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Abstract 

Telecommunication service providers are losing considerable percentage of their annual 

revenue due to fraudulent activities. Such activities also deteriorate customer experience. 

Therefore, real-time detection of such fraudulent activities is required to minimize the revenue 

loss and to preserve customer experience. Illegal termination of International calls (aka. 

SIMbox fraud) and extreme usage scenarios related to International revenue share fraud are 

two major fraudulent activities which make highest impact. While such activities can be 

detected by identifying behavioral and calling patterns of subscribers, they need to be detected 

in real time so that subscriber connections linked with an ongoing fraud activity can be 

terminated to minimize the impact of threat or revenue loss. Call Detail Records (CDRs) 

produced by telecommunication equipment contains attributes that are specific to a phone call 

or other communication transactions handled by the device could be used to detect behavioral 

and calling patterns of subscribers. However, traditional CDR analysis techniques do not 

facilitate time-sensitive monitoring and analytical requirements. Therefore, we propose a 

Complex Event Processing (CEP) based solution for the real-time identification of fraudulent 

and extreme usage subscriber patterns. We identified a rich set of features and set of call 

patterns, and then combined batch analytics with real-time analytics to increase the detection 

accuracy. We demonstrated the utility of the proposed solution using a real dataset from a 

service provider. The proposed solution achieved an accuracy of 99.9% with average latency 

of 16 call attempts per detection at input event rate of 230 events per second with modest 

hardware.  

Keywords:  Complex Event Processing, Data analytics, Call Detail Records, call patterns 
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1. INTRODUCTION 

1.1. Background 

Telecommunication service providers around the world are losing billions of dollars 

annually due to fraudulent activities [1]. Percentage revenue loss due to frauds is 

considerable and incur direct impacts on profitability. The effects of these fraudulent 

activities are felt by end users as well, as it causes quality of service degradations and 

unexpected tariffs. Illegal termination of International calls (aka. SIMbox fraud), and 

extreme usage scenarios related to International revenue share fraud are two of the 

major fraudulent activities [1]. Traditional fraud detection techniques only focus on 

detection accuracy and barely focus on detection speed. Therefore, fraudsters can 

survive for substantial time before being detected. Given the lower cost of acquiring a 

new connection they move on to a new connection once the existing one is blocked. 

Hence, detection of these fraudulent activities in near real-time is essential to nullify 

the impact and effectively control the frauds. 

Call Detail Records (CDRs) [2] are one of the most valuable data repositories of a 

telecom operator. CDR is the data record that contains information related to a single 

instance of telephone call or other related transactions. Mobile Switching Center 

(MSC) or related telecommunication nodes create a CDR record when a transaction 

passed through it. Based on the functionality of the telecommunication nodes, level of 

information in CDR may vary. In most cases, it contains data such as the origination 

and destination address of the call, the time the call started and ended, and the duration 

of the call. CDR stream is the best data source which reflects behavioral and calling 

patterns of subscribers. While several related works use CDR analysis for fraud 

detection, they follow traditional database reliant store first, process then approach, 

Moreover, CDRs collected within a large time window are considered for decision 

making; thus, lack real-time features and unable to effectively control the fraud [3]-

[7]. Furthermore, those solutions not focused on the time sensitive call patterns inside 

the CDR stream, which comprise of valuable information in fraud detection. 

Therefore, there is a need for a real-time fraud detection tool that can make detections 

rapidly by effectively utilizing time sensitive call patterns within the CDR stream. 
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1.2. Motivation 

Detecting a fraud after the event has occurred is not nearly as useful as catching it in 

real time. While CDR is generated in real time, immediately after related transaction 

is completed, most fraud detection tools use CDR for post analysis. Some of the 

sophisticated tools available in industry [8] use signaling information in addition to 

CDRs to make detections in real-time. However, capturing such signaling information 

incur additional cost as supplementary probing devices are introduced to the network. 

Also, these probing devices may introduce additional point of failure to the network. 

Therefore, relying on CDRs is most cost effective and reliable method.  

CDR contains all the required data to make near real-time fraud detections. But most 

of the business analytics tools store this data on static storage and perform batch 

operations on past data to calculate aggregate values such as sums and averages. Even 

though such analysis gives useful insight about the past behavior, it is not sufficient in 

current business world, as it is not capable of exploiting the timeliness value of data 

and not captures time sensitive call patterns inside the CDR stream. For example, 

following are two use cases where real-time CDR analytic could be useful. 

1.2.1. Grey call detection 

Illegal IDD Termination (aka. Grey Calls or Bypass Calls) is a major source of revenue 

loss for a telecommunication provider, which also deteriorates Quality of Service 

(QoS) offered to customers [1], [9], [10]. This scenario happens when fraudsters 

accumulate an incoming international call through the Internet via Voice over Internet 

Protocol (VoIP), and then inject it back to the destination country’s telecom network 

as a local call using local SIM (Subscriber Identity Module) cards installed in a device 

called SIMbox. Therefore, the call reaches the called party with a local CLI (Calling 

Line Identity) and billed as a local call. When the price difference between the 

international call termination and local call is high, fraudsters can easily gain revenue 

that exceeds the break-even point with few fraudulent calls. Therefore, detection and 

termination of such fraudulent phone numbers with minimum delay allows to regain 

significant portion of revenue and effectively control this kind of fraud. 
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1.2.2. Extreme usage detection  

Under extreme usage detection, we consider the scenarios in which subscribers 

abnormally originate calls or subscribers abnormally receive calls compared to the 

normal behavior. These could be due to fraudulent activity or some other incident. 

Variants of International revenue share fraud and Premium rate service fraud are best 

examples for this type of fraud. International revenue share fraud and Premium rate 

service fraud are similar in nature and in either cases fraudsters try to pump up traffic 

to certain numbers or number ranges belonging to premium rated or high cost 

destinations. Usually operators need to pay more than LKR 50 per minute to terminate 

calls to those premium rated or high cost destinations. Once fraudsters have inflated 

traffic to agreed number levels, they can claim some percentage of the termination 

revenue from the destination party. 

Fraudsters are using various methods to persuade customers to originate calls to these 

premium rated number levels. Dial and disconnect scam is the most frequent method 

in which fraudsters multicast missed calls to a subset of customers with premium rate 

number as CLI. After that, some of the customers dial back to that premium rate 

number as response to missed call and get charged. In some cases, fraudsters multicast 

fake text messages using SMS (Short Message Service) or messaging facility of over-

the-top media service providers like Viber or WhatsApp. Fraudsters include premium 

number either as message sender’s CLI or as a content inside fancy message. Some of 

the customers dial back those premium rated numbers. Sometimes fraudsters gain 

unauthorized access to PABX (Private Automatic Branch Exchange) systems belongs 

to cooperate customers and originate calls premium rated numbers. This is known as 

PABX hacking fraud. Sometimes fraudsters inject malware to mobile handsets of 

customers and originate calls to these premium rated number ranges. This scenario is 

known as malware originated fraudulent calls. Sometimes fraudsters register in 

network as inbound roamer and generate calls to premium rated numbers. This is 

known as inbound roamer fraud. These fraudulent activities reflect calling patterns 

unique to each scenario in CDR stream. 
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Situation awareness is important to take timely actions to exploit maximum advantages 

from opportunities and control the damages in threats. In addition to fraudulent call 

patterns, CDR contains many other important patterns which require timely attention. 

As an example, when a popular TV program advertises the hotline number, subscribers 

try to dial that number and a huge number of attempts reaches the network at an 

unusual arrival rate. That may cause congestion in network devices and consequently 

degrades the QoS. Real-time detection is required to take timely actions and minimize 

the impact. Additionally, some attackers try to make DoS (Denial of Service) and 

DDoS (Distributed DoS) attacks targeting the voice networks. In this case attackers 

make large number of call attempts to a set of numbers in the destination network. If 

the operator can detect it, they can react immediately and drop such calls at network 

edge without processing. 

Extreme usage patterns can be easily identified by analyzing the CDR steam. But most 

important factor is that those events are time sensitive. Most of the time these cases 

are identified at root cause analysis. Use of traditional database systems are inefficient 

in this case, as it takes much time to upload CDRs into a database and perform queries 

on a huge database. Therefore, it is important to be able to identify these extreme user 

behaviors by analyzing CDR streams in real time. 

1.3. Problem Statement 

Traditional systems make detections by generating a set of features or aggregate values 

by querying static data over a large time window and make decisions based on such 

values. This is time consuming and by that time a fraudster can make number of 

successful calls before being detected. Scenarios discussed above highlight the need 

of a real-time CDR analysis tool, which can snoop CDR streams and generate a recent 

or real-time view of the telecommunication network. Also, resultant recent view 

should be able to integrate with past data and produce complete state of the network at 

a given instance with minimum latency. System should be easily customizable 

according to varying requirements of the operators. Lower development cost will be 

an extra advantage. Such a system allows operators to gain maximum advantage by 
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exploiting timeliness of detected events and save significant amount of revenue by 

minimizing fraudulent activities. 

The solutions available in research literature lack real-time features due to unsuitability 

of traditional database reliant store first process then approach for latency sensitive 

applications, large time windows for feature generation, shallow feature set, less 

awareness about context, and inability to detect complex patterns in CDR. Commercial 

systems are also based on databases, use a proprietary feature set, focuses on specific 

use case, and are usually expensive. Therefore, operators are unable to afford the cost 

of such specialized systems. 

Therefore, the problem to be addressed by this research can be stated as follows: 

How to detect fraudulent call patterns in real-time using CDR? 

Our primary focus is to use the power of complex events to support real-time decision 

making in detection of grey callers and fraudulent activities which involve extreme 

usage. 

1.4. Objectives 

Following list of objectives are to be achieved to address the above research problem: 

 To research about each use case and its context details and to identify complex 

call patterns in CDR streams. 

 Identify suitable features to support decision making using a short-time 

window. 

 Develop algorithms, CEP queries and batch analytic queries to detect selected 

use cases. 

 Design optimal system architecture to perform fraud detections using real-time 

and batch analytics together and implement the system using best suited 

software packages.  

 To conduct a comprehensive performance study using real data sets to 

demonstrate the utility of the proposed solution. 
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1.5.  Outline 

The remainder of this report is organized as follows. Chapter 2 describes the theoretical 

background related to CDR, Grey Calls, and related work. Technologies like Complex 

Event Processing (CEP) and Business Activity Monitoring (BAM) are also discussed 

in detail. Proposed design is presented in Chapter 3. Chapter 4 presents about 

experimental setup and the results obtained by passing real-world dataset through the 

proposed system. Finally, Chapter 5 summarizes the research findings, and present 

limitations and future work of this research. 
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2. LITERATURE REVIEW 

This chapter discusses the details about major use cases and presents survey about the 

possible technologies to address given problem statement. Section 2.1 explains about 

CDR. Detailed description about Grey calls is presented in Section 2.2. Section 2.3 

discusses about fraudulent cases related with extreme usage scenario. Works related 

to CDR based fraud and abnormal usage detection techniques are presented in Section 

2.4. Section 2.5 discusses about complex event patterns comprised in CDR. Section 

2.6 discusses about related data processing technologies. Section 2.7 discusses about 

methods of accessing stored data by CEP engine to execute queries combined with 

data streams. Section 2.8 presents how both the real time and archived data can be 

combined. Summary of key findings of literature survey is presented in Section 2.9. 

2.1. Call Detail Records (CDR) 

Call Detail Record (CDR) [2] is the data record generated by telecommunication equipment. 

It includes the attributes that are specific to a single instance of a phone call or other 

communication transaction which is handled by that device. The attributes and level of 

information inside the CDR vary depending on functionality of the device. The metadata files 

or instructions manuals of the device typically specify how to extract the information in CDR. 

CDRs are inherently used for billing purposes. In addition, it is used for troubleshooting, 

measuring Quality of Service (QoS), fraud detection, gaining Business Intelligence (BI) and 

forensic investigations.  

The most common attributes of a CDR generated for a voice call are listed in Table 

2.1. In addition to these attributes, CDR of Global System for Mobile (GSM) telephone 

call contains additional attributes that represent the information about mobile handset 

and its location (see Table 2.2). CDRs with these attributes are generated at Class-5 

switches to which subscribers are directly connected. Handset and location related 

attributes of originating and receiving parties of a telephone call are recorded in two 

separate CDRs at Class-5 switches to which calling and called party subscribers are 

attached. The telecom switches to which only other switches are connected are known 

as Class-4 switches. Table 2.3 lists the additional attributes recorded at Class-4 

switches in addition to basic attributes mentioned in Table 2.1. These details are 
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helpful to distinguish telecom operators in signaling interconnection. Tables 2.1 to 2.3 

list only the essential attributes of a voice call that are helpful in this research. Many 

other attributes that represent the QoS parameters, protocol-specific details and device-

specific details are included in CDR. Short Message Service (SMS) and Mobile Data 

(GPRS, EDGE, UTMS, HSPA and LTE) technology transactions also generate CDRs.  

Table 2:1: Common attributes in CDR. 

Attribute Description 

Origination Date & Time Date and time when call reached to the system 

Calling Party ID (A Number) Subscriber Identity Number of user who originates the call 

Called Party ID (B Number) Subscriber Identity Number of user intended to receive call  

Answer Date & Time Answered date and time (Only if call answered by B party) 

Disconnect Date & Time Disconnected date and time of call answered call 

Release Date &Time Date and time call released by system 

Disconnected Party Which party has released the call 

Call Duration Duration between answer time and disconnect time 

Release Cause Code that represents the reason for call release 

Type of Call Can be Local, International or National 

 Local – A and B parties within same telephone operator 

 National – B party is in different telephone operator but 

within same country 

 International – B party is in different telephone operator 

in different country 

Table 2:2: Specific attributes in CDRs generated at Class-5 switches. 

Attribute Description 

IMSI – International Mobile 

Subscriber Identity 

Unique number that represents the Subscriber Identity Module 

(SIM) card 

IMEI – International Mobile 

Equipment Identity 

Unique number that identifies particular GSM-enabled device 

MCC – Mobile Country Code Represents the Country to which mobile subscriber belongs to 

MNC – Mobile Network Code Represents the Operator to which mobile subscriber belongs to 

LAC – Location Area Code Represents the BSC (Base Station Controller) to which mobile 

subscriber is attached to 

Cell ID Represents the sector of a BTS (Base Transceiver Station) to 

which mobile subscriber is attached to 

MSC GT – Global Title 

Number of Mobile Switching 

Center  

Represents the VLR (Virtual Home Register) and Mobile 

Switching Center to which subscriber attached to 
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Table 2:3: Specific attributes in CDRs generated at Class-4 switches. 

Attribute Description 

Origination Switch Details  Origination Point-Code when using Time Division 

Multiplexing (TDM) technology (e.g., Using ISUP signaling 

protocol with SS7 stack)  

 Origination Gateway IP when using Voice over IP (VoIP) 

technology (e.g., SIP signaling protocol) 

Destination Switch Details  Origination Point-Code when using Time Division 

Multiplexing (TDM) technology (e.g., Using ISUP Signaling 

Protocol with SS7 stack)  

 Origination Gateway IP when using Voice over IP (VoIP) 

technology (e.g., SIP Signaling Protocol) 

Traditional BI techniques and fraud detection techniques only focus about aggregate 

values like averages, summations, and counts derived using CDRs. However, CDRs 

contain interesting patterns that reflect customer behavior. Identification of such 

patterns allows to gain economic advantages by recognizing opportunities, as well as 

mitigate risks by unmasking threats. Rapid growth of Data Science and Machine 

Learning fields has enriched the CDR based pattern recognition. Fraud detection is one 

of the major applications of CDR-based pattern recognition. Section 2.4 focuses on 

literature that applies CDR-based fraud detection and pattern recognition techniques. 

2.2. Grey Calls 

Grey call fraud, SIMbox fraud, or Bypass fraud is one of the major source of revenue 

loss in Telco industry [1]. Its impact is more severe in certain parts of the world, 

especially in Asia, Africa and North America [9], [10]. This fraud is taken place when 

the rate of international termination call is considerably higher than rate for local 

incoming call in that country. Therefore, Fraudsters takeover those international calls 

and transfer it through Internet to the destination country. Then Voice over IP (VoIP) 

calls are injected to back to destination network via SIM (Subscriber Identity Module) 

cards which are installed on device called SIMbox. Because this activity bypasses the 

legal international interconnections between Telco operators, international calls are 

billed as national calls and significant revenue leakage is occurred. SIMbox is the 

device which is capable of converting VoIP calls to GSM network call. With expansion 

of technology high capacity SIMboxes with advanced technologies like International 
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Mobile Equipment Identity (IMEI) swapping and intelligent SIM swapping algorithms 

make the SIMbox behavior closer to actual subscriber [11].  

In addition to the revenue loss SIMbox fraud causes QoS loss for customers, as these 

calls may reach the SIMbox through a low quality, low bandwidth IP routes. Also, a 

SIMbox may use 100s of SIMs simultaneously, which may overload the base stations 

in that area. That may cause sudden call drops and loss of QoS observed by the 

destination customer for IDD calls, as well as a degraded service is offered to actual 

customers in that area. Since SIMbox spoofs actual international Calling Line 

Identification (CLI) with a local CLI, SIMbox fraud may lead to privacy issues. So 

SIMbox fraud may severely affect customer satisfaction and operator’s brand name. 

We can divide Bypass fraud into two major categories as Onnet bypass and Offnet 

Bypass. Onnet bypass means fraudsters use the SIM cards of same network of 

destination number. This is the common case in most of the countries as calls within 

same network cost much lower than charges for calls to other operators or international 

calls. Figure 2.1 depicts the Onnet scenario. Instead of using the costly high-quality 

routes that goes through destination networks International Switching Center (ISC), 

some wholesale carriers route calls through SIMbox operators connected though the 

Internet. SIMbox dials that calls via a SIM cards of the same network of the destination 

number. 

In Offnet bypass, fraudsters use the SIM card of a different operator in same country 

of destination number. Figure 2.2 depicts this scenario. This happens when local 

interconnection charges are much lower than international interconnection charges. In 

some countries local interconnection charges are much closer to the international 

interconnection charges. Therefore, Offnet bypass does not take place in such 

countries.  
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Figure 2:1: Onnet bypass. 
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Figure 2:2: Offnet bypass. 

Detection of SIM cards used for SIMbox fraud is a challenging task for mobile 

operators. There are two major approaches. First approach is actively originating calls 
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to the target network via test units installed in several parts of the world and scan the 

CLI of those calls. Even though this process detects SIMbox numbers in real time, it 

is not capable of capturing majority of numbers. Second approach is CDR based 

analysis. CDRs are loaded into relational database and queries are used to identify 

fraudulent numbers. Rich set of attributes are needed to derive by summarizing CDRs 

to achieve effective detection. In context of Onnet bypass, operator has more details 

including location and owner information. But detection of Offnet bypass has to be 

performed with limited details and strong pattern mining techniques are required.  

Efficient detection process must consist minimum false positive (i.e., detect genuine 

customers as fraudulent) and false negative (i.e., classify fraudulent numbers as 

genuine) values. Moreover, number of attempts made by fraudulent SIM card before 

detection is another important factor. If this value is very high, fraudster can cover the 

cost before disconnection of SIM card. Because the Telecom industry is highly 

competitive, in most of the countries fraudsters can buy new SIM cards at a very little 

cost. Hence, traditional analysis methods fail here as those are based on past CDR 

analysis. Therefore, when operator has disconnected fraudulent SIM cards, fraudsters 

use new set of SIM cards as they can cover profit margin. This process continues, and 

actual task of detection process becomes damage control function.  

2.3. Extreme Usage Scenarios 

In regular business, Telco operators encounter many scenarios in which normal 

subscribers show abnormal usage behaviors or excessive usage of network resources, 

and then reject to pay bills. Subscribers show such kind of behaviors unintentionally 

or as a result of their reaction to some provocations triggered by fraudsters due to lack 

of awareness. Fraudsters directly involve overusing network resources only in few 

cases like inbound roamer fraud.  

In majority of extreme usage scenarios fraudsters use premium rate telephone 

numbers. Some countries have high international incoming call charges to all number 

ranges belongs to country code or certain number levels in their numbering plan. When 

the caller in different country has dialed those premium rated numbers, caller’s service 

provider has to charge extremely higher value than standard IDD call charges in order 
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to cover call termination cost to premium rated number range. Fraudsters misuse those 

telephone numbers to earn profits through fraudulent activities. Operators publish 

those premium rated number ranges on their websites to make customers aware about 

dialing cost to those countries or telephone number ranges. The premium rated 

numbers used for fraudulent activities are automatically answered and sometimes 

fraudsters redirect those to fancy recordings to elongate conversation time and make 

even more profits. 

Dial and disconnect scam is the first category of fraudulent activity related to premium 

rate telephone numbers. In this scenario, fraudsters connected to international voice 

network multicast call attempts to range of valid telephone numbers in selected 

network in selected country. Normally those calls are disconnected by fraudster after 

few rings to make sure customers do not answer those calls. As international voice 

carriers do not charge for zero duration calls, fraudsters do not need to bear any charges 

to populate these missed calls. Intention of these missed calls is to arouse natural 

curiosity of recipient party and persuade them to dial back. When multicasting those 

missed call attempts fraudsters replace original calling party with premium rated 

telephone number or telephone number of country to which call termination rate is 

higher than LKR 50. Sometimes fraudsters wait till called party subscriber answer 

those call and make some groaning sounds to persuade customers more. Customers 

who are less aware about this fraudulent activity try to dial back these numbers and 

get charged. This fraudulent activity is also called one ring scam or ring and run scam. 

