week, against a set of 5 plants and 47 trucks as shown in Table 

5.1. This dataset was created based on properties extracted from a dataset of a real RMC 

delivery company in Sri Lanka. This includes the distribution of job locations, delivery 

times (some jobs span across the week) and other constraints. Figure 5.4 illustrates the 

job and plant locations of our dataset. We considered 6:00am to 9:00am as peak time 

(epeak) and 4:00pm to 8:00pm as off-peak time (eoff_peak). Truck maintenance cost 

(tmaintenance) is considered while calculating the cost of the job and we used the constant 

tmaintenance = 1.1. After unloading the concrete, RMC truck needs to go through a quick 

wash to remove residual inside the drum of the truck. This is also a constant value and 

we denote twash_down = 8 minutes. 
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Table 5-1. Job distribution across the week. 

Day of the Week Number of Jobs No of Available Trucks No of Trips 

Monday 22 47 104 

Tuesday 20 47 91 

Wednesday 21 47 104 

Thursday 18 47 90 

Friday 23 47 105 

Saturday 26 47 116 

Sunday 28 47 125 
 

Total 158  735 

 

 

The simulation ran on a machine which has Intel Core i7-6500U CPU, 2.60 GHz 

processor, 12 GB RAM, and 4 MB Cache. We implemented a R-based simulator which 

initiates from a R code for travel salesman problem. We used dplyr, gtools, lubridate, 

splitstackshape packages while creating the search space for the job scheduler. 

Customized SA algorithm was used in the optimization step as we need to create 

 

Figure 5.4. Distribution of (a) plant and (b) job locations. 
 

(a) (b) 
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multiple data files including profit, optimized schedule including plant/truck allocation 

and job coverage. The alteration process of the SA algorithm depends on the cooling 

strategy such as linear or exponential, cooling rate, and the energy of the system [37]. 

Therefore, different combinations were tested on datasets resulting in the following set 

of parameters: 

• initial temperature = 104  

• cooling rate = 0.003  

• terminating condition of temperature > 1.  

In tuning process, we ran the simulation ten times with same dataset, and same 

configurations while varying the random seed. Moreover, we tried various initial 

temperatures against average job coverage. The results listed in Table 5.2 indicates the 

average job coverage against the initial temperature with the cooling rate of 0.003. We 

used an initial temperature of 104 which has a higher job coverage and can be processed 

within acceptable running time, and cross through relatively higher amount of 

transitions with cooling rate of 0.003.  

Table 5-2. SA job coverage against initial temperatures with 0.003 cooling rate. 

Initial Temperature Average Job Coverage (%) 

1,000 80 

10,000 88 

20,000 78 

 

In addition to SA, PSO algorithm was used in the optimization step to compare with 

the results of SA job scheduler. We have used the discrete version of PSO (DPSO) 

where the representations of the position and velocity of the particle is extended from 

the real vector to integer vector. Kashan and Karimi [38] have accomplished the 

mapping between the job scheduling problem and the particle using the same DPSO 

algorithm. The alteration process of the DPSO algorithm depends on the few 

parameters. Therefore, different combinations were tested on datasets resulting in the 

following set of parameters: 



28 

 

• ω = 1  

• C1, C2 = 2  

• Number of iterations = 60 

• Population = 30 

In the tuning process, we ran the simulation six times with same dataset and same 

configurations while varying the random seed. Moreover, we tried various number of 

iteration values against average job coverage. The results listed in Table 5.3 indicates 

the average job coverage against the number of iterations with the population of 30. 

We used 60 as the number of iterations which resulted in higher job coverage and can 

be processed within acceptable running time and iterate through relatively higher 

amount of transitions with population of 30. 

Table 5-3. DPSO job coverage against number of iterations with 30 population. 
  

Number of Iterations Average Job Coverage (%) 

25 80 

50 78 

60 87 

75 82 

 

5.2 Simulation Results 

In the RMC business, time of unloading is crucial once the concreting process starts. 

