

REAL-TIME FRAUD DETECTION IN

TELECOMMUNICATION NETWORK USING CALL

PATTERN ANALYSIS

Kehelwala Gamaralalage Dasun Chamara Kehelwala

(148223L)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

December 2017

REAL-TIME FRAUD DETECTION IN

TELECOMMUNICATION NETWORK USING CALL

PATTERN ANALYSIS

Kehelwala Gamaralalage Dasun Chamara Kehelwala

(148223L)

Dissertation submitted in partial fulfillment of the requirements for the degree

Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

December 2017

i

DECLARATION

Candidate:

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another per-

son except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my report, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).

…………….……………… …………………….

 K.G.D.C. Kehelwala Date

Supervisor:

The above candidate has carried out research for the Masters Dissertation under my

supervision.

…………….……………… ..………………….

Dr. H.M.N. Dilum Bandara Date

ii

Abstract

Telecommunication service providers are losing considerable percentage of their annual

revenue due to fraudulent activities. Such activities also deteriorate customer experience.

Therefore, real-time detection of such fraudulent activities is required to minimize the revenue

loss and to preserve customer experience. Illegal termination of International calls (aka.

SIMbox fraud) and extreme usage scenarios related to International revenue share fraud are

two major fraudulent activities which make highest impact. While such activities can be

detected by identifying behavioral and calling patterns of subscribers, they need to be detected

in real time so that subscriber connections linked with an ongoing fraud activity can be

terminated to minimize the impact of threat or revenue loss. Call Detail Records (CDRs)

produced by telecommunication equipment contains attributes that are specific to a phone call

or other communication transactions handled by the device could be used to detect behavioral

and calling patterns of subscribers. However, traditional CDR analysis techniques do not

facilitate time-sensitive monitoring and analytical requirements. Therefore, we propose a

Complex Event Processing (CEP) based solution for the real-time identification of fraudulent

and extreme usage subscriber patterns. We identified a rich set of features and set of call

patterns, and then combined batch analytics with real-time analytics to increase the detection

accuracy. We demonstrated the utility of the proposed solution using a real dataset from a

service provider. The proposed solution achieved an accuracy of 99.9% with average latency

of 16 call attempts per detection at input event rate of 230 events per second with modest

hardware.

Keywords: Complex Event Processing, Data analytics, Call Detail Records, call patterns

iii

ACKNOWLADGEMENT

My sincere gratitude goes to my family members for the continuous support and

motivation given to make this thesis a success. I also express my heartfelt appreciation

to Dr. Dilum Bandara, my supervisor, for the supervision, advice and valuable

feedback given throughout to make this research a success. I also thank to Mr. Ruchira

Yasaratne, Mr. Sampath Ilesinghe and Mr. Pradeep De Almeida of the Dialog Axiata

PLC, for providing approvals to proceed this project by keeping trust on me. Last but

not least I also thank my friends who supported me in this whole effort.

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1. Background ... 1

1.2. Motivation ... 2

1.2.1. Grey call detection ... 2

1.2.2. Extreme usage detection .. 3

1.3. Problem Statement .. 4

1.4. Objectives .. 5

1.5. Outline ... 6

2. LITERATURE REVIEW .. 7

2.1. Call Detail Records (CDR) .. 7

2.2. Grey Calls .. 9

2.3. Extreme Usage Scenarios .. 12

2.4. CDR-Based Detection Techniques .. 15

2.4.1. Grey call detection techniques... 15

2.4.2. Extreme usage detection techniques .. 23

2.5. Complex Events in CDR ... 27

2.6. Streaming Data Analysis Techniques .. 28

2.6.1. S4 ... 32

2.6.2. SASE ... 34

2.6.3. Esper .. 35

2.6.4. Siddhi CEP .. 36

2.6.5. CEP evaluation .. 39

2.7. Accessing Persistent Data within CEP .. 40

2.8. Combining Real-time View with Historical View 41

v

2.8.1. WSO2 BAM ... 43

2.8.2. WSO2 DAS .. 44

2.9. Summary ... 46

3. PROPOSED DESIGN AND IMPLEMENTATION 47

3.1. High-Level Architecture .. 47

3.1.1. Data sources, Publisher, Receiver, and Event streams 50

3.1.2. Batch layer ... 51

3.1.3. Speed layer .. 52

3.1.4. Serving layer .. 54

3.1.5. Rule-based Classifier ... 54

3.2. Feature Selection and Algorithm Design .. 55

3.2.1. Grey call detection ... 55

3.2.1.1. Data sources and context data .. 56

3.2.1.2. Locating complex patterns and design CEP queries 58

3.2.1.3. Feature set and detection rules for Onnet bypass detection 67

3.2.1.4. Feature set and detection rules for Offnet bypass detection 71

3.2.2. Extreme usage detection .. 74

3.2.2.1. Dial and disconnect scam ... 74

3.2.2.2. Outbound dialing due to fake text messages .. 77

3.2.2.3. Inbound roamer fraud ... 80

3.2.2.4. PABX hacking fraud .. 83

3.2.2.5. Malware originated fraudulent calls... 84

4. PERFORMANCE EVALUATION ... 87

4.1. Experimental Setup ... 87

4.2. Grey Call Detection Results .. 91

4.2.1. Onnet bypass ... 91

vi

4.2.2. Offnet bypass ... 94

4.3. Extreme Usage Detection Results ... 97

4.4. Resource Utilization .. 99

4.5. Summary ... 103

5. CONCLUSION AND FUTURE WORK .. 104

5.1. Summary ... 104

5.2. Research Limitations ... 106

5.3. Future Work .. 108

REFERNCES ... 110

vii

LIST OF FIGURES

Figure 2:1: Onnet bypass. .. 11

Figure 2:2: Offnet bypass. .. 11

Figure 2:3 : Complex events in CDRs created by SIMbox. 28

Figure 2:4: Example complex event in CDRs created by SIMbox. 28

Figure 2:5: Lambda architecture for Big Data ... 42

Figure 2:6: WSO2 DAS Architecture ... 45

Figure 3:1: High-level system architecture. ... 48

Figure 3:2: Overall event flow through CEP. .. 53

Figure 3:3: Complex Event Type 1. ... 58

Figure 3:4: Sample Type 1 Complex event in CDR Stream. 59

Figure 3:5: Siddhi Query to detect Complex Pattern Type 1. 59

Figure 3:6 : Complex event Type 2.. 60

Figure 3:7: Sample Type 2 Complex event in CDR Stream. 60

Figure 3:8: Siddhi Query to detect Complex Pattern Type 2. 60

Figure 3:9: Complex event Type 3... 61

Figure 3:10: Sample Type 3 Complex event in CDR Stream. 61

Figure 3:11: Siddhi Query to detect Complex Pattern Type 3. 62

Figure 3:12: Complex event Type 4. ... 62

Figure 3:13: Sample Type 4 Complex event in CDR Stream. 62

Figure 3:14: Siddhi Query to detect Complex Pattern Type 4. 63

Figure 3:15: Complex event Type 5. ... 63

Figure 3:16: Sample Type 5 Complex event in CDR stream..................................... 64

Figure 3:17: Siddhi Query to detect Complex Pattern Type 5. 64

Figure 3:18: Complex event Type 6. ... 65

Figure 3:19: Sample Type 6 Complex event in CDR Stream. 65

Figure 3:20: Siddhi Query to detect Complex Pattern Type 6. 65

Figure 3:21: Overall event flow in execution plan used for pattern detection. 66

Figure 3:22: Sample Spark Query used to calculate attributes. 70

Figure 3:23: Query used for event aggregation to detect Dial and Disconnect Scam.

 .. 76

viii

Figure 3:24: Query used to join Rating table with aggregated data. 77

Figure 3:25: Filtering Query used to detect Dial and Disconnect Scam. 77

Figure 3:26: Event flow of execution plan used to identify Dial and Disconnect

Fraud. ... 79

Figure 3:27: Event flow of execution plan used to detect Outbound dialing due to

fake text messages. ... 79

Figure 3:28: Aggregation query used in execution plan used for inbound roamer

fraud detection. ... 81

Figure 3:29: Siddhi query used to match intermediate stream with rating table used to

detect inbound roamer fraud. ... 82

Figure 3:30: Intermediate query used to calculate usage of each calling party number

to distinct premium number levels. .. 82

Figure 3:31: Siddhi query used to detect inbound roamer fraud and high usage

scenarios. .. 83

Figure 3:32: Filtering query used to detect PABX hacking fraud 84

Figure 3:33 : Filtering Query used to detect Malware fraud. 85

Figure 3:34: Event flow inside siddhi execution plan used to detect Inbound Roamer,

PABX Hacking, and malware fraud scenarios. .. 86

Figure 4:1: Experimental setup. ... 87

Figure 4:2: Contribution of different types of detection rules for Onnet bypass

detection. .. 94

Figure 4:3: Contribution of different types of detection rules for Offnet bypass

detection. .. 97

Figure 4:4: CPU utilization of server with bypass detection application. 99

Figure 4:5: Memory utilization of Java virtual machine with bypass detection. 100

Figure 4:6: CPU and Heap utilization of CEP queries used for Bypass detection at

varying event rates. .. 101

Figure 4:7: CPU utilization of server with extreme usage detection. 102

Figure 4:8: Memory utilization of Java virtual machine with extreme usage detection.

 .. 102

ix

LIST OF TABLES

Table 2:1: Common attributes in CDR. ... 8

Table 2:2: Specific attributes in CDRs generated at Class-5 switches. 8

Table 2:3: Specific attributes in CDRs generated at Class-4 switches. 9

Table 2:4: Feature set used in ANN based approach ... 16

Table 3:1 : Fields in Local CDR Stream. ... 56

Table 3:2: Fields in National CDR Stream. ... 56

Table 3:3: Fields in International CDR Stream.. 57

Table 3:4: Pattern based feature set for Onnet bypass detection. 67

Table 3:5: Feature set used in Onnet bypass detection based on short-time window.68

Table 3:6: Feature set calculated using past data for Onnet bypass detection. 69

Table 3:7: Example filtering criteria in detection rule used in Onnet bypass detection.

 .. 71

Table 3:8: Pattern based feature set for Offnet bypass detection. 71

Table 3:9: Feature set used in Offnet bypass detection with one-hour time window. 72

Table 3:10: Feature set calculated using past data for offnet bypass detection. 73

Table 3:11: Instances of Dial and Disconnect Scam. ... 75

Table 3:12: Rating table with destination number prefixes. 75

Table 3:13: Instances for Outbound Dialing due to fake Text Messages 78

Table 3:14: Sample instances of Inbound Roamer Fraud. ... 80

Table 3:15: Sample instance of PABX hacking fraud. .. 83

Table 3:16: Instances of Malware fraud... 85

Table 4:1: Hardware specifications of experimental server. 88

Table 4:2 : Details of training dataset. ... 89

Table 4:3: Details of test dataset. ... 90

Table 4:4: Confusion Matrix for Onnet bypass detection with training dataset. 92

Table 4:5: Confusion Matrix for Onnet bypass detection system with test dataset. .. 92

Table 4:6: Performance measures of classification job performed in Onnet bypass

detection. .. 93

Table 4:7: Speed of Onnet bypass detection with test dataset. 93

x

Table 4:8: Confusion Matrix for Offnet bypass detection system with training

dataset. .. 95

Table 4:9: Confusion Matrix of Offnet bypass detection with test dataset. 95

Table 4:10: Performance measures of classification performed for Offnet bypass

detection. .. 96

Table 4:11: Detection speed related performance measures for Offnet bypass

detection with test set. .. 96

Table 4:12: Dial and Disconnect Fraud instances detected by System. 98

Table 4:13: Instances of Outbound Dialing due to fake text messages detected by

system. .. 98

Table 4:14: Instance for inbound roamer’s extreme usage. 99

xi

LIST OF ABBREVIATIONS

ANN Artificial Neural Networks

ASCII American Standard Code for Information Interchange

BAM Business Activity Monitor

BI Business Intelligence

BSC Base Station Controller

CDR Call Detail Record

CEP Complex Event Processor

CLI Calling Line Identification

CTR Click-through Rate

CUP Current User Profile

DAHP Database-Active Human-Passive

DAS Data Analytics Server

DBMS Database Management System

DDOS Distributed Denial of Service

DOS Denial of Service

DSMS Data Stream Management System

EDGE Enhanced Data rates for GSM Evolution

FDT Fraud Detection Tool

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

GT Global Title

HADP Human-Active Database-Passive

HSPA High Speed Packet Access

HTTP Hypertext Transfer Protocol

IDD International Direct Dialing

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscriber Identity

ISC International Switching Center

ISDN Integrated Services Digital Network

ISUP ISDN User Part

xii

LTE Long Term Evolution

LKR Sri Lankan Rupee

MCC Mobile Country Code

MLP Multi-Layer Perception

MNC Mobile Network Code

MO Mobile Originated

MSC Mobile Switching Center

MSISDN Mobile Station - ISDN

MT Mobile Terminated

NFA Non-Deterministic Finite Automata

NN Neural Networks

OCS Online Charging Node

PABX Private Automatic Branch Exchange

QoS Quality of Service

RFID Radio Frequency Identification

SIM Subscriber Identity Module

SIP Session Initiation Protocol

SMS Short Message Service

SOM Self-Organizing Map

SVM Support Vector Machine

TDM Time Division Multiplexing

TMSC Tandem Mobile Switching Center

UPH User Profile History

UTMS Universal Mobile Telecommunications System

VLR Visitor Location Register

VoIP Voice over Internet Protocol

1

1. INTRODUCTION

1.1. Background

Telecommunication service providers around the world are losing billions of dollars

annually due to fraudulent activities [1]. Percentage revenue loss due to frauds is

considerable and incur direct impacts on profitability. The effects of these fraudulent

activities are felt by end users as well, as it causes quality of service degradations and

unexpected tariffs. Illegal termination of International calls (aka. SIMbox fraud), and

extreme usage scenarios related to International revenue share fraud are two of the

major fraudulent activities [1]. Traditional fraud detection techniques only focus on

detection accuracy and barely focus on detection speed. Therefore, fraudsters can

survive for substantial time before being detected. Given the lower cost of acquiring a

new connection they move on to a new connection once the existing one is blocked.

Hence, detection of these fraudulent activities in near real-time is essential to nullify

the impact and effectively control the frauds.

Call Detail Records (CDRs) [2] are one of the most valuable data repositories of a

telecom operator. CDR is the data record that contains information related to a single

instance of telephone call or other related transactions. Mobile Switching Center

(MSC) or related telecommunication nodes create a CDR record when a transaction

passed through it. Based on the functionality of the telecommunication nodes, level of

information in CDR may vary. In most cases, it contains data such as the origination

and destination address of the call, the time the call started and ended, and the duration

of the call. CDR stream is the best data source which reflects behavioral and calling

patterns of subscribers. While several related works use CDR analysis for fraud

detection, they follow traditional database reliant store first, process then approach,

Moreover, CDRs collected within a large time window are considered for decision

making; thus, lack real-time features and unable to effectively control the fraud [3]-

[7]. Furthermore, those solutions not focused on the time sensitive call patterns inside

the CDR stream, which comprise of valuable information in fraud detection.

Therefore, there is a need for a real-time fraud detection tool that can make detections

rapidly by effectively utilizing time sensitive call patterns within the CDR stream.

2

1.2. Motivation

Detecting a fraud after the event has occurred is not nearly as useful as catching it in

real time. While CDR is generated in real time, immediately after related transaction

is completed, most fraud detection tools use CDR for post analysis. Some of the

sophisticated tools available in industry [8] use signaling information in addition to

CDRs to make detections in real-time. However, capturing such signaling information

incur additional cost as supplementary probing devices are introduced to the network.

Also, these probing devices may introduce additional point of failure to the network.

Therefore, relying on CDRs is most cost effective and reliable method.

CDR contains all the required data to make near real-time fraud detections. But most

of the business analytics tools store this data on static storage and perform batch

operations on past data to calculate aggregate values such as sums and averages. Even

though such analysis gives useful insight about the past behavior, it is not sufficient in

current business world, as it is not capable of exploiting the timeliness value of data

and not captures time sensitive call patterns inside the CDR stream. For example,

following are two use cases where real-time CDR analytic could be useful.

1.2.1. Grey call detection

Illegal IDD Termination (aka. Grey Calls or Bypass Calls) is a major source of revenue

loss for a telecommunication provider, which also deteriorates Quality of Service

(QoS) offered to customers [1], [9], [10]. This scenario happens when fraudsters

accumulate an incoming international call through the Internet via Voice over Internet

Protocol (VoIP), and then inject it back to the destination country’s telecom network

as a local call using local SIM (Subscriber Identity Module) cards installed in a device

called SIMbox. Therefore, the call reaches the called party with a local CLI (Calling

Line Identity) and billed as a local call. When the price difference between the

international call termination and local call is high, fraudsters can easily gain revenue

that exceeds the break-even point with few fraudulent calls. Therefore, detection and

termination of such fraudulent phone numbers with minimum delay allows to regain

significant portion of revenue and effectively control this kind of fraud.

3

1.2.2. Extreme usage detection

Under extreme usage detection, we consider the scenarios in which subscribers

abnormally originate calls or subscribers abnormally receive calls compared to the

normal behavior. These could be due to fraudulent activity or some other incident.

Variants of International revenue share fraud and Premium rate service fraud are best

examples for this type of fraud. International revenue share fraud and Premium rate

service fraud are similar in nature and in either cases fraudsters try to pump up traffic

to certain numbers or number ranges belonging to premium rated or high cost

destinations. Usually operators need to pay more than LKR 50 per minute to terminate

calls to those premium rated or high cost destinations. Once fraudsters have inflated

traffic to agreed number levels, they can claim some percentage of the termination

revenue from the destination party.

Fraudsters are using various methods to persuade customers to originate calls to these

premium rated number levels. Dial and disconnect scam is the most frequent method

in which fraudsters multicast missed calls to a subset of customers with premium rate

number as CLI. After that, some of the customers dial back to that premium rate

number as response to missed call and get charged. In some cases, fraudsters multicast

fake text messages using SMS (Short Message Service) or messaging facility of over-

the-top media service providers like Viber or WhatsApp. Fraudsters include premium

number either as message sender’s CLI or as a content inside fancy message. Some of

the customers dial back those premium rated numbers. Sometimes fraudsters gain

unauthorized access to PABX (Private Automatic Branch Exchange) systems belongs

to cooperate customers and originate calls premium rated numbers. This is known as

PABX hacking fraud. Sometimes fraudsters inject malware to mobile handsets of

customers and originate calls to these premium rated number ranges. This scenario is

known as malware originated fraudulent calls. Sometimes fraudsters register in

network as inbound roamer and generate calls to premium rated numbers. This is

known as inbound roamer fraud. These fraudulent activities reflect calling patterns

unique to each scenario in CDR stream.

4

Situation awareness is important to take timely actions to exploit maximum advantages

from opportunities and control the damages in threats. In addition to fraudulent call

patterns, CDR contains many other important patterns which require timely attention.

As an example, when a popular TV program advertises the hotline number, subscribers

try to dial that number and a huge number of attempts reaches the network at an

unusual arrival rate. That may cause congestion in network devices and consequently

degrades the QoS. Real-time detection is required to take timely actions and minimize

the impact. Additionally, some attackers try to make DoS (Denial of Service) and

DDoS (Distributed DoS) attacks targeting the voice networks. In this case attackers

make large number of call attempts to a set of numbers in the destination network. If

the operator can detect it, they can react immediately and drop such calls at network

edge without processing.

Extreme usage patterns can be easily identified by analyzing the CDR steam. But most

important factor is that those events are time sensitive. Most of the time these cases

are identified at root cause analysis. Use of traditional database systems are inefficient

in this case, as it takes much time to upload CDRs into a database and perform queries

on a huge database. Therefore, it is important to be able to identify these extreme user

behaviors by analyzing CDR streams in real time.

1.3. Problem Statement

Traditional systems make detections by generating a set of features or aggregate values

by querying static data over a large time window and make decisions based on such

values. This is time consuming and by that time a fraudster can make number of

successful calls before being detected. Scenarios discussed above highlight the need

of a real-time CDR analysis tool, which can snoop CDR streams and generate a recent

or real-time view of the telecommunication network. Also, resultant recent view

should be able to integrate with past data and produce complete state of the network at

a given instance with minimum latency. System should be easily customizable

according to varying requirements of the operators. Lower development cost will be

an extra advantage. Such a system allows operators to gain maximum advantage by

5

exploiting timeliness of detected events and save significant amount of revenue by

minimizing fraudulent activities.

The solutions available in research literature lack real-time features due to unsuitability

of traditional database reliant store first process then approach for latency sensitive

applications, large time windows for feature generation, shallow feature set, less

awareness about context, and inability to detect complex patterns in CDR. Commercial

systems are also based on databases, use a proprietary feature set, focuses on specific

use case, and are usually expensive. Therefore, operators are unable to afford the cost

of such specialized systems.

Therefore, the problem to be addressed by this research can be stated as follows:

How to detect fraudulent call patterns in real-time using CDR?

Our primary focus is to use the power of complex events to support real-time decision

making in detection of grey callers and fraudulent activities which involve extreme

usage.

1.4. Objectives

Following list of objectives are to be achieved to address the above research problem:

 To research about each use case and its context details and to identify complex

call patterns in CDR streams.

 Identify suitable features to support decision making using a short-time

window.

 Develop algorithms, CEP queries and batch analytic queries to detect selected

use cases.

 Design optimal system architecture to perform fraud detections using real-time

and batch analytics together and implement the system using best suited

software packages.

 To conduct a comprehensive performance study using real data sets to

demonstrate the utility of the proposed solution.

6

1.5. Outline

The remainder of this report is organized as follows. Chapter 2 describes the theoretical

background related to CDR, Grey Calls, and related work. Technologies like Complex

Event Processing (CEP) and Business Activity Monitoring (BAM) are also discussed

in detail. Proposed design is presented in Chapter 3. Chapter 4 presents about

experimental setup and the results obtained by passing real-world dataset through the

proposed system. Finally, Chapter 5 summarizes the research findings, and present

limitations and future work of this research.

7

2. LITERATURE REVIEW

This chapter discusses the details about major use cases and presents survey about the

possible technologies to address given problem statement. Section 2.1 explains about

CDR. Detailed description about Grey calls is presented in Section 2.2. Section 2.3

discusses about fraudulent cases related with extreme usage scenario. Works related

to CDR based fraud and abnormal usage detection techniques are presented in Section

2.4. Section 2.5 discusses about complex event patterns comprised in CDR. Section

2.6 discusses about related data processing technologies. Section 2.7 discusses about

methods of accessing stored data by CEP engine to execute queries combined with

data streams. Section 2.8 presents how both the real time and archived data can be

combined. Summary of key findings of literature survey is presented in Section 2.9.

2.1. Call Detail Records (CDR)

Call Detail Record (CDR) [2] is the data record generated by telecommunication equipment.

It includes the attributes that are specific to a single instance of a phone call or other

communication transaction which is handled by that device. The attributes and level of

information inside the CDR vary depending on functionality of the device. The metadata files

or instructions manuals of the device typically specify how to extract the information in CDR.