Outbound dialing due to fake text messages is the second most frequent fraud scenario 

related to premium rated numbers. Instead of missed calls, fraudsters use fancy 

messages to persuade normal subscribers to dial back to premium rated numbers. 

Those text messages are populated using SMS (Short Message Service) or messaging 

facility of over-the-top media service providers like Viber or WhatsApp. They include 

premium number either as message sender’s CLI or as a content inside fancy message. 

Some of the customers who lack awareness about these kinds of fraudulent activities 

dial back these premium rated numbers mentioned in these messages and get charged. 
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Another possible extreme usage related fraud scenario is inbound roamer fraud. Using 

international or national roaming facility provided by mobile network operators, 

subscribers belong to other operator’s mobile network (foreign or local) can latch to 

visitor network and use the services provided by host operator. Those subscribers are 

defined as inbound roamers. According to roaming agreements between two operators, 

home network operator of roamer needs to pay usage charges to visitor network 

operator on behalf of their customer. Visitor network operator needs to transfer billing 

related details to home network operator at earliest. Sometimes fraudsters use this 

roaming facility for their fraudulent activities. Fraudsters latch guest (foreign or local) 

SIM card on visitor network and originate calls to premium rated or high cost 

destinations. Foreign or local operator who is the home network operator of fraudster’s 

SIM card receives usage details once visitor network operator has transferred billing 

details. If there is any delay in billing file transfer, fraudsters can exploit those delays. 

Even though foreign operator needs to pay those charges to visitor network operator 

according to agreements, visitor network operator needs to track those fraudulent 

incidents and inform foreign operator as there is some associated risk in termination 

of roaming agreements and not paying excessive charges when usage charges due to 

fraudulent activity is very high. 

In PABX hacking fraud, fraudsters acquire the control of PABX (Private Automatic 

Branch Exchange) system by exploiting vulnerability of PABX system [7] or its 

connected network. Then fraudsters make large number of calls to premium rated or 

high cost destination without any intention of actual customer if PABX system has 

IDD facility. Customer is billed for these calls and more often than not they refuse to 

pay the bill as calls were originated without their intention. So operator needs to bear 

the cost. This scenario is encountered only when telecom operator provides trunking 

solutions to enterprise customers who operate PABX systems. Even though this fraud 

scenario is less frequent, its impact is high as fraudsters can originate many 

simultaneous calls up to configured channel capacity of trunk between central office 

and customer’s PABX. 

Similar kind of a scenario can happen with malwares installed in smart phones. 

Fraudsters setup set of premium rated numbers and distribute some malwares that can 
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remotely or automatically triggered to dial that numbers. When mobile handset is 

inflected with such malware, it frequently originates long-duration calls to those 

premium rated numbers and customer get charged. Because these calls are dialed 

without customer intention customer often refuses to pay the bill and operator has to 

bear the cost to retain the customer. This scenario is known as malware originated 

fraudulent calls. 

All these five cases are well organized frauds and related to premium rate international 

numbers. This is because fraudsters try to make profits from those activities. 

Destination party or third-party between premium destination operators and fraudsters 

advertises these numbers with revenue share model. Fraudsters make agreements with 

those relevant parties and originate calls into premium rated numbers in fraudulent 

ways. In all these five cases fraudsters take some percentage of money earned by 

premium destination operator. International revenue share fraud is an umbrella name 

used to define these five types of fraudulent scenarios. Sometimes these fraud 

scenarios are defined as premium rated service fraud. International revenue share fraud 

is one of the major frauds and telecommunication service providers around the world 

are losing billions of dollars [1] due to this. Therefore, under extreme usage detection 

we will focus on these five fraud scenarios belong to international revenue share fraud. 

2.4. CDR-Based Detection Techniques 

2.4.1. Grey call detection techniques 

Elmi et al. [4] proposed an Artificial Neural Network (ANN) method to address 

SIMbox fraud. They have used supervised learning method with Multi-Layer 

Perception (MLP) as classifier. ANN was used because of its generalizing capabilities, 

ability to learn complex patterns and trends within noisy data and better performance 

records in this domain. This system comprises nine features derived using CDRs in 

dataset and corresponding values of those features were calculated for each calling 

subscriber. Table 2.4 describes the feature set which was used for SIMbox detection. 
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Table 2:4: Feature set used in ANN based approach [4]. 

Field Name Description 

Call sub This is the subscriber identity module (SIM) number which 

was used as the identity field 

Total calls This feature is derived from counting the total calls made by 

each subscriber on a single day 

Total numbers called This feature is the total different unique subscribers called by 

the customer (subscriber) on a single day 

Total minutes Total duration of all calls made by the subscriber in minutes 

on a single day 

Total night calls The total calls made by the subscriber during the midnight 

(12:00 to 5:00 am) on a single day 

Total numbers called at night The total different unique subscribers called during the 

midnight (12:00 to 5:00 am) on a single day 

Total minutes at night The total duration of all calls made by the subscriber in 

minutes at midnight (12:00 to 5:00 am) 

Total incoming Total number of calls received by the subscriber on a single 

day  

Called numbers to total calls ratio This is the ratio of the total numbers called/total calls 

Average minutes The is the average call duration of each subscriber 

In Multi-Layer Perception the ANN consists of multiple layers of computational units 

(neurons), connected in feed forward way. So these neurons can be categorized into 

input, output and hidden neurons based on layer. Connections between neurons are 

known as edges and which has associated weights. Neurons are only connected to 

subsequent layers but not to the neurons in same layer. Weighted sum of multiple 

inputs is taken and it is fed into nonlinear activation function called Sigmoid function 

to generate single output of neuron. This output value is passed as input to the 

connected nodes in next layer. Back Propagation algorithm is used to train the ANN 

to minimize the training errors. This algorithm calculates error value for each neuron 

output (difference between output of neuron and actual value) and weights of network 

edges are continuously adjusted in a way that minimize errors.  

The dataset was divided to ten subsets and average error value was calculated by 

running experiment for each subset in turn using same model. While using one subset 

for testing remaining nine was combined and used for training. This is known as 10-

fold cross validation. Authors has changed four parameters to find optimum ANN with 
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highest accuracy. Number of hidden layers, number of neurons per hidden layer, 

learning rate and momentum are those parameters. Learning rate represents the speed 

at which the ANN arrives at the global minimum value for Sum Square Error (SSE). 

The momentum parameter represents the rate at which the ANN approaches 

neighborhood of optimality at early stages of algorithm. Both momentum and learning 

rate range its values between zero and one. Altogether they have experimented 240 

neural networks and compared them in terms of prediction accuracy, generalization 

error, time taken to build the model, precision, and recall. So they have unmasked the 

optimum ANN. They have identified that very high learning rates and momentum rate 

significantly degrade classification accuracy as it leads algorithm to overshoot the 

optimal configuration. They have obtained maximum accuracy of 98.7% by using 

lower momentum value (0.3) and moderately higher Learning rate (0.6) and using two 

hidden layers. Learning and classification performed in about 17 seconds with 

considerably lower false positive and false negative detections. 

Two years later the same authors came up with a Support Vector Machine (SVM) 

based approach [5] for the same dataset and compared its results with the ANN based 

approach. They have used 10-fold cross validation technique while using same features 

in [4]. 

Because this is a binary classification problem there are only two classes in the training 

data, in this case hyperplane is a line. But authors had to use nonlinear SVM as 

nonlinear curved line was required to separate boundaries. So they have used kernel 

functions instead of inner product and evaluated performance separately for 

polynomial kernels, radial basis function kernels, and linear kernels. Additionally, they 

have taken measurements by changing the C penalty parameter which effectively 

controls amount of error willing to afford in the training data. Altogether they have 

evaluated 40 SVM models in terms of accuracy, generalization error, and time taken 

to build the model, precision and recall using 10-fold cross validation method. 

Moreover, they have evaluated performance of both methods by changing training and 

testing set sizes. Authors achieved above 98.5% accuracy in both ANN and SVM 

based approaches. Finlay, they have located best SVM model and found that it 

performs better than ANN because of significant reduction in running time. Even 
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though authors were able to achieve high accuracies and lower running time in both 

the cases, sustainability of this approach in practical scenario is questionable due to 

many reasons. When we consider the dataset, its size is much smaller than typical 

mobile network operator. Dataset contains CDRs of 234,324 calls made by 6,415 

subscribers over two months. However, most of mobile operators, especially in Asian 

countries, have more than 5 million subscribers and generate more than 20 million 

CDRs per day [12], [13]. Also, they have considered CDRs from one cell id only and 

ratio between legitimate to fraudulent subscribers is approximately 2:1. But in real 

cases more than 20,000 cell IDs [14] need to be considered and percentage of SIMbox 

numbers out of total customer base is very low. So we can conclude that cardinality of 

dataset is inferior to actual cases. Therefore, this solution’s ability to achieve given 

performances in practical environment is not tested in [5]. Also, they have considered 

CDR for two months when calculating features. But the actual requirement is SIMbox 

detection need to perform as early as possible. Fraudsters can cover the cost of buying 

new SIMs, if they successfully operate over a few hours. So there is no point of 

performing calculations within a few seconds as long time window is used for feature 

calculation. Additionally, scalability of these methods with large datasets were not 

evaluated in both the papers [4], [5]. 

Murynets et al. [6] have presented a novel classifier for fraudulent SIMbox detection. 

Comprehensive analysis about SIMbox fraud and its consequences was performed in 

first part of this paper. As we are focusing on operation of SIMbox fraud and its 

consequences in previous chapter only important observations are highlighted in this 

chapter. Table 2.5 shows the attributes of the CDR used by authors, where they have 

accounted important details including location details, device details and 

corresponding customer segment of calling party which were absent in the previous 

cases [4], [5]. Those parameters are directly used as features as described below. Using 

CDR with a rich set of attributes can be identified as a positive step. By considering 

IMEI details it is possible to block the confirmed IMEIs or detect new SIM cards that 

are inserted into a SIMbox with a particular IMEI. But the detection logic cannot too 

much depend on that since advanced SIMboxes allow changing IMEIs [11].  
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Table 2:5: CDR fields considered in Classification based approach [6]. 

CDR Field Description 

Time Date and time of a call 

Duration Call duration 

Originating number phone Number of a caller 

Originating country code Country of a caller 

Terminating number Phone number of a called party 

Terminating country code Country of a called party 

Call type Mobile originated/terminated call 

IMEI International Mobile Equipment Identity (device identifier) 

IMSI International Mobile Subscriber Identity (user identifier) 

LAC-CID Location area code and cell ID (base station location identifier) 

Account age Time since account activation 

Customer segment Prepaid/postpaid/corporate account 

Authors have derived 48 features using mentioned CDR attributes in Table 2.5. It is 

important to note that the feature set is per IMEI basis and they have targeted to 

identify SIMbox rather than SIM cards used for IMEI. Even though authors did not 

give full description about whole feature set, features mentioned in Table 2.6 were 

highlighted. Based on these features, authors have characterized SIMbox behavior. 

Authors have demonstrated that SIMboxes have fairly static physical behavior as they 

connect to a very small number of nearby base stations while a genuine customer is 

dynamic and moves across many base stations. This is obvious but important 

observation which were not presented in the previous cases [4], [5]. LAC-CID attribute 

makes this possible. Because advanced SIMboxes are capable of swapping locations, 

location information need to be used with care.  

Authors have demonstrated SIMboxes have very few Mobile Terminated (MT) calls 

and generate a huge number of Mobile Originated (MO) calls while genuine customers 

have same number of initiated and received calls. So usefulness of outgoing calls to 

incoming calls ratio feature can be highlighted. Also, authors have presented that 

SIMboxes have very small duration of MT calls over the time than actual customer. 

Since SIMbox is a machine it cannot lively answer the MT call and maintain a 

conversation. So it just drops the call or forwards the call to announcement. That is the 
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reason for this observation. Another observation is SIMbox operators regularly deploy 

a set of new SIM cards once operator has detected and deactivated existing fraudulent 

SIM cards. They also tried to filter out the device called Network Probe which is used 

for quality measurements. 

Table 2:6: Feature set used in Classification based approach [6]. 

Feature Description Importance 

Average Mobile Originated (MO) 

call duration 

Can Compare the ratio between these values which varies 

significantly for SIMbox and genuine customer. 

Average Mobile Terminated (MT) 

call duration 

Account Age  Allows to identify long stay genuine customers while giving 

idea about SIM Card replacing activities of fraudsters when 

operator blocked the detected IMSIs 

Customer segment Pre-paid accounts are more likely to use in SIMbox as those 

accounts are easier to buy without much authentication. So 

can assign weights based customer segment. 

Total number of Outgoing calls Grouped according to their corresponding destinations and 

origins (international and domestic) and counted based on 

MO and MT time stamps. Further grouped based on 

originating and terminating country codes. Used to calculate 

other useful attributes including ratios between these values. 
Total number of Incoming calls 

IMSIs operated for IMEI SIMboxes typically use multiple SIMs  

Geo-Location Allows to compare physical movement of SIMbox vs 

Mobile Handset of genuine customer.  

Ratio of the number of destinations 

to the total number of calls 

Allows to check whether A Party dials many distinct 

locations abnormally 

Ratio of international calls to the 

total number of calls 

Allows to check whether A Party dials international calls 

regularly 

Before we look into classification algorithm it is important to highlight several 

concerns in feature generation. Per IMEI basis feature calculation has its own set of 

problems. Advanced SIMboxes can replace IMEIs with dummy values or other 

genuine IMEIs. So blocking IMEI numbers may block some genuine customers. 

Additionally, IMEI to MSISDN mapping may give false values. Since choice of device 

is customer’s right, operator has no control on IMEI. So applicability of this system 

directly in practical environment can be questioned. Better option is feature calculation 

per MSISDN basis.  
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Mobile operators disconnect SIMbox connections once they have detected it. So 

fraudsters insert many new SIM cards to SIMbox frequently. Also, SIMboxes do not 

move the location on regular basis and attached to limited set of cell IDs. So, there is 

a high probability that calls originating from those cell IDs to be grey calls. Location 

details give sense about that. But researchers have not mentioned that they have 

identified such cell IDs and not presented cell ID wise SIMbox distribution.  

When we consider dataset, majority of the features were calculated for data collected 

over one week period from tier-1 cellular operator in United States. So dataset is 

considerably larger than the previous cases. But one week period is still higher as 

operator loses considerable amount of revenue over that period. This dataset contained 

CDRs of 93,500 subscriber accounts and 500 (or 0.5%) out that were SIMboxes. Since 

SIMbox user CDRs are mixed inside considerable amount of genuine user’s data, this 

dataset can be considered as good mixing of SIMbox users and Normal user’s data 

than [4],[5]. Features like IMSIs operated per IMEI was calculated for data collected 

over five months. 66% of labeled accounts were used as the training set while 

remaining 34% were used for testing. Like in previous cases, cross validation 

techniques were not used to increase the accuracy. 

Classification algorithm which was used in this research is a linear combination of 

three classifiers associated with weight coefficients. Alternating decision tree, 

functional tree and random forest are the three classifiers. An alternating decision tree 

is derived by the combination of single question decision trees which has two types of 

nodes known as decision nodes and predictor nodes. Decision node contains feature 

test condition while predicate node has single real number corresponding to negative 

or positive weight. Root and leaves are predictor nodes and decision node lies between 

two predictor nodes. So input records are passed through multiple paths and output 

value is produced based on sign of the weighted sum. Based on training data, Boosting 

method continuously re-weights the values in predicate node. So ultimate function of 

boosting method is combining week classifiers into strong classifiers while focusing 

on majority as well as outliers in the training dataset. In Random forest, multiple 

decision trees are generated using subset of features and prediction output is generated 

based majority rule. Functional tree makes decision tests for combination of the 
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original features at decision nodes, leaf nodes, or both nodes and leaves unlike in 

standard decision tree in which decision test is done for single feature at decision 

nodes.  

The predictions made by Random forest algorithm provided best false positive rate of 

0.0001 while offering comparably higher false negative rate of 0.16. Functional tree 

algorithm had done predictions with lowest false negative rate of 0.07 but false positive 

rate was 0.0007 which is comparably higher than value obtained for Random forest. 

Therefore, to increase the accuracy, multiple regression technique was used. Multiple 

regression considers prediction output of three classifiers as predictor variables and its 

linear combination as criterion variable. Prediction error is defined as difference 

between predicted data label and actual data label. Regression weight coefficients were 

calculated by locating least value of square error for training dataset. Finally, they have 

unmasked optimum value for three weight coefficients and classified test data using 

novel classifier. They were able to minimize the false positive rate up to 0.0001 and 

false negative rate up to 0.09 and achieve 99.95% accuracy which was higher than 

previous cases [4], [5]. To enhance practical usage, they have filtered out accounts 

with less than 10 IMSIs per IMEI, probing devices and well known legitimate accounts 

and remaining 0.02% of accounts was used for feature generation.  

Even though authors gained high accuracy they have not mentioned running time of 

algorithm and processing requirements. To reduce computational resources, they 

simply used manual filtering which reduces the size of dataset. But manual filtering is 

not always possible. Therefore, scalability and running time of this method can be 

questioned.  

Critical evaluation of above approaches reveals many areas that were not focused and 

thus opens up new research topics. Those facts are summarized below: 

 Existing solutions have only targeted the accuracy and running time of 

classification algorithm while considering large time window for feature 

calculation. Those solutions did not interpret SIMbox detection as time 

sensitive operation. So these solutions are incapable of preventing financial 

losses as fraudsters can make profits easily by operating safely within that time 
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window before disconnection. Therefore, to make near real-time detections 

rich set of features should be generated for short-time window and 

classification algorithm need to be optimized according to that. 

 These approaches are only capable of detecting Onnet Bypass and did not pay 

any attention for Offnet Bypass. Both make similar kind of financial losses for 

many telecom operators. Features like Location, IMEI, IMSI, and Account type 

details may not be available for Offnet SIMbox numbers. So a rich set of novel 

features with additional measures is required to detect Offnet Bypass.  

 Features are generated based on calling party behavior only. But by considering 

called party behavior a valuable set of attributes can be derived. For example, 

counting the subset of called party numbers which has received IDD calls and 

belongs to a set of called party numbers dialed by the considered calling party 

will be valuable feature in context of grey call detection.  

 Previous cases have targeted CDR data stored in static databases. But CDRs 

records are generated in real time and flows as streams of data. Therefore, to 

gain maximum advantage, a new mechanism that is capable of directly 

processing the multiple streams is required. Also, that mechanism should 

support multiple CDR streams generated by Telco nodes, as well as some static 

data simultaneously.  

 A typical mobile service providers have a customer base of more than ten 

million. So data streams with very high transaction rate are generated at Telco 

nodes. So highly scalable and fast feature generation method is required to cope 

with current industry requirements. 

 Any of the discussed methods are not capable of identifying complex events 

masked inside CDR. Detection of complex events allow to exploit maximum 

situational value. This can be effectively used for SIMbox fraud detection.  

2.4.2. Extreme usage detection techniques 

Grosser et al. [3] proposed a fraud detection method using ANN. They tried to replace 

traditional method of fraud detection that is only capable of detecting extreme 

fraudulent activities. Traditional method is defined as absolute CDR analysis, which 
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generates alerts when calculated summative values of CDR attributes meet the fixed 

criteria known as Triggers. They suggested the method known as differential CDR 

analysis, which tracks the pattern of behavior of mobile subscriber by comparing the 

most recent call transactions with historical call transactions and notifies if change of 

pattern is observed. Two types of user profiles known as Current User Profile (CUP) 

and User Profile History (UPH) were maintained for each subscriber.  

Encoded CDRs which contain IMSI, originate date and time, duration and call type as 

attributes were used in this analysis. Researchers have grouped incoming CDR entries 

into three groups based on type of call as local, national, or international. Then they 

have created three neural networks to recognize patterns in these groups. Call time and 

its duration were used as inputs to the neural network that determines the pattern to 

which specific call resembles. ANN type known as Self-Organizing Map (SOM) 

network was used to generate patterns. This is an unsupervised learning method that 

is capable to transform an incoming signal pattern of arbitrary dimension into a one or 

two dimensional discrete map. 

Based on analyzed dataset they have identified 144 patterns corresponding to local 

calls, 64 patterns that represent national calls and 36 patterns corresponding to 

international calls. The pattern represents most probable call duration of the considered 

call type (local, national or international) at the given time of the day as per historical 

stats. So the user profile represents the frequency distribution of each pattern at 

considered windows for CUP and UPH. When a new encoded CDR of a certain user 

is generated, corresponding user’s CUP is adjusted according to that. Then information 

related to the oldest entry in the CUP is moved to UPH and information related to the 

oldest entry in UPH is deleted. To compare CUP and UPH researchers have used 

Hellinger distance [15], which is used to quantify the similarity between two 

probability distributions. Suspicious events are triggered when this distance value is 

large. 

Even though this solution takes us one step towards near real-time pattern recognition, 

it has many drawbacks. Authors have accepted that there is high probability of false 

positives and this can be used only as tool to narrow down the scope of analysis. Huge 
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number of genuine customers with random needs will be detected, as customer 

behavior is varying based on their context. They have not given an indication about 

the size and cardinality of the dataset which was used in this analysis. Therefore, we 

are unable to determine the scalability of solution. Maintaining user profiles for 

millions of customers in a modern mobile operator will exhaust system resources [12], 

[13]. Number of derived patterns will not be enough to represent behavior of a large 

customer base and identify abnormalities. Also, usefulness of patterns is lower as they 

have used only the call duration attribute for profiling. This system can only detect 

frauds which involve very high usage, thus the method will be ineffective in practice.  