Job buffer time allows trucks to arrive with a slight delay, but it is very limited as the 

concrete gets cold joints if the next truck is delayed more than the allowed buffer time. 

However, time of first unloading on most jobs are not strict and can be advanced or 

delayed up to an hour, as far as the company negotiates with the client. This enables 

flexibility in optimally assigning jobs to get the maximum job coverage while 

maximizing profit. 

We compared the results with manual job scheduling. We considered a case of a 

human expert first sorting the jobs for each day according to the ascending order of 

jfirst_unload. Then a job is allocated to the plant that gives the maximum profit for the job. 

For each day’s workload, we plan the schedule on the previous evening. 
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Table 5.4 shows the results of the proposed solution (fixed plant scenario) and 

manual job allocation by a human expert. Proposed job scheduler enforces all the 

constraints and randomly assigns plant/truck to jobs and the selected job will be solely 

served by the same plant till it completes the job. On all days job coverage of the 

proposed automated scheduling solution is either the same or better, while profit is 

always higher. For example, job coverage on Thursday was increased from 83% to 

100% with a 21% increase in profit.  

Table 5-4. Job scheduling performance comparison (fixed plant scenario). 

Day of the Week 

Manual Job Scheduling Proposed Job Scheduler 

Traditional Scenario Fixed Plant 

Profit (x10) Job Coverage Profit (x10) Job Coverage 

Monday 721 82% 791 87% 

Tuesday 729 75% 754 90% 

Wednesday 736 81% 736 91% 

Thursday 567 83% 685 100% 

Friday 881 78% 885 91% 

Saturday 803 73% 924 88% 

Sunday 910 75% 1,034 93% 

  

Moreover, we compared the results of Manual Job Scheduling (Traditional 

Scenario) and Proposed Job Scheduler (Fixed Plant) with the best-case scenario where 

the time of first unload is decided by the RMC company. That way, the RMC company 

can have the best job coverage while trying to minimize cost. Table 5.5 reveals that the 

proposed job scheduler performs well as the profit difference between the Manual Job 

Scheduling (Best Case Scenario) varies between 1%-10%. In comparison, manual job 

scheduling (traditional scenario) has the profit variation up to 20% compared to the 

Manual Job Scheduling (Best Case Scenario). Also, the results of Table 5.5 reveal that 

the solutions of our Proposed Job Scheduler (Fixed Plant) are significantly closer to the 

Best Case Scenario of the Manual Job Scheduling method. 
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Table 5-5. Job scheduling performance comparison against the best case. 

Day of the Week 

Manual Job 

Scheduling Manual Job Scheduling 
Proposed Job 

Scheduler 

Best Case Scenario Traditional Scenario Fixed Plant 

Profit 

(x10) 

Job 

Coverage 

Profit 

(x10) 

Job 

Coverage 

Profit 

(x10) 

Job 

Coverage 

Monday 812 100% 721 82% 791 87% 

Tuesday 795 100% 729 75% 754 90% 

Wednesday 799 100% 736 81% 736 91% 

Thursday 713 100% 567 83% 685 100% 

Friday 915 100% 881 78% 885 91% 

Saturday 975 100% 803 73% 924 88% 

Sunday 1,150 100% 910 75% 1034 93% 

 

Table 5.6 reveals the results of DPSO algorithm against the manual job scheduling 

and SA job scheduler. It clearly illustrates that the SA job scheduler outperforms the 

manual solution, as well as the results of the DPSO algorithm. However, when 

comparing the performance of the DPSO job scheduler with the Manual Job Scheduler 

(Traditional Scenario), DPSO-based Job Scheduler has significantly increased both 

profit and job coverage by 3% and 6%, respectively.  

Table 5-6. Job scheduling performance comparison (Simulated Annealing vs. 

Discrete Particle Swarm Optimization). 

