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Abstract

Fuel consumption of a vehicle depends on several internal factors such as dis-

tance, load, vehicle characteristics, and driver behavior, as well as external factors

such as road conditions, traffic, and weather. Moreover, not all of these factors are

easily obtainable for the fuel consumption analysis. Therefore, fuel-fraud is rel-

atively easier to conceal; thus, considered a significant threat to the fleet industry

by managers. This research model and evaluate the fuel consumption of fleet ve-

hicles based on vehicular data and suggest suitable process improvement actions

to improve the fuel economy. We first model and predict the fuel consumption to

identify possible frauds. We considered a case where only a subset of the factors

mentioned above is available as a multivariate time series from a long-distance

public bus. An evaluation of several machine learning techniques revealed that

Random Forest could predict fuel consumption with 95.9% accuracy. To ver-

ify the detected cases of possible fuel fraud, we propose to use different indi-

cators such as speed profile, the frequency of harsh events, total idle time, and

day of the week. Further, we propose a solution to promote fuel-efficient driving

through real-time monitoring and driver feedback. A classification model, derived

from historical data, identifies fuel inefficient driving behaviors in real-time. The

model considers both the driver-dependent and environmental parameters such

as traffic, road topography, and weather in determining driving efficiency. If an

inefficient driving event is detected, a fuzzy logic inference system is used to de-

termine what the driver should do to maintain fuel-efficient driving behavior. The

decided action is conveyed to the driver via a smartphone in a nonintrusive man-

ner. We demonstrate that the proposed classification model yields an accuracy of

85.2% while increasing the fuel efficiency up to 16.4%.
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1 INTRODUCTION

1.1 Overview

With rising fuel prices and fast diminishing global fossil fuel reserves, it is imperative
to improve the fuel efficiency of vehicles while looking for reliable, alternative energy
sources. Although electric and hybrid vehicles are becoming more popular, the world
is still dependent mostly on fossil fuel sources [1]. From this fossil fuel consumption, a
significant portion is attributed to transportation. For example, in Sri Lanka, 82.3% of
the total fossil fuel consumption is attributed to the transportation sector [2]. Hence, it
is imperative to improve the fuel efficiency of vehicles to reduce fuel usage and thereby
save money. Besides, saving fuel means protecting the environment.

Numerous factors contribute to the fuel consumption of a vehicle. Demir et al. [3]
classified the factors influencing fuel consumption into five categories such as vehicle,
environment, traffic, driver, and operations. While the efficient engine and vehicle
designs (usually improved aerodynamics) can gain substantial fuel savings, further
fuel savings are achievable by optimized driving and scheduling. Such optimization
in the context of fleet management includes adapting driving patterns that could save
fuel, reducing wastage and fraudulent activities, routing vehicles around traffic and
optimized fleet scheduling.

Many related work have emphasized the impact of driver behaviors on fuel con-
sumption of vehicle [4, 5, 6, 7, 8, 9]. For example, Gondar et al. [4] showed that
efficient driver behaviors could provide up to 20% fuel savings. While drivers can
be educated on general guidelines, further savings can only be achieved by individual
feedback about driving patterns. Furthermore, if drivers can be provided suggestions
in real-time to adjust their driver behaviors into fuel-efficient driver behaviors, a sig-
nificant improvement in fuel economy could be achieved. However, recommendations
provided should be practical; thus, driver behaviors should be evaluated for fuel ef-
ficiency considering as many as possible internal and external factors such as driver
behavior, route details, road traffic conditions, weather and load information.

Another way to reduce/ eliminate fuel waste is to detect and prevent fuel frauds.
Fuel being the single major cost of fleet industry, fleet managers can save millions per
year by avoiding fuel frauds. Even when vehicles are refilled at authorized or on-site
fuel stations, drivers manage to siphon diesel from the tank along the route and sell.
Notably, long distance fleets such as buses, distribution trucks, and heavy vehicles
(e.g., ready-mix concrete trucks) traveling under different road and traffic conditions

1



are more vulnerable to fuel fraud. Fleet managers complain that just by installing
traditional fuel level monitors would not solve the problem as now driver deceits those
sensors by pumping soap water into fuel tanks. All these raise the need for an intensive
analysis for fuel fraud detection.

This research attempted to find solutions for the complications mentioned above
via vehicular data analytics. Such analysis typically requires high-resolution data from
GPS vehicle tracking system units, various sensors and other external sources such as
weather data, and traffic data sources that are gathered across multiple days and vehi-
cles. Given the volume, diversity and uncertainty of data, sophisticated data mining
techniques are required to model fuel consumption and present identified recommen-
dations to individual drivers.