Shawe-Taylor et al. [7] presented a mechanism to detect set of fraud scenarios in 

Global System for Mobile (GSM) network. Authors argue that since fraudsters always 

seek to beat the system by using new techniques it is impossible to eliminate frauds 

completely. But the detection approach, which is optimum mix of proactive and 

reactive approaches is most effective in avoiding the noticeable damages due to such 

frauds. 

They have highlighted many fraud cases including PABX hacking fraud, inbound 

roaming fraud and Premium rated service fraud that can be categorized into extreme 

user behaviors. Additionally, they have mentioned about subscription fraud, handset 

theft and freephone fraud. But we have not focused them as those are not considered 

in our scope. 

Authors have used Toll Tickets (or CDRs) as the data source for their Fraud Detection 

Tool (FDT). Even though CDR is created after call is finished, it is appropriate for 

fraud detection in real time given that each record is collected immediately after 

creation. Since the CDRs related to billing are not collected rapidly they have proposed 

mediation device to support hot billing and minimize delay. Mediation device is 

responsible to poll the telecommunication switches on a regular basis and collect CDR 

for their FDT. Signaling data is also a candidate data source, but it is difficult to handle 

due to sheer volume even though it gives data immediately when a call is setup.  

Authors have proposed the Brutus tool which tries to detect such frauds in real time by 

observing usage of subscribers. This tool consists of four major components, namely:  
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1. An unsupervised learning tool which uses neural networks to monitor called 

party (aka. B-number) details in CDR 

2. An unsupervised learning tool utilizing neural networks looking at calling party 

details (aka. A-number) in CDR 

3. A neural network based tool using supervised learning 

4. A rule based tool 

These components are arranged in a cascaded manner. But each module can generate 

the alarms by own. First two parts are unsupervised learning components which 

observe changes in user behavior without use of prior knowledge about fraud. B-

number wise profiling and analysis is placed as first filter to all incoming profiles as it 

allows to reuse the calculated profile data in future steps. Specifically B-number wise 

analysis was focused on international B-numbers as most of above-mentioned frauds 

related to international B-numbers. Then A-number wise profiling and analysis is 

performed using unsupervised Neural Network (NN) method. This allows the 

detection of novelty frauds and variant attacks. Collectively unsupervised NN part 

eliminates most of the normal users from equation and reduces further calculations in 

great extent. Also, it allows to keep the percentage of true negative at a minimum level. 

Supervised NN part is placed at next. These components efficiently pinpoint users 

whose behavior is similar to previously known fraud patterns. Authors expect to 

achieve high true positive by optimally tuning this component using training datasets. 

After that Rule-based tool is placed to examine the CDR based features against fixed 

criteria. These rules are initialized with manually set parameters based on the past 

observations. Based on the true alarms raised by other modules new rules can be 

developed to optimize the rule based tool. Finally, all raised alarms are presented in 

Monitoring GUI which is overlooked by human operators. 

This tool is combination of absolute and differential CDR analysis, as NN-based part 

performs differential analysis while rule-based part performs absolute analysis. Like 

[3] this system also uses UPH and CUP profiles when analyzing user behavior changes 

using NN. The main purpose of differential analysis part is to avoid the possibility of 

one set of rules appropriate for a subset of customers is being applied to all the 
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customers. Also, it allows to identify user behavior changes at an early stage. Authors 

have used CDR of 20,000 users collected within four months. Even though CDR files 

contained 25 fields they have used A-number, B-Number, call starting time and call 

duration only. They did not consider location details. 

Authors have proposed the function for common alarm level as a weighted sum of 

alarm levels of each component. So weights can be manually adjusted to achieve 

optimum results. In order to optimize the function logistic regression approach was 

used. The system triggers alarm when common alarm level exceeds a certain threshold 

value. This approach is positive improvement when we consider the previous approach 

[3]. They were able to achieve 85% of detection accuracy. One of the notable 

limitations of this tool is each time a CDR entry is received user profiles have to be 

swapped between disk and main memory. System has been tested with 30 CDRs per 

second using optimized database tool called GDBM. Since typical mobile operator’s 

CDR generation rate would be thousands per second, application of this tool would be 

difficult. Also, when considering the customer base of modern mobile operators, 

maintaining and updating huge number of user profiles will not be practical. Therefore, 

store and analyze approach need to be replaced. Also, neither of these has not 

considered complex event sequences contained in CDR stream that can give 

indications about fraudulent activities. For example, we can identify malicious call 

back fraud at early stage, if we can detect complex event that involves back to back 

missed call attempts from premium rate number set of subscribers. Also, Rich set of 

features are required to detect extreme behaviors discussed in [7] without maintaining 

resource consuming user profiles.  

2.5. Complex Events in CDR 

It is important to mention about complex events inside CDRs to understand their power 

in detection. Figure 2.3 sketches one such example. Imagine the situation where we 

have three different CDR streams for Local Calls, National Calls and International 

calls separately. At time t a call attempt to Subscriber B1 from other operator number 

A1 is recorded in National CDR stream. But that call attempt is blocked since the 

telecom operator has already identified A1 as fraudulent number. After a few seconds 
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at t + ∆t the same subscriber B1 gets a call attempt from A2 in the local CDR stream. 

Also, we can find a call attempt by subscriber B1 to International number I1 at t - ∆t 

in International CDR stream. In such situation there is a high probability that A2 be a 

fraudulent number and we can use other attributes to verify it. So it is clear that 

complex events allows us to narrow down analysis domain without maintaining user 

profiles as in [3], [7]. Figure 2.4 shows the real-world CDR entries that correspond to 

the above scenario. All telephone numbers have replaced with non-existing numbers 

to preserve privacy. 

 
Figure 2:3 : Complex events in CDRs created by SIMbox. 

International CDR Stream 2015-02-10 15:08:22|0791234567|+91005637821 

            t-Δt1                       B1                    I1 

National CDR Stream 2015-02-10 15:09:42|0739876543|0791234567|blocked 

              t                          A1                B1            Action 

Local CDR Stream 2015-02-10 15:09:53|0790192384|0791234567 

             t+Δt2                    A2                 B1 

Figure 2:4: Example complex event in CDRs created by SIMbox. 

2.6. Streaming Data Analysis Techniques 

All the approaches discussed earlier have derived features based on static data stored 

on traditional RDBMSs which store and index data before processing. It is apparent 

that traditional DBMSs alone cannot fulfil timeliness requirements coming from this 

domain. In this section we will critically evaluate the technologies that can be used for 

feature generation and complex pattern recognition. 
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Cugola et al. [16] defined the umbrella term Information Flow Processing (IFP) 

Systems, to represent the tools that can be used to collect information produced by 

multiple, distributed sources, and to process it in a timely way. Also they have analyzed 

the capability of each type of system ranging from Active DBMS to CEP to cope with 

requirements of this domain.  

Traditional DBMSs are designed to work on persistent data and deals with infrequent 

number of queries. When a user enters the command, these systems run that query 

once and to return a complete answer. Such interactions are known as Human-Active 

Database-Passive (HADP) interaction. So these systems are not capable to send 

notifications automatically when predefined patterns or situations are detected. So it is 

clear that traditional DBMS can hardly fulfil the timeliness requirements and unable 

to fulfill IFP domain requirements. 

Therefore, active database systems were developed as an extension for traditional 

DBMS to address this limitation by moving reactive behavior totally or in part, from 

the application layer into the DBMS. Active DBMSs vary based on the kind of active 

rules that can be expressed on system and the system’s runtime behavior. The most 

common kind of active rule type is called Event-Condition-Action (ECA) rules which 

breaks active rules into Events, Conditions, and Actions: 

 Event describes which sources can be considered as event generators. Some 

systems only consider internal operators, like a tuple insertion or update, while 

others also allow external events, like those raised by clocks or external 

sensors.  

 Condition specifies when an event must be taken into account. For example, 

define condition such that some data can be interested only if it exceeds a 

predefined limit.  

 Action identifies the set of tasks that should be executed as a response to 

detected event. For example, some systems only allow the modification of the 

internal database, while others allow the application to be notified about the 

identified situation. 
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Run time processing model of these rules is known as execution model and consist of 

five main phases as described in Table 2.7. Active database systems are used in three 

main contexts as mentioned Table 2.8. 

Table 2:7: Phases in execution model of active databases [16]. 

Phase Name Description 

Signaling Detection of an event 

Triggering Association of an event with the set of rules dened for it 

Evaluation Evaluation of the conditional part for each triggered rule 

Scheduling Definition of an execution order between selected rules 

Execution Execution of all the actions associated to selected rules. 

Table 2:8: Uses of active databases [16]. 

Context Description 

As a database extension Active rules refer only to the internal state of the database, e.g., to 

implement an automatic reaction to constraint violations. 

In closed database applications Active rules can support the semantics of the application but 

external sources of events are not allowed 

In open database applications Events may come both from inside the database and from external 

sources. 

It is apparent that open database applications are closer to IFP domain. Since active 

database systems are built using persistence storage inherited from traditional DBMSs 

there are negative performance impacts when the number of rules expressed exceeds 

a certain threshold or when the arrival rate of internal or external events is high. 

Therefore, active databases lack scalability to cope with multiple high speed data 

streams which is usual case in modern IFP domain applications.  

In order to address timeliness and scalability aspects, database community has 

developed Data Stream Management Systems (DSMSs) which can process large 

streams of data in a timely way. DSMS deals with unbounded continuous input streams 

rather than fixed-size stored datasets like tables. In such scenario assumptions which 

are made in traditional query processing are no longer valid. For example, no 

assumptions can be made on data arrival order over the stream. So storing the received 

events from data stream and process it after that is not practical. Such approach also 

imposes latency and scalability constraints. To address these limitations, DSMSs use 
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one-time processing by directly dealing with streams. DSMS allows posing new type 

of queries called standing queries that are deployed once and continue to produce 

results until removed. Unlike in previous cases standing queries can be triggered by 

system itself, periodically or continuously, as new stream items arrive without user 

interaction. Opposite to HADP this type of interaction is called Database-Active 

Human-Passive (DAHP). In some cases, DSMS produces answer to a query as an 

append-only output stream while in other cases continuously modifying the entry in 

storage when new elements comes through stream. It may produce exact answer or 

approximate value based on available memory to store the required elements of input 

stream’s history. DSMS executes standing queries and produces four main types of 

outputs as described in Table 2.9. 

Table 2:9: Types of outputs produced by DSMS [16]. 

Type of Output Description 

Stream Formed by all the elements of the answer that are produced once and remains 

belong to answer within whole lifespan of query. 

Store Filled with parts of the answer that may be changed or removed at a certain 

point in the future. The Stream and the Store together define the current answer 

to queries 

Scratch Represents the working memory of the system that acts as repository where it is 

possible to store data that is not part of the answer, but that may be useful to 

compute the answer 

Throw Sort of recycle bin, used to throw away unneeded tuples 

Therefore, DSMSs only focus on producing query answers, which are continuously 

updated to adapt to the constantly changing contents of their input data. Actually it 

creates modified output stream as an answer. Detection and notification of complex 

patterns of elements involving sequences and ordering relations are usually out of the 

scope of these systems. So manual intervention is required to associate a semantics to 

the data being processed and interpret meaningful complex events in given context. 

Unlike previous categories, Complex Event Processing (CEP) systems associate an 

accurate semantics to the information being processed and detect meaningful situations 

within that context. CEP Engine is listening to event streams generated by external 

sources via observers and then perform filtering and combining such notifications to 

generate higher-level events (aka. composite events or complex events). Detected 
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events are notified to sinks which act as event consumers. CEP systems can be 

considered as an extension of traditional publish-subscribe architecture because which 

allow subscribers to express their interest in composite events. So unlike in traditional 

publish-subscribe architecture CEP considers the history of already received events or 

relationships between events. 

Ability to detect complex patterns of incoming events (composite events), based on 

their content, sequencing and ordering relationships is most powerful feature of CEP 

model. Also, CEPs need to deal with large number of distributed and heterogeneous 

information sources and sinks.  

Cugola et al. [16] also introduced a framework to compare different types of IFPs. This 

framework includes a set of models that represents the various facets of IFP. From this 

set of models, Functional model provides the precise description of the functionalities 

offered by IFP engine and it can be used to describe differences among IFP engines. 

By considering this model as ideal system, authors have compared different CEP 

engines with respect to it.  

We have studied various possible technologies in previous section and identified that 

CEP is the closer implementation that satisfies the requirements of IFP Domain. Next, 

we will evaluate a set of commercial and open source CEP engines in terms of features 

and performance. 

2.6.1. S4 

Neumeyer et al. at Yahoo proposed S4 (Simple Scalable Streaming System) [17]. S4’s 

goal was to come with general purpose, easily customizable stream processing 

platform which allows to use commodity hardware in distributed manner. It has 

structured to achieve minimum latency by using local memory in each processing node 

by avoiding use of shared memory across the cluster. S4 considers all the nodes in 

cluster as identical nodes and there is no centralized control. This symmetry feature 

was achieved by using ZooKeeper [18] which is an open source cluster management 

service.  
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S4 consists of multiple Processing Elements (PEs). PE is the basic unit that performs 

the computation tasks. PEs interact which each other by emission and consumption of 

messages exchanged between them in form of data events. S4 framework facilitates 

for routing events to corresponding PEs and create new PEs when required. PE is 

uniquely identified by four components, namely functionality of PE and its associated 

configuration, type of events that it consumes, keyed attribute of those events, and 

value of keyed attribute. 

PE is instantiated for each distinct value of the key attribute. Therefore, PEs consume 

only the events which have exactly same key value to the keyed attribute value of PE. 

Keyless PEs are special case which do not have keyed attribute or value. Those are 

used at input layer and consume all the events of the type they are associated. Also, S4 

provides predefined PE types for standard tasks such as count, aggregate, and join. 

Processing Nodes (PNs) act as logical hosts of PE and responsible for listening to 

events, executing selection operations on the incoming events, dispatching events and 

emitting output events. S4 makes routing decisions on events to corresponding PNs 

based on hash function of key attribute value of that event. Event listeners running on 

PN passes incoming events to the processing element controller which invokes 

appropriate PE in proper order. Every Keyed PE is mapped to exactly one PN of a 

cluster based on hash function applied on keyed attribute value of that PE. Processing 

node is functioning at top of the Communication Layer which is responsible for cluster 

management, automatic failover to standby nodes and maps physical nodes to logical 

nodes.  

Authors have presented the performance of S4 when it is used for streaming click 

through rate (CTR) computation. Click through rate (CTR) is the ratio of number of 

clicks divided by number of ad impressions. Users have used S4 grid to calculate CTR 

in real-time and system performed CTR computation with 0.2% relative error at input 

event rate of 7,268 events per second. Beyond that event rate, relative error was 

increased since S4 grid was not able to process the event stream fast enough. 
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2.6.2. SASE 

Gyllstrom et al. proposed SASE [19] to fulfil real-time analytical requirements of 

RFID-based applications. SASE can also be used for general purpose applications as 

well. SASE targets to perform complex logics involving filtering, pattern matching, 

aggregation and recursive pattern matching over express-rate data streams with 

minimum latency and acquire meaningful actionable information. SASE is available 

as an open source system for stream processing and pattern matching. 

Authors introduce SASE Complex Event Language which is user friendly and 

expressive. High-level structure of SASE language is similar to SQL even though the 

design of language is centered on event pattern matching. 

Implementation of SASE is based on query plan-based approach which uses a dataflow 

paradigm with pipelined operators like in relational query processing. This approach 

provides greater flexibility in query execution. Native sequence operators are 

formulated on Non-deterministic Finite Automata (NFA) based model. NFA is state 

machine concept, in which the state machine in one state can have zero, one or more 

choices for the next state for particular input symbol. As per definition, we can say that 

such a state machine has accepted the string of symbols, if there is at least one sequence 

of state transitions on an input that leaves the machine in an accepting state. This 

concept allows to detect complex event patterns efficiently from continuously arriving 

event streams and used in most CEP systems. Authors were able to deal with lengthy 

sliding windows and large intermediate result sets using new abstractions of query 

processing mentioned above. 

Architecture of SASE based application consists four main layers. Bottom layer is 

known as physical layer which represents RFID readers, tags and antennas in RFID 

based scenario. But in general case that can be Sensor, Telecommunication node or 

any other data source. The cleaning and association layer lies above physical device 

layer which accepts data and performs cleaning and event generation. Within this 

layer, raw data is subjected to data preprocessing functions including anomaly 

filtering, temporal smoothing, time conversion and deduplication before generating 

events. Complex Event Processor is the main component in third layer and supports 
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long-running queries written in SASE language. It also has the capability of handling 

complex continuous queries that integrate database lookup. At complex query 

execution, Event processor first detects events and then sends subquery to database 

and combines the results to give final output. Event Database lies parallel to the CEP. 

This is the persistence storage component which allows historical data access and join 

that with resultant events. Finally, UI is the topmost layer which allows user to issue 

both continuous queries over the Streams and ad-hoc queries over database. It also 

visualizes results.  

2.6.3. Esper 

Esper is an open source library for CEP and event stream analysis [20], [21]. Esper is 

available under GNU General Public License v2. There is also a commercial version 

with high availability features. Esper uses DBMS, DSMS, and CEP concepts and can 

be used in data stream based and CEP applications. Esper engine allows applications 

to store queries and evaluate them against the data stream running through System. It 

generates real-time response when events match to conditions specified in continuous 

queries. Esper is based on the foundation of Event-Driven Architectures (EDA) and 

can be considered as natural extension to Service Oriented Architectures (SOA). 

Esper allows writing complex queries using the language called EPL (Event 

Processing Language), which is quite similar to SQL. EPL allows to express filtering, 

aggregation, grouping, sorting, counting unique events and join functions, possibly 

over sliding windows of multiple event series. It also supports same operations over 

batch windows. Sliding or batch window can be length window or time window. EPL 

provides the concept of named window. Named windows are data windows which are 

globally visible. So, inserted-into or deleted-from operations executed by one or more 

query statements can be applied on that. Also, Named windows can be queried by one 

or more statements. Esper statements can also be combined together with “followed 

by” conditions thus deriving complex events from more simple events.  

Esper subscribes to source event publishers through event stream connector and 

adapters. Esper supports a wide variety of event representations, such as Java beans, 
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XML document, legacy classes, or simple (key, value) pairs (java.util.Map), which 

promotes reuse of existing systems acting as messages publishers [21]. Also, it 

supports connecting relational databases as data sources through historical data access 

layer. Esper has the capability to join event streams against these historical data 

sources. Esper can be easily embedded in an existing Java application or middleware 

to add event-driven capabilities to existing platforms without paying high serialization 

cost or network latency for every message received and action triggered. Once event 

queries and pattern statements are registered in the Esper core container, event data 

gets analyzed and can trigger arbitrary logic bound to the engine in the form of Plain 

Old Java Objects. 

2.6.4. Siddhi CEP 

Suhothayan et al. performed a comprehensive evaluation of design decisions 

associated with CEP [22], [23] and suggested several approaches to improve CEP 

performance by using more stream processing style pipelines. Siddhi CEP is the final 

result of their research which implements the aforementioned suggestions. Later 

WSO2 developed it and made it freely available under Apache Software License v2.0 

[24]. Siddhi uses design decisions such as multi-threading, queues and use of 

pipelining, nested queries and chaining streams, and query optimization and common 

sub query elimination to improve the performance. 

Siddhi receives events through input adapters, then Siddhi core performs processing, 

and finally emits output through output adapters. Query compiler is connected to 

Siddhi core to deploy queries on it. Input adapters are responsible to receive events 

and convert them to a common data model known as tuple. Tuple data structure is 

similar to row in relational database table and it contains Stream ID and other data 

items belong to columns. Tuple allows to process events faster by minimizing 

overhead while allowing to use SQL like queries with traditional database optimization 

techniques. Siddhi core only accepts tuples for internal processing, so events received 

as XML or POJO (Plain Old Java Object) are converted to tuples at input adapters. 

Query compiler is responsible for converting the user submitted queries to its runtime 

representation and deploy it on the Siddhi core. Runtime representation of Siddhi 
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query is defined as Processor. Processing tasks are performed by Siddhi core which 

consists of processors and event queues. After converting to tuples, input events are 

placed at input queues and processors fetch those events for processing. Then those 

events are evaluated against the query conditions and corresponding output events are 

produced for matching events. Output events are placed at output queues and based on 

requirement those events can be sent to external subscribers through output adapters 

or can be consumed by another processor for further processing. Siddhi architecture 

allows on the fly query manipulation. This feature allows users to add or remove 

queries while siddhi engine is running. 

Siddhi queries are represented using query object model which follows SQL like 

structure. These queries are in line with relational algebra and allowed to use 

optimization techniques used in relational databases. Query produces a stream as an 

output and that can be recursively passed to another query as an input stream to make 

complex queries. Since the query objects are loosely coupled, users can easily compose 

nested queries while allowing to eliminate common sub-queries to achieve better 

overall performance. Initial implementation of Siddhi allows users to create queries 

via the Java interface. Later releases of Siddhi supports Siddhi Query Language 

(SiddhiQL) which is more user friendly. More details will be discussed later in this 

chapter. 