CDRs are inherently used for billing purposes. In addition, it is used for troubleshooting,

measuring Quality of Service (QoS), fraud detection, gaining Business Intelligence (BI) and

forensic investigations.

The most common attributes of a CDR generated for a voice call are listed in Table

2.1. In addition to these attributes, CDR of Global System for Mobile (GSM) telephone

call contains additional attributes that represent the information about mobile handset

and its location (see Table 2.2). CDRs with these attributes are generated at Class-5

switches to which subscribers are directly connected. Handset and location related

attributes of originating and receiving parties of a telephone call are recorded in two

separate CDRs at Class-5 switches to which calling and called party subscribers are

attached. The telecom switches to which only other switches are connected are known

as Class-4 switches. Table 2.3 lists the additional attributes recorded at Class-4

switches in addition to basic attributes mentioned in Table 2.1. These details are

8

helpful to distinguish telecom operators in signaling interconnection. Tables 2.1 to 2.3

list only the essential attributes of a voice call that are helpful in this research. Many

other attributes that represent the QoS parameters, protocol-specific details and device-

specific details are included in CDR. Short Message Service (SMS) and Mobile Data

(GPRS, EDGE, UTMS, HSPA and LTE) technology transactions also generate CDRs.

Table 2:1: Common attributes in CDR.

Attribute Description

Origination Date & Time Date and time when call reached to the system

Calling Party ID (A Number) Subscriber Identity Number of user who originates the call

Called Party ID (B Number) Subscriber Identity Number of user intended to receive call

Answer Date & Time Answered date and time (Only if call answered by B party)

Disconnect Date & Time Disconnected date and time of call answered call

Release Date &Time Date and time call released by system

Disconnected Party Which party has released the call

Call Duration Duration between answer time and disconnect time

Release Cause Code that represents the reason for call release

Type of Call Can be Local, International or National

 Local – A and B parties within same telephone operator

 National – B party is in different telephone operator but

within same country

 International – B party is in different telephone operator

in different country

Table 2:2: Specific attributes in CDRs generated at Class-5 switches.

Attribute Description

IMSI – International Mobile

Subscriber Identity

Unique number that represents the Subscriber Identity Module

(SIM) card

IMEI – International Mobile

Equipment Identity

Unique number that identifies particular GSM-enabled device

MCC – Mobile Country Code Represents the Country to which mobile subscriber belongs to

MNC – Mobile Network Code Represents the Operator to which mobile subscriber belongs to

LAC – Location Area Code Represents the BSC (Base Station Controller) to which mobile

subscriber is attached to

Cell ID Represents the sector of a BTS (Base Transceiver Station) to

which mobile subscriber is attached to

MSC GT – Global Title

Number of Mobile Switching

Center

Represents the VLR (Virtual Home Register) and Mobile

Switching Center to which subscriber attached to

9

Table 2:3: Specific attributes in CDRs generated at Class-4 switches.

Attribute Description

Origination Switch Details  Origination Point-Code when using Time Division

Multiplexing (TDM) technology (e.g., Using ISUP signaling

protocol with SS7 stack)

 Origination Gateway IP when using Voice over IP (VoIP)

technology (e.g., SIP signaling protocol)

Destination Switch Details  Origination Point-Code when using Time Division

Multiplexing (TDM) technology (e.g., Using ISUP Signaling

Protocol with SS7 stack)

 Origination Gateway IP when using Voice over IP (VoIP)

technology (e.g., SIP Signaling Protocol)

Traditional BI techniques and fraud detection techniques only focus about aggregate

values like averages, summations, and counts derived using CDRs. However, CDRs

contain interesting patterns that reflect customer behavior. Identification of such

patterns allows to gain economic advantages by recognizing opportunities, as well as

mitigate risks by unmasking threats. Rapid growth of Data Science and Machine

Learning fields has enriched the CDR based pattern recognition. Fraud detection is one

of the major applications of CDR-based pattern recognition. Section 2.4 focuses on

literature that applies CDR-based fraud detection and pattern recognition techniques.

2.2. Grey Calls

Grey call fraud, SIMbox fraud, or Bypass fraud is one of the major source of revenue

loss in Telco industry [1]. Its impact is more severe in certain parts of the world,

especially in Asia, Africa and North America [9], [10]. This fraud is taken place when

the rate of international termination call is considerably higher than rate for local

incoming call in that country. Therefore, Fraudsters takeover those international calls

and transfer it through Internet to the destination country. Then Voice over IP (VoIP)

calls are injected to back to destination network via SIM (Subscriber Identity Module)

cards which are installed on device called SIMbox. Because this activity bypasses the

legal international interconnections between Telco operators, international calls are

billed as national calls and significant revenue leakage is occurred. SIMbox is the

device which is capable of converting VoIP calls to GSM network call. With expansion

of technology high capacity SIMboxes with advanced technologies like International

10

Mobile Equipment Identity (IMEI) swapping and intelligent SIM swapping algorithms

make the SIMbox behavior closer to actual subscriber [11].

In addition to the revenue loss SIMbox fraud causes QoS loss for customers, as these

calls may reach the SIMbox through a low quality, low bandwidth IP routes. Also, a

SIMbox may use 100s of SIMs simultaneously, which may overload the base stations

in that area. That may cause sudden call drops and loss of QoS observed by the

destination customer for IDD calls, as well as a degraded service is offered to actual

customers in that area. Since SIMbox spoofs actual international Calling Line

Identification (CLI) with a local CLI, SIMbox fraud may lead to privacy issues. So

SIMbox fraud may severely affect customer satisfaction and operator’s brand name.

We can divide Bypass fraud into two major categories as Onnet bypass and Offnet

Bypass. Onnet bypass means fraudsters use the SIM cards of same network of

destination number. This is the common case in most of the countries as calls within

same network cost much lower than charges for calls to other operators or international

calls. Figure 2.1 depicts the Onnet scenario. Instead of using the costly high-quality

routes that goes through destination networks International Switching Center (ISC),

some wholesale carriers route calls through SIMbox operators connected though the

Internet. SIMbox dials that calls via a SIM cards of the same network of the destination

number.

In Offnet bypass, fraudsters use the SIM card of a different operator in same country

of destination number. Figure 2.2 depicts this scenario. This happens when local

interconnection charges are much lower than international interconnection charges. In

some countries local interconnection charges are much closer to the international

interconnection charges. Therefore, Offnet bypass does not take place in such

countries.

11

SIMBOX

Core Network

Core Network

International Voice
Carriers

Internet

ISC

ISC

Least Cost
Route

High Cost Route

Call With Local
CLI

Call With International
CLI

Illegal Path

Legal Path

Common Path

Figure 2:1: Onnet bypass.

SIMBOX

Core Network

Operator Y
Core Network

International Voice
Carriers

Internet

ISC

ISC

Least Cost
Route

High Cost Route

Call With Local
CLI

Call With International
CLI

Illegal Path

Legal Path

Common Path

Operator X
Core Network

Figure 2:2: Offnet bypass.

Detection of SIM cards used for SIMbox fraud is a challenging task for mobile

operators. There are two major approaches. First approach is actively originating calls

12

to the target network via test units installed in several parts of the world and scan the

CLI of those calls. Even though this process detects SIMbox numbers in real time, it

is not capable of capturing majority of numbers. Second approach is CDR based

analysis. CDRs are loaded into relational database and queries are used to identify

fraudulent numbers. Rich set of attributes are needed to derive by summarizing CDRs

to achieve effective detection. In context of Onnet bypass, operator has more details

including location and owner information. But detection of Offnet bypass has to be

performed with limited details and strong pattern mining techniques are required.

Efficient detection process must consist minimum false positive (i.e., detect genuine

customers as fraudulent) and false negative (i.e., classify fraudulent numbers as

genuine) values. Moreover, number of attempts made by fraudulent SIM card before

detection is another important factor. If this value is very high, fraudster can cover the

cost before disconnection of SIM card. Because the Telecom industry is highly

competitive, in most of the countries fraudsters can buy new SIM cards at a very little

cost. Hence, traditional analysis methods fail here as those are based on past CDR

analysis. Therefore, when operator has disconnected fraudulent SIM cards, fraudsters

use new set of SIM cards as they can cover profit margin. This process continues, and

actual task of detection process becomes damage control function.

2.3. Extreme Usage Scenarios

In regular business, Telco operators encounter many scenarios in which normal

subscribers show abnormal usage behaviors or excessive usage of network resources,

and then reject to pay bills. Subscribers show such kind of behaviors unintentionally

or as a result of their reaction to some provocations triggered by fraudsters due to lack

of awareness. Fraudsters directly involve overusing network resources only in few

cases like inbound roamer fraud.

In majority of extreme usage scenarios fraudsters use premium rate telephone

numbers. Some countries have high international incoming call charges to all number

ranges belongs to country code or certain number levels in their numbering plan. When

the caller in different country has dialed those premium rated numbers, caller’s service

provider has to charge extremely higher value than standard IDD call charges in order

13

to cover call termination cost to premium rated number range. Fraudsters misuse those

telephone numbers to earn profits through fraudulent activities. Operators publish

those premium rated number ranges on their websites to make customers aware about

dialing cost to those countries or telephone number ranges. The premium rated

numbers used for fraudulent activities are automatically answered and sometimes

fraudsters redirect those to fancy recordings to elongate conversation time and make

even more profits.

Dial and disconnect scam is the first category of fraudulent activity related to premium

rate telephone numbers. In this scenario, fraudsters connected to international voice

network multicast call attempts to range of valid telephone numbers in selected

network in selected country. Normally those calls are disconnected by fraudster after

few rings to make sure customers do not answer those calls. As international voice

carriers do not charge for zero duration calls, fraudsters do not need to bear any charges

to populate these missed calls. Intention of these missed calls is to arouse natural

curiosity of recipient party and persuade them to dial back. When multicasting those

missed call attempts fraudsters replace original calling party with premium rated

telephone number or telephone number of country to which call termination rate is

higher than LKR 50. Sometimes fraudsters wait till called party subscriber answer

those call and make some groaning sounds to persuade customers more. Customers

who are less aware about this fraudulent activity try to dial back these numbers and

get charged. This fraudulent activity is also called one ring scam or ring and run scam.

Outbound dialing due to fake text messages is the second most frequent fraud scenario

related to premium rated numbers. Instead of missed calls, fraudsters use fancy

messages to persuade normal subscribers to dial back to premium rated numbers.

Those text messages are populated using SMS (Short Message Service) or messaging

facility of over-the-top media service providers like Viber or WhatsApp. They include

premium number either as message sender’s CLI or as a content inside fancy message.

Some of the customers who lack awareness about these kinds of fraudulent activities

dial back these premium rated numbers mentioned in these messages and get charged.

14

Another possible extreme usage related fraud scenario is inbound roamer fraud. Using

international or national roaming facility provided by mobile network operators,

subscribers belong to other operator’s mobile network (foreign or local) can latch to

visitor network and use the services provided by host operator. Those subscribers are

defined as inbound roamers. According to roaming agreements between two operators,

home network operator of roamer needs to pay usage charges to visitor network

operator on behalf of their customer. Visitor network operator needs to transfer billing

related details to home network operator at earliest. Sometimes fraudsters use this

roaming facility for their fraudulent activities. Fraudsters latch guest (foreign or local)

SIM card on visitor network and originate calls to premium rated or high cost

destinations. Foreign or local operator who is the home network operator of fraudster’s

SIM card receives usage details once visitor network operator has transferred billing

details. If there is any delay in billing file transfer, fraudsters can exploit those delays.

Even though foreign operator needs to pay those charges to visitor network operator

according to agreements, visitor network operator needs to track those fraudulent

incidents and inform foreign operator as there is some associated risk in termination

of roaming agreements and not paying excessive charges when usage charges due to

fraudulent activity is very high.

In PABX hacking fraud, fraudsters acquire the control of PABX (Private Automatic

Branch Exchange) system by exploiting vulnerability of PABX system [7] or its

connected network. Then fraudsters make large number of calls to premium rated or

high cost destination without any intention of actual customer if PABX system has

IDD facility. Customer is billed for these calls and more often than not they refuse to

pay the bill as calls were originated without their intention. So operator needs to bear

the cost. This scenario is encountered only when telecom operator provides trunking

solutions to enterprise customers who operate PABX systems. Even though this fraud

scenario is less frequent, its impact is high as fraudsters can originate many

simultaneous calls up to configured channel capacity of trunk between central office

and customer’s PABX.

Similar kind of a scenario can happen with malwares installed in smart phones.

Fraudsters setup set of premium rated numbers and distribute some malwares that can

15

remotely or automatically triggered to dial that numbers. When mobile handset is

inflected with such malware, it frequently originates long-duration calls to those

premium rated numbers and customer get charged. Because these calls are dialed

without customer intention customer often refuses to pay the bill and operator has to

bear the cost to retain the customer. This scenario is known as malware originated

fraudulent calls.

All these five cases are well organized frauds and related to premium rate international

numbers. This is because fraudsters try to make profits from those activities.

Destination party or third-party between premium destination operators and fraudsters

advertises these numbers with revenue share model. Fraudsters make agreements with

those relevant parties and originate calls into premium rated numbers in fraudulent

ways. In all these five cases fraudsters take some percentage of money earned by

premium destination operator. International revenue share fraud is an umbrella name

used to define these five types of fraudulent scenarios. Sometimes these fraud

scenarios are defined as premium rated service fraud. International revenue share fraud

is one of the major frauds and telecommunication service providers around the world

are losing billions of dollars [1] due to this. Therefore, under extreme usage detection

we will focus on these five fraud scenarios belong to international revenue share fraud.

2.4. CDR-Based Detection Techniques

2.4.1. Grey call detection techniques

Elmi et al. [4] proposed an Artificial Neural Network (ANN) method to address

SIMbox fraud. They have used supervised learning method with Multi-Layer

Perception (MLP) as classifier. ANN was used because of its generalizing capabilities,

ability to learn complex patterns and trends within noisy data and better performance

records in this domain. This system comprises nine features derived using CDRs in

dataset and corresponding values of those features were calculated for each calling

subscriber. Table 2.4 describes the feature set which was used for SIMbox detection.

16

Table 2:4: Feature set used in ANN based approach [4].

Field Name Description

Call sub This is the subscriber identity module (SIM) number which

was used as the identity field

Total calls This feature is derived from counting the total calls made by

each subscriber on a single day

Total numbers called This feature is the total different unique subscribers called by

the customer (subscriber) on a single day

Total minutes Total duration of all calls made by the subscriber in minutes

on a single day

Total night calls The total calls made by the subscriber during the midnight

(12:00 to 5:00 am) on a single day

Total numbers called at night The total different unique subscribers called during the

midnight (12:00 to 5:00 am) on a single day

Total minutes at night The total duration of all calls made by the subscriber in

minutes at midnight (12:00 to 5:00 am)

Total incoming Total number of calls received by the subscriber on a single

day

Called numbers to total calls ratio This is the ratio of the total numbers called/total calls

Average minutes The is the average call duration of each subscriber

In Multi-Layer Perception the ANN consists of multiple layers of computational units

(neurons), connected in feed forward way. So these neurons can be categorized into

input, output and hidden neurons based on layer. Connections between neurons are

known as edges and which has associated weights. Neurons are only connected to

subsequent layers but not to the neurons in same layer. Weighted sum of multiple

inputs is taken and it is fed into nonlinear activation function called Sigmoid function

to generate single output of neuron. This output value is passed as input to the

connected nodes in next layer. Back Propagation algorithm is used to train the ANN

to minimize the training errors. This algorithm calculates error value for each neuron

output (difference between output of neuron and actual value) and weights of network

edges are continuously adjusted in a way that minimize errors.

The dataset was divided to ten subsets and average error value was calculated by

running experiment for each subset in turn using same model. While using one subset

for testing remaining nine was combined and used for training. This is known as 10-

fold cross validation. Authors has changed four parameters to find optimum ANN with

17

highest accuracy. Number of hidden layers, number of neurons per hidden layer,

learning rate and momentum are those parameters. Learning rate represents the speed

at which the ANN arrives at the global minimum value for Sum Square Error (SSE).

The momentum parameter represents the rate at which the ANN approaches

neighborhood of optimality at early stages of algorithm. Both momentum and learning

rate range its values between zero and one. Altogether they have experimented 240

neural networks and compared them in terms of prediction accuracy, generalization

error, time taken to build the model, precision, and recall. So they have unmasked the

optimum ANN. They have identified that very high learning rates and momentum rate

significantly degrade classification accuracy as it leads algorithm to overshoot the

optimal configuration. They have obtained maximum accuracy of 98.7% by using

lower momentum value (0.3) and moderately higher Learning rate (0.6) and using two

hidden layers. Learning and classification performed in about 17 seconds with

considerably lower false positive and false negative detections.

Two years later the same authors came up with a Support Vector Machine (SVM)

based approach [5] for the same dataset and compared its results with the ANN based

approach. They have used 10-fold cross validation technique while using same features

in [4].

Because this is a binary classification problem there are only two classes in the training

data, in this case hyperplane is a line. But authors had to use nonlinear SVM as

nonlinear curved line was required to separate boundaries. So they have used kernel

functions instead of inner product and evaluated performance separately for

polynomial kernels, radial basis function kernels, and linear kernels. Additionally, they

have taken measurements by changing the C penalty parameter which effectively

controls amount of error willing to afford in the training data. Altogether they have

evaluated 40 SVM models in terms of accuracy, generalization error, and time taken

to build the model, precision and recall using 10-fold cross validation method.

Moreover, they have evaluated performance of both methods by changing training and

testing set sizes. Authors achieved above 98.5% accuracy in both ANN and SVM

based approaches. Finlay, they have located best SVM model and found that it

performs better than ANN because of significant reduction in running time. Even

18

though authors were able to achieve high accuracies and lower running time in both

the cases, sustainability of this approach in practical scenario is questionable due to

many reasons. When we consider the dataset, its size is much smaller than typical

mobile network operator. Dataset contains CDRs of 234,324 calls made by 6,415

subscribers over two months. However, most of mobile operators, especially in Asian

countries, have more than 5 million subscribers and generate more than 20 million

CDRs per day [12], [13]. Also, they have considered CDRs from one cell id only and

ratio between legitimate to fraudulent subscribers is approximately 2:1. But in real

cases more than 20,000 cell IDs [14] need to be considered and percentage of SIMbox

numbers out of total customer base is very low. So we can conclude that cardinality of

dataset is inferior to actual cases. Therefore, this solution’s ability to achieve given

performances in practical environment is not tested in [5]. Also, they have considered

CDR for two months when calculating features. But the actual requirement is SIMbox

detection need to perform as early as possible. Fraudsters can cover the cost of buying

new SIMs, if they successfully operate over a few hours. So there is no point of

performing calculations within a few seconds as long time window is used for feature

calculation. Additionally, scalability of these methods with large datasets were not

evaluated in both the papers [4], [5].

Murynets et al. [6] have presented a novel classifier for fraudulent SIMbox detection.

Comprehensive analysis about SIMbox fraud and its consequences was performed in

first part of this paper. As we are focusing on operation of SIMbox fraud and its

consequences in previous chapter only important observations are highlighted in this

chapter. Table 2.5 shows the attributes of the CDR used by authors, where they have

accounted important details including location details, device details and

corresponding customer segment of calling party which were absent in the previous

cases [4], [5]. Those parameters are directly used as features as described below. Using

CDR with a rich set of attributes can be identified as a positive step. By considering

IMEI details it is possible to block the confirmed IMEIs or detect new SIM cards that

are inserted into a SIMbox with a particular IMEI. But the detection logic cannot too

much depend on that since advanced SIMboxes allow changing IMEIs [11].

19

Table 2:5: CDR fields considered in Classification based approach [6].

CDR Field Description

Time Date and time of a call

Duration Call duration

Originating number phone Number of a caller

Originating country code Country of a caller

Terminating number Phone number of a called party

Terminating country code Country of a called party

Call type Mobile originated/terminated call

IMEI International Mobile Equipment Identity (device identifier)

IMSI International Mobile Subscriber Identity (user identifier)

LAC-CID Location area code and cell ID (base station location identifier)

Account age Time since account activation

Customer segment Prepaid/postpaid/corporate account

Authors have derived 48 features using mentioned CDR attributes in Table 2.5. It is

important to note that the feature set is per IMEI basis and they have targeted to

identify SIMbox rather than SIM cards used for IMEI. Even though authors did not

give full description about whole feature set, features mentioned in Table 2.6 were

highlighted. Based on these features, authors have characterized SIMbox behavior.

Authors have demonstrated that SIMboxes have fairly static physical behavior as they

connect to a very small number of nearby base stations while a genuine customer is

dynamic and moves across many base stations. This is obvious but important

observation which were not presented in the previous cases [4], [5]. LAC-CID attribute

makes this possible. Because advanced SIMboxes are capable of swapping locations,

location information need to be used with care.

Authors have demonstrated SIMboxes have very few Mobile Terminated (MT) calls

and generate a huge number of Mobile Originated (MO) calls while genuine customers

have same number of initiated and received calls. So usefulness of outgoing calls to

incoming calls ratio feature can be highlighted. Also, authors have presented that

SIMboxes have very small duration of MT calls over the time than actual customer.

Since SIMbox is a machine it cannot lively answer the MT call and maintain a

conversation. So it just drops the call or forwards the call to announcement. That is the

20

reason for this observation. Another observation is SIMbox operators regularly deploy

a set of new SIM cards once operator has detected and deactivated existing fraudulent

SIM cards. They also tried to filter out the device called Network Probe which is used

for quality measurements.

Table 2:6: Feature set used in Classification based approach [6].

Feature Description Importance

Average Mobile Originated (MO)

call duration

Can Compare the ratio between these values which varies

significantly for SIMbox and genuine customer.

Average Mobile Terminated (MT)

call duration

Account Age Allows to identify long stay genuine customers while giving

idea about SIM Card replacing activities of fraudsters when

operator blocked the detected IMSIs

Customer segment Pre-paid accounts are more likely to use in SIMbox as those

accounts are easier to buy without much authentication. So

can assign weights based customer segment.

Total number of Outgoing calls Grouped according to their corresponding destinations and

origins (international and domestic) and counted based on

MO and MT time stamps. Further grouped based on

originating and terminating country codes. Used to calculate

other useful attributes including ratios between these values.
Total number of Incoming calls

IMSIs operated for IMEI SIMboxes typically use multiple SIMs

Geo-Location Allows to compare physical movement of SIMbox vs

Mobile Handset of genuine customer.

Ratio of the number of destinations

to the total number of calls

Allows to check whether A Party dials many distinct

locations abnormally

Ratio of international calls to the

total number of calls

Allows to check whether A Party dials international calls

regularly

Before we look into classification algorithm it is important to highlight several

concerns in feature generation. Per IMEI basis feature calculation has its own set of

problems. Advanced SIMboxes can replace IMEIs with dummy values or other

genuine IMEIs. So blocking IMEI numbers may block some genuine customers.

Additionally, IMEI to MSISDN mapping may give false values. Since choice of device

is customer’s right, operator has no control on IMEI. So applicability of this system

directly in practical environment can be questioned. Better option is feature calculation

per MSISDN basis.