Day of the 

Week 

Manual Job 

Scheduling 

Proposed Job Scheduler 

(SA) 

Proposed Job Scheduler 

(DPSO) 

Traditional Scenario Fixed Plant Fixed Plant 

Profit 

(x10) 

Job 

Coverage 

Profit 

(x10) 

Job 

Coverage 

Profit 

(x10) 

Job 

Coverage 

Monday 721 82% 791 87% 735 83% 

Tuesday 729 75% 754 90% 732 89% 

Wednesday 736 81% 736 91% 732 83% 

Thursday 567 83% 685 100% 615 87% 

Friday 881 78% 885 91% 881 82% 

Saturday 803 73% 924 88% 868 79% 

Sunday 910 75% 1,034 93% 918 83% 
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In addition, we carried out another simulation by changing the job allocation basis. 

Compared to the earlier step, we did trip to truck allocation where trucks can move 

freely among plants. In this scenario, a job is served by multiple plants and it increases 

the utilization of plants and RMC trucks. Moreover, it clearly improved the profit, as 

well as the job coverage significantly compared to both manual scheduling and fixed 

plant scenario. As shown in Table 5.7 job coverage of fixed plant scenario ranges from 

85% to 100% while free to move improved it to 90% to 100%. Additionally, there is a 

5% increment of the profit on average compared to the fixed-plant scenario in this trip 

to truck allocation scenario. Moreover, the comparison results between the Best Case 

Scenario vs. Free to Move Scenario proves that the free to move scenario has optimized 

the job schedule as profit difference between the two methods varies only up to 2%.  In 

summary, the proposed SA-based solution increased the average job coverage and 

profit of the company for each day of the considered week by 13% and 9%, respectively 

for the fixed plant scenario while 16% and 14% increment seen in free to move method 

where the home plant restriction is lifted. 

Figure 5.5 summarizes the graphical representation of the three solutions and it also 

illustrates the increment of job coverage in three different scenarios. It clearly illustrates 

how the proposed SA Job Scheduler significantly increases the job coverage compared 

to the Manual Job Scheduling. 

Table 5-7. Job scheduling performance comparison (fixed plant and free to move 

scenario). 

Day of the 

Week 

Manual Job Scheduling Proposed SA Job Scheduler 

Best Case Scenario 
Traditional 

Scenario 
Fixed Plant Free to Move 

Profit 

(x10) 

Job 

Coverage 

Profit 

(x10) 

Job 

Coverage 

Profit 

(x10) 

Job 

Coverage 

Profit 

(x10) 

Job 

Coverage 

Monday 812 100% 721 82% 791 86% 812 90% 

Tuesday 795 100% 729 75% 754 90% 789 94% 

Wednesday 799 100% 736 81% 736 90% 785 92% 

Thursday 713 100% 567 83% 685 100% 710 100% 

Friday 915 100% 881 78% 885 91% 903 94% 

Saturday 975 100% 803 73% 924 88% 965 91% 

Sunday 1,150 100% 910 75% 1034 93% 1,138 95% 
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Figure 5.5. Graphical representation of the performance of three solutions. 
 

 

In Table 5.8, we consider the case of allowing jfirst_unload to be changed by a pre-

defined time window in fixed plant scenario. We considered time windows of 15, 30, 

45, and 60 minutes, where any job can be either advanced or delayed within the time 

window, as far as it leads to better job coverage. Table 5.8 shows that the introduction 

of a time window could further improve the job coverage and profit, in many cases. For 

example, on Tuesday having any sort of flexibility in changing jfirst_unload enable higher 

job coverage. However, profit increases only when the time window is 60 min. Whereas 

on Sunday neither the job coverage or profit improves (except for 60 min window) with 

increasing time windows. Moreover, Sunday result also reveals that similar job 

coverage could produce different profits confirming that the profit can be maximized 

while creating a schedule with different job combinations. Profit can also be maximized 

with a lower job coverage, e.g., on Saturday. This situation is not ideal for an RMC 

company in the long-run as a few lost jobs today, even with better profit per job, could 

lead to long-term customer churn. Therefore, in cases where adjusting jfirst_unload is 

useful, scheduling manager may negotiate with the client to adjust time of first unload 

of the relevant job(s).  
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However, sometimes by trying to accept one job by changing jfirst_unload of the same 

job or another job could lead to a sub-optimal solution, as more profitable jobs could 

be missed in the future allocations as the plants and trucks may already be assigned 

within the SA algorithm. Consequently, this could reduce the overall job coverage 

and/or profit. For example, on Thursday  45 min time window reduces both the 

coverage and profit. This is an artifact of our design as it is willing to accept sub-

optimal move with the hope for better coverage. Nevertheless, it is common for SA-

based solutions to run multiple times and then pick the most preferred solution. 