Siddhi uses pipelined architecture in query execution. Query execution is broken into 

different stages through processors which are connected through event queues. Data is 

moved through the pipeline using publication-subscription model in which queries at 

downstream subscribes to interested upstream query outputs. Each processor is 

composed of several executers which are responsible to evaluate events against single 

query condition and produce Boolean output to indicate whether event has matched or 

not. Matching events are passed to logical executers at downstream while non-

matching events are simply discarded.  

In Siddhi all processing tasks are performed by multiple treads and pipelined 

architecture along with transparent query object model allow to ensure that common 

sub-query is executed at only one point in the system. This approach helps to 
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outperform both single tread query processing and one thread per single query 

approaches where former is suffered by less parallelism while latter is incapable of 

eliminating duplicate sub-query execution. Siddhi uses single input queue to feed 

processors. This is achieved by multiplexing multiple streams into a single queue. 

Stream ID field of tuple facilitates to distinguish types of events. This approach makes 

intermediate query handling much simpler and improve Siddhi’s performance. 

Siddhi processor evaluates the conditional or temporal conditions against each 

incoming events. Executors and Event Generator are two major components of 

processor. Executors are generated by query parser by parsing the query object model 

constructed by the user and responsible to evaluation of conditions. Executers are 

arranged in tree-like structure and event is passed to the root of the tree and evaluated 

according to depth first search order. This structure helps to eliminate non-matching 

events early and enhances Siddhi performance. 

Siddhi state machine is the major part in processing complex queries. State machine is 

used to handle two type of queries named as Sequence queries and Pattern queries. 

Sequence queries allow to define Siddhi to fire an event when series of conditions are 

satisfied one after the other. Since Siddhi stops capturing same type of event sequences 

once first instance of particular event sequence is detected, we need to use Every 

operator to instruct Siddhi to continuously capture such event sequences. Pattern 

Queries allows to fire an event when series of conditions are satisfied one after the 

other in consecutive manner. Kleene star operator is used to define infinite number of 

intermediate conditions in pattern queries. That means when we use “*” operator with 

event type, Siddhi looks for zero or more events from that event type in event sequence. 

Another useful feature of Siddhi is Sliding window and Batch window based queries 

which allows to reason about collection of events. Sliding windows allow to analyze 

events come in given time or length window including statistical analysis of the arrived 

events such as average and sum of attributes. So these windows keep sliding for each 

new event arrived to the stream. This can be divided into time based and length based 

windows. Time based sliding windows consider past events received within given 

amount of time from current event. Length based sliding windows consider given 
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value of event count from current event to backwards. Batch window provides similar 

functionalities, but it performs the analysis batch wise. So it releases the event batch 

for processing after given amount of time has elapsed after starting timestamp (Time 

Batch Window) or specified maximum number of events has received from given 

starting point (Length Batch Window) and commence to collect new batch. Multiple 

Siddhi queries can utilize same windows as it implements the windows within event 

queues rather than event processors. This enables effective memory consumption and 

allows to get better performance. 

Duplicate event detection is another useful feature of Siddhi. Duplicity can be defined 

by specifying the set of event attributes that needs to match. Siddhi provides two ways 

to deal with duplicate events. First approach, UNIQUE option only considers last 

arrived events and old duplicate events are discarded. Second option, FIRSTUNIQUE 

works vice versa and it accounts only first arrived event while discarding newly arrived 

duplicate events. 

It is important to compare Siddhi performance against Esper because those are two 

major candidates for our application. For simple filter query (without time or length 

window) and time window query for average calculation of a given symbol, siddhi 

performs about 20-30% better than Esper [22]. Also, for pattern query with state 

machine Siddhi performs significantly better than Esper [22]. 

2.6.5. CEP evaluation 

We have studied in detail about four CEP systems available in the industry. Cugola et 

al. performed the full analysis about existing Information Flow Processing (IFP) 

systems as of 2011 with respect to a set of models defined by them [16]. Esper [21], 

SASE [19], and S4 [17] included in that list. Even though we only discussed about 

functional model which helps to categorize IFP systems, we will directly refer other 

models in [16] to compare CEP systems.  

Even though S4 supports massive scale processing of data streams it still cannot be 

categorized as an effective CEP engine as it cannot handle complex events. Also, it 

does not support basic temporal event processing capabilities over time or length 
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windows. So SASE, Esper and Siddhi can be categorized as full CEP systems. All 

these systems use variations of Non-Deterministic Finite Automata (NFA) model to 

provide complex event detection. Also, Etalis [25], Cayuga [26], and ODE [27] are the 

open source systems which can be categorized as CEPs [22]. Additionally, commercial 

CEP systems like Coral8 [28], Oracle CEP [29], and Streambase [30] are available. 

Suhothayan et al. also compared CEP systems including SASE and Esper [22], [23]. 

When we consider SASE it performs considerably well due to NFA model to capture 

the sequencing events. SASE reports both satisfaction of query and the event caused 

to fulfil the satisfaction condition. Even though this can be viewed as advantage it 

significantly increase complexity of query processing. The most significant drawback 

of SASE is output of one query cannot be used as input to another query. So it is 

incapable of handling hierarchy of complex event types. Since this feature is required 

in our system SASE cannot be categorize as eligible candidate. Cayuga is a general-

purpose CEP system, which can be used to detect event patterns in multiple unrelated 

event streams and capable of handling hierarchy of queries. Its single treaded nature 

imposes limitations. 

In our analysis we found that Esper also has the ability to detect sequence of patterns 

in unrelated event streams while supporting temporal windows, joining, sorting and 

various other functions. Esper is multi-threaded and its architecture predominantly 

depends on observer pattern. Siddhi and Esper behave same in terms of functional, 

processing, data, time and rule models defined by Cugola et al. [16]. Siddhi is also 

multi-threaded. Both provides required functionality to implement our system. Since 

complex pattern detection plays major role in our solution, Siddhi’s performance in 

complex event detection hugely motivated us to select it as best candidate. But, Esper 

has rich documentation and many successful deployments.  

2.7. Accessing Persistent Data within CEP 

Accessing persistent data in addition to real-time processing is common requirement 

of complex event processing systems. According to the above analysis Esper and 

SASE allows to define RDBMS as data sources. Event Tables option in WSO2 CEP 

[24] supports for using historical data in real-time processing.  
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Event tables allow to store, retrieve and process events in a database table-like 

structure. This option is primarily used in use cases where events need to be extracted 

from the stream and accumulated over a long period of time for real-time (or non-real-

time) batch processing such as performing comparisons with the incoming event 

stream or feeding it to Business Activity Monitor (BAM). Event tables can have more 

sophisticated storage and retrieval criteria unlike in event windows which can be 

considered as predefined tables in WSO2 CEP. A single event table can be used in 

multiple SiddhiQL expressions. Event table can be defined either in-memory or in a 

relational database. In Memory Database Event Tables are fast and easier to define 

hence it is created in memory. Relational Database Event Tables allow to link RDBMS 

table to Siddhi CEP. Current version of WSO2 CEP supports event tables for widely 

used databases such as MySQL and H2.  

2.8. Combining Real-time View with Historical View 

The real-time view need to be combined with historical view to build the complete 

state of the network at a given instant. CEP is specialized to perform real-time event 

analysis while BAM is specialized to build historical view by executing batch 

operations. Therefore, standardized architecture is required to combine these tools in 

optimum manner. Marz et al. [31] proposed Lambda Architecture which allows to 

unite set of tools used in Big Data Analysis and come with most complete solution. 

Their main idea is to build Big Data systems as a series of layers. Each layer satisfies 

a subset of the properties and builds upon the functionality provided by the layers 

beneath it. Figure 2.5 depicts the layers of the Lambda architecture and its 

functionality.  
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.  

Figure 2:5: Lambda architecture for Big Data [31]. 

The batch layer stores the master copy of the dataset and precomputes batch views on 

that master dataset. It should be capable to deal with storage requirements of master 

dataset which is immutable, constantly growing very large list of records. Also, it 

should have enough processing power to compute arbitrary functions on that dataset. 

Batch processing system such as Hadoop [32] is best suited for implementation of this 

layer. The serving layer saves the resultant batch views emitted by batch layer and 

allows to be queried when required. The serving layer is a specialized distributed 

database that loads in batch view and makes it possible to do random reads on it. 

Support for random writes is not essential as it may cause complexity in databases. 

When new batch views are available, the serving layer automatically swaps those in 

so that more up-to-date results are available. Authors suggested ElephantDB for this 

layer. 

Batch layer and Serving layer satisfy key properties of big data system such as robust 

and fault tolerant, scalable, general, extensible, allowing ad-hoc queries, minimal 

maintenance, and debuggable. 
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The remaining most important feature is low latency updates and computation of real 

time view. Speed layer provides this functionality. The serving layer is updated 

whenever the batch layer has finished precomputing a batch view. This means that, the 

data not represented in the batch views is the data that came in while the pre-

computation was running. In order to provide full real-time functionality, speed layer 

calculates required views on recent data that was not accounted by last batch view and 

compensates for high latency of updates from batch layer to serving layer. Therefore, 

the goal is to make new data represented in query results as fast as needed for the 

application requirements. The big difference is that the speed layer only looks at recent 

data and computes incremental updates, whereas the batch layer looks at all the data 

at once and provide batch updates. Finally, serving layer provides full real-time view 

by merging both real time and batch view. The speed layer uses databases that support 

random reads and random writes. But more sophisticated systems like stream engines 

and CEPs easily provide this functionality.  

We have evaluated possible technology options for real-time event stream analysis in 

section 2.6.5. WSO2 Siddhi CEP is an optimum candidate according to the facts 

presented. [33], and [34] present how WSO2 products can fit to lambda architecture. 

Authors have suggested to use WSO2 Business Activity Monitor (BAM) to implement 

the batch layer and WSO2 CEP to implement speed layer. Incoming data is sent to both 

BAM and CEP using high performance data transport called “Data Bridge” that can 

achieve throughput up to 300,000 events/second. This functionality is provided by 

Data Bridge feature in the WSO2 feature repository. BAM runs user defined Hive 

queries to calculate the batch views and CEP runs user defined CEP queries to 

calculate the runtime views. Then both the views can be combined using Event tables 

in WSO2 CEP, which map the batch views in a database into CEP windows, to answer 

the queries posed by the users. 

2.8.1. WSO2 BAM 

WSO2 Business Activity Monitor (BAM) addresses a wide range of monitoring 

requirements in business activities and processes [35]. It achieves this level of 

flexibility, while facilitating technologies such as big data storage, analytics, and high-
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performance data transfer. WSO2 BAM is designed to be significantly scalable to 

handle large amounts of data loads when aggregating, analyzing and presenting data. 

BAM can be divided into four main parts. Those are Data Agents, Data receiver, 

Analyzer engine and Dashboard. First two parts perform data aggregation function and 

Analyzer engine performs Data analysis part. Finally, Dashboard and Report server 

perform data presentation functions. Data that needs to be monitored goes through 

these modules in order.  

The BAM analytics framework runs summarization and data analytics on collected 

data. WSO2 BAM implements data analysis using an Apache Hadoop-based Big Data 

analytics framework, which uses the highly-scalable, MapReduce technology [36] 

underneath it. BAM allows to write data processing queries and analytic jobs in 

integrated Apache Hive query language. So BAM users are released from the burden 

of writing complex Hadoop jobs to process data using underneath MapReduce 

technology. Hive is a simple query language similar to SQL, and provides the right 

level of abstraction from Hadoop engine while internally submitting the analytic jobs 

to Hadoop. 

2.8.2. WSO2 DAS 

WSO2 Data Analytics Server (DAS) [37] is a successor of WSO2 BAM. WSO2 DAS 

supports all the features provided by WSO2 BAM. So, DAS facilitates to aggregate 

events through data receivers, store those events in persistent storage, analyze those 

data using high speed large-scale data processing platform, and present information. 

In addition to BAM features, DAS is capable of performing real-time analytic tasks 

because all the features of WSO2 CEP integrated within DAS.  

Figure 2.6 depicts high-level architecture of WSO2 DAS. DAS is considered as 

complete revamp of old BAM because of major architectural level differences between 

two products. Instead of Apache Hadoop based Big Data analytics framework used in 

BAM, WSO2 DAS uses Apache Spark based analytics engine. Also, WSO2 DAS 

allows to execute SQL queries on the underlying data-sources as specified in Data 

Access Layer of the DAS. To provide this functionality, DAS uses Spark SQL as the 
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query engine which is Apache Spark's module for working with structured data. WSO2 

DAS users can execute Spark SQL queries interactively through Batch Analytics 

Console. Batch Analytics Scripts allow to run Spark queries in a sequence and WSO2 

DAS allowed to schedule those queries as per user’s requirement.  

 

Figure 2:6: WSO2 DAS Architecture [37]. 

Instead of Cassandra centric storage in BAM, DAS provides pluggable storage 

architecture and allows to choose underline storage mechanism based on requirement. 

For low to medium scale enterprise deployments, RDBMS data storage mechanisms 

such as MySQL, MSSQL or Oracle can be used. For Big Data enterprise deployments 

NoSQL storage mechanisms like for HBase or Cassandra can be used. The WSO2 CEP 

module integrated in WSO2 DAS version 3.1.0 supports Siddhi Query Language 3.0 

and allows to perform real time analytics. 

Jayawardhana et al. proposed custom CDR analyzer “Kanthaka” for near real-time 

telecom promotions in their research [38]. In “Kanthaka”, batch of CDRs is stored in 

Hash-maps in memory module and batch processing is done on that data. After that, 

increments are sent to Cassandra for each batch. Mentioned system has performed 

simple filter query on 600k events in 18 seconds. This method is less scalable and 

limited in functionality. Also, more complex queries need to be implemented in our 

scenario. Our preference for batch layer is WSO2 DAS instead of approach in 

“Kanthaka” because DAS provides generalized architecture with more functionalities 

while it can be easily integrated with WSO2 CEP and other products in suit. DAS is 
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highly scalable and provides high performance data capture framework with abilities 

to monitor, collect, and store Big Data. Sirbiladze et al. analyzed the available 

commercial and open source BAM solutions. They were compared Oracle BAM vs 

WSO2 BAM and found that WSO2 BAM has almost all the dashboard and data 

integration features in commercial BAM. Since WSO2 DAS is successor of WSO2 

BAM with enhanced performance and real-time analytics capability, DAS is the best 

suited platform for this scenario. 

2.9. Summary 

In first part of this chapter we have discussed about CDRs and the value of information 

available in CDRs. Next we have presented details about two main use cases of our 

project, namely grey call fraud and extreme usage scenarios. According to provided 

details it is evident that detecting those scenarios in real time is worthwhile. Based on 

literature, it is clear that available approaches are unable to meet the requirement of 

real-time fraud detection due to traditional database reliant store first process then 

approach for latency sensitive applications, depending only on large time windows for 

feature generation, shallow feature set, less awareness about context, and ignoring 

complex patterns in CDR in decision making. Then we have discussed about complex 

events which can be identified in CDR stream and value of those complex events or 

call patterns in decision making. We have evaluated streaming data analysis techniques 

and identified that WSO2 CEP as the most suitable candidate for CDR stream analysis, 

and call pattern detection due to Siddhi’s enhanced performance in complex event 

detection. We further studied possible ways of accessing persistent data from CEP and 

discovered that WSO2 CEP supports easier ways to access persistent data within CEP 

queries. We have identified that Lambda architecture is suitable baseline architecture 

for systems which perform both real time and batch analytics. Also, we have identified 

that WSO2 DAS as candidate platform to build our system due to its capability of 

performing high-speed batch analytics. According to this discussion, it is evident that 

there is a requirement of real-time fraud detection tool and open-source tools available 

in industry can be used as platform for such a tool. 
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3. PROPOSED DESIGN AND IMPLEMENTATION 

This chapter presents the architecture of the proposed real-time fraud detection system 

for telecom operators, its design, and implementation. Section 3.1 presents the high-

level architecture of proposed design and describes its components in detail. Section 

3.2 discusses the selection of features and steps in designing algorithms for each use 

case. 

3.1. High-Level Architecture 

To build the complete behavioral view of the customer base of telecommunication 

network, both historical and real-time views are required. Therefore, we followed the 

Lambda architecture and developed a system architecture that comprises batch, speed, 

and serving layers. Figure 3.1 depicts the high-level architecture of the proposed real-

time pattern detection platform. This architecture consists of three major layers (Speed, 

Batch, and Serving) similar to Big Data Lambda architecture, as it is well suited for 

application which performs both real-time and batch analytics. System receives events 

through data receivers, then perform analytics operations and output can be obtained 

from serving layer. Based on the use case, the output can be directly used or can be 

passed through a classifier. WSO2 DAS is used in batch layer due to its ability to 

perform high-speed batch processing. Siddhi CEP is used at speed layer due to its 

enhanced performance in complex event detection. Both WSO2 DAS and CEP are used 

at serving layer as application needs to get real-time, batch, or combined output when 

required. Because Siddhi CEP is integrated within WSO2 DAS package, there is added 

advantage in using these packages together. 
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Figure 3:1: High-level system architecture. 

To support the two chosen use cases, namely grey call detection and extreme usage 

detection (see Section 2.2 and 2.3 for details), three data sources are utilized. As seen 

in Figure 3.1 those data sources are Local CDRs, National CDRs, and International 

CDRs. These data were acquired from different nodes of the telecommunication core 

network. First, data from each data source need to be mediated by removing 

unnecessary characters and only the required fields need to be filtered. Then mediated 

data need to be send as event streams using data publishers. Event receivers listen to 

event streams published by external sources and direct that to processing layer. 

Incoming data is sent to both batch and speed layers, where batch layer pre-calculates 

a historical view of the system and speed layer calculates the most recent view of the 

system. Major component of the speed layer is the CEP engine. CEP calculates real-

time view of the data streams forwarded by Event Receiver and then feeds the 

calculated views into serving layer. Real-time view of the call patterns is calculated 

using simple aggregation queries and complex pattern queries deployed on the CEP 

engine. We selected the WSO2 Siddhi CEP engine for speed layer, as it suitable for 

complex event detection and its high performance comparable to other CEP engines. 

While implementing CEP queries to detect some of the use cases, we need to join 
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persistent or other short-term data tables with streams. Siddhi CEP achieves this by 

providing option to define RDBMS and In-Memory event tables in CEP Query plans. 

These event tables can be pointed to RDBMS table (e.g., MySQL) or defines short 

term In-Memory table and those tables can be directly accessed via CEP queries. Even 

though this design decision slightly varies from the original Lambda architecture, it 

helps to make more meaningful detections.  

WSO2 DAS produces historical view by performing batch processing at batch layer 

while CEP performs real-time processing. Therefore, events need to be fed into both 

the CEP and DAS. DAS can perform high-speed batch processing using Apache Spark 

Engine integrated with it. WSO2 CEP is integrated into to WSO2 DAS; hence, data 

receivers in WSO2 DAS receive the events published by Data Publishers and first fed 

them to CEP and then only, the data is persisted through WSO2 DAS. DAS allows 

using either a RDBMS or NoSQL storage as the underline database for event store. 

Also, system updates context data related to subscriber behavior using current data, 

detections made by system, and user feedback stored within database. These context 

data are used at feature generation as discussed in Section 3.2.1.1. 

The output of batch and speed layers are directed to serving layer and stored within it. 

Based on use case, serving layer facilitates to emit batch processing output, real-time 

view, or combined view. Therefore, when real-time view is required, we need to 

implement filtering queries to produce output of speed layer. When historical view is 

required, serving layer should facilitate to get it by using Spark Query. Also, real-time 

and historical view need to be combined at serving layer to provide combined view 

when required. Therefore, both DAS and CEP modules used at the serving layer. Even 

though we have depicted serving layer with separate DAS and CEP components to 

demonstrate our architecture clearly, the same CEP that was used in speed layer and 

same DAS in batch layer was used for serving layer.  

Some of the fraud instances can be detected by considering real-time behavior only 

and such instances are captured by filtering implementing queries on CEP. Combining 

real-time view and batch view is required to detect remaining fraud instances with 

minimum delay and higher accuracy. This combination produces a rich set of features 
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that represent statistics of dataset, context information, and complex events. Therefore, 

calculated feature values are passed through a Rule-based classifier to filter those fraud 

instances and final output is presented to the user. It helps to fully automate the system 

and make decisions without human intervention. Classifier module can be replaced 

with a suitable machine-learning based classifier without violating original system 

architecture. The classifier introduced in [6] is a possible option. As our primary focus 

was come up with a rich set of features which enables decision making based on a 

short-time window, selection of optimal classifier is left as future work. Finally, user 

feedback is fed back into batch layer and it is used to update context data. 

3.1.1. Data sources, Publisher, Receiver, and Event streams 

Three main data sources namely, Local, National, and International CDRs are used in 

this design. Local CDR means transaction logs for calls originated by operator’s own 

subscribers. These records are generated at Mobile Switching Centers (MSCs) in 

ASN.1 (Abstract Syntax Notation One) format and typically new file is generated in 

less than one minute. National CDR stands for transaction logs for calls terminated by 

other operators within the same country to the operator under study. Detailed version 

of these Call logs for answered calls are generated at TMSCs (Tandem or Gateway 

MSC). However, the telecom operator in our case use Call Screening Server as a 

firewall between other operators and home network. This node can blacklist numbers 

which need to be blocked and generate transaction logs in real time with the 

corresponding action (e.g., Blocked or Passed). Inclusion of action field makes these 

logs more useful and allows us to exploit CEP to locate the patterns easily. This server 

creates a log file once a minute with calls logged within the last minute. Therefore, 

Call Screening Server log was used to feed National CDR Stream. International CDR 

means records corresponding to calls originated to or terminated from foreign 

operators and detailed version of these CDRs are generated at ISC (International 

Switching Center). CDRs are originally generated as ASCII formatted files and then 

converted to CSV format.  