21

Mobile operators disconnect SIMbox connections once they have detected it. So

fraudsters insert many new SIM cards to SIMbox frequently. Also, SIMboxes do not

move the location on regular basis and attached to limited set of cell IDs. So, there is

a high probability that calls originating from those cell IDs to be grey calls. Location

details give sense about that. But researchers have not mentioned that they have

identified such cell IDs and not presented cell ID wise SIMbox distribution.

When we consider dataset, majority of the features were calculated for data collected

over one week period from tier-1 cellular operator in United States. So dataset is

considerably larger than the previous cases. But one week period is still higher as

operator loses considerable amount of revenue over that period. This dataset contained

CDRs of 93,500 subscriber accounts and 500 (or 0.5%) out that were SIMboxes. Since

SIMbox user CDRs are mixed inside considerable amount of genuine user’s data, this

dataset can be considered as good mixing of SIMbox users and Normal user’s data

than [4],[5]. Features like IMSIs operated per IMEI was calculated for data collected

over five months. 66% of labeled accounts were used as the training set while

remaining 34% were used for testing. Like in previous cases, cross validation

techniques were not used to increase the accuracy.

Classification algorithm which was used in this research is a linear combination of

three classifiers associated with weight coefficients. Alternating decision tree,

functional tree and random forest are the three classifiers. An alternating decision tree

is derived by the combination of single question decision trees which has two types of

nodes known as decision nodes and predictor nodes. Decision node contains feature

test condition while predicate node has single real number corresponding to negative

or positive weight. Root and leaves are predictor nodes and decision node lies between

two predictor nodes. So input records are passed through multiple paths and output

value is produced based on sign of the weighted sum. Based on training data, Boosting

method continuously re-weights the values in predicate node. So ultimate function of

boosting method is combining week classifiers into strong classifiers while focusing

on majority as well as outliers in the training dataset. In Random forest, multiple

decision trees are generated using subset of features and prediction output is generated

based majority rule. Functional tree makes decision tests for combination of the

22

original features at decision nodes, leaf nodes, or both nodes and leaves unlike in

standard decision tree in which decision test is done for single feature at decision

nodes.

The predictions made by Random forest algorithm provided best false positive rate of

0.0001 while offering comparably higher false negative rate of 0.16. Functional tree

algorithm had done predictions with lowest false negative rate of 0.07 but false positive

rate was 0.0007 which is comparably higher than value obtained for Random forest.

Therefore, to increase the accuracy, multiple regression technique was used. Multiple

regression considers prediction output of three classifiers as predictor variables and its

linear combination as criterion variable. Prediction error is defined as difference

between predicted data label and actual data label. Regression weight coefficients were

calculated by locating least value of square error for training dataset. Finally, they have

unmasked optimum value for three weight coefficients and classified test data using

novel classifier. They were able to minimize the false positive rate up to 0.0001 and

false negative rate up to 0.09 and achieve 99.95% accuracy which was higher than

previous cases [4], [5]. To enhance practical usage, they have filtered out accounts

with less than 10 IMSIs per IMEI, probing devices and well known legitimate accounts

and remaining 0.02% of accounts was used for feature generation.

Even though authors gained high accuracy they have not mentioned running time of

algorithm and processing requirements. To reduce computational resources, they

simply used manual filtering which reduces the size of dataset. But manual filtering is

not always possible. Therefore, scalability and running time of this method can be

questioned.

Critical evaluation of above approaches reveals many areas that were not focused and

thus opens up new research topics. Those facts are summarized below:

 Existing solutions have only targeted the accuracy and running time of

classification algorithm while considering large time window for feature

calculation. Those solutions did not interpret SIMbox detection as time

sensitive operation. So these solutions are incapable of preventing financial

losses as fraudsters can make profits easily by operating safely within that time

23

window before disconnection. Therefore, to make near real-time detections

rich set of features should be generated for short-time window and

classification algorithm need to be optimized according to that.

 These approaches are only capable of detecting Onnet Bypass and did not pay

any attention for Offnet Bypass. Both make similar kind of financial losses for

many telecom operators. Features like Location, IMEI, IMSI, and Account type

details may not be available for Offnet SIMbox numbers. So a rich set of novel

features with additional measures is required to detect Offnet Bypass.

 Features are generated based on calling party behavior only. But by considering

called party behavior a valuable set of attributes can be derived. For example,

counting the subset of called party numbers which has received IDD calls and

belongs to a set of called party numbers dialed by the considered calling party

will be valuable feature in context of grey call detection.

 Previous cases have targeted CDR data stored in static databases. But CDRs

records are generated in real time and flows as streams of data. Therefore, to

gain maximum advantage, a new mechanism that is capable of directly

processing the multiple streams is required. Also, that mechanism should

support multiple CDR streams generated by Telco nodes, as well as some static

data simultaneously.

 A typical mobile service providers have a customer base of more than ten

million. So data streams with very high transaction rate are generated at Telco

nodes. So highly scalable and fast feature generation method is required to cope

with current industry requirements.

 Any of the discussed methods are not capable of identifying complex events

masked inside CDR. Detection of complex events allow to exploit maximum

situational value. This can be effectively used for SIMbox fraud detection.

2.4.2. Extreme usage detection techniques

Grosser et al. [3] proposed a fraud detection method using ANN. They tried to replace

traditional method of fraud detection that is only capable of detecting extreme

fraudulent activities. Traditional method is defined as absolute CDR analysis, which

24

generates alerts when calculated summative values of CDR attributes meet the fixed

criteria known as Triggers. They suggested the method known as differential CDR

analysis, which tracks the pattern of behavior of mobile subscriber by comparing the

most recent call transactions with historical call transactions and notifies if change of

pattern is observed. Two types of user profiles known as Current User Profile (CUP)

and User Profile History (UPH) were maintained for each subscriber.

Encoded CDRs which contain IMSI, originate date and time, duration and call type as

attributes were used in this analysis. Researchers have grouped incoming CDR entries

into three groups based on type of call as local, national, or international. Then they

have created three neural networks to recognize patterns in these groups. Call time and

its duration were used as inputs to the neural network that determines the pattern to

which specific call resembles. ANN type known as Self-Organizing Map (SOM)

network was used to generate patterns. This is an unsupervised learning method that

is capable to transform an incoming signal pattern of arbitrary dimension into a one or

two dimensional discrete map.

Based on analyzed dataset they have identified 144 patterns corresponding to local

calls, 64 patterns that represent national calls and 36 patterns corresponding to

international calls. The pattern represents most probable call duration of the considered

call type (local, national or international) at the given time of the day as per historical

stats. So the user profile represents the frequency distribution of each pattern at

considered windows for CUP and UPH. When a new encoded CDR of a certain user

is generated, corresponding user’s CUP is adjusted according to that. Then information

related to the oldest entry in the CUP is moved to UPH and information related to the

oldest entry in UPH is deleted. To compare CUP and UPH researchers have used

Hellinger distance [15], which is used to quantify the similarity between two

probability distributions. Suspicious events are triggered when this distance value is

large.

Even though this solution takes us one step towards near real-time pattern recognition,

it has many drawbacks. Authors have accepted that there is high probability of false

positives and this can be used only as tool to narrow down the scope of analysis. Huge

25

number of genuine customers with random needs will be detected, as customer

behavior is varying based on their context. They have not given an indication about

the size and cardinality of the dataset which was used in this analysis. Therefore, we

are unable to determine the scalability of solution. Maintaining user profiles for

millions of customers in a modern mobile operator will exhaust system resources [12],

[13]. Number of derived patterns will not be enough to represent behavior of a large

customer base and identify abnormalities. Also, usefulness of patterns is lower as they

have used only the call duration attribute for profiling. This system can only detect

frauds which involve very high usage, thus the method will be ineffective in practice.

Shawe-Taylor et al. [7] presented a mechanism to detect set of fraud scenarios in

Global System for Mobile (GSM) network. Authors argue that since fraudsters always

seek to beat the system by using new techniques it is impossible to eliminate frauds

completely. But the detection approach, which is optimum mix of proactive and

reactive approaches is most effective in avoiding the noticeable damages due to such

frauds.

They have highlighted many fraud cases including PABX hacking fraud, inbound

roaming fraud and Premium rated service fraud that can be categorized into extreme

user behaviors. Additionally, they have mentioned about subscription fraud, handset

theft and freephone fraud. But we have not focused them as those are not considered

in our scope.

Authors have used Toll Tickets (or CDRs) as the data source for their Fraud Detection

Tool (FDT). Even though CDR is created after call is finished, it is appropriate for

fraud detection in real time given that each record is collected immediately after

creation. Since the CDRs related to billing are not collected rapidly they have proposed

mediation device to support hot billing and minimize delay. Mediation device is

responsible to poll the telecommunication switches on a regular basis and collect CDR

for their FDT. Signaling data is also a candidate data source, but it is difficult to handle

due to sheer volume even though it gives data immediately when a call is setup.

Authors have proposed the Brutus tool which tries to detect such frauds in real time by

observing usage of subscribers. This tool consists of four major components, namely:

26

1. An unsupervised learning tool which uses neural networks to monitor called

party (aka. B-number) details in CDR

2. An unsupervised learning tool utilizing neural networks looking at calling party

details (aka. A-number) in CDR

3. A neural network based tool using supervised learning

4. A rule based tool

These components are arranged in a cascaded manner. But each module can generate

the alarms by own. First two parts are unsupervised learning components which

observe changes in user behavior without use of prior knowledge about fraud. B-

number wise profiling and analysis is placed as first filter to all incoming profiles as it

allows to reuse the calculated profile data in future steps. Specifically B-number wise

analysis was focused on international B-numbers as most of above-mentioned frauds

related to international B-numbers. Then A-number wise profiling and analysis is

performed using unsupervised Neural Network (NN) method. This allows the

detection of novelty frauds and variant attacks. Collectively unsupervised NN part

eliminates most of the normal users from equation and reduces further calculations in

great extent. Also, it allows to keep the percentage of true negative at a minimum level.

Supervised NN part is placed at next. These components efficiently pinpoint users

whose behavior is similar to previously known fraud patterns. Authors expect to

achieve high true positive by optimally tuning this component using training datasets.

After that Rule-based tool is placed to examine the CDR based features against fixed

criteria. These rules are initialized with manually set parameters based on the past

observations. Based on the true alarms raised by other modules new rules can be

developed to optimize the rule based tool. Finally, all raised alarms are presented in

Monitoring GUI which is overlooked by human operators.

This tool is combination of absolute and differential CDR analysis, as NN-based part

performs differential analysis while rule-based part performs absolute analysis. Like

[3] this system also uses UPH and CUP profiles when analyzing user behavior changes

using NN. The main purpose of differential analysis part is to avoid the possibility of

one set of rules appropriate for a subset of customers is being applied to all the

27

customers. Also, it allows to identify user behavior changes at an early stage. Authors

have used CDR of 20,000 users collected within four months. Even though CDR files

contained 25 fields they have used A-number, B-Number, call starting time and call

duration only. They did not consider location details.

Authors have proposed the function for common alarm level as a weighted sum of

alarm levels of each component. So weights can be manually adjusted to achieve

optimum results. In order to optimize the function logistic regression approach was

used. The system triggers alarm when common alarm level exceeds a certain threshold

value. This approach is positive improvement when we consider the previous approach

[3]. They were able to achieve 85% of detection accuracy. One of the notable

limitations of this tool is each time a CDR entry is received user profiles have to be

swapped between disk and main memory. System has been tested with 30 CDRs per

second using optimized database tool called GDBM. Since typical mobile operator’s

CDR generation rate would be thousands per second, application of this tool would be

difficult. Also, when considering the customer base of modern mobile operators,

maintaining and updating huge number of user profiles will not be practical. Therefore,

store and analyze approach need to be replaced. Also, neither of these has not

considered complex event sequences contained in CDR stream that can give

indications about fraudulent activities. For example, we can identify malicious call

back fraud at early stage, if we can detect complex event that involves back to back

missed call attempts from premium rate number set of subscribers. Also, Rich set of

features are required to detect extreme behaviors discussed in [7] without maintaining

resource consuming user profiles.

2.5. Complex Events in CDR

It is important to mention about complex events inside CDRs to understand their power

in detection. Figure 2.3 sketches one such example. Imagine the situation where we

have three different CDR streams for Local Calls, National Calls and International

calls separately. At time t a call attempt to Subscriber B1 from other operator number

A1 is recorded in National CDR stream. But that call attempt is blocked since the

telecom operator has already identified A1 as fraudulent number. After a few seconds

28

at t + ∆t the same subscriber B1 gets a call attempt from A2 in the local CDR stream.

Also, we can find a call attempt by subscriber B1 to International number I1 at t - ∆t

in International CDR stream. In such situation there is a high probability that A2 be a

fraudulent number and we can use other attributes to verify it. So it is clear that

complex events allows us to narrow down analysis domain without maintaining user

profiles as in [3], [7]. Figure 2.4 shows the real-world CDR entries that correspond to

the above scenario. All telephone numbers have replaced with non-existing numbers

to preserve privacy.

Figure 2:3 : Complex events in CDRs created by SIMbox.

International CDR Stream 2015-02-10 15:08:22|0791234567|+91005637821

 t-Δt1 B1 I1

National CDR Stream 2015-02-10 15:09:42|0739876543|0791234567|blocked

 t A1 B1 Action

Local CDR Stream 2015-02-10 15:09:53|0790192384|0791234567

 t+Δt2 A2 B1

Figure 2:4: Example complex event in CDRs created by SIMbox.

2.6. Streaming Data Analysis Techniques

All the approaches discussed earlier have derived features based on static data stored

on traditional RDBMSs which store and index data before processing. It is apparent

that traditional DBMSs alone cannot fulfil timeliness requirements coming from this

domain. In this section we will critically evaluate the technologies that can be used for

feature generation and complex pattern recognition.

29

Cugola et al. [16] defined the umbrella term Information Flow Processing (IFP)

Systems, to represent the tools that can be used to collect information produced by

multiple, distributed sources, and to process it in a timely way. Also they have analyzed

the capability of each type of system ranging from Active DBMS to CEP to cope with

requirements of this domain.

Traditional DBMSs are designed to work on persistent data and deals with infrequent

number of queries. When a user enters the command, these systems run that query

once and to return a complete answer. Such interactions are known as Human-Active

Database-Passive (HADP) interaction. So these systems are not capable to send

notifications automatically when predefined patterns or situations are detected. So it is

clear that traditional DBMS can hardly fulfil the timeliness requirements and unable

to fulfill IFP domain requirements.

Therefore, active database systems were developed as an extension for traditional

DBMS to address this limitation by moving reactive behavior totally or in part, from

the application layer into the DBMS. Active DBMSs vary based on the kind of active

rules that can be expressed on system and the system’s runtime behavior. The most

common kind of active rule type is called Event-Condition-Action (ECA) rules which

breaks active rules into Events, Conditions, and Actions:

 Event describes which sources can be considered as event generators. Some

systems only consider internal operators, like a tuple insertion or update, while

others also allow external events, like those raised by clocks or external

sensors.

 Condition specifies when an event must be taken into account. For example,

define condition such that some data can be interested only if it exceeds a

predefined limit.

 Action identifies the set of tasks that should be executed as a response to

detected event. For example, some systems only allow the modification of the

internal database, while others allow the application to be notified about the

identified situation.

30

Run time processing model of these rules is known as execution model and consist of

five main phases as described in Table 2.7. Active database systems are used in three

main contexts as mentioned Table 2.8.

Table 2:7: Phases in execution model of active databases [16].

Phase Name Description

Signaling Detection of an event

Triggering Association of an event with the set of rules dened for it

Evaluation Evaluation of the conditional part for each triggered rule

Scheduling Definition of an execution order between selected rules

Execution Execution of all the actions associated to selected rules.

Table 2:8: Uses of active databases [16].

Context Description

As a database extension Active rules refer only to the internal state of the database, e.g., to

implement an automatic reaction to constraint violations.

In closed database applications Active rules can support the semantics of the application but

external sources of events are not allowed

In open database applications Events may come both from inside the database and from external

sources.

It is apparent that open database applications are closer to IFP domain. Since active

database systems are built using persistence storage inherited from traditional DBMSs

there are negative performance impacts when the number of rules expressed exceeds

a certain threshold or when the arrival rate of internal or external events is high.

Therefore, active databases lack scalability to cope with multiple high speed data

streams which is usual case in modern IFP domain applications.

In order to address timeliness and scalability aspects, database community has

developed Data Stream Management Systems (DSMSs) which can process large

streams of data in a timely way. DSMS deals with unbounded continuous input streams

rather than fixed-size stored datasets like tables. In such scenario assumptions which

are made in traditional query processing are no longer valid. For example, no

assumptions can be made on data arrival order over the stream. So storing the received

events from data stream and process it after that is not practical. Such approach also

imposes latency and scalability constraints. To address these limitations, DSMSs use

31

one-time processing by directly dealing with streams. DSMS allows posing new type

of queries called standing queries that are deployed once and continue to produce

results until removed. Unlike in previous cases standing queries can be triggered by

system itself, periodically or continuously, as new stream items arrive without user

interaction. Opposite to HADP this type of interaction is called Database-Active

Human-Passive (DAHP). In some cases, DSMS produces answer to a query as an

append-only output stream while in other cases continuously modifying the entry in

storage when new elements comes through stream. It may produce exact answer or

approximate value based on available memory to store the required elements of input

stream’s history. DSMS executes standing queries and produces four main types of

outputs as described in Table 2.9.

Table 2:9: Types of outputs produced by DSMS [16].

Type of Output Description

Stream Formed by all the elements of the answer that are produced once and remains

belong to answer within whole lifespan of query.

Store Filled with parts of the answer that may be changed or removed at a certain

point in the future. The Stream and the Store together define the current answer

to queries

Scratch Represents the working memory of the system that acts as repository where it is

possible to store data that is not part of the answer, but that may be useful to

compute the answer

Throw Sort of recycle bin, used to throw away unneeded tuples

Therefore, DSMSs only focus on producing query answers, which are continuously

updated to adapt to the constantly changing contents of their input data. Actually it

creates modified output stream as an answer. Detection and notification of complex

patterns of elements involving sequences and ordering relations are usually out of the

scope of these systems. So manual intervention is required to associate a semantics to

the data being processed and interpret meaningful complex events in given context.

Unlike previous categories, Complex Event Processing (CEP) systems associate an

accurate semantics to the information being processed and detect meaningful situations

within that context. CEP Engine is listening to event streams generated by external

sources via observers and then perform filtering and combining such notifications to

generate higher-level events (aka. composite events or complex events). Detected

32

events are notified to sinks which act as event consumers. CEP systems can be

considered as an extension of traditional publish-subscribe architecture because which

allow subscribers to express their interest in composite events. So unlike in traditional

publish-subscribe architecture CEP considers the history of already received events or

relationships between events.

Ability to detect complex patterns of incoming events (composite events), based on

their content, sequencing and ordering relationships is most powerful feature of CEP

model. Also, CEPs need to deal with large number of distributed and heterogeneous

information sources and sinks.

Cugola et al. [16] also introduced a framework to compare different types of IFPs. This

framework includes a set of models that represents the various facets of IFP. From this

set of models, Functional model provides the precise description of the functionalities

offered by IFP engine and it can be used to describe differences among IFP engines.

By considering this model as ideal system, authors have compared different CEP

engines with respect to it.

We have studied various possible technologies in previous section and identified that

CEP is the closer implementation that satisfies the requirements of IFP Domain. Next,

we will evaluate a set of commercial and open source CEP engines in terms of features

and performance.

2.6.1. S4

Neumeyer et al. at Yahoo proposed S4 (Simple Scalable Streaming System) [17]. S4’s

goal was to come with general purpose, easily customizable stream processing

platform which allows to use commodity hardware in distributed manner. It has

structured to achieve minimum latency by using local memory in each processing node

by avoiding use of shared memory across the cluster. S4 considers all the nodes in

cluster as identical nodes and there is no centralized control. This symmetry feature

was achieved by using ZooKeeper [18] which is an open source cluster management

service.

33

S4 consists of multiple Processing Elements (PEs). PE is the basic unit that performs

the computation tasks. PEs interact which each other by emission and consumption of

messages exchanged between them in form of data events. S4 framework facilitates

for routing events to corresponding PEs and create new PEs when required. PE is

uniquely identified by four components, namely functionality of PE and its associated

configuration, type of events that it consumes, keyed attribute of those events, and

value of keyed attribute.

PE is instantiated for each distinct value of the key attribute. Therefore, PEs consume

only the events which have exactly same key value to the keyed attribute value of PE.

Keyless PEs are special case which do not have keyed attribute or value. Those are

used at input layer and consume all the events of the type they are associated. Also, S4

provides predefined PE types for standard tasks such as count, aggregate, and join.

Processing Nodes (PNs) act as logical hosts of PE and responsible for listening to

events, executing selection operations on the incoming events, dispatching events and

emitting output events. S4 makes routing decisions on events to corresponding PNs

based on hash function of key attribute value of that event. Event listeners running on

PN passes incoming events to the processing element controller which invokes

appropriate PE in proper order. Every Keyed PE is mapped to exactly one PN of a

cluster based on hash function applied on keyed attribute value of that PE. Processing

node is functioning at top of the Communication Layer which is responsible for cluster

management, automatic failover to standby nodes and maps physical nodes to logical

nodes.

Authors have presented the performance of S4 when it is used for streaming click

through rate (CTR) computation. Click through rate (CTR) is the ratio of number of

clicks divided by number of ad impressions. Users have used S4 grid to calculate CTR

in real-time and system performed CTR computation with 0.2% relative error at input

event rate of 7,268 events per second. Beyond that event rate, relative error was

increased since S4 grid was not able to process the event stream fast enough.

34

2.6.2. SASE

Gyllstrom et al. proposed SASE [19] to fulfil real-time analytical requirements of

RFID-based applications. SASE can also be used for general purpose applications as

well. SASE targets to perform complex logics involving filtering, pattern matching,

aggregation and recursive pattern matching over express-rate data streams with

minimum latency and acquire meaningful actionable information. SASE is available

as an open source system for stream processing and pattern matching.

Authors introduce SASE Complex Event Language which is user friendly and

expressive. High-level structure of SASE language is similar to SQL even though the

design of language is centered on event pattern matching.

Implementation of SASE is based on query plan-based approach which uses a dataflow

paradigm with pipelined operators like in relational query processing. This approach

provides greater flexibility in query execution. Native sequence operators are

formulated on Non-deterministic Finite Automata (NFA) based model. NFA is state

machine concept, in which the state machine in one state can have zero, one or more

choices for the next state for particular input symbol. As per definition, we can say that

such a state machine has accepted the string of symbols, if there is at least one sequence

of state transitions on an input that leaves the machine in an accepting state. This

concept allows to detect complex event patterns efficiently from continuously arriving

event streams and used in most CEP systems. Authors were able to deal with lengthy

sliding windows and large intermediate result sets using new abstractions of query

processing mentioned above.