Similarly, our solution can be executed multiple times per each time window, and the 

solution that maximizes both the coverage and profit can be chosen. For example, if 

we choose the best cases for each day and time window average job coverage and 

profit could be further increased to 21% and 13%, respectively compared to the manual 

scheduling. Furthermore, the comparison results of the Best Case Scenario vs Fixed 

Plant (With Time Window) Scenario shows that the addition of time window has 

increased proximity both profit and job coverage to the results of best case scenario as 

the variation of average job coverage and profit are 2% and 1% respectively. The 

execution time of SA algorithm increases as the number of jobs increase due to the 

increased search space. In our R-based implementation, execution time ranges between 

30 to 50 min when a  time window is introduced, as it significantly changes the search 

space. However, this is unlikely to be a practical hindrance, as the execution of each 

parameter combination can be parallelized, and SA algorithm implementation can be 

optimized. For example, our past experiences show an SA implementation based on 

more flexible languages such as Java and Python and could execute under 5 min with 

similar workloads [31]. 

The sensitivity analysis of Z. Liu et al. [3] shows that the cost rate can be reduced 

by 1.79% approximately with GA where our solution which is based on SA increases 

the profit by 9%, while increasing up to 13% by automatically adjusting the first 

unload time by a few 10s of minutes to reduce job conflicts. 
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Table 5-8. Proposed job allocation results with a varying time window (fixed plant 

scenario). 

Time Window (Min) 0 ±15 ±30 ±45 ±60 

Monday 

Job Coverage 86% 91% 86% 91% 97% 

Profit (x10) 791 803 808 814 808 

Tuesday 

Job Coverage 90% 100% 95% 100% 100% 

Profit (x10) 754 721 744 717 795 

Wednesday 

Job Coverage 90% 100% 90% 90% 90% 

Profit (x10) 736 779 724 765 733 

Thursday 

Job Coverage 100% 94% 100% 89% 94% 

Profit (x10) 685 642 702 633 637 

Friday 

Job Coverage 91% 87% 97% 96% 91% 

Profit (x10) 885 852 895 852 858 

Saturday 

Job Coverage 88% 88% 85% 92% 98% 

Profit (x10) 924 889 891 897 972 

Sunday 

Job Coverage 93% 93% 93% 86% 98% 

Profit (x10) 1,034 990 1,027 970 1,060 

 

Change of the cooling rate affects the number of transitions in SA under same initial 

temperature. We increased the cooling rate to 0.03 without changing the initial 

temperature. Figure 5.6 shows the profit against different cooling rates for the week 

while Figure 5.7 shows the jobs coverage against different cooling rates. However, in 

both cases, results of the 0.003 cooling rate are dominating, as it clearly shows that the 

0.03 rate settles at a local optimum value rather than the global optimum value. 

Moreover, higher cooling rate tend to stop at local optimum values as it skips important 

combinations when cooling at a higher and faster rate than 0.003. Therefore, it does 

not support to achieve the ultimate research objective of our research by maximizing 

both profit and job coverage of an RMC company. 
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Figure 5.6. Profit comparison for the different cooling rates. 
 

 

Figure 5.7. Job coverage comparison for the different cooling rates. 

 

In summary, the proposed solution could assign jobs to plants and trucks while 

maximizing both the job coverage and profit. Moreover, by allowing the first unload 
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proposed solution could further improve job coverage and profit as shown in Table 5.9. 

We further demonstrated that by relaxing the constraints that a RMC truck must return 

to its loading plant, we could further improve both objectives by allowing trucks to 

feely move across plants based on job requirements.  