Data Publisher module is responsible for sending CDR entries to DAS and CEP by 

means of event stream. Event receiver, which is accompanied with DAS, listens to 
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event streams published by external sources. The format and the attributes of streams 

need to be defined in DAS and CEP prior to sending data. System only accepts 

published data complied with defined stream format through event receivers. Event 

adapters in DAS and CEP define network protocol and listening ports to receive 

events. Therefore, event receiver binds event adapter type together with stream 

definition to receive events properly. Data publisher should publish data using the 

protocol defined in event adapter and complying with tuple formats defined in event 

stream definitions. 

3.1.2. Batch layer  

Main component of batch layer is WSO2 DAS. Apache Spark analytics engine 

integrated in DAS and the underline persistent data storage performs batch layer 

functionality. WSO2 DAS provides predefined data-source named as 

WSO2_ANALYTICS_EVENT_STORE_DB to persist input stream data. This data-

source can be pointed to separate RDBMS or NoSQL database by modifying backend 

configurations of WSO2 DAS. Once Stream persistence is enabled, WSO2 DAS creates 

separate Spark table mapped to a Stream and the table can be accessed through Spark 

SQL batch analytic queries. For large-scale deployment it is desirable to use a NoSQL 

database. Persisted data is then analyzed using DAS batch analytics engine which is 

powered by Apache Spark. To access and create tables on Spark Analytics engine, 

CarbonAnalytics relation provider was used [37]. These tables can be accessed only 

through Data Access Layer using spark Queries. Carbon JDBC relation provider in 

Apache Spark was used to access already defined MySQL tables. Using this option, 

we were able to update feedback and context data externally and accessing those tables 

through Spark Analytics engine when required. Output data is then stored on Processed 

Data Store which is also can be pointed to RDBMS or NoSQL Database from DAS 

configurations. 

In Spark Query language used in WSO2 DAS, users need to define temporarily table 

mapped to each actual table to access data in actual table. Within query scripts, users 

need to refer to temporarily table instead of directly referring to the actual table. 

Temporarily table definitions are dropped from memory after Spark queries reach the 
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end. But data in actual table remain unchanged and if new temporarily table which 

mapped to actual table is defined again, old data can be accessed. In batch operations, 

we have requirement of truncating data in Spark actual tables which are used to store 

intermediate calculations. Because those tables are used periodically to fill fresh data, 

old data need to be removed. Spark Query language does not include inbuilt function 

to delete actual Spark tables. DAS only provides separate shell script to delete those 

tables. But in our case, we have a requirement of truncating or completely deleting 

some intermediate tables at the end of a query. Therefore, a new user defined function 

called deleteTable was implemented to achieve this. 

3.1.3. Speed layer 

WSO2 CEP module is the main component of speed layer. In actual implementation, 

CEP module integrated in WSO2 DAS can be used to achieve speed-layer functions. 

Three main input event streams correspond to Local, National, and International CDRs 

are subjected to real-time analytic queries in this layer. So complex patterns detection 

is performed at this layer. Set of related Siddhi query expressions, and relevant input 

and output stream definitions are included within the entity called Execution Plan. To 

implement intended goals of each use case, one or more execution plans was used. 

Figure 3.2 depicts overall event flow within the CEP engine. First CEP receives events 

corresponding to Local (Onnet), National (Offnet), and International CDR Streams 

through event receivers. Then events are fed into CEP through defined streams and 

subjected to set of CEP queries included in execution plan. Then output streams are 

published to serving layer using Data Publishers. As we need to store those resultant 

streams on MySQL tables, rdbms was used as Output Event Adapter Type. So, output 

data is directly inserted form output stream into MySQL table defined in output data 

publisher. 
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Figure 3:2: Overall event flow through CEP. 
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3.1.4. Serving layer 

Functionality of serving layer is to store and merge output of Batch Layer and Speed 

Layer and produce output by applying certain filter queries on the output. The CEP 

that is used in speed layer and DAS which is used in batch layer were used for serving 

layer as well, even though it is shown as a separate architectural component in Figure 

3.1.  

Within this layer, a set of features derived by aggregating the complex events detected 

on speed layer is combined with the feature set derived on batch layer by performing 

statistical calculations and then resultant views are stored. Thus, users can apply 

certain filter queries on this final dataset within this layer or can input to external 

classifier to derive final output. Extreme usage related use-cases can be directly 

identified by considering only the real-time view. Those events are captured using 

filter queries on CEP at serving layer. Additionally, complex patterns which reflects 

grey callers with high confidence can be directly routed to output through serving 

layer. 

3.1.5. Rule-based Classifier 

Rule-based classifier is used for Grey call detection use case only. This module 

consists of set of classification rules used in bypass detection use case. Actually, 

classification rule is the filtering query. Serving layer just builds the subscriber profile 

by combining features derived on real-time and batch analytics and sends output to 

classifier. After that, within classifier module, fraud instances are filtered by applying 

filtering rules on subscriber profile. Even though same can be done on serving layer, 

classifier is used as separate component to make it a pluggable component. In future 

rule-based classifier could be replaced by supervised-learning based classifier. Rule-

based classifier was implemented as Java program comprising set of filter queries. 
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3.2. Feature Selection and Algorithm Design 

3.2.1. Grey call detection 

This subsection describes the research approach used to address grey call detection 

problem. Fraudulent and non-fraudulent numbers are the only two classes available in 

Grey call detection. Also, there are significant differences in grey caller’s behavior 

from country to country. Therefore, we approached grey call detection as supervised 

learning problem. After gathering datasets, first step is to identify complex patterns 

within the CDR stream. We studied past CDR pattern for verified grey callers in 

training dataset and identified six patterns with significant decisive power in grey call 

detection. Once complex patterns are identified those can be captured by executing 

CEP queries. 

Second step is to identify a rich set of features that can be used to make detections 

within a short-time window. To support near real-time decision making by considering 

the caller behavior within short time-window, a rich feature set is essential. In our 

research we have identified a novel feature set by studying about both called-party 

stats and calling party behavior. Novel feature set composed of three main 

components. First component is a set of features derived based on the identified 

complex events. Next, component is the feature set calculated for short-time window 

by aggregating CDR. We have the option of calculating this in the speed or batch layer 

based on data rates of streams and length of the sliding window. Third component is a 

feature set calculated on batch layer based on by aggregating past CDR. These feature 

set was identified by observing calling party subscriber’s behavior in training dataset 

and called party subscriber’s context data. 

Even though some of the fraud instances can be identified using complex events and 

stats for short-time window, in some cases past data is required to support decision 

making and to improve accuracy of the system. Thus, three parts of the feature set 

mentioned above is combined at the serving layer. Rules are then developed based on 

combined feature set to make detections effectively. These set of rules have been 

developed by studying verified fraud instances in the training data set.  
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3.2.1.1. Data sources and context data 

To detect complex patterns three types of CDRs, namely Local, National, and 

International CDRs were obtained from different nodes in telecommunication network 

as discussed in Section 3.1. Table 3.1 describes the data fields available in Local CDR 

Stream. As this CDRs belong to calls originated by subscribers belong to the network 

under study, location and device related data are available in this stream. Table 3.2 

presents fields in national CDR stream. As these calls originated by customers belongs 

to other operators, location details are not available. Table 3.3 describes data fields in 

international CDR stream.  

Table 3:1 : Fields in Local CDR Stream. 

Field Name Field Type Description 

calling_party_id String Subscriber identity number of the user who originates the 

call 

called_party_id String Subscriber identity number the user who is intended to 

receive call  

originating_date_time Integer  Date and time when call attempt reached to the system 

duration  Double The duration between answer time and disconnect time 

location  String Cell location of subscriber when originating call. 

Composed by combining Location Area Code (LAC) and 

Cell ID 

imei String International Mobile Equipment Identity (IMEI) which is 

unique to device  

Table 3:2: Fields in National CDR Stream. 

Field Name Field Type Description 

calling_party_id  String Subscriber identity number of the user who originates the 

call 

called_party_id String Subscriber identity number the user who is intended to 

receive call  

originating_date_time Integer  Date and time when call attempt reached to the system 

opc String Origination Point Code 

dpc String Destination Point Code 

action String Action taken by Call Screening Server for attempt – 

“blocked” or “passed” 
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Table 3:3: Fields in International CDR Stream. 

Field Name Field Type Description 

calling_party_id String Subscriber identity number of the user who originates the 

call 

called_party_id String Subscriber identity number the user who is intended to 

receive call 

release_dir String Indicate which party disconnected the call initially 

time Integer Date and time when call attempt reached to the system 

duration Double The duration between answer time and disconnect time 

call_dir String Indicates whether mentioned transaction is for incoming 

call to local network or outgoing call from local network. 

We have used training dataset to identify complex patterns within CDRs, discover 

feature set, and design algorithms. Training dataset consists of 7,241,372 local CDRs 

belong to 284,351 distinct callers and there are 51 verified Onnet bypass instances 

within that. Also, there are 8,559,106 National CDRs within training data set belong 

to 1,153,409 other operator numbers and 328 numbers out of that was categorized as 

offnet bypass numbers. Additionally, we have included 5,217,259 international 

incoming and outgoing CDRs to identify complex patterns.  

In addition to above dataset we have used the following context data as support data 

to generate the feature set: 

 The IMEI numbers of handsets which was used by verified grey caller numbers 

within last year.  

 Location Area Code (LAC) and Cell ID of the locations where verified grey 

caller numbers were operated within last year. 

 The subscriber numbers who have received at least one call from verified grey 

caller numbers within last 3 months. 

 Subscribers who have received at least one IDD call in last 30 days. 

 Subscribers who have originated at least one IDD call in last 30 days. 

 Total answer duration and maximum call duration of subscriber for incoming 

answered calls from network under study. Onnet or Offnet Subscribers who 

have received at least one call from network under study within last 30 days 

were considered. 
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 First calling date of Onnet subscribers. 

 The first date on which Offnet number has terminated a call on considered 

network. 

 Number of days subscriber has originated at least one call to network since first 

call date. 

 Number of days offnet number has terminated at least one call to network since 

first call date. 

3.2.1.2. Locating complex patterns and design CEP queries  

Locating complex patterns in CDR is essential to identify fraudulent behaviors in near 

real time. Identifying such patterns is one of the major contributions in our research. 

Once complex patterns are identified those can be captured by executing Siddhi QL 

pattern queries on WSO2 CEP. After analyzing three CDR streams we have identified 

six complex patterns that can be used in grey-call detection. 

Figure 3.3 depicts complex pattern Type 1. In this scenario called party B1 receives 

call from previously identified grey caller AN1 at time t from another operator network, 

but it was blocked by operator at firewall. In this case relevant attempt recorded in the 

National CDR stream as calling party number AN1 belongs to another operator. 

Immediately after Δt time same called party receives call from different calling party 

ID AN2 which passed through firewall. AN2 is also belongs to another operator and 

relevant event recorded in National CDR stream. According to training dataset, there 

is a fair chance that AN2 being a grey caller as most of SIM boxes operate as cluster of 

SIMs and if one call failed from one SIM card in cluster, they would try through 

another SIM in the same cluster. 

 

Figure 3:3: Complex Event Type 1. 
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Figure 3.4 depicts real-world example for Type 1 pattern. According to above details, 

we have implemented the siddhi query shown in Figure 3.5 to detect complex event 

Type 1. We have set Δt to 10 minutes in this case. 

National CDR Stream 

AN1 B1t Action

201Y-MM-28 16:29:08 | 011Z8887XX | 07Y60331XX | blocked

 

National CDR Stream 

201Y-MM-28 16:30:27 | 07Z33171XX | 07Y60331XX | passed 

AN2 B1 Actiont+Δt
 

Figure 3:4: Sample Type 1 Complex event in CDR Stream. 

 

Figure 3:5: Siddhi Query to detect Complex Pattern Type 1. 

Figure 3.6 depicts CDR event flow of complex event Type 2. First event happens at 

time t is similar to the first event in complex event Type 1. However, in this case 

second event comes through local CDR stream after Δt time as calling party number 

AL2 who has originated the call belongs to same network under study. There is a fair 

chance that AL2 to be a grey caller, if cluster of SIMs in SIMbox contains the SIMs 

belong to many networks. Figure 3.7 shows real-world example for Type 2 complex 

event located in training dataset. After studying this behavior, we have designed the 

Siddhi Query shown in Figure 3.8. In this case also we set Δt to be 10 minutes. 

from every a11 = offnetCDRStream[action == "blocked"] 

-> b11 = offnetCDRStream[called_party_id == a11.called_party_id 

and action == "passed"] within 10 min 

 

select b11.calling_party_id as calling_party_id, 

a11.called_party_id as called_party_id, 

"01" as patternID, 

b11.originating_date_time as detect_time 

 

insert into patternStream_temp; 
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Figure 3:6 : Complex event Type 2. 

National 

CDR 

Stream Action

201Y-MM-29 12:34:02 | 047Z6711XX | 07Y60487XX | blocked

AN1 B1t
 

Local 

CDR 

Stream 

201Y-MM-29 12:34:56 | 07Y04022XX | 07Y60487XX | 2012210322 |    149

AL2 B1 Locationt+Δt Duration
 

Figure 3:7: Sample Type 2 Complex event in CDR Stream. 

 

Figure 3:8: Siddhi Query to detect Complex Pattern Type 2. 

Figure 3.9 depicts complex pattern Type 3. In this scenario called party B1 receives 

call from overseas number AI1 at time t, but call was not answered by called party or 

disconnected intentionally. Since this is international incoming call corresponding 

event recorded at international CDR stream. Immediately after Δt same called party 

receives call from different calling party number AN2 which is belongs to another 

operator network. Therefore, the second event is recorded in national CDR stream. 

from every a21 = offnetCDRStream[action == "blocked"] 
-> b21 = onnetCDRStream[called_party_id == a21.called_party_id] 
within 10 min 
  
select b21.calling_party_id as calling_party_id, 

a21.called_party_id as called_party_id, 
"02" as patternID, 
b21.originating_date_time as detect_time 
  
insert into patternStream_temp; 
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Figure 3:9: Complex event Type 3. 

International 

CDR Stream 

201Y-MM-29 14:45:18 | +965509765XX | +947Y45025XX |          0 

AI1 B1t Duration
 

National 

CDR Stream 

201Y-MM-29 14:50:01 | 07Z02587XX | 07Y45025XX | passed

AN2 B1t+Δt Action
 

Figure 3:10: Sample Type 3 Complex event in CDR Stream. 

According to our analysis of the training dataset, there is fair chance that AN2 to be a 

grey caller. According to domain experts, most of international voice carriers who are 

utilizing these grey routes use mix of genuine and grey routes. If one call comes 

through proper international call route, next call may reach to destination SIM box 

route. Figure 3.10 demonstrates sample instance of complex event Type 3. 

After studying the mentioned behavior, the Siddhi query shown in Figure 3.11 was 

developed. Compared to first event in complex event Type 1 and 2, first event of 

complex event type 3 and 4 happen more frequently as receiving international call 

attempt with zero duration is more probable. When Δt becomes smaller, decisive 

power of complex event is increased. Therefore, in this case, we have reduced Δt  and 

set to 5 minutes. 
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Figure 3:11: Siddhi Query to detect Complex Pattern Type 3. 

Figure 3.12 depicts CDR event flow of complex event Type 4. First event happens at 

time t is similar to first event in complex event Type 3. But in this case, second attempt 

comes after Δt time from calling party number AL2 which belongs to same operator’s 

network under study. Thus, second event is recorded in local CDR stream. AL2 could 

be a grey caller due to genuine and grey route mixing like in Type 3 complex event.  

 

Figure 3:12: Complex event Type 4. 

Figure 3.13 shows real-world example for Type 4 complex event located in training 

dataset. After studying this behavior, we have implemented the Siddhi query shown in 

Figure 3.14. In this case also, we have set Δt to 5 minutes. 

International 

CDR Stream 

201Y-MM-30 01:11:35 | +965502006ZZ | +947Y68691XX |              0

AI1 B1t Duration
 

Local CDR 

Stream 

201Y-MM-30 01:13:27 | 07Y86388XX | 07Y68691XX | 3009234127 |        0

AL2 B1 Locationt+Δt Duration
 

Figure 3:13: Sample Type 4 Complex event in CDR Stream. 

from every a31 = intlCDRStream[duration == 0.0 and call_dir=="1"] 

-> b31 = offnetCDRStream[called_party_id == a31.called_party_id 

and action == "passed"] within 5 min 

 

select b31.calling_party_id as calling_party_id, 

a31.called_party_id as called_party_id, 

"03" as patternID, 

b31.originating_date_time as detect_time 

 

insert into patternStream_temp; 
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Figure 3:14: Siddhi Query to detect Complex Pattern Type 4. 

Figure 3.15 depicts complex pattern Type 5. In this scenario, subscriber B1 dials 

overseas number BI1 at time t, but call was not answered by BI1. This attempt generates 

event in International CDR stream. Immediately after Δt time B1 receives call from 

different calling party number AN2 belongs to another operator network and event is 

generated on national CDR stream. There is some probability to second call being a 

call from BI1 to B1 as a response to missed call, but that call may reach through SIM 

Box number AN2 due to route mixing. Figure 3.16 shows sample instance of Type 5 

complex event located in the training dataset. 

Figure 3.17 represents Siddhi query to detect Type 5 complex event within real data. 

We set Δt to 5 minutes considering the frequency of first raw event of this complex 

event. 

 

Figure 3:15: Complex event Type 5. 

 

 

from every a41 = intlCDRStream[duration == 0.0 and call_dir=="1"] 

-> b41 = onnetCDRStream[called_party_id == a41.called_party_id] 

within 5 min 

 

select b41.calling_party_id as calling_party_id, 

a41.called_party_id as called_party_id, 

"04" as patternID, 

b41.originating_date_time as detect_time 

 

insert into patternStream_temp; 
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International 

CDR Stream 

201Y-MM-28 16:33:50 | +947Y73811XX | +965513500XX |            0  

BI1B1t Duration
 

National 

CDR Stream 

201Y-MM-28 16:36:08 | 07Z23536XX | 07Y73811XX | passed

AN2 B1t+Δt Action
 

Figure 3:16: Sample Type 5 Complex event in CDR stream. 

 

Figure 3:17: Siddhi Query to detect Complex Pattern Type 5. 

Figure 3.18 shows complex pattern Type 6, where the first event in this scenario is 

similar to Type 5. Subscriber B1 originate call to overseas number BI1 at t, but was not 

answered by called party. This attempt generates event in international CDR stream. 

Immediately after Δt, B1 receives call from different calling party number AL2 belongs 

to same operator under study and event is recorded on local CDR stream. There could 

be possibility of receiving call from BI1 to B1 as a response to missed call and that call 

may reach through SIM box due to route mixing. Figure 3.19 shows sample instance 

of Type 6 complex event located in training dataset, and the corresponding query is 

shown in Figure 3.20.  

from every a51 = intlCDRStream[duration == 0.0 and call_dir=="0"] 

-> b51 = offnetCDRStream[called_party_id == a51.calling_party_id 

and action == "passed"] within 5 min 

 

select b51.calling_party_id as calling_party_id, 

a51.calling_party_id as called_party_id, 

"05" as patternID, 

b51.originating_date_time as detect_time 

 

insert into patternStream_temp; 
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Figure 3:18: Complex event Type 6. 

Internationa

l CDR 

Stream 

201Y-MM-30 21:20:36 | +947Y34436XX | +965513206XX |    0

BI1B1t Duration
 

Local CDR 

Stream 

201Y-MM-30 21:22:08 | 07Y94267XX | 07Y34436XX | 2012210322 |   10 

AL2 B1 Locationt+Δt Duration

 

Figure 3:19: Sample Type 6 Complex event in CDR Stream. 

 

Figure 3:20: Siddhi Query to detect Complex Pattern Type 6. 

Figure 3.21 depicts event flow inside the execution plan which was deployed on WSO2 

CEP to detect six patterns mentioned above. Local, National, and International CDR 

streams are exported to execution plan as onnetCDRStream, offnetCDRStream, and 

intlCDRStream, respectively. After subjecting to pattern queries, resultant pattern 

detections are directed to MySQL database through stream names as 

PatternDetectStream. 

from every a61 = intlCDRStream[duration == 0.0 and call_dir=="0"] 

-> b61 = onnetCDRStream[called_party_id == a61.calling_party_id] 

within 10 min 

 

select b61.calling_party_id as calling_party_id, 

a61.calling_party_id as called_party_id, 

"06" as patternID, 

b61.originating_date_time as detect_time 

 

insert into patternStream_temp; 
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Figure 3:21: Overall event flow in execution plan used for pattern detection.
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3.2.1.3. Feature set and detection rules for Onnet bypass detection  

Next part of this research is identifying feature set which supports near real-time 

detections and derive detection rules based on that feature set. Since selection of 

features and detection rules is slightly different in Onnet and Offnet bypass scenarios, 

this section only focuses about Onnet Bypass Detection. Section 3.2.1.4 discuss about 

Offnet bypass detection.  