Architecture of SASE based application consists four main layers. Bottom layer is

known as physical layer which represents RFID readers, tags and antennas in RFID

based scenario. But in general case that can be Sensor, Telecommunication node or

any other data source. The cleaning and association layer lies above physical device

layer which accepts data and performs cleaning and event generation. Within this

layer, raw data is subjected to data preprocessing functions including anomaly

filtering, temporal smoothing, time conversion and deduplication before generating

events. Complex Event Processor is the main component in third layer and supports

35

long-running queries written in SASE language. It also has the capability of handling

complex continuous queries that integrate database lookup. At complex query

execution, Event processor first detects events and then sends subquery to database

and combines the results to give final output. Event Database lies parallel to the CEP.

This is the persistence storage component which allows historical data access and join

that with resultant events. Finally, UI is the topmost layer which allows user to issue

both continuous queries over the Streams and ad-hoc queries over database. It also

visualizes results.

2.6.3. Esper

Esper is an open source library for CEP and event stream analysis [20], [21]. Esper is

available under GNU General Public License v2. There is also a commercial version

with high availability features. Esper uses DBMS, DSMS, and CEP concepts and can

be used in data stream based and CEP applications. Esper engine allows applications

to store queries and evaluate them against the data stream running through System. It

generates real-time response when events match to conditions specified in continuous

queries. Esper is based on the foundation of Event-Driven Architectures (EDA) and

can be considered as natural extension to Service Oriented Architectures (SOA).

Esper allows writing complex queries using the language called EPL (Event

Processing Language), which is quite similar to SQL. EPL allows to express filtering,

aggregation, grouping, sorting, counting unique events and join functions, possibly

over sliding windows of multiple event series. It also supports same operations over

batch windows. Sliding or batch window can be length window or time window. EPL

provides the concept of named window. Named windows are data windows which are

globally visible. So, inserted-into or deleted-from operations executed by one or more

query statements can be applied on that. Also, Named windows can be queried by one

or more statements. Esper statements can also be combined together with “followed

by” conditions thus deriving complex events from more simple events.

Esper subscribes to source event publishers through event stream connector and

adapters. Esper supports a wide variety of event representations, such as Java beans,

36

XML document, legacy classes, or simple (key, value) pairs (java.util.Map), which

promotes reuse of existing systems acting as messages publishers [21]. Also, it

supports connecting relational databases as data sources through historical data access

layer. Esper has the capability to join event streams against these historical data

sources. Esper can be easily embedded in an existing Java application or middleware

to add event-driven capabilities to existing platforms without paying high serialization

cost or network latency for every message received and action triggered. Once event

queries and pattern statements are registered in the Esper core container, event data

gets analyzed and can trigger arbitrary logic bound to the engine in the form of Plain

Old Java Objects.

2.6.4. Siddhi CEP

Suhothayan et al. performed a comprehensive evaluation of design decisions

associated with CEP [22], [23] and suggested several approaches to improve CEP

performance by using more stream processing style pipelines. Siddhi CEP is the final

result of their research which implements the aforementioned suggestions. Later

WSO2 developed it and made it freely available under Apache Software License v2.0

[24]. Siddhi uses design decisions such as multi-threading, queues and use of

pipelining, nested queries and chaining streams, and query optimization and common

sub query elimination to improve the performance.

Siddhi receives events through input adapters, then Siddhi core performs processing,

and finally emits output through output adapters. Query compiler is connected to

Siddhi core to deploy queries on it. Input adapters are responsible to receive events

and convert them to a common data model known as tuple. Tuple data structure is

similar to row in relational database table and it contains Stream ID and other data

items belong to columns. Tuple allows to process events faster by minimizing

overhead while allowing to use SQL like queries with traditional database optimization

techniques. Siddhi core only accepts tuples for internal processing, so events received

as XML or POJO (Plain Old Java Object) are converted to tuples at input adapters.

Query compiler is responsible for converting the user submitted queries to its runtime

representation and deploy it on the Siddhi core. Runtime representation of Siddhi

37

query is defined as Processor. Processing tasks are performed by Siddhi core which

consists of processors and event queues. After converting to tuples, input events are

placed at input queues and processors fetch those events for processing. Then those

events are evaluated against the query conditions and corresponding output events are

produced for matching events. Output events are placed at output queues and based on

requirement those events can be sent to external subscribers through output adapters

or can be consumed by another processor for further processing. Siddhi architecture

allows on the fly query manipulation. This feature allows users to add or remove

queries while siddhi engine is running.

Siddhi queries are represented using query object model which follows SQL like

structure. These queries are in line with relational algebra and allowed to use

optimization techniques used in relational databases. Query produces a stream as an

output and that can be recursively passed to another query as an input stream to make

complex queries. Since the query objects are loosely coupled, users can easily compose

nested queries while allowing to eliminate common sub-queries to achieve better

overall performance. Initial implementation of Siddhi allows users to create queries

via the Java interface. Later releases of Siddhi supports Siddhi Query Language

(SiddhiQL) which is more user friendly. More details will be discussed later in this

chapter.

Siddhi uses pipelined architecture in query execution. Query execution is broken into

different stages through processors which are connected through event queues. Data is

moved through the pipeline using publication-subscription model in which queries at

downstream subscribes to interested upstream query outputs. Each processor is

composed of several executers which are responsible to evaluate events against single

query condition and produce Boolean output to indicate whether event has matched or

not. Matching events are passed to logical executers at downstream while non-

matching events are simply discarded.

In Siddhi all processing tasks are performed by multiple treads and pipelined

architecture along with transparent query object model allow to ensure that common

sub-query is executed at only one point in the system. This approach helps to

38

outperform both single tread query processing and one thread per single query

approaches where former is suffered by less parallelism while latter is incapable of

eliminating duplicate sub-query execution. Siddhi uses single input queue to feed

processors. This is achieved by multiplexing multiple streams into a single queue.

Stream ID field of tuple facilitates to distinguish types of events. This approach makes

intermediate query handling much simpler and improve Siddhi’s performance.

Siddhi processor evaluates the conditional or temporal conditions against each

incoming events. Executors and Event Generator are two major components of

processor. Executors are generated by query parser by parsing the query object model

constructed by the user and responsible to evaluation of conditions. Executers are

arranged in tree-like structure and event is passed to the root of the tree and evaluated

according to depth first search order. This structure helps to eliminate non-matching

events early and enhances Siddhi performance.

Siddhi state machine is the major part in processing complex queries. State machine is

used to handle two type of queries named as Sequence queries and Pattern queries.

Sequence queries allow to define Siddhi to fire an event when series of conditions are

satisfied one after the other. Since Siddhi stops capturing same type of event sequences

once first instance of particular event sequence is detected, we need to use Every

operator to instruct Siddhi to continuously capture such event sequences. Pattern

Queries allows to fire an event when series of conditions are satisfied one after the

other in consecutive manner. Kleene star operator is used to define infinite number of

intermediate conditions in pattern queries. That means when we use “*” operator with

event type, Siddhi looks for zero or more events from that event type in event sequence.

Another useful feature of Siddhi is Sliding window and Batch window based queries

which allows to reason about collection of events. Sliding windows allow to analyze

events come in given time or length window including statistical analysis of the arrived

events such as average and sum of attributes. So these windows keep sliding for each

new event arrived to the stream. This can be divided into time based and length based

windows. Time based sliding windows consider past events received within given

amount of time from current event. Length based sliding windows consider given

39

value of event count from current event to backwards. Batch window provides similar

functionalities, but it performs the analysis batch wise. So it releases the event batch

for processing after given amount of time has elapsed after starting timestamp (Time

Batch Window) or specified maximum number of events has received from given

starting point (Length Batch Window) and commence to collect new batch. Multiple

Siddhi queries can utilize same windows as it implements the windows within event

queues rather than event processors. This enables effective memory consumption and

allows to get better performance.

Duplicate event detection is another useful feature of Siddhi. Duplicity can be defined

by specifying the set of event attributes that needs to match. Siddhi provides two ways

to deal with duplicate events. First approach, UNIQUE option only considers last

arrived events and old duplicate events are discarded. Second option, FIRSTUNIQUE

works vice versa and it accounts only first arrived event while discarding newly arrived

duplicate events.

It is important to compare Siddhi performance against Esper because those are two

major candidates for our application. For simple filter query (without time or length

window) and time window query for average calculation of a given symbol, siddhi

performs about 20-30% better than Esper [22]. Also, for pattern query with state

machine Siddhi performs significantly better than Esper [22].

2.6.5. CEP evaluation

We have studied in detail about four CEP systems available in the industry. Cugola et

al. performed the full analysis about existing Information Flow Processing (IFP)

systems as of 2011 with respect to a set of models defined by them [16]. Esper [21],

SASE [19], and S4 [17] included in that list. Even though we only discussed about

functional model which helps to categorize IFP systems, we will directly refer other

models in [16] to compare CEP systems.

Even though S4 supports massive scale processing of data streams it still cannot be

categorized as an effective CEP engine as it cannot handle complex events. Also, it

does not support basic temporal event processing capabilities over time or length

40

windows. So SASE, Esper and Siddhi can be categorized as full CEP systems. All

these systems use variations of Non-Deterministic Finite Automata (NFA) model to

provide complex event detection. Also, Etalis [25], Cayuga [26], and ODE [27] are the

open source systems which can be categorized as CEPs [22]. Additionally, commercial

CEP systems like Coral8 [28], Oracle CEP [29], and Streambase [30] are available.

Suhothayan et al. also compared CEP systems including SASE and Esper [22], [23].

When we consider SASE it performs considerably well due to NFA model to capture

the sequencing events. SASE reports both satisfaction of query and the event caused

to fulfil the satisfaction condition. Even though this can be viewed as advantage it

significantly increase complexity of query processing. The most significant drawback

of SASE is output of one query cannot be used as input to another query. So it is

incapable of handling hierarchy of complex event types. Since this feature is required

in our system SASE cannot be categorize as eligible candidate. Cayuga is a general-

purpose CEP system, which can be used to detect event patterns in multiple unrelated

event streams and capable of handling hierarchy of queries. Its single treaded nature

imposes limitations.

In our analysis we found that Esper also has the ability to detect sequence of patterns

in unrelated event streams while supporting temporal windows, joining, sorting and

various other functions. Esper is multi-threaded and its architecture predominantly

depends on observer pattern. Siddhi and Esper behave same in terms of functional,

processing, data, time and rule models defined by Cugola et al. [16]. Siddhi is also

multi-threaded. Both provides required functionality to implement our system. Since

complex pattern detection plays major role in our solution, Siddhi’s performance in

complex event detection hugely motivated us to select it as best candidate. But, Esper

has rich documentation and many successful deployments.

2.7. Accessing Persistent Data within CEP

Accessing persistent data in addition to real-time processing is common requirement

of complex event processing systems. According to the above analysis Esper and

SASE allows to define RDBMS as data sources. Event Tables option in WSO2 CEP

[24] supports for using historical data in real-time processing.

41

Event tables allow to store, retrieve and process events in a database table-like

structure. This option is primarily used in use cases where events need to be extracted

from the stream and accumulated over a long period of time for real-time (or non-real-

time) batch processing such as performing comparisons with the incoming event

stream or feeding it to Business Activity Monitor (BAM). Event tables can have more

sophisticated storage and retrieval criteria unlike in event windows which can be

considered as predefined tables in WSO2 CEP. A single event table can be used in

multiple SiddhiQL expressions. Event table can be defined either in-memory or in a

relational database. In Memory Database Event Tables are fast and easier to define

hence it is created in memory. Relational Database Event Tables allow to link RDBMS

table to Siddhi CEP. Current version of WSO2 CEP supports event tables for widely

used databases such as MySQL and H2.

2.8. Combining Real-time View with Historical View

The real-time view need to be combined with historical view to build the complete

state of the network at a given instant. CEP is specialized to perform real-time event

analysis while BAM is specialized to build historical view by executing batch

operations. Therefore, standardized architecture is required to combine these tools in

optimum manner. Marz et al. [31] proposed Lambda Architecture which allows to

unite set of tools used in Big Data Analysis and come with most complete solution.

Their main idea is to build Big Data systems as a series of layers. Each layer satisfies

a subset of the properties and builds upon the functionality provided by the layers

beneath it. Figure 2.5 depicts the layers of the Lambda architecture and its

functionality.

42

.

Figure 2:5: Lambda architecture for Big Data [31].

The batch layer stores the master copy of the dataset and precomputes batch views on

that master dataset. It should be capable to deal with storage requirements of master

dataset which is immutable, constantly growing very large list of records. Also, it

should have enough processing power to compute arbitrary functions on that dataset.

Batch processing system such as Hadoop [32] is best suited for implementation of this

layer. The serving layer saves the resultant batch views emitted by batch layer and

allows to be queried when required. The serving layer is a specialized distributed

database that loads in batch view and makes it possible to do random reads on it.

Support for random writes is not essential as it may cause complexity in databases.

When new batch views are available, the serving layer automatically swaps those in

so that more up-to-date results are available. Authors suggested ElephantDB for this

layer.

Batch layer and Serving layer satisfy key properties of big data system such as robust

and fault tolerant, scalable, general, extensible, allowing ad-hoc queries, minimal

maintenance, and debuggable.

43

The remaining most important feature is low latency updates and computation of real

time view. Speed layer provides this functionality. The serving layer is updated

whenever the batch layer has finished precomputing a batch view. This means that, the

data not represented in the batch views is the data that came in while the pre-

computation was running. In order to provide full real-time functionality, speed layer

calculates required views on recent data that was not accounted by last batch view and

compensates for high latency of updates from batch layer to serving layer. Therefore,

the goal is to make new data represented in query results as fast as needed for the

application requirements. The big difference is that the speed layer only looks at recent

data and computes incremental updates, whereas the batch layer looks at all the data

at once and provide batch updates. Finally, serving layer provides full real-time view

by merging both real time and batch view. The speed layer uses databases that support

random reads and random writes. But more sophisticated systems like stream engines

and CEPs easily provide this functionality.

We have evaluated possible technology options for real-time event stream analysis in

section 2.6.5. WSO2 Siddhi CEP is an optimum candidate according to the facts

presented. [33], and [34] present how WSO2 products can fit to lambda architecture.

Authors have suggested to use WSO2 Business Activity Monitor (BAM) to implement

the batch layer and WSO2 CEP to implement speed layer. Incoming data is sent to both

BAM and CEP using high performance data transport called “Data Bridge” that can

achieve throughput up to 300,000 events/second. This functionality is provided by

Data Bridge feature in the WSO2 feature repository. BAM runs user defined Hive

queries to calculate the batch views and CEP runs user defined CEP queries to

calculate the runtime views. Then both the views can be combined using Event tables

in WSO2 CEP, which map the batch views in a database into CEP windows, to answer

the queries posed by the users.

2.8.1. WSO2 BAM

WSO2 Business Activity Monitor (BAM) addresses a wide range of monitoring

requirements in business activities and processes [35]. It achieves this level of

flexibility, while facilitating technologies such as big data storage, analytics, and high-

44

performance data transfer. WSO2 BAM is designed to be significantly scalable to

handle large amounts of data loads when aggregating, analyzing and presenting data.

BAM can be divided into four main parts. Those are Data Agents, Data receiver,

Analyzer engine and Dashboard. First two parts perform data aggregation function and

Analyzer engine performs Data analysis part. Finally, Dashboard and Report server

perform data presentation functions. Data that needs to be monitored goes through

these modules in order.

The BAM analytics framework runs summarization and data analytics on collected

data. WSO2 BAM implements data analysis using an Apache Hadoop-based Big Data

analytics framework, which uses the highly-scalable, MapReduce technology [36]

underneath it. BAM allows to write data processing queries and analytic jobs in

integrated Apache Hive query language. So BAM users are released from the burden

of writing complex Hadoop jobs to process data using underneath MapReduce

technology. Hive is a simple query language similar to SQL, and provides the right

level of abstraction from Hadoop engine while internally submitting the analytic jobs

to Hadoop.

2.8.2. WSO2 DAS

WSO2 Data Analytics Server (DAS) [37] is a successor of WSO2 BAM. WSO2 DAS

supports all the features provided by WSO2 BAM. So, DAS facilitates to aggregate

events through data receivers, store those events in persistent storage, analyze those

data using high speed large-scale data processing platform, and present information.

In addition to BAM features, DAS is capable of performing real-time analytic tasks

because all the features of WSO2 CEP integrated within DAS.

Figure 2.6 depicts high-level architecture of WSO2 DAS. DAS is considered as

complete revamp of old BAM because of major architectural level differences between

two products. Instead of Apache Hadoop based Big Data analytics framework used in

BAM, WSO2 DAS uses Apache Spark based analytics engine. Also, WSO2 DAS

allows to execute SQL queries on the underlying data-sources as specified in Data

Access Layer of the DAS. To provide this functionality, DAS uses Spark SQL as the

45

query engine which is Apache Spark's module for working with structured data. WSO2

DAS users can execute Spark SQL queries interactively through Batch Analytics

Console. Batch Analytics Scripts allow to run Spark queries in a sequence and WSO2

DAS allowed to schedule those queries as per user’s requirement.

Figure 2:6: WSO2 DAS Architecture [37].

Instead of Cassandra centric storage in BAM, DAS provides pluggable storage

architecture and allows to choose underline storage mechanism based on requirement.

For low to medium scale enterprise deployments, RDBMS data storage mechanisms

such as MySQL, MSSQL or Oracle can be used. For Big Data enterprise deployments

NoSQL storage mechanisms like for HBase or Cassandra can be used. The WSO2 CEP

module integrated in WSO2 DAS version 3.1.0 supports Siddhi Query Language 3.0

and allows to perform real time analytics.

Jayawardhana et al. proposed custom CDR analyzer “Kanthaka” for near real-time

telecom promotions in their research [38]. In “Kanthaka”, batch of CDRs is stored in

Hash-maps in memory module and batch processing is done on that data. After that,

increments are sent to Cassandra for each batch. Mentioned system has performed

simple filter query on 600k events in 18 seconds. This method is less scalable and

limited in functionality. Also, more complex queries need to be implemented in our

scenario. Our preference for batch layer is WSO2 DAS instead of approach in

“Kanthaka” because DAS provides generalized architecture with more functionalities

while it can be easily integrated with WSO2 CEP and other products in suit. DAS is

46

highly scalable and provides high performance data capture framework with abilities

to monitor, collect, and store Big Data. Sirbiladze et al. analyzed the available

commercial and open source BAM solutions. They were compared Oracle BAM vs

WSO2 BAM and found that WSO2 BAM has almost all the dashboard and data

integration features in commercial BAM. Since WSO2 DAS is successor of WSO2

BAM with enhanced performance and real-time analytics capability, DAS is the best

suited platform for this scenario.

2.9. Summary

In first part of this chapter we have discussed about CDRs and the value of information

available in CDRs. Next we have presented details about two main use cases of our

project, namely grey call fraud and extreme usage scenarios. According to provided

details it is evident that detecting those scenarios in real time is worthwhile. Based on

literature, it is clear that available approaches are unable to meet the requirement of

real-time fraud detection due to traditional database reliant store first process then

approach for latency sensitive applications, depending only on large time windows for

feature generation, shallow feature set, less awareness about context, and ignoring

complex patterns in CDR in decision making. Then we have discussed about complex

events which can be identified in CDR stream and value of those complex events or

call patterns in decision making. We have evaluated streaming data analysis techniques

and identified that WSO2 CEP as the most suitable candidate for CDR stream analysis,

and call pattern detection due to Siddhi’s enhanced performance in complex event

detection. We further studied possible ways of accessing persistent data from CEP and

discovered that WSO2 CEP supports easier ways to access persistent data within CEP

queries. We have identified that Lambda architecture is suitable baseline architecture

for systems which perform both real time and batch analytics. Also, we have identified

that WSO2 DAS as candidate platform to build our system due to its capability of

performing high-speed batch analytics. According to this discussion, it is evident that

there is a requirement of real-time fraud detection tool and open-source tools available

in industry can be used as platform for such a tool.

47

3. PROPOSED DESIGN AND IMPLEMENTATION

This chapter presents the architecture of the proposed real-time fraud detection system

for telecom operators, its design, and implementation. Section 3.1 presents the high-

level architecture of proposed design and describes its components in detail. Section

3.2 discusses the selection of features and steps in designing algorithms for each use

case.

3.1. High-Level Architecture

To build the complete behavioral view of the customer base of telecommunication

network, both historical and real-time views are required. Therefore, we followed the

Lambda architecture and developed a system architecture that comprises batch, speed,

and serving layers. Figure 3.1 depicts the high-level architecture of the proposed real-

time pattern detection platform. This architecture consists of three major layers (Speed,

Batch, and Serving) similar to Big Data Lambda architecture, as it is well suited for

application which performs both real-time and batch analytics. System receives events

through data receivers, then perform analytics operations and output can be obtained

from serving layer. Based on the use case, the output can be directly used or can be

passed through a classifier. WSO2 DAS is used in batch layer due to its ability to

perform high-speed batch processing. Siddhi CEP is used at speed layer due to its

enhanced performance in complex event detection. Both WSO2 DAS and CEP are used

at serving layer as application needs to get real-time, batch, or combined output when

required. Because Siddhi CEP is integrated within WSO2 DAS package, there is added

advantage in using these packages together.

48

Figure 3:1: High-level system architecture.

To support the two chosen use cases, namely grey call detection and extreme usage

detection (see Section 2.2 and 2.3 for details), three data sources are utilized. As seen

in Figure 3.1 those data sources are Local CDRs, National CDRs, and International

CDRs. These data were acquired from different nodes of the telecommunication core

network. First, data from each data source need to be mediated by removing

unnecessary characters and only the required fields need to be filtered. Then mediated

data need to be send as event streams using data publishers. Event receivers listen to

event streams published by external sources and direct that to processing layer.

Incoming data is sent to both batch and speed layers, where batch layer pre-calculates

a historical view of the system and speed layer calculates the most recent view of the

system. Major component of the speed layer is the CEP engine. CEP calculates real-

time view of the data streams forwarded by Event Receiver and then feeds the

calculated views into serving layer. Real-time view of the call patterns is calculated

using simple aggregation queries and complex pattern queries deployed on the CEP

engine. We selected the WSO2 Siddhi CEP engine for speed layer, as it suitable for

complex event detection and its high performance comparable to other CEP engines.

While implementing CEP queries to detect some of the use cases, we need to join

49

persistent or other short-term data tables with streams. Siddhi CEP achieves this by

providing option to define RDBMS and In-Memory event tables in CEP Query plans.

These event tables can be pointed to RDBMS table (e.g., MySQL) or defines short

term In-Memory table and those tables can be directly accessed via CEP queries. Even

though this design decision slightly varies from the original Lambda architecture, it

helps to make more meaningful detections.

WSO2 DAS produces historical view by performing batch processing at batch layer

while CEP performs real-time processing. Therefore, events need to be fed into both

the CEP and DAS. DAS can perform high-speed batch processing using Apache Spark

Engine integrated with it. WSO2 CEP is integrated into to WSO2 DAS; hence, data

receivers in WSO2 DAS receive the events published by Data Publishers and first fed

them to CEP and then only, the data is persisted through WSO2 DAS. DAS allows

using either a RDBMS or NoSQL storage as the underline database for event store.