Table 5-9. Comparison of proposed solution (increment of average job coverage and 

profit) vs. manual job allocation (traditional scenario). 

 Simulated Annealing Job Scheduler Discrete 

Particle 

Swarm 

Optimization 

Job Scheduler 

(Fixed Plant) 

 Fixed Plant 

Fixed Plant  

(With Time 

Window) 

Free to Move 

Average Job Coverage 13% 21% 16% 6% 

Profit 9% 13% 14% 3% 

 

We also compared the results of the proposed solution with the Manual Job 

Allocation (Best Case Scenario). Table 5.10 summarizes the profit and the average job 

coverage variation compared to the Manual Job Allocation (Best Case Scenario) 

showing how close the results of SA and DPSO Job Schedulers to the results of the 

Manual Job Allocation (Best Case Scenario). In comparison, Fixed Plant (With Time 

Window) Scenario which uses the SA job scheduler gives the closest results to the 

Manual Job Allocation (Best Case Scenario) where the results of DPSO is the farthest 

to the Manual Job Allocation (Best Case Scenario) as the average job coverage and 

profit varies up to 16% and 11% respectively. 

Table 5-10. Comparison of proposed solution (variation of average job coverage and 

profit) vs. manual job allocation (best case scenario). 

 Simulated Annealing Job Scheduler Discrete 

Particle 

Swarm 

Optimization 

Job Scheduler 

(Fixed Plant) 

 Fixed Plant 

Fixed Plant  

(With Time 

Window) 

Free to Move 

Average Job Coverage 9% 1% 6% 16% 

Profit 6% 2% 1% 11% 
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6. SUMMARY AND FUTURE WORK 

 

Section 6.1 presents the conclusion of the research while Section 6.2 elaborates the 

limitations of the research. Future work including the suggestions to expand our work 

is presented in Section 6.3. 

 

6.1 Conclusion 

In this research, we proposed a rule engine and Simulated Annealing (SA) based 

automated solution to schedule RMC trucks. We considered an environment where jobs 

are scheduled in the previous evening based on a set of job, plant, truck, and 

environmental constraints.  

Genetic algorithms are applied in combined discrete-event simulation in 

HKCONSIM to model and further optimize the one plant-multisite RMC plant 

operations in Hong Kong [19]. Further, Feng et al. [20] and Liuhenyuan et al. [3] 

introduced a solution where better optimization could be achieved by a Genetic 

Algorithm (GA) while focusing on scheduling RMC production across an environment 

with a single plant and single mixer where they further suggested to focus on multiple 

plant condition as a crucial research gap to be filled whereas our work focusses on 

multiple plants, trucks, and construction sites.  

A systematic approach including a mathematic model for the scheduling of 

dispatching RMC trucks using an improved Discrete Particle Swarm Optimization 

(DPSO) was discussed in [27]. Authors suggested that a more dynamic approach may 

be useful to deal with the uncertainty if some emergencies appear due to the 

environmental factors to improve the effectiveness of the scheduling. 

Since the route and vehicle scheduling problems are known to be NP-hard, we 

cannot get an optimal solution within polynomial time [6], [7], [8], [9]. Therefore, it is 

crucial to identify suitable heuristic-based solutions that can still maximize the 

customer satisfaction, efficiency, and company profit. 
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Performance analysis based on a workload derived from a real RMC delivery 

company with 158 jobs and 735 truckloads shows that the proposed solution could 

assign jobs to plants and trucks while maximizing both the job coverage and profit. 

Moreover, by allowing the first unload time to of a few jobs be either advanced or 

delayed by a few 10s of minutes, the proposed solution could further improve job 

coverage and profit. We further demonstrated that by allowing trucks to feely move 

across plants we could further improve both objectives.  