Feature set for bypass detection is divided into three parts as complex events, short-

time window, and past data based features. Table 3.4 shows the complex-event-based 

feature set. These values are generated by aggregating complex event count for the 

considered time span. Since second event of Type 2, 4, and 6 complex patterns are 

generated by onnet numbers, we have used those complex event types for onnet bypass 

detection. 

Table 3:4: Pattern based feature set for Onnet bypass detection. 

Attribute Description 

calling_party_id Calling party Number (Primary Key) 

P2 Number of Type 2 complex events generated by calling party number 

P4 Number of Type 4 complex events generated by calling party number 

P6 Number of Type 6 complex events generated by calling party number 

Table 3.5 lists the feature set generated by focusing on one hour sliding window. Initial 

plan was to calculate one hour sliding window based stats on WSO2 CEP. But based 

on available hardware resources and CEP performance, these stats may need to be 

calculated on WSO2 DAS using Spark SQL Scripts in most of the cases. Along with 

CDRs for considered one-hour window, context data also used to calculate these set 

of attributes. Attributes which were calculated with help of context data mentioned in 

Section 3.2.1.1 is denoted in Table 3.5 using “*” mark at end of the attribute name. 

Using DAS’s functionality to schedule Spark SQL scripts, stats for one hour sliding 

window were repeatedly calculated once per every 30 minutes and joined with pattern 

based features to come with feature set for short-time window.  
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Table 3:5: Feature set used in Onnet bypass detection based on short-time window. 

Attribute Description 

calling_party_id Calling party Number (Primary Key) 

og_cnt_hour Total outgoing call count originated by given Subscriber 

og_dcnt_hour Different numbers dialed by Subscriber 

max_cell_hour The cell id in which subscriber was stayed while taking most number of 

calls. 

og_tot_dur_hour Total outgoing call duration by subscriber 

cell_count_hour  Total number of distinct cell ids from which subscriber has originated at 

least one call 

imei_count_hour Number of different IMEI numbers used by calling party. 

grcell_hour * Does this subscriber has originated calls from cell location from which 

previously identified grey callers also originated calls? Value is set to 1 if 

answer is yes otherwise value is set to 0. 

grey_imei_hour * Does this subscriber has originated calls from the device with IMEI number 

which was previously used by verified grey caller? Value is set to 1 if 

answer is yes otherwise value is set to 0. 

grb_dcnt_in_hour * Number of distinct called party numbers dialed by this customer which has 

received call from verified grey caller’s numbers previously. 

iddb_dcnt_in_hour * Distinct called party numbers dialed by this number who have received IDD 

calls in past. 

iddb_dcnt_out_hour * Distinct called party numbers dialed by this number who have dialed IDD 

calls in past 

ic_tot_dur_hour Total call duration of subscriber for incoming answered calls from network 

under study within one hour 

ic_max_dur_hour Maximum call duration of subscriber for incoming answered calls from 

network under study within one hour 

Some of the fraud instances can be directly identified by focusing on complex pattern 

based and one-hour sliding window based features. But fraudsters use advanced 

techniques to simulate normal users’ behavior. So along with short-term data, past data 

also need to be used to make detections at earliest with high accuracy. So using the 

event data persisted in WSO2 DAS, we have built user behavior recent for past 24 

hours. Table 3.6 shows feature set built for 24-hours sliding window. Attributes which 

were calculated with help of context data is denoted in Table 3.6 using “*” mark at 

end of the attribute name.  

 



69 
 

Table 3:6: Feature set calculated using past data for Onnet bypass detection. 

Attribute Description 

calling_party_id Calling party Number (Primary Key) 

og_cnt Total outgoing call count originated by given Subscriber 

og_dcnt Different numbers dialed by Subscriber 

og_cnt_other Total outgoing call count by Subscriber to other operator numbers 

og_dcnt_other Distinct other operator numbers dialed by Subscriber  

og_tot_dur Total outgoing call duration by subscriber 

cell_count Total number of distinct cell ids from which subscriber has originated at least 

one call 

max_cell The cell id in which subscriber was stayed while taking most number of calls. 

imei_count Number of different IMEI numbers used by calling party. 

grey_cell * Does this subscriber has originated calls from cell location from which 

previously identified grey callers also originated calls? Value is set to 1 if 

answer is yes otherwise value is set to 0. 

grb_dcnt_in * Number of distinct called party numbers dialed by this customer which has 

received call from verified grey caller’s numbers previously. 

grey_imei * Does this subscriber has originated calls from the device with IMEI number 

which was previously used by verified grey caller? Value is set to 1 if answer is 

yes otherwise value is set to 0. 

iddb_dcnt_in * Distinct called party numbers dialed by this number who have received IDD 

calls 

iddb_dcnt_out * Distinct called party numbers dialed by this number who have dialed IDD calls 

ic_tot_dur * Total call duration of subscriber for incoming answered calls from network 

under study 

ic_max_dur * Maximum call duration of subscriber for incoming answered calls from network 

under study 

og_idd_dcnt * Distinct IDD numbers dialed by subscriber 

ic_idd_dcnt * Number of distinct IDD numbers which dialed this subscriber 

day_count * Number of days subscriber has originated calls since subscriber’s first call date. 

first_call * The date of the first call originated by subscriber  

Context data was stored in MySQL tables and imported to Spark script by creating 

temporarily tables using CarbonJDBC as provider [37]. Persisted events stored in DAS 

was imported to Spark script by creating temporarily tables using CarbonAnalytics as 

provider [37]. Even though WSO2 DAS stores persisted data on MySQL as per our 

configuration, those data stored using its own format. As context data was in typical 

MySQL format, we had to use two analytic providers to implement Spark script. 
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Figure 3.22 shows sample Spark queries which were included in Spark script on WSO2 

DAS. As mentioned earlier to access data through Spark script creation of temporarily 

table which points to permanent table is required. Then users can insert data to 

temporarily table which automatically updates pointed permanent table. 

 

Figure 3:22: Sample Spark Query used to calculate attributes. 

Feature set based on for 24-hours sliding window was calculated once per hour and 

joined with real-time view to apply filtering rules. We developed 14 filtering rules 

based on behavior of verified grey caller numbers on training data set. Three of these 

rules are derived based on real-time view, seven rules build based on 24-hour stats, 

and remaining four rules are derived using both real time and 24-hour stats. Table 3.7 

shows sample rule used in Onnet bypass detection. It is important to note that in some 

cases we have used composite attributes, which was derived by subjecting raw 

attributes to simple mathematical operations. 

 

 

 

CREATE TEMPORARY TABLE ONNET_OG_SUMMARY USING CarbonAnalytics 

OPTIONS  

(tableName "ONNETOGSUMMARY",schema "calling_party_id STRING, 

og_cnt INT, og_dcnt INT, og_ans_count INT, og_max_dur DOUBLE, 

og_tot_dur DOUBLE, cell_count INT,og_cnt_other INT,og_dcnt_other 

INT", primaryKeys "calling_party_id"); 

 

INSERT OVERWRITE TABLE ONNET_OG_SUMMARY SELECT  

calling_party_id, 

count(called_party_id) as og_cnt, 

count(distinct(called_party_id)) as og_dcnt, 

sum(CASE WHEN duration!=0 THEN 1 ELSE 0 END) as og_ans_count, 

sum(duration) as og_tot_dur,max(duration) as og_max_dur, 

count(distinct(location)) as cell_count,  

count(CASE WHEN called_party_id not like "77%"  and 

called_party_id not like "76%" THEN called_party_id ELSE Null 

END) as og_cnt_other, 

count(distinct(CASE WHEN called_party_id not like "77%"  and 

called_party_id not like "76%" THEN called_party_id ELSE Null 

END)) as og_dcnt_other  

from BYPASS_ONNET_DAILY group by calling_party_id; 
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Table 3:7: Example filtering criteria in detection rule used in Onnet bypass detection. 

Attribute/Composite Attribute Condition 

og_cnt_hour >0 

P2 >0 

P4 >0 

P6 >0 

(P2+P4+P6)/og_cnt >0.01 

grcell_hour >0 

ic_tot_dur_hour <1000 

These rules were developed after observing the behavior of verified bypass numbers 

in training dataset. Once initial filtering criteria has developed, we applied those to 

training dataset and obtained results. If accuracy level and detection delay are not met 

expected levels, we adjusted thresholds of rules and applied again for training dataset. 

Same procedure is repeated until comprehensive set of logics which meets expected 

accuracy and detection delay were obtained. Finally, derived set of rules were applied 

on the test dataset and the results are discussed in Chapter 4. 

3.2.1.4. Feature set and detection rules for Offnet bypass detection  

Similar to Onnet bypass detection, feature set is divided into three parts named as 

complex events, short-time window, and past data based features. Table 3.8 shows the 

complex event based feature set. These values are generated by aggregating complex 

event count within the considered time span. Since second event of Type 1, 3 and 5 

complex patterns are generated by offnet number, we have used those complex event 

types for offnet bypass detection. 

Table 3:8: Pattern based feature set for Offnet bypass detection. 

Attribute Description 

calling_party_id Calling party Number (Primary Key) 

P1 Number of Type 1 complex events generated by particular calling party number 

P3 Number of Type 3 complex events generated by particular calling party number 

P5 Number of Type 5 complex events generated by particular calling party number 
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Table 3.9 describes the feature set generated by focusing on one hour sliding window. 

These stats were calculated on WSO2 DAS using Spark SQL script by accessing 

persisted event data. Main data source was the stored events from National CDR 

stream. Along with CDRs for considered one-hour time window, context data also 

used to calculate these set of attributes. Attributes which were calculated with help of 

context data is denoted in Table 3.9 using “*” mark at end of the attribute name. 

Similar to Onnet bypass scenario, stats for one-hour sliding window were repeatedly 

calculated once per every 30 minutes and joined with pattern based features to come 

with feature set for short-time window. It is important to note that that, because 

operator do not have location details and handset details of subscriber of another 

operator network, feature set generated for Offnet bypass detection is relatively smaller 

compared to Onnet bypass detection. 

Table 3:9: Feature set used in Offnet bypass detection with one-hour time window. 

Attribute Description 

calling_party_id Calling party Number (Primary Key) 

og_cnt_hour Total incoming call count originated by offnet number to network under 

study 

og_dcnt_hour Distinct number count dialed by offnet number 

grb_dcnt_in_hour* Number of distinct called party numbers dialed by this Offnet number which 

has received call from verified grey caller’s numbers previously. 

iddb_dcnt_in_hour* Distinct called party numbers dialed by this number who have received IDD 

calls previously 

iddb_dcnt_out_hour* Distinct called party numbers dialed by this number who have dialed IDD 

calls previously 

ic_tot_dur_hour  Total call duration of incoming answered calls by this offnet number from 

network under study within considered time span 

ic_max_dur_hour Maximum call duration of incoming answered calls by this offnet number 

from network under study within considered time span 

In this case also some of the fraud instances can be directly identified by focusing on 

complex patterns and one hour sliding window based features. Because of advanced 

techniques used by fraudsters to simulate normal user’s behavior, decision making 

process cannot only rely on real-time data. So along with near real-time data, past data 

was also required to make detections at earliest with high accuracy. So, using the event 

data persisted in WSO2 DAS we have built user behavior for recent 24 hours. Table 
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3.10 shows feature set built for 24-hours sliding window. Attributes which were 

calculated with help of context data is denoted in Table 3.10 using “*” mark at end of 

the attribute name. Since location and device information not available for offnet 

numbers, limited number of features are available for Offnet bypass detection. Similar 

to Onnet bypass scenario, 24-hour behavior was calculated on WSO2 DAS using Spark 

scripts. Feature set based on for 24-hours sliding window was calculated once per hour 

and joined with real time view to apply filtering rules. 

Table 3:10: Feature set calculated using past data for offnet bypass detection. 

Attribute Description 

calling_party_id Calling party Number (Primary Key) 

og_cnt Total incoming call count originated by offnet number to network under study 

og_dcnt Distinct number count dialed by offnet number 

grb_dcnt_in* Number of distinct called party numbers dialed by this offnet number which has 

received call from verified grey caller’s numbers previously. 

iddb_dcnt_in* Distinct called party numbers dialed by this offnet number who have received 

IDD calls 

iddb_dcnt_out* Distinct called party numbers dialed by this number who have dialed IDD calls 

ic_tot_dur* Total call duration of subscriber for incoming answered calls from network 

under study 

ic_max_dur* Maximum call duration of subscriber for incoming answered calls from network 

under study 

day_count* Number of days Offnet number has originated calls since first call termination 

date to network under study. 

first_call* The date of first incoming from offnet number received to network under study 

 

We have developed 16 filtering rules based on the behavior of verified grey caller 

numbers on training data set. Six of these rules were derived based on real-time view, 

eight were build based on 24-hour stats, and he remaining two rules derived using both 

real time and 24-hour stats. We have used composite attributes which was derived by 

subjecting raw attributes to simple mathematical operations within some rules. 

These rules were developed after observing the behavior of verified bypass numbers 

in training dataset. Once initial filtering criteria has developed, we have applied those 

to training dataset and obtained results. When the accuracy level and detection delay 

are not within the expected levels, we adjusted thresholds of rules and applied again 
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for training dataset. Same procedure is repeated until comprehensive set of logics that 

meet expected accuracy and detection delay is obtained. Finally, derived set of rules 

were applied on test dataset.  

When we consider offnet bypass scenario, summarized dataset consists of behavior of 

numbers belongs to another operator’s mobile network as well as fixed telephony 

network. Since fixed telephone network operators provide PABX, hotline and call 

center solutions, sometimes generates higher amount of calls to distinct numbers. So, 

we have applied different set of rules to fixed telephone operators numbers and mobile 

network operator numbers. Also, numbers belong to one wireless fixed network 

operator have shown abnormal behavior in some instances. So, we had to use specified 

set of rules to capture the numbers belongs to particular operator. 

3.2.2. Extreme usage detection 

This section describes the method which was used to identify different kind of 

fraudulent activities related to extreme usage scenarios related to premium rated 

numbers. We have focused on five major scenarios and in each subsection, we describe 

the CDR pattern observed within each scenario and how those are captured in our 

system. 

3.2.2.1. Dial and disconnect scam 

This is most frequent category of fraudulent activity related to premium rate telephone 

numbers. In this scenario, fraudsters connected to international voice network 

multicast call attempts to range of valid telephone numbers in selected network in 

selected country. When multicasting those missed call attempts, fraudsters replace 

original calling party with premium rated telephone number or telephone number of 

country to which call termination rate is higher than LKR 50. Fraudsters normally use 

premium rated or high cost destination numbers for these kind of fraudulent activities 

as their profit can be maximized when termination cost per one minute become higher. 

In all the sample insistences we have found, fraudsters used CLI belongs to destination 

to which calling cost per one minute is higher than LKR 50. To nullify the effect of 

this fraudulent activity, these incoming fraudulent call attempts toward local network 

need to be identified before customers start to respond those in large scale.  



75 
 

We have studied similar fraud cases within one month and identified the incoming call 

pattern in this scenario. Table 3.11 shows hourly statistics of two sample fraud 

instances in first three hours of their operation. These statistics are calculated by 

grouping incoming IDD calls with respect to calling party number. So, we can clearly 

see that these fraudulent numbers dial considerably higher amount of distinct numbers 

than normal users. Also, these two calling party numbers belongs to countries such as 

Surinam and Somalia and call cost per one minute is LKR 80 to both countries. 

Therefore, using this information we developed execution plan in WSO2 CEP to detect 

these scenarios. First, we took rate sheet from operator websites. Table 3.12 shows 

sample entries from rating table. Action value is set to one when a particular 

destination is required to consider in number level analysis. 

Table 3:11: Instances of Dial and Disconnect Scam. 

 Calling Party Hour 
No of distinct called party 

nos dialed by this no 

Case 1 

5977619782   2017-11-04 13                   30 

5977619782   2017-11-04 14                   118 

5977619782   2017-11-04 15                   99 

Case 2 

252800778114   2017-11-04 11                   40 

252800778114   2017-11-04 13                   131 

252800778114   2017-11-04 15                   153 

Table 3:12: Rating table with destination number prefixes. 

Country 

Code 

Destination 

Digits 

 Cost 

(LKR) 
 Country  Destination Name   Action  

87 87 900 INMARSAT   INMARSAT                1 

46 4674 900  SWEDEN    
SWEDEN SPECIAL 

SERVICE  
1 

355 3554249 500  ALBANIA   ALBANIA PREMIUM         1 

355 35534606 500  ALBANIA   ALBANIA PREMIUM         1 

355 35534608 500  ALBANIA   ALBANIA PREMIUM         1 

355 35535505 500  ALBANIA   ALBANIA PREMIUM         1 

597 597 80  SURINAM   SURINAM  1 

252 252 80  SOMALIA   SOMALIA  1 
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Next, we developed Siddhi query on WSO2 CEP to analyze International CDR stream. 

This query analyzes all the incoming attempts toward the considered network and 

calculates distinct numbers dialed by each calling party number within one hour sliding 

window. Also, we have extracted leftmost digits of calling party number for different 

lengths to use those prefixes in the next step. Figure 3.23 shows sample code snippet 

used. Then we have matched output stream of the query mentioned in Figure 3.23 with 

rating table. Figure 3.24 shows the Siddhi query used to match intermediate stream 

with rating table. Even though rating table is stored in MySQL table, we need to access 

it from CEP query in this scenario. So prior to executing this query, we have defined 

event table named as HighCostDestTable and pointed that to rating table because event 

tables can be directly access from CEP query. 

Finally, filtering query in Figure 3.25 was used to filter out fraudulent numbers. Using 

the past cases, we identified that receiving calls from premium rated or high cost 

calling party number to more than 10 distinct subscribers could be considered as 

suspicious situation. Figure 3.26 shows the overall event flow of execution plan 

deployed to detect dial and disconnect scam. 

 

Figure 3:23: Query used for event aggregation to detect Dial and Disconnect Scam. 

from intlCDRStream[call_dir=='1' and duration<10 and 

str:length(calling_party_id)>7]#window.time( 60 min ) 

 

select calling_party_id,  

distinctcount(called_party_id) as dst_callednum_count, 

min(time) as firstattempttime,max(time) as lastattempttime, 

str:substr(calling_party_id,0,2)as firstdigit2, 

str:substr(calling_party_id,0,3)as firstdigit3, 

str:substr(calling_party_id,0,4)as firstdigit4, 

str:substr(calling_party_id,0,5)as firstdigit5, 

str:substr(calling_party_id,0,6)as firstdigit6, 

str:substr(calling_party_id,0,7)as firstdigit7, 

str:substr(calling_party_id,0,8)as firstdigit8   

group by calling_party_id 

insert into tmpMFSummary8; 
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Figure 3:24: Query used to join Rating table with aggregated data. 

 

Figure 3:25: Filtering Query used to detect Dial and Disconnect Scam. 

3.2.2.2. Outbound dialing due to fake text messages 

In this scenario, fraudsters use fancy messages instead of missed calls to persuade 

normal subscribers to dial back to premium rated numbers. These scenarios cannot be 

detected by relaying on incoming text messages as those messages can reach to 

customer in many ways. So, this scenario need to be captured using outgoing call 

attempts at early stage before significant number of users dial those premium numbers. 

Table 3.13 shows instances for Outbound dialing fraud due to fake text messages 

received in form of SMS. In these cases, distinct calling party numbers dials the same 

high-cost destination number or number range. Country code 248 and 291 belongs to 

Seychelles and Eritrea, respectively, where cost per one minute is LKR 80 for both the 

countries.  

 

from tmpMFSummary8#window.unique(calling_party_id) as 

unqAttemptSummary8 join HighCostDestTable on  

 

unqAttemptSummary8.firstdigit2==HighCostDestTable.Dest_Digits or 

unqAttemptSummary8.firstdigit3==HighCostDestTable.Dest_Digits or 

unqAttemptSummary8.firstdigit4==HighCostDestTable.Dest_Digits  

or unqAttemptSummary8.firstdigit5==HighCostDestTable.Dest_Digits 

or unqAttemptSummary8.firstdigit6==HighCostDestTable.Dest_Digits 

or unqAttemptSummary8.firstdigit7==HighCostDestTable.Dest_Digits 

or unqAttemptSummary8.firstdigit8==HighCostDestTable.Dest_Digits 

 

select unqAttemptSummary8.calling_party_id,  

unqAttemptSummary8.dst_callednum_count, 

unqAttemptSummary8.firstattempttime, 

unqAttemptSummary8.lastattempttime 

 

insert into TmpMissedCallFruadStream; 

from TmpMissedCallFruadStream[dst_callednum_count>10] 

select calling_party_id,dst_callednum_count,firstattempttime, 

lastattempttime 

output every 30 sec 

insert into MissedCallFruadStream; 
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Table 3:13: Instances for Outbound Dialing due to fake Text Messages 

  
 Called party 

id  
Hour 

No of distinct calling party ids 

dialed this number  

Case 1 

2486427007 2017-11-04 17 742 

2486427007 2017-11-04 18 495 

2486427007 2017-11-04 18 79 

2486427007 2017-11-04 19 104 

Case 2 

2917185957 2017-11-04 12 18 

2917185957 2017-11-04 15 14 

2917185957 2017-11-04 16 14 

 

We have implemented CEP Execution plan to detect this scenario after studying past 

instances. Implementation is similar to the methodology in Section 3.2.2.1. However, 

instead of incoming international call attempts toward local network in International 

CDR stream, outgoing international call attempts originated from local network is 

considered. Also, distinct calling party number count is obtained with respect to each 

called party number. Then resultant intermediate stream is joined with rating table and 

cases related to high cost destinations are filtered. Then simple filtering query is 

applied, and the output is obtained. According to past cases, we have identified that 

more than ten distinct numbers dials same premium rated or high cost calling party 

number within one hour, such event could be fraudulent activity. Figure 3.27 shows 

overall event flow of execution plan deployed to detect Outbound dialing scenarios 

due to fake text messages.
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Figure 3:26: Event flow of execution plan used to identify Dial and Disconnect Fraud. 