Also, system updates context data related to subscriber behavior using current data,

detections made by system, and user feedback stored within database. These context

data are used at feature generation as discussed in Section 3.2.1.1.

The output of batch and speed layers are directed to serving layer and stored within it.

Based on use case, serving layer facilitates to emit batch processing output, real-time

view, or combined view. Therefore, when real-time view is required, we need to

implement filtering queries to produce output of speed layer. When historical view is

required, serving layer should facilitate to get it by using Spark Query. Also, real-time

and historical view need to be combined at serving layer to provide combined view

when required. Therefore, both DAS and CEP modules used at the serving layer. Even

though we have depicted serving layer with separate DAS and CEP components to

demonstrate our architecture clearly, the same CEP that was used in speed layer and

same DAS in batch layer was used for serving layer.

Some of the fraud instances can be detected by considering real-time behavior only

and such instances are captured by filtering implementing queries on CEP. Combining

real-time view and batch view is required to detect remaining fraud instances with

minimum delay and higher accuracy. This combination produces a rich set of features

50

that represent statistics of dataset, context information, and complex events. Therefore,

calculated feature values are passed through a Rule-based classifier to filter those fraud

instances and final output is presented to the user. It helps to fully automate the system

and make decisions without human intervention. Classifier module can be replaced

with a suitable machine-learning based classifier without violating original system

architecture. The classifier introduced in [6] is a possible option. As our primary focus

was come up with a rich set of features which enables decision making based on a

short-time window, selection of optimal classifier is left as future work. Finally, user

feedback is fed back into batch layer and it is used to update context data.

3.1.1. Data sources, Publisher, Receiver, and Event streams

Three main data sources namely, Local, National, and International CDRs are used in

this design. Local CDR means transaction logs for calls originated by operator’s own

subscribers. These records are generated at Mobile Switching Centers (MSCs) in

ASN.1 (Abstract Syntax Notation One) format and typically new file is generated in

less than one minute. National CDR stands for transaction logs for calls terminated by

other operators within the same country to the operator under study. Detailed version

of these Call logs for answered calls are generated at TMSCs (Tandem or Gateway

MSC). However, the telecom operator in our case use Call Screening Server as a

firewall between other operators and home network. This node can blacklist numbers

which need to be blocked and generate transaction logs in real time with the

corresponding action (e.g., Blocked or Passed). Inclusion of action field makes these

logs more useful and allows us to exploit CEP to locate the patterns easily. This server

creates a log file once a minute with calls logged within the last minute. Therefore,

Call Screening Server log was used to feed National CDR Stream. International CDR

means records corresponding to calls originated to or terminated from foreign

operators and detailed version of these CDRs are generated at ISC (International

Switching Center). CDRs are originally generated as ASCII formatted files and then

converted to CSV format.

Data Publisher module is responsible for sending CDR entries to DAS and CEP by

means of event stream. Event receiver, which is accompanied with DAS, listens to

51

event streams published by external sources. The format and the attributes of streams

need to be defined in DAS and CEP prior to sending data. System only accepts

published data complied with defined stream format through event receivers. Event

adapters in DAS and CEP define network protocol and listening ports to receive

events. Therefore, event receiver binds event adapter type together with stream

definition to receive events properly. Data publisher should publish data using the

protocol defined in event adapter and complying with tuple formats defined in event

stream definitions.

3.1.2. Batch layer

Main component of batch layer is WSO2 DAS. Apache Spark analytics engine

integrated in DAS and the underline persistent data storage performs batch layer

functionality. WSO2 DAS provides predefined data-source named as

WSO2_ANALYTICS_EVENT_STORE_DB to persist input stream data. This data-

source can be pointed to separate RDBMS or NoSQL database by modifying backend

configurations of WSO2 DAS. Once Stream persistence is enabled, WSO2 DAS creates

separate Spark table mapped to a Stream and the table can be accessed through Spark

SQL batch analytic queries. For large-scale deployment it is desirable to use a NoSQL

database. Persisted data is then analyzed using DAS batch analytics engine which is

powered by Apache Spark. To access and create tables on Spark Analytics engine,

CarbonAnalytics relation provider was used [37]. These tables can be accessed only

through Data Access Layer using spark Queries. Carbon JDBC relation provider in

Apache Spark was used to access already defined MySQL tables. Using this option,

we were able to update feedback and context data externally and accessing those tables

through Spark Analytics engine when required. Output data is then stored on Processed

Data Store which is also can be pointed to RDBMS or NoSQL Database from DAS

configurations.

In Spark Query language used in WSO2 DAS, users need to define temporarily table

mapped to each actual table to access data in actual table. Within query scripts, users

need to refer to temporarily table instead of directly referring to the actual table.

Temporarily table definitions are dropped from memory after Spark queries reach the

52

end. But data in actual table remain unchanged and if new temporarily table which

mapped to actual table is defined again, old data can be accessed. In batch operations,

we have requirement of truncating data in Spark actual tables which are used to store

intermediate calculations. Because those tables are used periodically to fill fresh data,

old data need to be removed. Spark Query language does not include inbuilt function

to delete actual Spark tables. DAS only provides separate shell script to delete those

tables. But in our case, we have a requirement of truncating or completely deleting

some intermediate tables at the end of a query. Therefore, a new user defined function

called deleteTable was implemented to achieve this.

3.1.3. Speed layer

WSO2 CEP module is the main component of speed layer. In actual implementation,

CEP module integrated in WSO2 DAS can be used to achieve speed-layer functions.

Three main input event streams correspond to Local, National, and International CDRs

are subjected to real-time analytic queries in this layer. So complex patterns detection

is performed at this layer. Set of related Siddhi query expressions, and relevant input

and output stream definitions are included within the entity called Execution Plan. To

implement intended goals of each use case, one or more execution plans was used.

Figure 3.2 depicts overall event flow within the CEP engine. First CEP receives events

corresponding to Local (Onnet), National (Offnet), and International CDR Streams

through event receivers. Then events are fed into CEP through defined streams and

subjected to set of CEP queries included in execution plan. Then output streams are

published to serving layer using Data Publishers. As we need to store those resultant

streams on MySQL tables, rdbms was used as Output Event Adapter Type. So, output

data is directly inserted form output stream into MySQL table defined in output data

publisher.

53

Figure 3:2: Overall event flow through CEP.

54

3.1.4. Serving layer

Functionality of serving layer is to store and merge output of Batch Layer and Speed

Layer and produce output by applying certain filter queries on the output. The CEP

that is used in speed layer and DAS which is used in batch layer were used for serving

layer as well, even though it is shown as a separate architectural component in Figure

3.1.

Within this layer, a set of features derived by aggregating the complex events detected

on speed layer is combined with the feature set derived on batch layer by performing

statistical calculations and then resultant views are stored. Thus, users can apply

certain filter queries on this final dataset within this layer or can input to external

classifier to derive final output. Extreme usage related use-cases can be directly

identified by considering only the real-time view. Those events are captured using

filter queries on CEP at serving layer. Additionally, complex patterns which reflects

grey callers with high confidence can be directly routed to output through serving

layer.

3.1.5. Rule-based Classifier

Rule-based classifier is used for Grey call detection use case only. This module

consists of set of classification rules used in bypass detection use case. Actually,

classification rule is the filtering query. Serving layer just builds the subscriber profile

by combining features derived on real-time and batch analytics and sends output to

classifier. After that, within classifier module, fraud instances are filtered by applying

filtering rules on subscriber profile. Even though same can be done on serving layer,

classifier is used as separate component to make it a pluggable component. In future

rule-based classifier could be replaced by supervised-learning based classifier. Rule-

based classifier was implemented as Java program comprising set of filter queries.

55

3.2. Feature Selection and Algorithm Design

3.2.1. Grey call detection

This subsection describes the research approach used to address grey call detection

problem. Fraudulent and non-fraudulent numbers are the only two classes available in

Grey call detection. Also, there are significant differences in grey caller’s behavior

from country to country. Therefore, we approached grey call detection as supervised

learning problem. After gathering datasets, first step is to identify complex patterns

within the CDR stream. We studied past CDR pattern for verified grey callers in

training dataset and identified six patterns with significant decisive power in grey call

detection. Once complex patterns are identified those can be captured by executing

CEP queries.

Second step is to identify a rich set of features that can be used to make detections

within a short-time window. To support near real-time decision making by considering

the caller behavior within short time-window, a rich feature set is essential. In our

research we have identified a novel feature set by studying about both called-party

stats and calling party behavior. Novel feature set composed of three main

components. First component is a set of features derived based on the identified

complex events. Next, component is the feature set calculated for short-time window

by aggregating CDR. We have the option of calculating this in the speed or batch layer

based on data rates of streams and length of the sliding window. Third component is a

feature set calculated on batch layer based on by aggregating past CDR. These feature

set was identified by observing calling party subscriber’s behavior in training dataset

and called party subscriber’s context data.

Even though some of the fraud instances can be identified using complex events and

stats for short-time window, in some cases past data is required to support decision

making and to improve accuracy of the system. Thus, three parts of the feature set

mentioned above is combined at the serving layer. Rules are then developed based on

combined feature set to make detections effectively. These set of rules have been

developed by studying verified fraud instances in the training data set.

56

3.2.1.1. Data sources and context data

To detect complex patterns three types of CDRs, namely Local, National, and

International CDRs were obtained from different nodes in telecommunication network

as discussed in Section 3.1. Table 3.1 describes the data fields available in Local CDR

Stream. As this CDRs belong to calls originated by subscribers belong to the network

under study, location and device related data are available in this stream. Table 3.2

presents fields in national CDR stream. As these calls originated by customers belongs

to other operators, location details are not available. Table 3.3 describes data fields in

international CDR stream.

Table 3:1 : Fields in Local CDR Stream.

Field Name Field Type Description

calling_party_id String Subscriber identity number of the user who originates the

call

called_party_id String Subscriber identity number the user who is intended to

receive call

originating_date_time Integer Date and time when call attempt reached to the system

duration Double The duration between answer time and disconnect time

location String Cell location of subscriber when originating call.

Composed by combining Location Area Code (LAC) and

Cell ID

imei String International Mobile Equipment Identity (IMEI) which is

unique to device

Table 3:2: Fields in National CDR Stream.

Field Name Field Type Description

calling_party_id String Subscriber identity number of the user who originates the

call

called_party_id String Subscriber identity number the user who is intended to

receive call

originating_date_time Integer Date and time when call attempt reached to the system

opc String Origination Point Code

dpc String Destination Point Code

action String Action taken by Call Screening Server for attempt –

“blocked” or “passed”

57

Table 3:3: Fields in International CDR Stream.

Field Name Field Type Description

calling_party_id String Subscriber identity number of the user who originates the

call

called_party_id String Subscriber identity number the user who is intended to

receive call

release_dir String Indicate which party disconnected the call initially

time Integer Date and time when call attempt reached to the system

duration Double The duration between answer time and disconnect time

call_dir String Indicates whether mentioned transaction is for incoming

call to local network or outgoing call from local network.

We have used training dataset to identify complex patterns within CDRs, discover

feature set, and design algorithms. Training dataset consists of 7,241,372 local CDRs

belong to 284,351 distinct callers and there are 51 verified Onnet bypass instances

within that. Also, there are 8,559,106 National CDRs within training data set belong

to 1,153,409 other operator numbers and 328 numbers out of that was categorized as

offnet bypass numbers. Additionally, we have included 5,217,259 international

incoming and outgoing CDRs to identify complex patterns.

In addition to above dataset we have used the following context data as support data

to generate the feature set:

 The IMEI numbers of handsets which was used by verified grey caller numbers

within last year.

 Location Area Code (LAC) and Cell ID of the locations where verified grey

caller numbers were operated within last year.

 The subscriber numbers who have received at least one call from verified grey

caller numbers within last 3 months.

 Subscribers who have received at least one IDD call in last 30 days.

 Subscribers who have originated at least one IDD call in last 30 days.

 Total answer duration and maximum call duration of subscriber for incoming

answered calls from network under study. Onnet or Offnet Subscribers who

have received at least one call from network under study within last 30 days

were considered.

58

 First calling date of Onnet subscribers.

 The first date on which Offnet number has terminated a call on considered

network.

 Number of days subscriber has originated at least one call to network since first

call date.

 Number of days offnet number has terminated at least one call to network since

first call date.

3.2.1.2. Locating complex patterns and design CEP queries

Locating complex patterns in CDR is essential to identify fraudulent behaviors in near

real time. Identifying such patterns is one of the major contributions in our research.

Once complex patterns are identified those can be captured by executing Siddhi QL

pattern queries on WSO2 CEP. After analyzing three CDR streams we have identified

six complex patterns that can be used in grey-call detection.

Figure 3.3 depicts complex pattern Type 1. In this scenario called party B1 receives

call from previously identified grey caller AN1 at time t from another operator network,

but it was blocked by operator at firewall. In this case relevant attempt recorded in the

National CDR stream as calling party number AN1 belongs to another operator.

Immediately after Δt time same called party receives call from different calling party

ID AN2 which passed through firewall. AN2 is also belongs to another operator and

relevant event recorded in National CDR stream. According to training dataset, there

is a fair chance that AN2 being a grey caller as most of SIM boxes operate as cluster of

SIMs and if one call failed from one SIM card in cluster, they would try through

another SIM in the same cluster.

Figure 3:3: Complex Event Type 1.

59

Figure 3.4 depicts real-world example for Type 1 pattern. According to above details,

we have implemented the siddhi query shown in Figure 3.5 to detect complex event

Type 1. We have set Δt to 10 minutes in this case.

National CDR Stream

AN1 B1t Action

201Y-MM-28 16:29:08 | 011Z8887XX | 07Y60331XX | blocked

National CDR Stream

201Y-MM-28 16:30:27 | 07Z33171XX | 07Y60331XX | passed

AN2 B1 Actiont+Δt

Figure 3:4: Sample Type 1 Complex event in CDR Stream.

Figure 3:5: Siddhi Query to detect Complex Pattern Type 1.

Figure 3.6 depicts CDR event flow of complex event Type 2. First event happens at

time t is similar to the first event in complex event Type 1. However, in this case

second event comes through local CDR stream after Δt time as calling party number

AL2 who has originated the call belongs to same network under study. There is a fair

chance that AL2 to be a grey caller, if cluster of SIMs in SIMbox contains the SIMs

belong to many networks. Figure 3.7 shows real-world example for Type 2 complex

event located in training dataset. After studying this behavior, we have designed the

Siddhi Query shown in Figure 3.8. In this case also we set Δt to be 10 minutes.

from every a11 = offnetCDRStream[action == "blocked"]

-> b11 = offnetCDRStream[called_party_id == a11.called_party_id

and action == "passed"] within 10 min

select b11.calling_party_id as calling_party_id,

a11.called_party_id as called_party_id,

"01" as patternID,

b11.originating_date_time as detect_time

insert into patternStream_temp;

60

Figure 3:6 : Complex event Type 2.

National

CDR

Stream Action

201Y-MM-29 12:34:02 | 047Z6711XX | 07Y60487XX | blocked

AN1 B1t

Local

CDR

Stream

201Y-MM-29 12:34:56 | 07Y04022XX | 07Y60487XX | 2012210322 | 149

AL2 B1 Locationt+Δt Duration

Figure 3:7: Sample Type 2 Complex event in CDR Stream.

Figure 3:8: Siddhi Query to detect Complex Pattern Type 2.

Figure 3.9 depicts complex pattern Type 3. In this scenario called party B1 receives

call from overseas number AI1 at time t, but call was not answered by called party or

disconnected intentionally. Since this is international incoming call corresponding

event recorded at international CDR stream. Immediately after Δt same called party

receives call from different calling party number AN2 which is belongs to another

operator network. Therefore, the second event is recorded in national CDR stream.

from every a21 = offnetCDRStream[action == "blocked"]
-> b21 = onnetCDRStream[called_party_id == a21.called_party_id]
within 10 min

select b21.calling_party_id as calling_party_id,

a21.called_party_id as called_party_id,
"02" as patternID,
b21.originating_date_time as detect_time

insert into patternStream_temp;

61

Figure 3:9: Complex event Type 3.

International

CDR Stream

201Y-MM-29 14:45:18 | +965509765XX | +947Y45025XX | 0

AI1 B1t Duration

National

CDR Stream

201Y-MM-29 14:50:01 | 07Z02587XX | 07Y45025XX | passed

AN2 B1t+Δt Action

Figure 3:10: Sample Type 3 Complex event in CDR Stream.

According to our analysis of the training dataset, there is fair chance that AN2 to be a

grey caller. According to domain experts, most of international voice carriers who are

utilizing these grey routes use mix of genuine and grey routes. If one call comes

through proper international call route, next call may reach to destination SIM box

route. Figure 3.10 demonstrates sample instance of complex event Type 3.

After studying the mentioned behavior, the Siddhi query shown in Figure 3.11 was

developed. Compared to first event in complex event Type 1 and 2, first event of

complex event type 3 and 4 happen more frequently as receiving international call

attempt with zero duration is more probable. When Δt becomes smaller, decisive

power of complex event is increased. Therefore, in this case, we have reduced Δt and

set to 5 minutes.

62

Figure 3:11: Siddhi Query to detect Complex Pattern Type 3.

Figure 3.12 depicts CDR event flow of complex event Type 4. First event happens at

time t is similar to first event in complex event Type 3. But in this case, second attempt

comes after Δt time from calling party number AL2 which belongs to same operator’s

network under study. Thus, second event is recorded in local CDR stream. AL2 could

be a grey caller due to genuine and grey route mixing like in Type 3 complex event.

Figure 3:12: Complex event Type 4.

Figure 3.13 shows real-world example for Type 4 complex event located in training

dataset. After studying this behavior, we have implemented the Siddhi query shown in

Figure 3.14. In this case also, we have set Δt to 5 minutes.

International

CDR Stream

201Y-MM-30 01:11:35 | +965502006ZZ | +947Y68691XX | 0

AI1 B1t Duration

Local CDR

Stream

201Y-MM-30 01:13:27 | 07Y86388XX | 07Y68691XX | 3009234127 | 0

AL2 B1 Locationt+Δt Duration

Figure 3:13: Sample Type 4 Complex event in CDR Stream.

from every a31 = intlCDRStream[duration == 0.0 and call_dir=="1"]

-> b31 = offnetCDRStream[called_party_id == a31.called_party_id

and action == "passed"] within 5 min

select b31.calling_party_id as calling_party_id,

a31.called_party_id as called_party_id,

"03" as patternID,

b31.originating_date_time as detect_time

insert into patternStream_temp;

63

Figure 3:14: Siddhi Query to detect Complex Pattern Type 4.

Figure 3.15 depicts complex pattern Type 5. In this scenario, subscriber B1 dials

overseas number BI1 at time t, but call was not answered by BI1. This attempt generates

event in International CDR stream. Immediately after Δt time B1 receives call from

different calling party number AN2 belongs to another operator network and event is

generated on national CDR stream. There is some probability to second call being a

call from BI1 to B1 as a response to missed call, but that call may reach through SIM

Box number AN2 due to route mixing. Figure 3.16 shows sample instance of Type 5

complex event located in the training dataset.

Figure 3.17 represents Siddhi query to detect Type 5 complex event within real data.

We set Δt to 5 minutes considering the frequency of first raw event of this complex

event.

Figure 3:15: Complex event Type 5.

from every a41 = intlCDRStream[duration == 0.0 and call_dir=="1"]

-> b41 = onnetCDRStream[called_party_id == a41.called_party_id]

within 5 min

select b41.calling_party_id as calling_party_id,

a41.called_party_id as called_party_id,

"04" as patternID,

b41.originating_date_time as detect_time

insert into patternStream_temp;

64

International

CDR Stream

201Y-MM-28 16:33:50 | +947Y73811XX | +965513500XX | 0

BI1B1t Duration

National

CDR Stream

201Y-MM-28 16:36:08 | 07Z23536XX | 07Y73811XX | passed

AN2 B1t+Δt Action

Figure 3:16: Sample Type 5 Complex event in CDR stream.

Figure 3:17: Siddhi Query to detect Complex Pattern Type 5.

Figure 3.18 shows complex pattern Type 6, where the first event in this scenario is

similar to Type 5. Subscriber B1 originate call to overseas number BI1 at t, but was not

answered by called party. This attempt generates event in international CDR stream.

Immediately after Δt, B1 receives call from different calling party number AL2 belongs

to same operator under study and event is recorded on local CDR stream. There could

be possibility of receiving call from BI1 to B1 as a response to missed call and that call

may reach through SIM box due to route mixing. Figure 3.19 shows sample instance

of Type 6 complex event located in training dataset, and the corresponding query is

shown in Figure 3.20.

from every a51 = intlCDRStream[duration == 0.0 and call_dir=="0"]

-> b51 = offnetCDRStream[called_party_id == a51.calling_party_id

and action == "passed"] within 5 min

select b51.calling_party_id as calling_party_id,

a51.calling_party_id as called_party_id,

"05" as patternID,

b51.originating_date_time as detect_time

insert into patternStream_temp;

65

Figure 3:18: Complex event Type 6.

Internationa

l CDR

Stream

201Y-MM-30 21:20:36 | +947Y34436XX | +965513206XX | 0

BI1B1t Duration

Local CDR

Stream

201Y-MM-30 21:22:08 | 07Y94267XX | 07Y34436XX | 2012210322 | 10

AL2 B1 Locationt+Δt Duration

Figure 3:19: Sample Type 6 Complex event in CDR Stream.

Figure 3:20: Siddhi Query to detect Complex Pattern Type 6.

Figure 3.21 depicts event flow inside the execution plan which was deployed on WSO2

CEP to detect six patterns mentioned above. Local, National, and International CDR

streams are exported to execution plan as onnetCDRStream, offnetCDRStream, and

intlCDRStream, respectively. After subjecting to pattern queries, resultant pattern

detections are directed to MySQL database through stream names as

PatternDetectStream.

from every a61 = intlCDRStream[duration == 0.0 and call_dir=="0"]

-> b61 = onnetCDRStream[called_party_id == a61.calling_party_id]

within 10 min

select b61.calling_party_id as calling_party_id,

a61.calling_party_id as called_party_id,

"06" as patternID,

b61.originating_date_time as detect_time

insert into patternStream_temp;

66

Figure 3:21: Overall event flow in execution plan used for pattern detection.

67

3.2.1.3. Feature set and detection rules for Onnet bypass detection

Next part of this research is identifying feature set which supports near real-time

detections and derive detection rules based on that feature set. Since selection of

features and detection rules is slightly different in Onnet and Offnet bypass scenarios,

this section only focuses about Onnet Bypass Detection. Section 3.2.1.4 discuss about

Offnet bypass detection.

Feature set for bypass detection is divided into three parts as complex events, short-

time window, and past data based features. Table 3.4 shows the complex-event-based

feature set. These values are generated by aggregating complex event count for the

considered time span. Since second event of Type 2, 4, and 6 complex patterns are

generated by onnet numbers, we have used those complex event types for onnet bypass

detection.

Table 3:4: Pattern based feature set for Onnet bypass detection.