Our solution consists of a rule checker that enforces the constraints and a job 

scheduler based on Simulated Annealing (SA). SA algorithm schedules RMC trucks by 

considering the trends and patterns observed using the past and present data. Our study 

emphasizes on focusing on multiple plants, trucks and construction sites whereas 

related work focuses only on a single plant condition. Moreover, we support the case 

of allowing RMC trucks to feely move across plants based on job requirements (without 

being restricted to a home plant), as far as it leads to better job coverage and profit. Our 

analysis based on a workload derived from a real RMC company revealed that both the 

job coverage and profit can be maximized, compared to typical manual scheduling. 

Also, we compared the performance of the SA job scheduler with a DPSO-based job 

scheduler. For example, compared to manual job scheduling, the proposed solution 

increases the average job coverage and profitability by 13% and 9%, respectively. 

Results also shown that the DPSO can improve both job coverage and profit by 6% and 

3% compared to the typical manual scheduling. Furthermore, both job coverage and 

profit further improve by 16% and 14%, respectively compared to the typical manual 

scheduling when the trucks can freely move access plants as per job requirements. 

Moreover, it eliminates the error-prone and labor-intensive resource allocation [4] and 

enables experts in RMC dispatching rooms to focus more on the exceptions such as 

truck breakdowns or last-minute changes by construction sites. 

 

6.2 Research Limitations 

The solution was limited by the errors of the fuel sensors fixed in RMC trucks. 

Therefore, the analysis could not have extended towards fuel usage prediction aspects 

while scheduling the RMC trucks. Our analysis was restricted by the limited data 
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provided by the RMC company. Also, we had to remove three trucks from our 

descriptive analysis due to the errors occurred in the GPS and fuel sensors. 

Furthermore, significant number of trips were removed from the descriptive analysis 

due to the sensor malfunction. Moreover, our analysis was completely based on the 

dataset as we did not have access to see the actual order book of RMC delivery jobs. 

Moreover, we had only two plants to conduct our descriptive analysis and it affected 

us in understanding the empty truck movement from plant to plant, as we have 

proposed a new scheduling scenario where truck can move freely among plants. In 

conclusion, our data set was limited to one month and we could have reach a better 

conclusion in our descriptive analysis and final solution if more recent and accurate 

data was provided to conduct the research. 

Our solution did not capture vehicle breakdowns, weather and traffic conditions of 

the route which may also increase the number of constraints for the rule checker. 

Setting up constraints for weather and traffic condition may also lead the scheduling 

process to a complex scenario as both conditions are hard to predict with the available 

data.  

We assume that every evening, the next day’s schedule is determined based on the 

already confirmed jobs and available plants and trucks as there is an ambiguity upon 

the job end time due to the delays at the job site and during travel, which depends on 

traffic and other environmental conditions such as weather and road closures that are 

hard to predict. Moreover, the route is planned to utilize the full truckload to avoid 

wastage and dead runs of the truck. Therefore, dynamic scheduling to overcome last-

minute changes is left as future work as it needs more sophisticated rule checker and 

job scheduler to capture the last-minute changes in the job schedule. 

 

6.3 Future Work 

We proposed solution to schedule RMC trucks and considered an environment 

where jobs are scheduled in the previous evening. Therefore, the solution can be 

extended towards real-time scheduling where the last-minute job is accommodated the 

truck/plant schedule. Moreover, the proposed solution can be further extended to 
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tolerate unexpected delays in the process, capture last-minute delivery requests arriving 

within the day, as well as to tolerate unexpected events such as accidents, breakdowns, 

and traffic. Furthermore, accommodating last-minute changes will increase the number 

of constraints for the rule checker and leads the job scheduler to run the SA algorithm 

while unchanging the ongoing jobs and rescheduling the other jobs to accommodate the 

last-minute changes in the delivery schedule. 

Additionally, the analysis can be extended towards fuel prediction by 

accommodating fuel sensor data to reduce the vehicle operating cost significantly. 

Beside the above suggestions, the solution can be used in predicting the additional truck 

requirement for the company to achieve 100% job coverage which ultimately affects 

the profit of the company. Moreover, it would be useful to introduce a priority to long-

term customers to ensure that their jobs are covered with high certainty as retention of 

key customers are essential for long-term sustainability. 
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