 

 

Figure 3:27: Event flow of execution plan used to detect Outbound dialing due to fake text messages. 
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3.2.2.3. Inbound roamer fraud 

Inbound roamer fraud is another important scenario in which we can observe extreme 

usage behavior. Fraudsters latch foreign SIM card on local network and originate calls 

to premium rated or high cost destinations. Even though foreign operator need to pay 

those charges to local operator according to agreements, local operator need to track 

those fraudulent incidents and inform foreign operator as there is some associated risk 

in termination of roaming agreements and not paying excessive charges when usage 

charges due to fraudulent activity is very high. 

Table 3.14 shows example case of roaming fraud. Calling party id means MSISDN of 

foreign network subscriber. Within few hours those inbound roamers have made 

significant number of calls to three high cost destinations. Country code 224, 371, and 

232 respectively belongs to Guinea, Latvia, and Sierra Leone and to each country call 

termination charges for one minute is LKR 80. As roaming call charges are normally 

higher than normal call charges, normal roaming customers do not take long duration 

calls to costly destinations. But in this case within few hours fraudster has originated 

more than 100 minutes via each SIM card and average call duration is above 10 

minutes in eight of those cases. 

Table 3:14: Sample instances of Inbound Roamer Fraud. 

Calling Party ID 
Number 

Level 

Attempt 

Count 

Total Call 

Duration 

Average Call 

Duration 

66X493032YY 224 12 148.7627 12.3969 

66X491347YY 224 11 195.359 17.7599 

66X493153YY 224 10 166.724 16.6724 

66X489321YY 224 10 182.2201 18.222 

66X493135YY 224 10 174.7128 17.4713 

66X489175YY 224 10 186.3567 18.6357 

66X182460YY 224 9 163.502 18.1669 

66X491302YY 224 9 147.5956 16.3995 

66X493153YY 371 9 0  N/A 

66X493153YY 232 8 0.4713 0.2356 
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Then, we developed CEP query to analyze International CDR stream. This query 

analyzes all the outgoing international call attempts from considered network and 

calculated attempt count, answer call count, and sum of duration dialed by each calling 

party number to each distinct called party number within 90 minutes sliding window. 

Also, we have extracted leftmost digits of called party number for different lengths to 

use those prefixes in next step. Figure 3.28 shows sample code snippet used.  

 

Figure 3:28: Aggregation query used in execution plan used for inbound roamer 

fraud detection. 

Then rating table was exported as an event table and joined with output stream of query 

mentioned in Figure 3.28 to obtain result of prefix matching and acquire only calling 

party numbers which has dialed called party number ranges defined in rating table. 

Figure 3.29 shows the CEP query used to match intermediate stream generated as 

output of query mentioned in Figure 3.28 with rating table. 

After that intermediate query shown in Figure 3.30 was used to calculate attempt 

count, answer call count, and sum of duration dialed by each calling party number to 

distinct called party number ranges. Three leftmost digits were considered when 

summarizing usage with respect to destination number level. Finally, filtering query 

mentioned in Figure 3.31 used to filter out fraudulent numbers. Figure 3.34 shows the 

event flow within execution plan deployed to detect inbound roamer fraud. 

from intlCDRStream[call_dir=='0' and 

str:length(called_party_id)>7]#window.time( 90 min ) 

select calling_party_id,called_party_id, 

str:concat(calling_party_id,called_party_id) as cus_symbol, 

count(time) as attempt_count, 

sum(duration>0) as ans_count,sum(duration) as tot_duration, 

min(time) as firstattempttime,max(time) as lastattempttime, 

str:substr(called_party_id,0,2)as firstdigit2, 

str:substr(called_party_id,0,3)as firstdigit3, 

str:substr(called_party_id,0,4)as firstdigit4, 

str:substr(called_party_id,0,5)as firstdigit5, 

str:substr(called_party_id,0,6)as firstdigit6, 

str:substr(called_party_id,0,7)as firstdigit7, 

str:substr(called_party_id,0,8)as firstdigit8  

group by calling_party_id,called_party_id 

insert into tmpRoamPABXFSummary8; 
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Figure 3:29: Siddhi query used to match intermediate stream with rating table used to 

detect inbound roamer fraud. 

 

Figure 3:30: Intermediate query used to calculate usage of each calling party number 

to distinct premium number levels. 

from tmpRoamPABXFSummary8#window.unique(cus_symbol) as 

unqRMOutSum8 join HighCostDestTable on  

unqRMOutSum8.firstdigit2==HighCostDestTable.Dest_Digits or 

unqRMOutSum8.firstdigit3==HighCostDestTable.Dest_Digits or 

unqRMOutSum8.firstdigit4==HighCostDestTable.Dest_Digits or 

unqRMOutSum8.firstdigit5==HighCostDestTable.Dest_Digits or 

unqRMOutSum8.firstdigit6==HighCostDestTable.Dest_Digits or 

unqRMOutSum8.firstdigit7==HighCostDestTable.Dest_Digits or 

unqRMOutSum8.firstdigit8==HighCostDestTable.Dest_Digits 

select 

unqRMOutSum8.calling_party_id,unqRMOutSum8.called_party_id, 

unqRMOutSum8.attempt_count,unqRMOutSum8.ans_count, 

unqRMOutSum8.tot_duration,unqRMOutSum8.firstattempttime, 

unqRMOutSum8.lastattempttime 

 

insert into TmpRoamPABXFruadStream; 

from TmpRoamPABXFruadStream 

 

select calling_party_id, 

str:substr(called_party_id,0,3) as dialed_range, 

str:concat(calling_party_id,str:substr(called_party_id,0,3)) as 

cus_symbol_rng, 

attempt_count,ans_count,tot_duration, 

firstattempttime,lastattempttime 

 

insert into TmpRoamPABXFruadStream2; 

 

 

from TmpRoamPABXFruadStream2#window.unique(cus_symbol_rng) 

 

select calling_party_id,dialed_range, 

sum(attempt_count) as tot_attempt_count, 

sum(ans_count) as tot_ans_count,  

sum(tot_duration) as final_tot_duration,  

min(firstattempttime) as firstattempttime1, 

max(lastattempttime) as lastattempttime1  

group by calling_party_id,dialed_range 

 

insert into TmpRoamPABXFruadStream3; 
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Figure 3:31: Siddhi query used to detect inbound roamer fraud and high usage 

scenarios. 

3.2.2.4. PABX hacking fraud 

In this scenario hackers gain the access to the PABX system using system vulnerability 

and generate large number of calls to premium rated destinations without any intention 

of actual customer. Table 3.15 shows sample instance of PABX hacking fraud. 

Fraudsters has originated huge number attempts to high cost number level belongs to 

country called Serbia to which call termination cost for one minute is LKR 80. 

Fraudster tries 81 attempts within one-hour time span and average call duration is 

comparably high. In some cases, like call center solutions, normal PABX customer 

makes higher number of calls similar to this but average call duration is comparably 

low.  

Table 3:15: Sample instance of PABX hacking fraud. 

Calling Party ID  
 Number 

Level 
 Attempt Count  Total Duration  

Average Call 

Duration  

9411Y4441XX 381 81 453.7167 7.438 

 

Therefore, Siddhi QL execution plan can be deployed to identify fraudulent behavior. 

Instead of creating different execution plan, this scenario was detected by adding 

another filtering query to execution plan mentioned in Section 3.2.2.3 as detection can 

be made using the same attributes. Figure 3.32 shows the filtering query used to detect 

PABX hacking fraud. 

from TmpRoamPABXFruadStream3[str:substr(calling_party_id,0,2) 

!="94" and ((tot_attempt_count>9 and  final_tot_duration>3600) 

or final_tot_duration>(tot_ans_count*300))] 

 

select calling_party_id,dialed_range, 

tot_attempt_count as attempt_count, 

tot_ans_count as ans_count, 

final_tot_duration as tot_duration,  

firstattempttime1 as firstattempttime,lastattempttime1 as 

lastattempttime 

 

insert into inRoamFruadStream; 
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Figure 3:32: Filtering query used to detect PABX hacking fraud 

3.2.2.5. Malware originated fraudulent calls 

In this scenario, malicious software installed on subscriber’s handset originate calls to 

premium rated numbers automatically without user’s intention. These calls typically 

span for more than 30 minutes duration, sometimes till maximum allowed call duration 

within mobile network operator is met. Two cases mentioned in Table 3.16 provide 

examples for malware fraud.  

In these cases, called party ID belongs to the country called Ascension and 

international call termination cost for this number level is LKR 380 per minute. So, a 

typical mobile network subscriber is highly unlikely to intentionally originate calls 

with such long duration to those countries. Instead of one long-duration calls, malware 

may originate series of comparably short duration calls also. Operators target is to 

identify such fraud numbers at earliest to avoid further damage to same customer or 

other customers who could get affected due to same malware. So, key attribute in this 

scenario is sum of call duration to premium or high cost destinations originated by 

given subscriber. This scenario also can be detected by just adding another filtering 

rule to same execution plan mentioned in Section 3.2.2.3. Figure 3.33 shows the 

filtering query used to detect Malware fraud. 

 

 

from TmpRoamPABXFruadStream3[(str:substr(calling_party_id,0,2) 

=="94" and str:length(calling_party_id)==11 and 

str:substr(calling_party_id,0,4) !="947Y" and 

str:substr(calling_party_id,0,4) !="947Z") and 

((tot_attempt_count>9 and  final_tot_duration>3600) or 

final_tot_duration>(tot_ans_count*300))] 

 

select calling_party_id,dialed_range, 

tot_attempt_count as attempt_count, 

tot_ans_count as ans_count, 

final_tot_duration as tot_duration, 

firstattempttime1 as firstattempttime, 

lastattempttime1 as lastattempttime 

 

insert into PABXFraudStream; 
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Table 3:16: Instances of Malware fraud. 

  Originate Date Time Calling party Called Party 
Duration 

(Seconds) 

Cost 

(LKR) 

 Case 1 201Y-1M-03 1H:41:58 7Y74867XX 247050000 3430 21723.33 

 Case 2 201Y-1M-26 1H:30:01 7Y35499XX 24793741 5400 34200.00 

 

 

Figure 3:33 : Filtering Query used to detect Malware fraud.

from TmpRoamPABXFruadStream3[(str:substr(calling_party_id,0,2) 

=="94" and str:length(calling_party_id)==11 and 

(str:substr(calling_party_id,0,4) =="9477" or 

str:substr(calling_party_id,0,4) =="9476")) and 

(tot_attempt_count>4 or final_tot_duration>600)] 

 

select calling_party_id,dialed_range, 

tot_attempt_count as attempt_count, 

tot_ans_count as ans_count, 

final_tot_duration as tot_duration, 

firstattempttime1 as firstattempttime, 

lastattempttime1 as lastattempttime 

 

insert into MalwareFraudStream; 
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Figure 3:34: Event flow inside siddhi execution plan used to detect Inbound Roamer, PABX Hacking, and malware fraud scenarios. 
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4. PERFORMANCE EVALUATION 

This chapter explains the experiments we performed to evaluate real-time fraud 

detection system using a real-world dataset. Section 4.1 presents the experimental 

setup and the dataset used to evaluate real-time fraud detection system. Section 4.2 

presents the results and performance of bypass detection use case while Section 4.3 

presents extreme usage detection use case. Finally, Section 4.4 presents the resource 

utilization of the proposed system. 

4.1. Experimental Setup 

Figure 4.1 depicts the experimental setup used to evaluate the performance of the 

system. Stream simulator was used to convert static CDR data stored in files into event 

streams and then data publisher published those events. System receives the published 

events through event receivers. Then, system performs intended real time and batch 

calculations on input data and deliver output. In Grey call detection use case, final 

output obtained by passing summarized data through rule-based classifier. In extreme 

usage detection, system directly outputs results. 

 

Figure 4:1: Experimental setup. 

WSO2 DAS version 3.1.0 was the main software tool used for this implementation. As 

per documentation, CEP integrated in WSO2 DAS version 3.1.0 supports Siddhi query 

language 3.0 which is the equivalent to CEP version 4.1. But in actual implementation 

it supports some functions supported in Siddhi query language 3.1 which is the query 

language used in WSO2 CEP version 4.2. MariaDB server version 5.5.52 was the 
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database server used in this setup. MariaDB is the successor of MySQL. In this proof 

of concept design, we have pointed relevant data sources in DAS to MySQL databases 

by modifying backend configurations, as it simplifies the implementation. Oracle JDK 

1.8.0_121 was the Java platform used. 

Due to privacy concerns, we did not gain access to live data feed in real time. Instead 

operator provided recent dataset in CSV formatted files. So, we have developed stream 

simulator software module to simulate event stream in experimental setup and coupled 

that module with data publisher. First, stream simulator converted timestamp of events 

into a Unix timestamp. Then normalized timestamp values with respect to common 

base were obtained by deducting base timestamp from each timestamp in dataset. Then 

we stored each CDR objects with mapping (key, value) in special kind of Hash-Map 

called Multi-Map. Normalized timestamp was used as hash key. We have used Multi-

Map for storing events as it allows to store multiple objects mapped to same hash key 

and stored in memory while program is running. So, we can retrieve all CDR events 

originated at given second using hash key within minimum delay. When timer 

triggered, the stream data simulator retrieves the CDR and send data through stream 

using data publisher. Similar approach is followed in all three types of streams. We 

used the same base value for all three data sources and same timer was used to trigger 

events to make sure three streams are synchronized and real environment is replicated 

in experimental setup. 

We used server with hardware specifications mentioned in Table 4.1. Server consists 

two processors which contains 8-cores of Intel Xeon 2.40GHz. CentOS Linux release 

7.3.1611 64-bit version was the operating system in server when this experiment is 

conducted. Maximum possible heap size for JVM was increased up to 14GB to provide 

sufficient memory for application. 

Table 4:1: Hardware specifications of experimental server. 

System Resource Specification 

Processing 16 cores × Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz 

Cache Size 20,480 KB 

Memory 16 GB 
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Since grey call detection is supervised learning problem we have used two different 

datasets for training and testing. First, we have selected training and test datasets with 

enough positive fraud instances. Since CDR reflects privacy of subscriber, we were 

allowed to access data after the operator applied certain types of filtering to dataset 

and after proper approvals were granted. 

Table 4.2 describes the distribution of training dataset which was taken between 2016-

10-28 15:00:00 to 2016-10-31 00:00:00 GMT+0530. Table 4.3 describes the 

distribution of test dataset which was between 2017-09-01 03:00:00 to 2017-09-02 

09:00:00 GMT+0530. Feature set was calculated with respect to each subscriber 

number. To derive feature set for Onnet bypass scenario, Local CDRs were used as 

main data source and International CDRs were used as support dataset. Support data 

was used to derive additional context data to calculate some of the features. After the 

calculation of feature set, it was realized that the training dataset contained 284,351 

distinct onnet subscriber profiles which is 29.6% of total subscriber profiles in whole 

dataset. Test set population size was 677,046 which is 70.4% of total onnet subscriber 

profiles in whole dataset. 

Table 4:2 : Details of training dataset. 

 Local CDR National CDR International CDR 

Total CDR Count 7,241,372 8,559,106 5,217,259 

Distinct Number Count 284,351 1,153,409 859,718 

Time Span (Hours) 57 57 57 

Average Data Rate  

(events per second) 
35.29 41.71 25.43 

Maximum Data Rate 

(events per second) 
108 145 71 

Average Rate at Peak Hours 

(events per second) 
66.76 70.19 41.77 
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Table 4:3: Details of test dataset. 

 Local CDR National CDR International CDR 

Total CDR Count 3,702,113 7,332,382 1,929,613 

Distinct Number Count 677,046 1,373,124 481,888 

Time Span (Hours) 30 30 30 

Average event rate  

(events per second) 
34.28 67.89 17.87 

Maximum Data Rate 

(events per second) 
110 187 60 

Average Rate at Peak Hour 

(events per second) 
69.72 131.72 33.58 

To derive feature set for Offnet bypass scenario, National CDRs were used as main 

data source while using International CDRs and Local CDRs as support data. After the 

calculation of feature set for Offnet bypass scenario, it was realized that the training 

set population size was 1,153,409 entries which is 45.6% of total offnet caller profiles. 

Test set population size was 1,373,124 which is 54.4% of total offnet caller profiles. 

As this is time sensitive application, we have to periodically calculate feature values 

by considering 24-hour sliding window and one-hour sliding window over the time 

span. Each periodic calculation gave snapshot of each subscriber’s behavior within the 

considered time window. Same subscriber may reflect significantly different behavior 

than earlier calculation when considered time windows are not overlapping. 

The training and test datasets which were used for grey call detection use case did not 

contain any instance of extreme usage related frauds. Extreme usage scenarios are 

relatively infrequent compared to grey call fraud instances. Therefore, we have taken 

CDRs for past instances of extreme usage related fraud cases and used those data to 

build our logics. Then, as test data set, we have obtained CDRs of incoming and 

outgoing International calls for two 24-hour time windows and fed into the system 

through international CDR stream. First dataset comprises of 637,904 CDR entries and 

while second one had 658,982 CDR entries. 
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It is important to mention about the system used by operator in fraud detection as we 

compare performance of proposed system with operator’s fraud detection system. 

Operator has made detections using MySQL-based batch processing system running 

on virtual server which contains 16-cores of Intel Xeon 2.27GHz and 24 GB RAM. 

They have used 24-hour and 3-hour sliding windows in calculating features. Also, 

operator’s system is making detections at 50% false-positive rate. Then manual 

analysis is performed to filter out false positives. They are following this approach to 

minimize the detection time. 

4.2. Grey Call Detection Results 

This section describes the results of grey call detection use case while comparing the 

accuracy and efficiency of the system with respect to labeled data provided by 

operator. Because we focus on efficiency of CDR based feature generation and 

effective use of complex event patterns for grey caller detection, simple rule-based 

classifier was used for decision making. 

4.2.1. Onnet bypass 

The training dataset which was used to derive set of detection rules for Onnet bypass 

detection consists of 284,351 distinct subscribers and 51 verified fraud instances. The 

set of rules which was derived upon the feature set obtained in this research covers all 

the 51 fraud instances after several cycles of fine tuning. But system has located one 

false positive. Further fine-tuning of rules was not effective as it resulted more false 

negatives and model tended to over fit to training dataset. Table 4.4 shows Confusion 

Matrix for Onnet bypass detection system after applying final set of rules on training 

dataset. We have considered Fraud as positive class and Genuine as negative class. 

This convention is used in rest of the document. 

The test dataset contained 677,046 different subscribers and out of which 45 

connections are fraudulent connections. Proposed system detected 44 fraud instances 

correctly with one false negative. Table 4.5 shows the Confusion Matrix for Onnet 

bypass detection after applying final set of rules on test dataset. 
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Table 4:4: Confusion Matrix for Onnet bypass detection with training dataset. 

  
System Detected Class 

Genuine Fraud 

Actual Class 
Genuine 284,299 1 

Fraud 0 51 

 

Table 4:5: Confusion Matrix for Onnet bypass detection system with test dataset. 

  
System Detected Class 

Genuine Fraud 

Actual Class 
Genuine 677,001 0 

Fraud 1 44 

Inherently grey call detection problem has uneven or unbalanced class distribution as 

a few grey callers are operating within massive customer base. So, accuracy value 

easily exceeds 99% as majority of genuine customers were correctly classified by our 

system in Onnet scenario. But accuracy does not give correct view in bypass detection 

as class distribution is uneven. Therefore F-measure or F1-score gives more reasonable 

view.  

Table 4.6 presents the performance measures of classification job performed on 

training and test datasets. We have fine-tuned rules to obtain 0.9903 F1 score for 

training dataset. Once same set of rules applied on test set, we could obtain 0.9888 F-

score for Onnet bypass detection. In [4], [5], and [6] accuracy is above 98% and F-

score of those instances were in 0.9 range. But in each case, the dataset which was 

used consists of more even distribution of grey callers and normal customers. Whereas 

the proposed system was evaluated against real dataset, which contained a more 

skewed class distribution.  

Bypass detection is a time sensitive use case, as we can minimize revenue loss, if we 

can make detections earlier. Number of attempts, number of answer attempts, and 

minutes of usage before detection are other most important parameters when we look 

at system from telecom operator’s view. Whereas in [4], [5] and [6] authors do not use 

such important parameters when measuring performance.  
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Table 4:6: Performance measures of classification job performed in Onnet bypass 

detection. 

 Training Set Test Set 

True Positives 51 44 

True Negatives 284,299 677,001 

False Positives 1 0 

False Negatives 0 1 

Accuracy 0.9998 0.9999 

Precision 0.9808 1 

Recall 1 0.9778 

F1 Score 0.9903 0.9888 

Table 4.7 presents how fast Onnet bypass detection can be performed. It can be seen 

that while the operator took 23.16 answered calls in average to detect Onnet bypass 

within the considered 30-hour time window, the proposed system detected it after 6.55 

answered calls in average. Therefore, proposed system made detection 16.6 answered 

attempts earlier than operator detections while reducing the revenue loss. Moreover, 

while fraudsters were successful in using onnet bypass number for 65.2 minutes in 

average per number in operator’s existing detection system, the proposed system 

detected it within 14.53 minutes in average. Therefore, the proposed system makes 

detections with considerable accuracy without compromising detection speed. This 

was possible due to the use of features based on both real-time and past data, as well 

as using CEP. 