Attribute Description

calling_party_id Calling party Number (Primary Key)

P2 Number of Type 2 complex events generated by calling party number

P4 Number of Type 4 complex events generated by calling party number

P6 Number of Type 6 complex events generated by calling party number

Table 3.5 lists the feature set generated by focusing on one hour sliding window. Initial

plan was to calculate one hour sliding window based stats on WSO2 CEP. But based

on available hardware resources and CEP performance, these stats may need to be

calculated on WSO2 DAS using Spark SQL Scripts in most of the cases. Along with

CDRs for considered one-hour window, context data also used to calculate these set

of attributes. Attributes which were calculated with help of context data mentioned in

Section 3.2.1.1 is denoted in Table 3.5 using “*” mark at end of the attribute name.

Using DAS’s functionality to schedule Spark SQL scripts, stats for one hour sliding

window were repeatedly calculated once per every 30 minutes and joined with pattern

based features to come with feature set for short-time window.

68

Table 3:5: Feature set used in Onnet bypass detection based on short-time window.

Attribute Description

calling_party_id Calling party Number (Primary Key)

og_cnt_hour Total outgoing call count originated by given Subscriber

og_dcnt_hour Different numbers dialed by Subscriber

max_cell_hour The cell id in which subscriber was stayed while taking most number of

calls.

og_tot_dur_hour Total outgoing call duration by subscriber

cell_count_hour Total number of distinct cell ids from which subscriber has originated at

least one call

imei_count_hour Number of different IMEI numbers used by calling party.

grcell_hour * Does this subscriber has originated calls from cell location from which

previously identified grey callers also originated calls? Value is set to 1 if

answer is yes otherwise value is set to 0.

grey_imei_hour * Does this subscriber has originated calls from the device with IMEI number

which was previously used by verified grey caller? Value is set to 1 if

answer is yes otherwise value is set to 0.

grb_dcnt_in_hour * Number of distinct called party numbers dialed by this customer which has

received call from verified grey caller’s numbers previously.

iddb_dcnt_in_hour * Distinct called party numbers dialed by this number who have received IDD

calls in past.

iddb_dcnt_out_hour * Distinct called party numbers dialed by this number who have dialed IDD

calls in past

ic_tot_dur_hour Total call duration of subscriber for incoming answered calls from network

under study within one hour

ic_max_dur_hour Maximum call duration of subscriber for incoming answered calls from

network under study within one hour

Some of the fraud instances can be directly identified by focusing on complex pattern

based and one-hour sliding window based features. But fraudsters use advanced

techniques to simulate normal users’ behavior. So along with short-term data, past data

also need to be used to make detections at earliest with high accuracy. So using the

event data persisted in WSO2 DAS, we have built user behavior recent for past 24

hours. Table 3.6 shows feature set built for 24-hours sliding window. Attributes which

were calculated with help of context data is denoted in Table 3.6 using “*” mark at

end of the attribute name.

69

Table 3:6: Feature set calculated using past data for Onnet bypass detection.

Attribute Description

calling_party_id Calling party Number (Primary Key)

og_cnt Total outgoing call count originated by given Subscriber

og_dcnt Different numbers dialed by Subscriber

og_cnt_other Total outgoing call count by Subscriber to other operator numbers

og_dcnt_other Distinct other operator numbers dialed by Subscriber

og_tot_dur Total outgoing call duration by subscriber

cell_count Total number of distinct cell ids from which subscriber has originated at least

one call

max_cell The cell id in which subscriber was stayed while taking most number of calls.

imei_count Number of different IMEI numbers used by calling party.

grey_cell * Does this subscriber has originated calls from cell location from which

previously identified grey callers also originated calls? Value is set to 1 if

answer is yes otherwise value is set to 0.

grb_dcnt_in * Number of distinct called party numbers dialed by this customer which has

received call from verified grey caller’s numbers previously.

grey_imei * Does this subscriber has originated calls from the device with IMEI number

which was previously used by verified grey caller? Value is set to 1 if answer is

yes otherwise value is set to 0.

iddb_dcnt_in * Distinct called party numbers dialed by this number who have received IDD

calls

iddb_dcnt_out * Distinct called party numbers dialed by this number who have dialed IDD calls

ic_tot_dur * Total call duration of subscriber for incoming answered calls from network

under study

ic_max_dur * Maximum call duration of subscriber for incoming answered calls from network

under study

og_idd_dcnt * Distinct IDD numbers dialed by subscriber

ic_idd_dcnt * Number of distinct IDD numbers which dialed this subscriber

day_count * Number of days subscriber has originated calls since subscriber’s first call date.

first_call * The date of the first call originated by subscriber

Context data was stored in MySQL tables and imported to Spark script by creating

temporarily tables using CarbonJDBC as provider [37]. Persisted events stored in DAS

was imported to Spark script by creating temporarily tables using CarbonAnalytics as

provider [37]. Even though WSO2 DAS stores persisted data on MySQL as per our

configuration, those data stored using its own format. As context data was in typical

MySQL format, we had to use two analytic providers to implement Spark script.

70

Figure 3.22 shows sample Spark queries which were included in Spark script on WSO2

DAS. As mentioned earlier to access data through Spark script creation of temporarily

table which points to permanent table is required. Then users can insert data to

temporarily table which automatically updates pointed permanent table.

Figure 3:22: Sample Spark Query used to calculate attributes.

Feature set based on for 24-hours sliding window was calculated once per hour and

joined with real-time view to apply filtering rules. We developed 14 filtering rules

based on behavior of verified grey caller numbers on training data set. Three of these

rules are derived based on real-time view, seven rules build based on 24-hour stats,

and remaining four rules are derived using both real time and 24-hour stats. Table 3.7

shows sample rule used in Onnet bypass detection. It is important to note that in some

cases we have used composite attributes, which was derived by subjecting raw

attributes to simple mathematical operations.

CREATE TEMPORARY TABLE ONNET_OG_SUMMARY USING CarbonAnalytics

OPTIONS

(tableName "ONNETOGSUMMARY",schema "calling_party_id STRING,

og_cnt INT, og_dcnt INT, og_ans_count INT, og_max_dur DOUBLE,

og_tot_dur DOUBLE, cell_count INT,og_cnt_other INT,og_dcnt_other

INT", primaryKeys "calling_party_id");

INSERT OVERWRITE TABLE ONNET_OG_SUMMARY SELECT

calling_party_id,

count(called_party_id) as og_cnt,

count(distinct(called_party_id)) as og_dcnt,

sum(CASE WHEN duration!=0 THEN 1 ELSE 0 END) as og_ans_count,

sum(duration) as og_tot_dur,max(duration) as og_max_dur,

count(distinct(location)) as cell_count,

count(CASE WHEN called_party_id not like "77%" and

called_party_id not like "76%" THEN called_party_id ELSE Null

END) as og_cnt_other,

count(distinct(CASE WHEN called_party_id not like "77%" and

called_party_id not like "76%" THEN called_party_id ELSE Null

END)) as og_dcnt_other

from BYPASS_ONNET_DAILY group by calling_party_id;

71

Table 3:7: Example filtering criteria in detection rule used in Onnet bypass detection.

Attribute/Composite Attribute Condition

og_cnt_hour >0

P2 >0

P4 >0

P6 >0

(P2+P4+P6)/og_cnt >0.01

grcell_hour >0

ic_tot_dur_hour <1000

These rules were developed after observing the behavior of verified bypass numbers

in training dataset. Once initial filtering criteria has developed, we applied those to

training dataset and obtained results. If accuracy level and detection delay are not met

expected levels, we adjusted thresholds of rules and applied again for training dataset.

Same procedure is repeated until comprehensive set of logics which meets expected

accuracy and detection delay were obtained. Finally, derived set of rules were applied

on the test dataset and the results are discussed in Chapter 4.

3.2.1.4. Feature set and detection rules for Offnet bypass detection

Similar to Onnet bypass detection, feature set is divided into three parts named as

complex events, short-time window, and past data based features. Table 3.8 shows the

complex event based feature set. These values are generated by aggregating complex

event count within the considered time span. Since second event of Type 1, 3 and 5

complex patterns are generated by offnet number, we have used those complex event

types for offnet bypass detection.

Table 3:8: Pattern based feature set for Offnet bypass detection.

Attribute Description

calling_party_id Calling party Number (Primary Key)

P1 Number of Type 1 complex events generated by particular calling party number

P3 Number of Type 3 complex events generated by particular calling party number

P5 Number of Type 5 complex events generated by particular calling party number

72

Table 3.9 describes the feature set generated by focusing on one hour sliding window.

These stats were calculated on WSO2 DAS using Spark SQL script by accessing

persisted event data. Main data source was the stored events from National CDR

stream. Along with CDRs for considered one-hour time window, context data also

used to calculate these set of attributes. Attributes which were calculated with help of

context data is denoted in Table 3.9 using “*” mark at end of the attribute name.

Similar to Onnet bypass scenario, stats for one-hour sliding window were repeatedly

calculated once per every 30 minutes and joined with pattern based features to come

with feature set for short-time window. It is important to note that that, because

operator do not have location details and handset details of subscriber of another

operator network, feature set generated for Offnet bypass detection is relatively smaller

compared to Onnet bypass detection.

Table 3:9: Feature set used in Offnet bypass detection with one-hour time window.

Attribute Description

calling_party_id Calling party Number (Primary Key)

og_cnt_hour Total incoming call count originated by offnet number to network under

study

og_dcnt_hour Distinct number count dialed by offnet number

grb_dcnt_in_hour* Number of distinct called party numbers dialed by this Offnet number which

has received call from verified grey caller’s numbers previously.

iddb_dcnt_in_hour* Distinct called party numbers dialed by this number who have received IDD

calls previously

iddb_dcnt_out_hour* Distinct called party numbers dialed by this number who have dialed IDD

calls previously

ic_tot_dur_hour Total call duration of incoming answered calls by this offnet number from

network under study within considered time span

ic_max_dur_hour Maximum call duration of incoming answered calls by this offnet number

from network under study within considered time span

In this case also some of the fraud instances can be directly identified by focusing on

complex patterns and one hour sliding window based features. Because of advanced

techniques used by fraudsters to simulate normal user’s behavior, decision making

process cannot only rely on real-time data. So along with near real-time data, past data

was also required to make detections at earliest with high accuracy. So, using the event

data persisted in WSO2 DAS we have built user behavior for recent 24 hours. Table

73

3.10 shows feature set built for 24-hours sliding window. Attributes which were

calculated with help of context data is denoted in Table 3.10 using “*” mark at end of

the attribute name. Since location and device information not available for offnet

numbers, limited number of features are available for Offnet bypass detection. Similar

to Onnet bypass scenario, 24-hour behavior was calculated on WSO2 DAS using Spark

scripts. Feature set based on for 24-hours sliding window was calculated once per hour

and joined with real time view to apply filtering rules.

Table 3:10: Feature set calculated using past data for offnet bypass detection.

Attribute Description

calling_party_id Calling party Number (Primary Key)

og_cnt Total incoming call count originated by offnet number to network under study

og_dcnt Distinct number count dialed by offnet number

grb_dcnt_in* Number of distinct called party numbers dialed by this offnet number which has

received call from verified grey caller’s numbers previously.

iddb_dcnt_in* Distinct called party numbers dialed by this offnet number who have received

IDD calls

iddb_dcnt_out* Distinct called party numbers dialed by this number who have dialed IDD calls

ic_tot_dur* Total call duration of subscriber for incoming answered calls from network

under study

ic_max_dur* Maximum call duration of subscriber for incoming answered calls from network

under study

day_count* Number of days Offnet number has originated calls since first call termination

date to network under study.

first_call* The date of first incoming from offnet number received to network under study

We have developed 16 filtering rules based on the behavior of verified grey caller

numbers on training data set. Six of these rules were derived based on real-time view,

eight were build based on 24-hour stats, and he remaining two rules derived using both

real time and 24-hour stats. We have used composite attributes which was derived by

subjecting raw attributes to simple mathematical operations within some rules.

These rules were developed after observing the behavior of verified bypass numbers

in training dataset. Once initial filtering criteria has developed, we have applied those

to training dataset and obtained results. When the accuracy level and detection delay

are not within the expected levels, we adjusted thresholds of rules and applied again

74

for training dataset. Same procedure is repeated until comprehensive set of logics that

meet expected accuracy and detection delay is obtained. Finally, derived set of rules

were applied on test dataset.

When we consider offnet bypass scenario, summarized dataset consists of behavior of

numbers belongs to another operator’s mobile network as well as fixed telephony

network. Since fixed telephone network operators provide PABX, hotline and call

center solutions, sometimes generates higher amount of calls to distinct numbers. So,

we have applied different set of rules to fixed telephone operators numbers and mobile

network operator numbers. Also, numbers belong to one wireless fixed network

operator have shown abnormal behavior in some instances. So, we had to use specified

set of rules to capture the numbers belongs to particular operator.

3.2.2. Extreme usage detection

This section describes the method which was used to identify different kind of

fraudulent activities related to extreme usage scenarios related to premium rated

numbers. We have focused on five major scenarios and in each subsection, we describe

the CDR pattern observed within each scenario and how those are captured in our

system.

3.2.2.1. Dial and disconnect scam

This is most frequent category of fraudulent activity related to premium rate telephone

numbers. In this scenario, fraudsters connected to international voice network

multicast call attempts to range of valid telephone numbers in selected network in

selected country. When multicasting those missed call attempts, fraudsters replace

original calling party with premium rated telephone number or telephone number of

country to which call termination rate is higher than LKR 50. Fraudsters normally use

premium rated or high cost destination numbers for these kind of fraudulent activities

as their profit can be maximized when termination cost per one minute become higher.

In all the sample insistences we have found, fraudsters used CLI belongs to destination

to which calling cost per one minute is higher than LKR 50. To nullify the effect of

this fraudulent activity, these incoming fraudulent call attempts toward local network

need to be identified before customers start to respond those in large scale.

75

We have studied similar fraud cases within one month and identified the incoming call

pattern in this scenario. Table 3.11 shows hourly statistics of two sample fraud

instances in first three hours of their operation. These statistics are calculated by

grouping incoming IDD calls with respect to calling party number. So, we can clearly

see that these fraudulent numbers dial considerably higher amount of distinct numbers

than normal users. Also, these two calling party numbers belongs to countries such as

Surinam and Somalia and call cost per one minute is LKR 80 to both countries.

Therefore, using this information we developed execution plan in WSO2 CEP to detect

these scenarios. First, we took rate sheet from operator websites. Table 3.12 shows

sample entries from rating table. Action value is set to one when a particular

destination is required to consider in number level analysis.

Table 3:11: Instances of Dial and Disconnect Scam.

 Calling Party Hour
No of distinct called party

nos dialed by this no

Case 1

5977619782 2017-11-04 13 30

5977619782 2017-11-04 14 118

5977619782 2017-11-04 15 99

Case 2

252800778114 2017-11-04 11 40

252800778114 2017-11-04 13 131

252800778114 2017-11-04 15 153

Table 3:12: Rating table with destination number prefixes.

Country

Code

Destination

Digits

 Cost

(LKR)
 Country Destination Name Action

87 87 900 INMARSAT INMARSAT 1

46 4674 900 SWEDEN
SWEDEN SPECIAL

SERVICE
1

355 3554249 500 ALBANIA ALBANIA PREMIUM 1

355 35534606 500 ALBANIA ALBANIA PREMIUM 1

355 35534608 500 ALBANIA ALBANIA PREMIUM 1

355 35535505 500 ALBANIA ALBANIA PREMIUM 1

597 597 80 SURINAM SURINAM 1

252 252 80 SOMALIA SOMALIA 1

76

Next, we developed Siddhi query on WSO2 CEP to analyze International CDR stream.

This query analyzes all the incoming attempts toward the considered network and

calculates distinct numbers dialed by each calling party number within one hour sliding

window. Also, we have extracted leftmost digits of calling party number for different

lengths to use those prefixes in the next step. Figure 3.23 shows sample code snippet

used. Then we have matched output stream of the query mentioned in Figure 3.23 with

rating table. Figure 3.24 shows the Siddhi query used to match intermediate stream

with rating table. Even though rating table is stored in MySQL table, we need to access

it from CEP query in this scenario. So prior to executing this query, we have defined

event table named as HighCostDestTable and pointed that to rating table because event

tables can be directly access from CEP query.

Finally, filtering query in Figure 3.25 was used to filter out fraudulent numbers. Using

the past cases, we identified that receiving calls from premium rated or high cost

calling party number to more than 10 distinct subscribers could be considered as

suspicious situation. Figure 3.26 shows the overall event flow of execution plan

deployed to detect dial and disconnect scam.

Figure 3:23: Query used for event aggregation to detect Dial and Disconnect Scam.

from intlCDRStream[call_dir=='1' and duration<10 and

str:length(calling_party_id)>7]#window.time(60 min)

select calling_party_id,

distinctcount(called_party_id) as dst_callednum_count,

min(time) as firstattempttime,max(time) as lastattempttime,

str:substr(calling_party_id,0,2)as firstdigit2,

str:substr(calling_party_id,0,3)as firstdigit3,

str:substr(calling_party_id,0,4)as firstdigit4,

str:substr(calling_party_id,0,5)as firstdigit5,

str:substr(calling_party_id,0,6)as firstdigit6,

str:substr(calling_party_id,0,7)as firstdigit7,

str:substr(calling_party_id,0,8)as firstdigit8

group by calling_party_id

insert into tmpMFSummary8;

77

Figure 3:24: Query used to join Rating table with aggregated data.

Figure 3:25: Filtering Query used to detect Dial and Disconnect Scam.

3.2.2.2. Outbound dialing due to fake text messages

In this scenario, fraudsters use fancy messages instead of missed calls to persuade

normal subscribers to dial back to premium rated numbers. These scenarios cannot be

detected by relaying on incoming text messages as those messages can reach to

customer in many ways. So, this scenario need to be captured using outgoing call

attempts at early stage before significant number of users dial those premium numbers.

Table 3.13 shows instances for Outbound dialing fraud due to fake text messages

received in form of SMS. In these cases, distinct calling party numbers dials the same

high-cost destination number or number range. Country code 248 and 291 belongs to

Seychelles and Eritrea, respectively, where cost per one minute is LKR 80 for both the

countries.

from tmpMFSummary8#window.unique(calling_party_id) as

unqAttemptSummary8 join HighCostDestTable on

unqAttemptSummary8.firstdigit2==HighCostDestTable.Dest_Digits or

unqAttemptSummary8.firstdigit3==HighCostDestTable.Dest_Digits or

unqAttemptSummary8.firstdigit4==HighCostDestTable.Dest_Digits

or unqAttemptSummary8.firstdigit5==HighCostDestTable.Dest_Digits

or unqAttemptSummary8.firstdigit6==HighCostDestTable.Dest_Digits

or unqAttemptSummary8.firstdigit7==HighCostDestTable.Dest_Digits

or unqAttemptSummary8.firstdigit8==HighCostDestTable.Dest_Digits

select unqAttemptSummary8.calling_party_id,

unqAttemptSummary8.dst_callednum_count,

unqAttemptSummary8.firstattempttime,

unqAttemptSummary8.lastattempttime

insert into TmpMissedCallFruadStream;

from TmpMissedCallFruadStream[dst_callednum_count>10]

select calling_party_id,dst_callednum_count,firstattempttime,

lastattempttime

output every 30 sec

insert into MissedCallFruadStream;

78

Table 3:13: Instances for Outbound Dialing due to fake Text Messages

 Called party

id
Hour

No of distinct calling party ids

dialed this number

Case 1

2486427007 2017-11-04 17 742

2486427007 2017-11-04 18 495

2486427007 2017-11-04 18 79

2486427007 2017-11-04 19 104

Case 2

2917185957 2017-11-04 12 18

2917185957 2017-11-04 15 14

2917185957 2017-11-04 16 14

We have implemented CEP Execution plan to detect this scenario after studying past

instances. Implementation is similar to the methodology in Section 3.2.2.1. However,

instead of incoming international call attempts toward local network in International

CDR stream, outgoing international call attempts originated from local network is

considered. Also, distinct calling party number count is obtained with respect to each

called party number. Then resultant intermediate stream is joined with rating table and

cases related to high cost destinations are filtered. Then simple filtering query is

applied, and the output is obtained. According to past cases, we have identified that

more than ten distinct numbers dials same premium rated or high cost calling party

number within one hour, such event could be fraudulent activity. Figure 3.27 shows

overall event flow of execution plan deployed to detect Outbound dialing scenarios

due to fake text messages.

79

Figure 3:26: Event flow of execution plan used to identify Dial and Disconnect Fraud.

Figure 3:27: Event flow of execution plan used to detect Outbound dialing due to fake text messages.

80

3.2.2.3. Inbound roamer fraud

Inbound roamer fraud is another important scenario in which we can observe extreme

usage behavior. Fraudsters latch foreign SIM card on local network and originate calls

to premium rated or high cost destinations. Even though foreign operator need to pay

those charges to local operator according to agreements, local operator need to track

those fraudulent incidents and inform foreign operator as there is some associated risk

in termination of roaming agreements and not paying excessive charges when usage

charges due to fraudulent activity is very high.

Table 3.14 shows example case of roaming fraud. Calling party id means MSISDN of

foreign network subscriber. Within few hours those inbound roamers have made

significant number of calls to three high cost destinations. Country code 224, 371, and

232 respectively belongs to Guinea, Latvia, and Sierra Leone and to each country call

termination charges for one minute is LKR 80. As roaming call charges are normally

higher than normal call charges, normal roaming customers do not take long duration

calls to costly destinations. But in this case within few hours fraudster has originated

more than 100 minutes via each SIM card and average call duration is above 10

minutes in eight of those cases.

Table 3:14: Sample instances of Inbound Roamer Fraud.

Calling Party ID
Number

Level

Attempt

Count

Total Call

Duration

Average Call

Duration

66X493032YY 224 12 148.7627 12.3969

66X491347YY 224 11 195.359 17.7599

66X493153YY 224 10 166.724 16.6724

66X489321YY 224 10 182.2201 18.222

66X493135YY 224 10 174.7128 17.4713

66X489175YY 224 10 186.3567 18.6357

66X182460YY 224 9 163.502 18.1669

66X491302YY 224 9 147.5956 16.3995

66X493153YY 371 9 0 N/A

66X493153YY 232 8 0.4713 0.2356

81

Then, we developed CEP query to analyze International CDR stream. This query

analyzes all the outgoing international call attempts from considered network and

calculated attempt count, answer call count, and sum of duration dialed by each calling

party number to each distinct called party number within 90 minutes sliding window.

Also, we have extracted leftmost digits of called party number for different lengths to

use those prefixes in next step. Figure 3.28 shows sample code snippet used.

Figure 3:28: Aggregation query used in execution plan used for inbound roamer

fraud detection.

Then rating table was exported as an event table and joined with output stream of query

mentioned in Figure 3.28 to obtain result of prefix matching and acquire only calling

party numbers which has dialed called party number ranges defined in rating table.

Figure 3.29 shows the CEP query used to match intermediate stream generated as

output of query mentioned in Figure 3.28 with rating table.

After that intermediate query shown in Figure 3.30 was used to calculate attempt

count, answer call count, and sum of duration dialed by each calling party number to

distinct called party number ranges. Three leftmost digits were considered when

summarizing usage with respect to destination number level. Finally, filtering query

mentioned in Figure 3.31 used to filter out fraudulent numbers. Figure 3.34 shows the

event flow within execution plan deployed to detect inbound roamer fraud.

from intlCDRStream[call_dir=='0' and

str:length(called_party_id)>7]#window.time(90 min)

select calling_party_id,called_party_id,

str:concat(calling_party_id,called_party_id) as cus_symbol,

count(time) as attempt_count,

sum(duration>0) as ans_count,sum(duration) as tot_duration,

min(time) as firstattempttime,max(time) as lastattempttime,

str:substr(called_party_id,0,2)as firstdigit2,

str:substr(called_party_id,0,3)as firstdigit3,

str:substr(called_party_id,0,4)as firstdigit4,

str:substr(called_party_id,0,5)as firstdigit5,

str:substr(called_party_id,0,6)as firstdigit6,

str:substr(called_party_id,0,7)as firstdigit7,

str:substr(called_party_id,0,8)as firstdigit8

group by calling_party_id,called_party_id

insert into tmpRoamPABXFSummary8;

82

Figure 3:29: Siddhi query used to match intermediate stream with rating table used to

detect inbound roamer fraud.

Figure 3:30: Intermediate query used to calculate usage of each calling party number

to distinct premium number levels.

from tmpRoamPABXFSummary8#window.unique(cus_symbol) as

unqRMOutSum8 join HighCostDestTable on

unqRMOutSum8.firstdigit2==HighCostDestTable.Dest_Digits or

unqRMOutSum8.firstdigit3==HighCostDestTable.Dest_Digits or

unqRMOutSum8.firstdigit4==HighCostDestTable.Dest_Digits or

unqRMOutSum8.firstdigit5==HighCostDestTable.Dest_Digits or

unqRMOutSum8.firstdigit6==HighCostDestTable.Dest_Digits or

unqRMOutSum8.firstdigit7==HighCostDestTable.Dest_Digits or

unqRMOutSum8.firstdigit8==HighCostDestTable.Dest_Digits

select

unqRMOutSum8.calling_party_id,unqRMOutSum8.called_party_id,

unqRMOutSum8.attempt_count,unqRMOutSum8.ans_count,

unqRMOutSum8.tot_duration,unqRMOutSum8.firstattempttime,

unqRMOutSum8.lastattempttime

insert into TmpRoamPABXFruadStream;

from TmpRoamPABXFruadStream

select calling_party_id,

str:substr(called_party_id,0,3) as dialed_range,

str:concat(calling_party_id,str:substr(called_party_id,0,3)) as

cus_symbol_rng,

attempt_count,ans_count,tot_duration,

firstattempttime,lastattempttime

insert into TmpRoamPABXFruadStream2;

from TmpRoamPABXFruadStream2#window.unique(cus_symbol_rng)

select calling_party_id,dialed_range,

sum(attempt_count) as tot_attempt_count,

sum(ans_count) as tot_ans_count,

sum(tot_duration) as final_tot_duration,

min(firstattempttime) as firstattempttime1,

max(lastattempttime) as lastattempttime1

group by calling_party_id,dialed_range

insert into TmpRoamPABXFruadStream3;

83

Figure 3:31: Siddhi query used to detect inbound roamer fraud and high usage

scenarios.

3.2.2.4. PABX hacking fraud

In this scenario hackers gain the access to the PABX system using system vulnerability

and generate large number of calls to premium rated destinations without any intention

of actual customer. Table 3.15 shows sample instance of PABX hacking fraud.

Fraudsters has originated huge number attempts to high cost number level belongs to

country called Serbia to which call termination cost for one minute is LKR 80.

Fraudster tries 81 attempts within one-hour time span and average call duration is

comparably high. In some cases, like call center solutions, normal PABX customer

makes higher number of calls similar to this but average call duration is comparably

low.

Table 3:15: Sample instance of PABX hacking fraud.

Calling Party ID
 Number

Level
 Attempt Count Total Duration

Average Call

Duration

9411Y4441XX 381 81 453.7167 7.438

Therefore, Siddhi QL execution plan can be deployed to identify fraudulent behavior.

Instead of creating different execution plan, this scenario was detected by adding

another filtering query to execution plan mentioned in Section 3.2.2.3 as detection can

be made using the same attributes. Figure 3.32 shows the filtering query used to detect

PABX hacking fraud.

from TmpRoamPABXFruadStream3[str:substr(calling_party_id,0,2)

!="94" and ((tot_attempt_count>9 and final_tot_duration>3600)

or final_tot_duration>(tot_ans_count*300))]

select calling_party_id,dialed_range,

tot_attempt_count as attempt_count,

tot_ans_count as ans_count,

final_tot_duration as tot_duration,

firstattempttime1 as firstattempttime,lastattempttime1 as

lastattempttime

insert into inRoamFruadStream;

84

Figure 3:32: Filtering query used to detect PABX hacking fraud

3.2.2.5. Malware originated fraudulent calls

In this scenario, malicious software installed on subscriber’s handset originate calls to

premium rated numbers automatically without user’s intention. These calls typically

span for more than 30 minutes duration, sometimes till maximum allowed call duration

within mobile network operator is met. Two cases mentioned in Table 3.16 provide

examples for malware fraud.

In these cases, called party ID belongs to the country called Ascension and

international call termination cost for this number level is LKR 380 per minute. So, a

typical mobile network subscriber is highly unlikely to intentionally originate calls

with such long duration to those countries. Instead of one long-duration calls, malware

may originate series of comparably short duration calls also. Operators target is to

identify such fraud numbers at earliest to avoid further damage to same customer or

other customers who could get affected due to same malware. So, key attribute in this

scenario is sum of call duration to premium or high cost destinations originated by

given subscriber. This scenario also can be detected by just adding another filtering

rule to same execution plan mentioned in Section 3.2.2.3. Figure 3.33 shows the

filtering query used to detect Malware fraud.

from TmpRoamPABXFruadStream3[(str:substr(calling_party_id,0,2)

=="94" and str:length(calling_party_id)==11 and

str:substr(calling_party_id,0,4) !="947Y" and

str:substr(calling_party_id,0,4) !="947Z") and

((tot_attempt_count>9 and final_tot_duration>3600) or

final_tot_duration>(tot_ans_count*300))]

select calling_party_id,dialed_range,

tot_attempt_count as attempt_count,

tot_ans_count as ans_count,

final_tot_duration as tot_duration,

firstattempttime1 as firstattempttime,

lastattempttime1 as lastattempttime

insert into PABXFraudStream;

85

Table 3:16: Instances of Malware fraud.

 Originate Date Time Calling party Called Party
Duration

(Seconds)

Cost

(LKR)

 Case 1 201Y-1M-03 1H:41:58 7Y74867XX 247050000 3430 21723.33

 Case 2 201Y-1M-26 1H:30:01 7Y35499XX 24793741 5400 34200.00

Figure 3:33 : Filtering Query used to detect Malware fraud.

from TmpRoamPABXFruadStream3[(str:substr(calling_party_id,0,2)

=="94" and str:length(calling_party_id)==11 and

(str:substr(calling_party_id,0,4) =="9477" or

str:substr(calling_party_id,0,4) =="9476")) and

(tot_attempt_count>4 or final_tot_duration>600)]

select calling_party_id,dialed_range,

tot_attempt_count as attempt_count,

tot_ans_count as ans_count,

final_tot_duration as tot_duration,

firstattempttime1 as firstattempttime,

lastattempttime1 as lastattempttime

insert into MalwareFraudStream;

86

Figure 3:34: Event flow inside siddhi execution plan used to detect Inbound Roamer, PABX Hacking, and malware fraud scenarios.

87

4. PERFORMANCE EVALUATION

This chapter explains the experiments we performed to evaluate real-time fraud

detection system using a real-world dataset. Section 4.1 presents the experimental

setup and the dataset used to evaluate real-time fraud detection system. Section 4.2

presents the results and performance of bypass detection use case while Section 4.3

presents extreme usage detection use case. Finally, Section 4.4 presents the resource

utilization of the proposed system.

4.1. Experimental Setup

Figure 4.1 depicts the experimental setup used to evaluate the performance of the

system. Stream simulator was used to convert static CDR data stored in files into event

streams and then data publisher published those events. System receives the published

events through event receivers. Then, system performs intended real time and batch

calculations on input data and deliver output. In Grey call detection use case, final

output obtained by passing summarized data through rule-based classifier. In extreme

usage detection, system directly outputs results.

Figure 4:1: Experimental setup.

WSO2 DAS version 3.1.0 was the main software tool used for this implementation. As

per documentation, CEP integrated in WSO2 DAS version 3.1.0 supports Siddhi query

language 3.0 which is the equivalent to CEP version 4.1. But in actual implementation

it supports some functions supported in Siddhi query language 3.1 which is the query

language used in WSO2 CEP version 4.2. MariaDB server version 5.5.52 was the

88

database server used in this setup. MariaDB is the successor of MySQL. In this proof

of concept design, we have pointed relevant data sources in DAS to MySQL databases

by modifying backend configurations, as it simplifies the implementation. Oracle JDK

1.8.0_121 was the Java platform used.

Due to privacy concerns, we did not gain access to live data feed in real time. Instead

operator provided recent dataset in CSV formatted files. So, we have developed stream

simulator software module to simulate event stream in experimental setup and coupled

that module with data publisher. First, stream simulator converted timestamp of events

into a Unix timestamp. Then normalized timestamp values with respect to common

base were obtained by deducting base timestamp from each timestamp in dataset. Then

we stored each CDR objects with mapping (key, value) in special kind of Hash-Map

called Multi-Map. Normalized timestamp was used as hash key. We have used Multi-

Map for storing events as it allows to store multiple objects mapped to same hash key

and stored in memory while program is running. So, we can retrieve all CDR events

originated at given second using hash key within minimum delay. When timer

triggered, the stream data simulator retrieves the CDR and send data through stream

using data publisher. Similar approach is followed in all three types of streams. We

used the same base value for all three data sources and same timer was used to trigger

events to make sure three streams are synchronized and real environment is replicated

in experimental setup.

We used server with hardware specifications mentioned in Table 4.1. Server consists

two processors which contains 8-cores of Intel Xeon 2.40GHz. CentOS Linux release

7.3.1611 64-bit version was the operating system in server when this experiment is

conducted. Maximum possible heap size for JVM was increased up to 14GB to provide

sufficient memory for application.

Table 4:1: Hardware specifications of experimental server.

System Resource Specification

Processing 16 cores × Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Cache Size 20,480 KB

Memory 16 GB

89

Since grey call detection is supervised learning problem we have used two different

datasets for training and testing. First, we have selected training and test datasets with

enough positive fraud instances. Since CDR reflects privacy of subscriber, we were

allowed to access data after the operator applied certain types of filtering to dataset

and after proper approvals were granted.

Table 4.2 describes the distribution of training dataset which was taken between 2016-

10-28 15:00:00 to 2016-10-31 00:00:00 GMT+0530. Table 4.3 describes the

distribution of test dataset which was between 2017-09-01 03:00:00 to 2017-09-02

09:00:00 GMT+0530. Feature set was calculated with respect to each subscriber

number. To derive feature set for Onnet bypass scenario, Local CDRs were used as

main data source and International CDRs were used as support dataset. Support data

was used to derive additional context data to calculate some of the features. After the

calculation of feature set, it was realized that the training dataset contained 284,351

distinct onnet subscriber profiles which is 29.6% of total subscriber profiles in whole

dataset. Test set population size was 677,046 which is 70.4% of total onnet subscriber

profiles in whole dataset.

Table 4:2 : Details of training dataset.

 Local CDR National CDR International CDR

Total CDR Count 7,241,372 8,559,106 5,217,259

Distinct Number Count 284,351 1,153,409 859,718

Time Span (Hours) 57 57 57

Average Data Rate

(events per second)
35.29 41.71 25.43

Maximum Data Rate

(events per second)
108 145 71

Average Rate at Peak Hours

(events per second)
66.76 70.19 41.77

90

Table 4:3: Details of test dataset.

 Local CDR National CDR International CDR

Total CDR Count 3,702,113 7,332,382 1,929,613

Distinct Number Count 677,046 1,373,124 481,888

Time Span (Hours) 30 30 30

Average event rate

(events per second)
34.28 67.89 17.87

Maximum Data Rate

(events per second)
110 187 60

Average Rate at Peak Hour

(events per second)
69.72 131.72 33.58

To derive feature set for Offnet bypass scenario, National CDRs were used as main

data source while using International CDRs and Local CDRs as support data. After the

calculation of feature set for Offnet bypass scenario, it was realized that the training

set population size was 1,153,409 entries which is 45.6% of total offnet caller profiles.

Test set population size was 1,373,124 which is 54.4% of total offnet caller profiles.

As this is time sensitive application, we have to periodically calculate feature values

by considering 24-hour sliding window and one-hour sliding window over the time

span. Each periodic calculation gave snapshot of each subscriber’s behavior within the

considered time window. Same subscriber may reflect significantly different behavior

than earlier calculation when considered time windows are not overlapping.

The training and test datasets which were used for grey call detection use case did not

contain any instance of extreme usage related frauds. Extreme usage scenarios are

relatively infrequent compared to grey call fraud instances. Therefore, we have taken

CDRs for past instances of extreme usage related fraud cases and used those data to

build our logics. Then, as test data set, we have obtained CDRs of incoming and

outgoing International calls for two 24-hour time windows and fed into the system

through international CDR stream. First dataset comprises of 637,904 CDR entries and

while second one had 658,982 CDR entries.

91

It is important to mention about the system used by operator in fraud detection as we

compare performance of proposed system with operator’s fraud detection system.

Operator has made detections using MySQL-based batch processing system running

on virtual server which contains 16-cores of Intel Xeon 2.27GHz and 24 GB RAM.

They have used 24-hour and 3-hour sliding windows in calculating features. Also,

operator’s system is making detections at 50% false-positive rate. Then manual

analysis is performed to filter out false positives. They are following this approach to

minimize the detection time.

4.2. Grey Call Detection Results

This section describes the results of grey call detection use case while comparing the

accuracy and efficiency of the system with respect to labeled data provided by

operator. Because we focus on efficiency of CDR based feature generation and

effective use of complex event patterns for grey caller detection, simple rule-based

classifier was used for decision making.

4.2.1. Onnet bypass

The training dataset which was used to derive set of detection rules for Onnet bypass

detection consists of 284,351 distinct subscribers and 51 verified fraud instances. The

set of rules which was derived upon the feature set obtained in this research covers all

the 51 fraud instances after several cycles of fine tuning. But system has located one

false positive. Further fine-tuning of rules was not effective as it resulted more false

negatives and model tended to over fit to training dataset. Table 4.4 shows Confusion

Matrix for Onnet bypass detection system after applying final set of rules on training

dataset. We have considered Fraud as positive class and Genuine as negative class.

This convention is used in rest of the document.

The test dataset contained 677,046 different subscribers and out of which 45

connections are fraudulent connections. Proposed system detected 44 fraud instances

correctly with one false negative. Table 4.5 shows the Confusion Matrix for Onnet

bypass detection after applying final set of rules on test dataset.

92

Table 4:4: Confusion Matrix for Onnet bypass detection with training dataset.

System Detected Class

Genuine Fraud

Actual Class
Genuine 284,299 1

Fraud 0 51

Table 4:5: Confusion Matrix for Onnet bypass detection system with test dataset.

System Detected Class

Genuine Fraud

Actual Class
Genuine 677,001 0

Fraud 1 44

Inherently grey call detection problem has uneven or unbalanced class distribution as

a few grey callers are operating within massive customer base. So, accuracy value

easily exceeds 99% as majority of genuine customers were correctly classified by our

system in Onnet scenario. But accuracy does not give correct view in bypass detection

as class distribution is uneven. Therefore F-measure or F1-score gives more reasonable

view.

Table 4.6 presents the performance measures of classification job performed on

training and test datasets. We have fine-tuned rules to obtain 0.9903 F1 score for

training dataset. Once same set of rules applied on test set, we could obtain 0.9888 F-

score for Onnet bypass detection. In [4], [5], and [6] accuracy is above 98% and F-

score of those instances were in 0.9 range. But in each case, the dataset which was

used consists of more even distribution of grey callers and normal customers. Whereas

the proposed system was evaluated against real dataset, which contained a more

skewed class distribution.

Bypass detection is a time sensitive use case, as we can minimize revenue loss, if we

can make detections earlier. Number of attempts, number of answer attempts, and

minutes of usage before detection are other most important parameters when we look

at system from telecom operator’s view. Whereas in [4], [5] and [6] authors do not use

such important parameters when measuring performance.

93

Table 4:6: Performance measures of classification job performed in Onnet bypass

detection.

 Training Set Test Set

True Positives 51 44

True Negatives 284,299 677,001

False Positives 1 0

False Negatives 0 1

Accuracy 0.9998 0.9999

Precision 0.9808 1

Recall 1 0.9778

F1 Score 0.9903 0.9888

Table 4.7 presents how fast Onnet bypass detection can be performed. It can be seen

that while the operator took 23.16 answered calls in average to detect Onnet bypass

within the considered 30-hour time window, the proposed system detected it after 6.55

answered calls in average. Therefore, proposed system made detection 16.6 answered

attempts earlier than operator detections while reducing the revenue loss. Moreover,

while fraudsters were successful in using onnet bypass number for 65.2 minutes in

average per number in operator’s existing detection system, the proposed system

detected it within 14.53 minutes in average. Therefore, the proposed system makes

detections with considerable accuracy without compromising detection speed. This

was possible due to the use of features based on both real-time and past data, as well

as using CEP.

Table 4:7: Speed of Onnet bypass detection with test dataset.

System Detections Operator Detections

Total Average Total Average

Usage Duration (Minutes) 639.35 14.53 2251.92 51.18

Attempt Count 802 18.23 2869 65.20

Answer Attempt Count 288 6.55 1019 23.16

The chart shown in Figure 4.2 represents the contribution of different types of rules

for Onnet bypass detection. Out of 44 detected instances, 32 instances were detected

using real-time rules type. Real-time rules were derived based on complex pattern

94

detections and accounting stats for recent one-hour sliding window. 24-hour type

represents rules which were derived based on stats for 24-hour sliding window. Nine

detections were made using 24-hour type rules. Remaining three detections were made

using hybrid rules that represent rules derived based on 24-hour sliding window,

complex pattern detections, and recent one-hour stats. In Onnet bypass scenario,

highest percentage (73%) of detections made by real-time rules.

Figure 4:2: Contribution of different types of detection rules for Onnet bypass

detection.

4.2.2. Offnet bypass

The training dataset which was used to derive set of detection rules for Offnet bypass

detection consisted of 1,153,409 customers belonging to other operators. Out of which

there were 328 verified fraud instances. The set of rules which was derived upon the

feature set obtained in this research has located 311 fraud instances after several cycles

of fine tuning. But system has detected 83 false positives and there were 17 false

negatives. Further fine-tuning of rules was not effective as it resulted more false

negatives. Table 4.8 shows Confusion Matrix for Offnet bypass detection system after

applying final set of rules on training dataset.

24-Hour
20%

Hybrid
7%

Real-Time
73%

24-Hour Hybrid Real-Time

95

Table 4:8: Confusion Matrix for Offnet bypass detection system with training

dataset.

System Detected Class

Genuine Fraud

Actual Class
Genuine 1152998 83

Fraud 17 311

The test dataset contains 1,373,124 different other operator subscriber profiles and out

of which 233 connections are fraudulent connections. System detected 219 fraud

instances correctly. But there were 44 false positives and 14 false negatives in this

case. Table 4.9 presents the Confusion Matrix of Offnet bypass detection.

Table 4:9: Confusion Matrix of Offnet bypass detection with test dataset.

System Detected Class

Genuine Fraud

Actual Class
Genuine 1372847 44

Fraud 14 219

Similar to Onnet bypass detection, offnet bypass detection also has uneven class

distribution. In this case also, system delivered 99% accuracy level as majority of true

negatives were classified correctly. Therefore, we need to consider F-score to get

correct idea about classification job. Table 4.10 presents the performance measures of

classification job performed on training and test datasets. We have fine-tuned rules for

training dataset to obtain 0.8615 F1-score. Once the same set of rules was applied on

the test set, we could obtain 0.8831 F-score for Offnet bypass detection. In [4], [5],

and [6] authors did not addressed offnet bypass problem. But for the operator

considered for the analysis, Offnet bypass number imposes a higher threat than Onnet

bypass numbers.

96

Table 4:10: Performance measures of classification performed for Offnet bypass

detection.

 Test Set Training Set

True Positives 219 311

True Negatives 1,372,847 1,152,998

False Positives 44 83

False Negatives 14 17

Accuracy 1 0.9999

Precision 0.8327 0.7893

Recall 0.9399 0.9482

F1 Score 0.8831 0.8615

Like in Onnet bypass detection, detection speed is important aspect of performance for

Offnet bypass scenario as well. But National CDR Stream, which was used for Offnet

bypass detection does not contains call duration related information. Therefore, we

have considered attempt count when measuring detection speed. Table 4.11 presents

detection speed related performance measures. Proposed system has detected 219

fraud instances in test set with 16.09 average attempts per number. But Operator has

spent 26.02 average attempts per number within considered 30-hour time window

before being detected. Therefore, the proposed system detected fraud instances 9.93

call attempts earlier than operator’s existing solution.

Table 4:11: Detection speed related performance measures for Offnet bypass

detection with test set.

System Detections Operator Detections

Total Average Total Average

Attempt Count 3523 16.09 5698 26.02

We have analyzed contribution of each type of rules for detecting 219 Offnet bypass

fraud instances in test set. 24-Hour type rules detected 118 of those instances. Real-

time rules type contributed by detecting 12 instances. Remaining 89 detections were

made using Hybrid rules. The chart shown in Figure 4.3 represents the contribution of

different types of rules for Offnet bypass detection. In offnet bypass scenario, 24-hour

97

type rules made highest contribution by detecting 54% of total detections. Hybrid rules

contributed next by making 41% of detections. Contribution of real-time rules was 5%

in this case.

Figure 4:3: Contribution of different types of detection rules for Offnet bypass

detection.

4.3. Extreme Usage Detection Results

We focused on five types of extreme usage related fraud scenarios in this research,

where all the cases are associated with premium number dialing. These fraud instances

are detected relatively infrequently compared to Grey call fraud. Because behavior of

these fraud scenarios are straight forward, fraudulent numbers can be detected by using

CEP execution plan directly without considering past data. In this scenario, telco

operators are more interested about alerting suspected fraudulent activity at earliest by

compromising accuracy to certain level. Therefore, we do not discuss about accuracy

measures in detail related to this case.

Table 4.12 shows instances of Dial and Disconnect Scam detected by the proposed

system. Once particular premium number terminated more than 10 customers of

telecom network under the study, system immediately notifies those instances. As per

24-Hour
54%

Hybrid
41%

Real-Time
5%

24-Hour Hybrid Real-Time

98

configured threshold value, system detects fraud instances after 11th subscriber

received a call from given premium number. Therefore, effect of this fraudulent

activity for more customers can be eliminated. In this case no false positives or false

negatives were detected.