Table 4:7: Speed of Onnet bypass detection with test dataset.  

  

  

System Detections Operator Detections 

Total Average Total Average 

Usage Duration (Minutes) 639.35 14.53 2251.92 51.18 

Attempt Count 802 18.23 2869 65.20 

Answer Attempt Count  288 6.55 1019 23.16 

The chart shown in Figure 4.2 represents the contribution of different types of rules 

for Onnet bypass detection. Out of 44 detected instances, 32 instances were detected 

using real-time rules type. Real-time rules were derived based on complex pattern 
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detections and accounting stats for recent one-hour sliding window. 24-hour type 

represents rules which were derived based on stats for 24-hour sliding window. Nine 

detections were made using 24-hour type rules. Remaining three detections were made 

using hybrid rules that represent rules derived based on 24-hour sliding window, 

complex pattern detections, and recent one-hour stats. In Onnet bypass scenario, 

highest percentage (73%) of detections made by real-time rules.  

 

Figure 4:2: Contribution of different types of detection rules for Onnet bypass 

detection. 

4.2.2. Offnet bypass 

The training dataset which was used to derive set of detection rules for Offnet bypass 

detection consisted of 1,153,409 customers belonging to other operators. Out of which 

there were 328 verified fraud instances. The set of rules which was derived upon the 

feature set obtained in this research has located 311 fraud instances after several cycles 

of fine tuning. But system has detected 83 false positives and there were 17 false 

negatives. Further fine-tuning of rules was not effective as it resulted more false 

negatives. Table 4.8 shows Confusion Matrix for Offnet bypass detection system after 

applying final set of rules on training dataset.  

24-Hour
20%

Hybrid
7%

Real-Time
73%

24-Hour Hybrid Real-Time
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Table 4:8: Confusion Matrix for Offnet bypass detection system with training 

dataset. 

  
System Detected Class 

Genuine Fraud 

Actual Class 
Genuine 1152998 83 

Fraud 17 311 

 

The test dataset contains 1,373,124 different other operator subscriber profiles and out 

of which 233 connections are fraudulent connections. System detected 219 fraud 

instances correctly. But there were 44 false positives and 14 false negatives in this 

case. Table 4.9 presents the Confusion Matrix of Offnet bypass detection. 

Table 4:9: Confusion Matrix of Offnet bypass detection with test dataset.  

  
System Detected Class 

Genuine Fraud 

Actual Class 
Genuine 1372847 44 

Fraud 14 219 

Similar to Onnet bypass detection, offnet bypass detection also has uneven class 

distribution. In this case also, system delivered 99% accuracy level as majority of true 

negatives were classified correctly. Therefore, we need to consider F-score to get 

correct idea about classification job. Table 4.10 presents the performance measures of 

classification job performed on training and test datasets. We have fine-tuned rules for 

training dataset to obtain 0.8615 F1-score. Once the same set of rules was applied on 

the test set, we could obtain 0.8831 F-score for Offnet bypass detection. In [4], [5], 

and [6] authors did not addressed offnet bypass problem. But for the operator 

considered for the analysis, Offnet bypass number imposes a higher threat than Onnet 

bypass numbers.  
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Table 4:10: Performance measures of classification performed for Offnet bypass 

detection. 

  Test Set Training Set 

True Positives 219 311 

True Negatives 1,372,847 1,152,998 

False Positives 44 83 

False Negatives 14 17 

Accuracy 1 0.9999 

Precision 0.8327 0.7893 

Recall 0.9399 0.9482 

F1 Score 0.8831 0.8615 

 

Like in Onnet bypass detection, detection speed is important aspect of performance for 

Offnet bypass scenario as well. But National CDR Stream, which was used for Offnet 

bypass detection does not contains call duration related information. Therefore, we 

have considered attempt count when measuring detection speed. Table 4.11 presents 

detection speed related performance measures. Proposed system has detected 219 

fraud instances in test set with 16.09 average attempts per number. But Operator has 

spent 26.02 average attempts per number within considered 30-hour time window 

before being detected. Therefore, the proposed system detected fraud instances 9.93 

call attempts earlier than operator’s existing solution.  

Table 4:11: Detection speed related performance measures for Offnet bypass 

detection with test set. 

  

System Detections Operator Detections 

Total Average Total Average 

Attempt Count 3523 16.09 5698 26.02 

We have analyzed contribution of each type of rules for detecting 219 Offnet bypass 

fraud instances in test set. 24-Hour type rules detected 118 of those instances. Real-

time rules type contributed by detecting 12 instances. Remaining 89 detections were 

made using Hybrid rules. The chart shown in Figure 4.3 represents the contribution of 

different types of rules for Offnet bypass detection. In offnet bypass scenario, 24-hour 
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type rules made highest contribution by detecting 54% of total detections. Hybrid rules 

contributed next by making 41% of detections. Contribution of real-time rules was 5% 

in this case. 

 

Figure 4:3: Contribution of different types of detection rules for Offnet bypass 

detection. 

4.3. Extreme Usage Detection Results 

We focused on five types of extreme usage related fraud scenarios in this research, 

where all the cases are associated with premium number dialing. These fraud instances 

are detected relatively infrequently compared to Grey call fraud. Because behavior of 

these fraud scenarios are straight forward, fraudulent numbers can be detected by using 

CEP execution plan directly without considering past data. In this scenario, telco 

operators are more interested about alerting suspected fraudulent activity at earliest by 

compromising accuracy to certain level. Therefore, we do not discuss about accuracy 

measures in detail related to this case. 

Table 4.12 shows instances of Dial and Disconnect Scam detected by the proposed 

system. Once particular premium number terminated more than 10 customers of 

telecom network under the study, system immediately notifies those instances. As per 

24-Hour
54%

Hybrid
41%

Real-Time
5%

24-Hour Hybrid Real-Time



98 
 

configured threshold value, system detects fraud instances after 11th subscriber 

received a call from given premium number. Therefore, effect of this fraudulent 

activity for more customers can be eliminated. In this case no false positives or false 

negatives were detected. 

Table 4:12: Dial and Disconnect Fraud instances detected by System. 

Calling Party 

Number 

No of distinct subscribers received calls 

from this no when detected by system 

No of distinct subscribers 

received calls from this no 

5068687800  11 89 

27230040092  11 61 

Table 4.13 shows instances of fraud scenario associated with Outbound Dialing due to 

fake SMS messages detected by System. Once more than 10 distinct customers have 

dialed a specific premium number, system immediately notifies those instances. As 

per in Table 4.13, it is clear that many more customers can be affected, if these 

instances are not detected near real time. 

Table 4:13: Instances of Outbound Dialing due to fake text messages detected by 

system. 

Called Party 

Number  

No of distinct subscribers dialed 

this no when detected by system 

No of distinct subscribers 

dialed this no 

240555903098  11 229 

261344693077  11 555 

23786395002  11 120 

2917326679  11 696 

22997947006  11 104 

17673162598  11 21 

Within the considered time span, system has detected one instance of inbound 

roamer’s high usage scenario. Table 4.14 presents details about suspicious inbound 

roamer high usage instance which was detected by system. Given customer has dialed 

43720 number range which belongs to Austria special service and call termination cost 

to this level is LKR 500 per minute. So, operator need to be alerted about this case and 

make sure High Usage Report (HUR) is sent to home network operator of detected 
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inbound roamer. But in this case roamer may not involve in organized inbound roamer 

fraud. Within this dataset, no instances of malware originated calls or PABX hacking 

fraud was detected. 

Table 4:14: Instance for inbound roamer’s extreme usage. 

Calling Party 

Number 

 Dialed number 

range  

Answer attempt 

count before 

detection 

 Total duration 

before detection 

(seconds) 

4917328727XX  43720 2 3681 

4.4. Resource Utilization 

Figure 4.4 shows CPU load on server when Bypass detection solution is running. The 

snapshot is taken by including time span in which system operated with peak event 

rate. In our case, according to statistics of test and training datasets mentioned in 

Section 3.2.1.1, possible peak rate is around 233 events per seconds. System operates 

below 30% of CPU usage when pattern queries are running. But we can see hikes in 

processing when Spark scripts are running on BAM. 

 

Figure 4:4: CPU utilization of server with bypass detection application. 

Figure 4.4 shows memory utilized by JVM when bypass detection is running. We have 

set maximum possible Heap size to 14 GB from Java options. According to the graph, 

heap utilization is lower than allowed maximum memory level throughout run time. 



100 
 

 

Figure 4:5: Memory utilization of Java virtual machine with bypass detection. 

Figure 4.6 presents a CPU load and Heap utilization when CEP queries used to bypass 

detection is executed at varying event rates. The CEP queries used to bypass detection 

is the critical point of proposed system which defines the maximum operable input 

event rate. If any event stream is lagging relative to other input streams, proposed 

system could not produce correct results for pattern queries. Therefore, we have 

disabled batch analytic scripts and CEP queries used in extreme usage detection while 

conducting this experiment. At phase 1, we have loaded system with input rate around 

125 events per second. We can see CPU load is below 8% in this case. Heap utilization 

is below 3 GB and it started at lower value and slightly grows with time as more events 

are feed into CEP. In second phase, we loaded CEP with 250 events per second and 

CPU load was below 12%. Heap utilization was below 5.5 GB and it starts at lower 

value and slightly grows with time as more events are feed into CEP. At third phase, 

we loaded CEP with input event rate of around 375 events per second. In this stage, 

CPU load was below 14% and Heap utilization was below 6 GB. Then we tested with 

500 events per second. In this phase CPU and Heap utilizations are below 15% and 

6 GB, respectively. It is important to note that when experiment ran around 90 minutes, 

growth of heap utilization is stabilized. Beyond 500 events per second input rate, we 

have observed that the CDR stream with highest input event rate was lagged relative 

to remaining two streams when experiment goes on. The reason for this observation 
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could be increase in transaction time of receiving new event via event receiver due to 

queued events at CEP. Data publisher publish events to event receiver using TCP 

(Transmission Control Protocol). Therefore, reliable transaction need to be completed 

between publisher and receiver at arrival of each event to CEP. When events queued 

at CEP input beyond certain level, this transaction time could be increased and sending 

events on event stream could be delayed. 

 

Figure 4:6: CPU and Heap utilization of CEP queries used for Bypass detection at 

varying event rates. 

Figure 4.7, and 4.8 show CPU load and JVM memory utilization when extreme usage 

detection application is running. In this case CPU utilization is below 15% and 

memory utilization is below 7 GB. 
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Figure 4:7: CPU utilization of server with extreme usage detection. 

 

Figure 4:8: Memory utilization of Java virtual machine with extreme usage detection. 

In extreme usage detection use case, we fed 658,982 events in 45 minutes. Thus, the 

event rate is around 244 events per second. According to resource utilization graphs 

mentioned above, extreme usage detection application uses lower system resources 

than bypass detection application. Possible reason for this observation is calculations 

performed in bypass detection is more complex than extreme usage detection. Also, 

bypass detection application is dealing with three different streams and 
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synchronization of receiving events from three streams is important for efficient 

detection of patterns. If one stream is lagged than others proper complex event 

detection may not happen. Also, DAS queries used in bypass detection also causes 

higher CPU utilization. 

4.5. Summary 

In first part of this chapter, we have discussed about the experimental setup and the 

dataset used to evaluate real-time fraud detection system. Then we have discussed 

about the results of grey call detection use case. We were able to achieve 99.9% 

accuracy in both onnet and offnet bypass detection while significantly increasing 

detection speed. Next, we have presented results of extreme usage detection and we 

have detected such instances in real-time before any impact is felt to operator. Finally, 

we have demonstrated resource utilization when proposed system is utilized in each 

use case. As per our observations, proposed system has performed intended 

functionality without performance degradations at input event rate of 500 events per 

second with modest hardware. 
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5. CONCLUSION AND FUTURE WORK 

This chapter concludes dissertation by summarizing the findings, research limitations, 

and possible future enhancements. Section 5.1 summarizes the problem statement, 

design, and outcomes of the research. The problems and limitations encountered 

during this research are described in Section 5.2. Section 5.3 presents the potential 

future developments of this project. 

5.1. Summary 

Primary focus of this research is to detect fraud scenarios in telecom network in near 

real-time by using call patterns reflected in CDR stream. Grey call detection and 

detection of extreme usage scenarios related to international premium numbers are two 

major use cases of this system. We followed the Big Data Lambda architecture and 

developed a system architecture that comprises batch, speed, and serving layers, as it 

is well suited for application which performs both real-time and batch analytics. WSO2 

DAS was used in batch layer due to its ability to perform high-speed batch processing 

and Siddhi CEP was used at speed layer due to its enhanced performance in complex 

event detection. 

First, we started with the goal of detecting grey call numbers in near real-time. Related 

work such as [4], [5], and [6] do not support real-time detection due to unsuitability of 

traditional database reliant store first process then approach, dependence on large time 

windows for feature generation, shallow feature set, and ignoring complex patterns in 

CDRs in decision making. Therefore, we have primarily focused on generating rich 

set of features in near real time. Real-time feature set consists two components. First 

component is feature set derived based on complex patterns in CDR stream by using 

CEP engine. Second component is feature set generated by aggregating CDRs within 

recent one hour sliding window. We were able to detect some of the fraud instances 

by directly focusing on real-time behavior. But integration of past behavior is also 

important to minimize false positives and false negatives in bypass detection. So, we 

have generated set of features by considering past 24-hours behavior of subscribers. 

Additionally, we have used context data related to this fraud scenario to enrich feature 

set. Finally, we were able to come with a rich feature set to facilitate near real-time 
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grey call detection. Based on this feature set we built a set of classification rules to 

locate grey call instances.  

Grey call detection problem is divided to two sub-problems called Onnet bypass 

detection and Offnet Bypass detection. Onnet bypass detection considers grey callers 

who are using connections of same operator under study. Therefore, operator has 

visibility to location and device details of those connections and decision making is 

relatively easier. All the approaches mentioned in [4], [5], and [6] focused about Onnet 

grey call detection. Also, they have used dataset with more even class distribution. But 

our system has obtained results with similar F-Score for dataset with more uneven 

class distribution. Also, those approaches did not consider about detection speed of 

system. Average number of answer attempts and average duration conceded for 

number are important metrics used in industry to measure performance of bypass 

detection system. When considering those parameters our system clearly outperformed 

existing methodologies used by telecom operator. 

Offnet bypass detection considers grey callers that are using connections belong to 

other operators in country to terminate international calls to operator under study. In 

this case operator does not have cell information and device information. So Offnet 

bypass detection is more challenging and [4], [5], and [6] do not support Offnet bypass 

detection. In our case complex patterns and using context data were more useful and 

we were able to make offnet detections with considerable accuracy where we were 

able to reach 0.88 F-Score. Also, the proposed solution was able to detect offnet bypass 

calls about 10 attempts earlier than the operator. Thus, the proposed system can 

provide significant savings to telecom operator by reducing impact of grey call fraud. 

Grey call detection is complex fraud scenario as fraudsters tend to replicate normal 

user’s behavior to mislead grey call detection systems. Even though fraudsters can 

emulate normal user’s behavior by changing calling party behavior, there are some 

invariants unique to this fraud scenario which can be located by complex events 

generated within CDR stream and considering context of called party numbers. We 

had a challenge of including those invariants when building the feature set. The six 

complex event based features named as P1, P2, P3, P4, P5, and P6 capture invariant 
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call patterns unique to grey call fraud (see Section 3.2.1.3 and 3.2.1.4 for details). 

Fraudsters cannot avoid generating those event sequences while fraudulent activity is 

on course as fraudsters do not have control in all the individual events in that sequence. 

Also, features named as grb_dcnt_in_hour, iddb_dcnt_in_hour, iddb_dcnt_out_hour, 

grb_dcnt_in, iddb_dcnt_in and iddb_dcnt_out capture invariant behaviors unique to 

grey call fraud. Those features were built by considering context of called party 

numbers and fraudsters cannot influence those features by manipulating calling party 

behavior. System continuously updates context data based on user feedback and fresh 

data feed. Even though this is a rule based system, system is able to detect grey call 

fraud instances with new behaviors due to these tactics.  

We further worked on detecting extreme usage scenarios related to premium rated 

international destinations. These fraud instances are relatively infrequent compared to 

grey calls. So, we have obtained CDRs for past instances of these frauds and started to 

model Siddhi QL queries on CEP. We have identified behavior of five types of extreme 

usage scenarios and developed CEP execution plans to detect those. Unlike grey call 

detection problem, these fraud instances can be detected directly by considering real-

time view. Finally, we have fed international CDR for two days into system and 

detected instances of three types of extreme usage scenarios. Instances of PABX 

hacking fraud and Malware fraud were not available in test dataset as occurrence of 

those types of frauds are comparably rare. System had made detections before those 

fraudsters make noticeable effect to customers. 

5.2. Research Limitations 

We faced many challenges when labeling both training and test datasets for grey call 

detection. In Onnet bypass detection operator labeling was correct. But in offnet case 

both operator, and ourselves faced the challenge of determining class labels. We have 

observed some Offnet numbers were labeled as genuine subscribers even though those 

numbers reflected highly suspicious call pattern. These connections belong to one of 

the wireless fixed-line networks in the country and that operator claimed those as 

genuine subscribers. In deeper analysis, we observed that fraudsters have used real 

subscriber connections to fraudulent activity in these cases and those instances need to 
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be labeled as fraudulent. This issue imposed great challenge in developing rules as 

issue was severe in the time we acquired training dataset. So, we have used different 

set of rules to different operators to address this issue. Also, some of the fraudsters 

have used call forwarding and many other advanced techniques to replicate genuine 

usage behavior and mislead detection systems. Therefore, we had to go through series 

of verifications to decide class labels for offnet bypass detection. 

When we consider server resource utilization, grey call detection application 

consumed more resources than extreme usage detection. Initial plan was to implement 

aggregation for recent one-hour sliding window on CEP itself. But that approach was 

not feasible due to complexity of join queries and number of records involved in join 

queries. When system ran on this configuration, processing of some streams were 

lagging related to others. Pattern queries on CEP were affected due to this lagging. So, 

we have performed calculations based on one-hour sliding window on DAS. 

Calculations based on 24-hour sliding window was also done in DAS. But in this case, 

we have done those 24-hour calculations offline and merged with real-time view. This 

is same as performing 24-hour based calculations in separate DAS server. Ideally this 

can be done in separate physical server in parallel to real-time calculations. 

Calculations related to extreme usage scenario were done on CEP only and resource 

utilization is comparably lower in this case.  

Due to privacy concerns, operators were not willing to expose these data to outside 

parties, so we identify the limitation of reproducibility. Also, we were not authorized 

to bring CDR details outside and experiment the system with better computing 

resources due to privacy concerns of operator. System was tested on server available 

in operator premises. With better computing resources we may able to test this system 

on higher data rate and evaluate system performance. Also, operator did not provided 

CDRs for full customer base due to privacy reasons. We have gained access to the 

CDRs of subset of customer base after operator has made some precautionary actions 

to preserve privacy. Therefore, we were not able to perform analysis on full customer 

base. But, the dataset provided was sufficient to implement comprehensive solution.  
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Average call duration attribute was not used in initial model developed to detect 

inbound roamer fraud, PABX hacking fraud and malware fraud. When we observe 

inbound roamer fraud detection results for test set we observed that new attribute is 

required to reduce false positives. So we have collected more training instances and 

decided to use average call duration attribute. 

Additionally, we have not considered subscription fraud [7] in this research, as 

detection of those frauds requires sensitive privacy information of customer in addition 

to CDRs. Also, subscription fraud is relatively rare within the network under study due 

to operational policies followed by operator. We did not consider handset theft 

scenarios in this research even though such instances could be detected by using this 

solution. Within this country, customers hold full ownership of their mobile handsets, 

so operators do not have interest in detecting handset theft fraud. During this period, 

DoS and DDoS attacks on voice network were not observed. Therefore we did not 

have sample data to study about those scenarios. 

5.3. Future Work 

Inclusion of machine-learning techniques and using Neural Network or Tree-based 

classifier on derived feature set is interesting future work of this project. But this will 

be challenging task as some of the grey call instances replicate genuine behavior and 

that may corrupt learning process. Using machine-learning approach for Offnet bypass 

detection will be more challenging as numbers belong to different operators show 

different behaviors. So, hybrid method of rule-based and machine-learning based 

classification will be a fitting approach. Integration of WSO2 Machine learner which 

is a WSO2 module for predictive analytics will be another interesting future 

enhancement of this project. 

Also, we can expect significant performance enhancements if this system can be run 

one clustered environment with high processing power. With high computing 

resources, more calculations can be moved to CEP and detection speed can be further 

increased. Also, scaling the proposed system to handle CDRs of full customer base of 

the operator is another challenging future work. Additionally, this system can be 

extended to detect handset theft scenario in future based on operator’s requirement. 
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Developing CEP queries to detect DoS and DDoS attacks on voice network could be 

value addition to the proposed solution. However, this system landmarks the good 

initiative in near real-time fraud detection in telecom operators by deviating from 

traditional database reliant approach. 
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