Table 4:12: Dial and Disconnect Fraud instances detected by System.

Calling Party

Number

No of distinct subscribers received calls

from this no when detected by system

No of distinct subscribers

received calls from this no

5068687800 11 89

27230040092 11 61

Table 4.13 shows instances of fraud scenario associated with Outbound Dialing due to

fake SMS messages detected by System. Once more than 10 distinct customers have

dialed a specific premium number, system immediately notifies those instances. As

per in Table 4.13, it is clear that many more customers can be affected, if these

instances are not detected near real time.

Table 4:13: Instances of Outbound Dialing due to fake text messages detected by

system.

Called Party

Number

No of distinct subscribers dialed

this no when detected by system

No of distinct subscribers

dialed this no

240555903098 11 229

261344693077 11 555

23786395002 11 120

2917326679 11 696

22997947006 11 104

17673162598 11 21

Within the considered time span, system has detected one instance of inbound

roamer’s high usage scenario. Table 4.14 presents details about suspicious inbound

roamer high usage instance which was detected by system. Given customer has dialed

43720 number range which belongs to Austria special service and call termination cost

to this level is LKR 500 per minute. So, operator need to be alerted about this case and

make sure High Usage Report (HUR) is sent to home network operator of detected

99

inbound roamer. But in this case roamer may not involve in organized inbound roamer

fraud. Within this dataset, no instances of malware originated calls or PABX hacking

fraud was detected.

Table 4:14: Instance for inbound roamer’s extreme usage.

Calling Party

Number

 Dialed number

range

Answer attempt

count before

detection

 Total duration

before detection

(seconds)

4917328727XX 43720 2 3681

4.4. Resource Utilization

Figure 4.4 shows CPU load on server when Bypass detection solution is running. The

snapshot is taken by including time span in which system operated with peak event

rate. In our case, according to statistics of test and training datasets mentioned in

Section 3.2.1.1, possible peak rate is around 233 events per seconds. System operates

below 30% of CPU usage when pattern queries are running. But we can see hikes in

processing when Spark scripts are running on BAM.

Figure 4:4: CPU utilization of server with bypass detection application.

Figure 4.4 shows memory utilized by JVM when bypass detection is running. We have

set maximum possible Heap size to 14 GB from Java options. According to the graph,

heap utilization is lower than allowed maximum memory level throughout run time.

100

Figure 4:5: Memory utilization of Java virtual machine with bypass detection.

Figure 4.6 presents a CPU load and Heap utilization when CEP queries used to bypass

detection is executed at varying event rates. The CEP queries used to bypass detection

is the critical point of proposed system which defines the maximum operable input

event rate. If any event stream is lagging relative to other input streams, proposed

system could not produce correct results for pattern queries. Therefore, we have

disabled batch analytic scripts and CEP queries used in extreme usage detection while

conducting this experiment. At phase 1, we have loaded system with input rate around

125 events per second. We can see CPU load is below 8% in this case. Heap utilization

is below 3 GB and it started at lower value and slightly grows with time as more events

are feed into CEP. In second phase, we loaded CEP with 250 events per second and

CPU load was below 12%. Heap utilization was below 5.5 GB and it starts at lower

value and slightly grows with time as more events are feed into CEP. At third phase,

we loaded CEP with input event rate of around 375 events per second. In this stage,

CPU load was below 14% and Heap utilization was below 6 GB. Then we tested with

500 events per second. In this phase CPU and Heap utilizations are below 15% and

6 GB, respectively. It is important to note that when experiment ran around 90 minutes,

growth of heap utilization is stabilized. Beyond 500 events per second input rate, we

have observed that the CDR stream with highest input event rate was lagged relative

to remaining two streams when experiment goes on. The reason for this observation

101

could be increase in transaction time of receiving new event via event receiver due to

queued events at CEP. Data publisher publish events to event receiver using TCP

(Transmission Control Protocol). Therefore, reliable transaction need to be completed

between publisher and receiver at arrival of each event to CEP. When events queued

at CEP input beyond certain level, this transaction time could be increased and sending

events on event stream could be delayed.

Figure 4:6: CPU and Heap utilization of CEP queries used for Bypass detection at

varying event rates.

Figure 4.7, and 4.8 show CPU load and JVM memory utilization when extreme usage

detection application is running. In this case CPU utilization is below 15% and

memory utilization is below 7 GB.

102

Figure 4:7: CPU utilization of server with extreme usage detection.

Figure 4:8: Memory utilization of Java virtual machine with extreme usage detection.

In extreme usage detection use case, we fed 658,982 events in 45 minutes. Thus, the

event rate is around 244 events per second. According to resource utilization graphs

mentioned above, extreme usage detection application uses lower system resources

than bypass detection application. Possible reason for this observation is calculations

performed in bypass detection is more complex than extreme usage detection. Also,

bypass detection application is dealing with three different streams and

103

synchronization of receiving events from three streams is important for efficient

detection of patterns. If one stream is lagged than others proper complex event

detection may not happen. Also, DAS queries used in bypass detection also causes

higher CPU utilization.

4.5. Summary

In first part of this chapter, we have discussed about the experimental setup and the

dataset used to evaluate real-time fraud detection system. Then we have discussed

about the results of grey call detection use case. We were able to achieve 99.9%

accuracy in both onnet and offnet bypass detection while significantly increasing

detection speed. Next, we have presented results of extreme usage detection and we

have detected such instances in real-time before any impact is felt to operator. Finally,

we have demonstrated resource utilization when proposed system is utilized in each

use case. As per our observations, proposed system has performed intended

functionality without performance degradations at input event rate of 500 events per

second with modest hardware.

104

5. CONCLUSION AND FUTURE WORK

This chapter concludes dissertation by summarizing the findings, research limitations,

and possible future enhancements. Section 5.1 summarizes the problem statement,

design, and outcomes of the research. The problems and limitations encountered

during this research are described in Section 5.2. Section 5.3 presents the potential

future developments of this project.

5.1. Summary

Primary focus of this research is to detect fraud scenarios in telecom network in near

real-time by using call patterns reflected in CDR stream. Grey call detection and

detection of extreme usage scenarios related to international premium numbers are two

major use cases of this system. We followed the Big Data Lambda architecture and

developed a system architecture that comprises batch, speed, and serving layers, as it

is well suited for application which performs both real-time and batch analytics. WSO2

DAS was used in batch layer due to its ability to perform high-speed batch processing

and Siddhi CEP was used at speed layer due to its enhanced performance in complex

event detection.

First, we started with the goal of detecting grey call numbers in near real-time. Related

work such as [4], [5], and [6] do not support real-time detection due to unsuitability of

traditional database reliant store first process then approach, dependence on large time

windows for feature generation, shallow feature set, and ignoring complex patterns in

CDRs in decision making. Therefore, we have primarily focused on generating rich

set of features in near real time. Real-time feature set consists two components. First

component is feature set derived based on complex patterns in CDR stream by using

CEP engine. Second component is feature set generated by aggregating CDRs within

recent one hour sliding window. We were able to detect some of the fraud instances

by directly focusing on real-time behavior. But integration of past behavior is also

important to minimize false positives and false negatives in bypass detection. So, we

have generated set of features by considering past 24-hours behavior of subscribers.

Additionally, we have used context data related to this fraud scenario to enrich feature

set. Finally, we were able to come with a rich feature set to facilitate near real-time

105

grey call detection. Based on this feature set we built a set of classification rules to

locate grey call instances.

Grey call detection problem is divided to two sub-problems called Onnet bypass

detection and Offnet Bypass detection. Onnet bypass detection considers grey callers

who are using connections of same operator under study. Therefore, operator has

visibility to location and device details of those connections and decision making is

relatively easier. All the approaches mentioned in [4], [5], and [6] focused about Onnet

grey call detection. Also, they have used dataset with more even class distribution. But

our system has obtained results with similar F-Score for dataset with more uneven

class distribution. Also, those approaches did not consider about detection speed of

system. Average number of answer attempts and average duration conceded for

number are important metrics used in industry to measure performance of bypass

detection system. When considering those parameters our system clearly outperformed

existing methodologies used by telecom operator.

Offnet bypass detection considers grey callers that are using connections belong to

other operators in country to terminate international calls to operator under study. In

this case operator does not have cell information and device information. So Offnet

bypass detection is more challenging and [4], [5], and [6] do not support Offnet bypass

detection. In our case complex patterns and using context data were more useful and

we were able to make offnet detections with considerable accuracy where we were

able to reach 0.88 F-Score. Also, the proposed solution was able to detect offnet bypass

calls about 10 attempts earlier than the operator. Thus, the proposed system can

provide significant savings to telecom operator by reducing impact of grey call fraud.

Grey call detection is complex fraud scenario as fraudsters tend to replicate normal

user’s behavior to mislead grey call detection systems. Even though fraudsters can

emulate normal user’s behavior by changing calling party behavior, there are some

invariants unique to this fraud scenario which can be located by complex events

generated within CDR stream and considering context of called party numbers. We

had a challenge of including those invariants when building the feature set. The six

complex event based features named as P1, P2, P3, P4, P5, and P6 capture invariant

106

call patterns unique to grey call fraud (see Section 3.2.1.3 and 3.2.1.4 for details).

Fraudsters cannot avoid generating those event sequences while fraudulent activity is

on course as fraudsters do not have control in all the individual events in that sequence.

Also, features named as grb_dcnt_in_hour, iddb_dcnt_in_hour, iddb_dcnt_out_hour,

grb_dcnt_in, iddb_dcnt_in and iddb_dcnt_out capture invariant behaviors unique to

grey call fraud. Those features were built by considering context of called party

numbers and fraudsters cannot influence those features by manipulating calling party

behavior. System continuously updates context data based on user feedback and fresh

data feed. Even though this is a rule based system, system is able to detect grey call

fraud instances with new behaviors due to these tactics.

We further worked on detecting extreme usage scenarios related to premium rated

international destinations. These fraud instances are relatively infrequent compared to

grey calls. So, we have obtained CDRs for past instances of these frauds and started to

model Siddhi QL queries on CEP. We have identified behavior of five types of extreme

usage scenarios and developed CEP execution plans to detect those. Unlike grey call

detection problem, these fraud instances can be detected directly by considering real-

time view. Finally, we have fed international CDR for two days into system and

detected instances of three types of extreme usage scenarios. Instances of PABX

hacking fraud and Malware fraud were not available in test dataset as occurrence of

those types of frauds are comparably rare. System had made detections before those

fraudsters make noticeable effect to customers.

5.2. Research Limitations

We faced many challenges when labeling both training and test datasets for grey call

detection. In Onnet bypass detection operator labeling was correct. But in offnet case

both operator, and ourselves faced the challenge of determining class labels. We have

observed some Offnet numbers were labeled as genuine subscribers even though those

numbers reflected highly suspicious call pattern. These connections belong to one of

the wireless fixed-line networks in the country and that operator claimed those as

genuine subscribers. In deeper analysis, we observed that fraudsters have used real

subscriber connections to fraudulent activity in these cases and those instances need to

107

be labeled as fraudulent. This issue imposed great challenge in developing rules as

issue was severe in the time we acquired training dataset. So, we have used different

set of rules to different operators to address this issue. Also, some of the fraudsters

have used call forwarding and many other advanced techniques to replicate genuine

usage behavior and mislead detection systems. Therefore, we had to go through series

of verifications to decide class labels for offnet bypass detection.

When we consider server resource utilization, grey call detection application

consumed more resources than extreme usage detection. Initial plan was to implement

aggregation for recent one-hour sliding window on CEP itself. But that approach was

not feasible due to complexity of join queries and number of records involved in join

queries. When system ran on this configuration, processing of some streams were

lagging related to others. Pattern queries on CEP were affected due to this lagging. So,

we have performed calculations based on one-hour sliding window on DAS.

Calculations based on 24-hour sliding window was also done in DAS. But in this case,

we have done those 24-hour calculations offline and merged with real-time view. This

is same as performing 24-hour based calculations in separate DAS server. Ideally this

can be done in separate physical server in parallel to real-time calculations.

Calculations related to extreme usage scenario were done on CEP only and resource

utilization is comparably lower in this case.

Due to privacy concerns, operators were not willing to expose these data to outside

parties, so we identify the limitation of reproducibility. Also, we were not authorized

to bring CDR details outside and experiment the system with better computing

resources due to privacy concerns of operator. System was tested on server available

in operator premises. With better computing resources we may able to test this system

on higher data rate and evaluate system performance. Also, operator did not provided

CDRs for full customer base due to privacy reasons. We have gained access to the

CDRs of subset of customer base after operator has made some precautionary actions

to preserve privacy. Therefore, we were not able to perform analysis on full customer

base. But, the dataset provided was sufficient to implement comprehensive solution.

108

Average call duration attribute was not used in initial model developed to detect

inbound roamer fraud, PABX hacking fraud and malware fraud. When we observe

inbound roamer fraud detection results for test set we observed that new attribute is

required to reduce false positives. So we have collected more training instances and

decided to use average call duration attribute.

Additionally, we have not considered subscription fraud [7] in this research, as

detection of those frauds requires sensitive privacy information of customer in addition

to CDRs. Also, subscription fraud is relatively rare within the network under study due

to operational policies followed by operator. We did not consider handset theft

scenarios in this research even though such instances could be detected by using this

solution. Within this country, customers hold full ownership of their mobile handsets,

so operators do not have interest in detecting handset theft fraud. During this period,

DoS and DDoS attacks on voice network were not observed. Therefore we did not

have sample data to study about those scenarios.

5.3. Future Work

Inclusion of machine-learning techniques and using Neural Network or Tree-based

classifier on derived feature set is interesting future work of this project. But this will

be challenging task as some of the grey call instances replicate genuine behavior and

that may corrupt learning process. Using machine-learning approach for Offnet bypass

detection will be more challenging as numbers belong to different operators show

different behaviors. So, hybrid method of rule-based and machine-learning based

classification will be a fitting approach. Integration of WSO2 Machine learner which

is a WSO2 module for predictive analytics will be another interesting future

enhancement of this project.

Also, we can expect significant performance enhancements if this system can be run

one clustered environment with high processing power. With high computing

resources, more calculations can be moved to CEP and detection speed can be further

increased. Also, scaling the proposed system to handle CDRs of full customer base of

the operator is another challenging future work. Additionally, this system can be

extended to detect handset theft scenario in future based on operator’s requirement.

109

Developing CEP queries to detect DoS and DDoS attacks on voice network could be

value addition to the proposed solution. However, this system landmarks the good

initiative in near real-time fraud detection in telecom operators by deviating from

traditional database reliant approach.

110

REFERNCES

[1] R. Arnoff, “Global Fraud Loss Survey 2013 by Communications Fraud Control

Association,” 2013. [Online]. Available: http://www.cvidya.com/media/62059/

global-fraud_loss_survey2013.pdf. [Accessed 4 Jun 2015].

[2] Wikipedia, “Call detail record,” [Online]. Available:

http://en.wikipedia.org/wiki/Call_detail_record. [Accessed 5 Jun 2015].

[3] H. Grosser, P. Britos and R. García-Martínez, “Detecting fraud in mobile

telephony using neural networks,” in Springer-Innovations in Applied Artificial

Intelligence Lecture Notes in Computer Science, vol. 3533, 2005, pp. 613-615.

[4] A. H. Elmi, S. Ibrahim, and R. Sallehuddin, “Detecting SIM Box fraud using

neural network,” IT Convergence and Security-2012. Springer, vol. 215, pp.

575-582, 2013.

[5] R. Sallehuddin, S. Ibrahim, A. M. Zain, and A. H. Elmi, “Classification of

SIMbox fraud detection using support vector machine and artificial neural

network,” International Journal of Innovative Computing, Universiti Teknologi

Malaysia, vol. 4, no. 2, 2014.

[6] I. Murynets, M. Zabarankin, R. P. Jover, and A. Panagia, “Analysis and

detection of SIMbox fraud in mobility networks,” in Proc. IEEE INFOCOM ‘14,

pp. 1519-1526, Apr. 2014.

[7] J. Shawe-Taylor, K. Howker and P. Burge, “Detection of Fraud in Mobile

Telecommunications,” Information Security Technical Report, vol. 4, no. 1, pp.

16-28, 1999.

[8] LATRO Services, “Advanced Analytics Solution for Telecom Fraud -

VERSALYTICS,” [Online]. Available: http://www.latroservices.com/products/

versalytics-analytics-solution-for-bypass-fraud/. [Accessed 21 December 2017].

[9] E. Okutoyi, “SIM Box Fraud - New Headache for Africa’s Mobile Operators,”

2012. [Online]. Available: http://www.humanipo.com/news/142/sim-box-fraud-

new-headache-for-africas-mobile-operators/. [Accessed 13 Jun 2015].

[10] F. Kornbo, “Carrier bypass: No drastic surgery required to protect revenue,”

2012. [Online]. Available: http://www.telecomasia.net/pdf/CSGI/

CSG_AsiaConnectionsJuly2012_CarrierBypass.pdf. [Accessed 4 Jun 2015].

111

[11] Etross Telecom Co. Ltd., “GSM Modem Pool 8 Ports 32Sims ETS-8132 with

SIM Rotation,” 2013. [Online]. Available: http://www.etross.com/products_ys/

&productId=30&comp_stats=comp-FrontProducts_list01-

1364547681813.html. [Accessed 5 Jun 2015].

[12] Bangladesh Telecommunication Regularity Commission, “Mobile Phone

Subscribers in Bangladesh January 2014,” 2014. [Online]. Available:

http://www.btrc.gov.bd/content/mobile-phone-subscribers-bangladesh-january-

2014. [Accessed Mar 2015].

[13] Wikipedia, “List of mobile network operators,” [Online]. Available:

http://en.wikipedia.org/wiki/List_of_mobile_network_operators. [Accessed 5

Mar 2015].

[14] OpenCellID Community, “OpenCellID Database,” [Online]. Available:

http://opencellid.org/#action=statistics.cells&type=2&dateFrom=&dateTo=&

mcc=&mnc=&sortBy=1. [Accessed 7 Jun 2015].

[15] Wikipedia, “Hellinger distance,” [Online]. Available:

http://en.wikipedia.org/wiki/Hellinger_distance. [Accessed 7 Jun 2015].

[16] G. Cugola and A. Margara, “Processing flows of information: From data stream

to complex event processing,” ACM Computing Surveys (CSUR), vol. 44, no. 3,

Jun 2012.

[17] L. Neumeyer, S. Clara, B. Robbins, A. Nair and A. Kesari, “S4: Distributed

Stream Computing Platform,” IEEE Int. Conf. on Data Mining Workshops ‘10,

pp. 170-177, Dec 2010.

[18] Apache Software Foundation, “Apache ZooKeeper,” [Online]. Available:

https://zookeeper.apache.org/. [Accessed 7 June 2015].

[19] D. Gyllstrom, E. Wu, H. Chae, Y. Diao, P. Stahlberg and G. Anderson, “SASE:

Complex Event Processing over Streams,” CIDR, Jan 2007.

[20] Esper Team and EsperTech Inc., “Esper Reference Documentation Version

5.1.0,” 2014.

[21] EsperTech Inc., “Esper: Event Processing for Java,” 2015. [Online]. Available:

http://www.espertech.com/products/esper.php.

[22] S. Suhothayan, K. Gajasinghe, I. L. Narangoda and S. Chaturanga, “Siddhi: A

second look at complex event processing architectures,” ACM GCE Workshop,

2011.

http://www.etross.com/products_ys/&productId=30&comp_stats‌=comp-FrontProducts_list01-1364547681813.html
http://www.etross.com/products_ys/&productId=30&comp_stats‌=comp-FrontProducts_list01-1364547681813.html
http://www.etross.com/products_ys/&productId=30&comp_stats‌=comp-FrontProducts_list01-1364547681813.html

112

[23] S. Suhothayan, K. Gajasinghe, I. L. Narangoda and S. Chaturanga, “Siddhi-CEP,

B.Sc. Project Report,” Dept. of Computer Sci. and Eng, Univ. of Moratuwa,

Moratuwa, Sri Lanka, 2011.

[24] WSO2 Inc., “WSO2 Complex Event Processor Documentation Version 3.1.0,”

2015.

[25] D. Anicic, S. Rudolph, P. Fodor and N. Stojanovic., “Stream reasoning and

complex event processing in ETALIS,” Semantic Web Journal, 2012.

[26] Cornell Database Group, “Cayuga: Stateful publish/subscribe for event

monitoring,” [Online]. Available: http://www.cs.cornell.edu/bigreddata/cayuga/

. [Accessed 7 Jun 2015].

[27] N. Gehani, H. Jagadish and O. Shmueli, “Composite event specification in active

databases: Model & implementation,” in Proc. Int. Conf. on Very Large Data

Bases, 1992, p. 327–327.

[28] J. Morrell and S. D. Vidich., “Complex Event Processing with Coral8,” [Online].

Available: http://download.microsoft.com/download/5/6/6/566AEA2A-C50E-

47B8-890E-BCF4E0EC5D0B/

Complex_Event_Processing_with_Coral8_Final.pdf. [Accessed Jun 2015].

[29] Oracle Corporation, “Oracle Event Processing,” [Online]. Available:

http://www.oracle.com/technetwork/middleware/complex-event-

processing/overview/oepdatasheet12c-2226352.pdf. [Accessed Jun 2015].

[30] TIBCO Software, “TIBCO StreamBase,” [Online]. Available:

http://www.tibco.com/products/event-processing/complex-event-

processing/streambase-complex-event-processing. [Accessed Jun 2015].

[31] N. Marz and J. Warren, “A new paradigm for Big Data,” in Big data. Principles

and best practices of scalable real-time data systems, Manning Publications,

2014.

113

[32] Apache Software Foundation, “Apache Hadoop,” [Online]. Available:

https://hadoop.apache.org/. [Accessed 5 Jun 2015].

[33] S. Perera, “Implementing Bigdata Lambda Architecture using WSO2 CEP and

BAM,” 2014. [Online]. Available: http://srinathsview.blogspot.com/2014/03/

implementing-bigdata-lambda.html. [Accessed 27 May 2015].

[34] D. De Silva, “Lambda Architecture Demo for CEP [Online],” 2014. [Online].

Available: http://wso2-oxygen-tank.10903.n7.nabble.com/Lambda-

Architecture-Demo-for-CEP-td107942.html. [Accessed 27 May 2015].

[35] WSO2 Inc., “WSO2 Business Activity Monitor Documentation Version 2.5.0,”

2015.

[36] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large

Clusters,” in Proc. 6th Symp. on Operating System Design and Implementation

(OSDI), 2004, p. 137–150.

[37] WSO2 Inc., “WSO2 Data Analytics Server Documentation Version 3.1.0,”

2017.

[38] P. Jayawardhana, A. Kumara, D. Perera and A. Paranawithana, “Kanthaka: Big

Data Caller Detail Record (CDR) Analyzer for Near Real Time Telecom

Promotions,” Proc. Fourth Int. Conf. on Intelligent Systems Modelling &

Simulation (ISMS), pp. 534-538, 2013.