Data analytics solutions can bring immense benefits to the fleet industry. First,
the most important and prominent advantage is the cost reduction. Avoiding aggres-
sive driving, also known as eco-driving, is the best way to reduce fleet management
cost. Eco-driving reduces fuel expenditure as eco-driving is fuel efficient, reduces
vehicle maintenance cost as eco-driving protect vehicle health and reduces insurance
premium as usage-based insurance determines premium based on driver behaviors and
records. We can encourage divers to eliminate aggressive driving by analyzing their
diver behaviors and providing advises or suggestions. Large volume of data gener-
ated by various sensors in fleets, as well as other external sources such as weather and
traffic data generators make it possible to do a comprehensive driver performance anal-
ysis. Second, fleet managers can optimize route planning for their fleets using insights
produced by data analytics. The third benefit is, an intensive data analysis can reveal
various fraudulent activities happening in the fleet industry and save millions of dol-
lars per year. Further, better public perception is the key to success of a fleet company,
especially taxi companies. Reduced aggressive driving and optimized route planning
allow fleet companies to provide impressive customer service and protect their public
image which is an indirect benefit of the vehicular data analysis.

1.2 Problem Statement

The primary problem to be addressed by this research is how to enhance the fuel econ-
omy of fleet vehicles via vehicular data analysis. In that direction we focus on two
main tasks (a) identifying fuel frauds and (b) encouraging fuel-efficient driving behav-
iors via real-time individual feedback.

To detect fuel frauds, we predict instantaneous fuel consumption, compare the pre-
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dicted value against recorded fuel usage and consider cases with significantly higher
recorded fuel usages as possible fuel frauds. Formally, given a set of influencing factors
X = x1, x2, ..., xn for a given point of time t we need to predict the fuel consumption
of the vehicle y at t. Thus, task is to find a function f that captures the relationship
such that:

y = f(x1, x2, ..., xn) (1.1)

Also, given the recorded instantaneous fuel consumption y∗ we need to find a function
g(y, y∗) that determines if a fuel fraud might have happened.

In the second task, given a set of influencing factors X = x1, x2, ..., xn within a
time period t and fuel consumption of the vehicle for the same period y, we need to
classify whether this driving event is fuel-efficient or not. Thus, the task is to develop
a classifier c such that:

c(x1, x2, ..., xn, t, y)→ efficient/inefficient (1.2)

If the driving event is classified as inefficient we further need to suggest a possible
driving action to bring the vehicle back to the fuel-efficient state.

1.3 Research Objectives

The objectives of this research can be stated as follows:

1. Detect possible fuel frauds — The fleet industry is vulnerable to fuel frauds such
as illegal fuel pull-outs. Drivers not only pull-out fuel but also refill the tank
with soapy water to deceit fuel sensors. Therefore, simple monitoring of fuel
level would not reveal fuel frauds. Fleet managers find these illegal fuel siphons
as severe threats because not only they cause extra cost but also affect the vehicle
health adversely. All these raise a need for a sophisticated mechanism to detect
fuel frauds.

2. Verify identified prospective fuel frauds — Fuel consumption of a vehicle de-
pends on many internal and external influences. Weather condition, road traffic,
number of passengers and road topography are some of the factors that are out of
control of the driver which can vary fuel consumption significantly even for same
trips. Therefore, just by looking at the excess fuel usage, one can’t conclude that
a fuel fraud has taken place. Instead, in practical situations, drivers are given a
chance to explain the detected variability in fuel usage of a journey. The driver
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may provide various excuses such as extensive traffic and severe weather. Then
the data analytics solution should be able to confirm or reject these claims based
on the data. For example, driving under extensive traffic can be determined based
on vehicle speed profile and acceleration. Hence, it is vital to integrate various
sources of data such as traffic and weather with data collected from the devices
on the vehicle and devise necessary indicators to validate drivers’ claims.

3. Direct drivers to maintain a better fuel economy for their vehicles — While sev-
eral internal and external factors influence the fuel economy of vehicles, driving
behavior is the most economically controllable influencing factor. Even though
drivers can be taught about fuel-efficient driving behaviors via training in gen-
eral, individual real-time feedback can encourage a driver more effectually to
adhere to fuel-efficient driving behaviors. How can be data analytics used to
provide real-time personal driver feedback?

1.4 Outline

In this thesis we carry out a vehicular data analysis to derive insights and use them for
the betterment of the fleet industry particularly in terms of fuel saving.

In Chapter 2 we discuss existing work in the area of vehicular data analysis. We
present our literature survey under main three topics. First, we examine factors which
influence the fuel economy of a vehicle. Second, we explore current work to predict
instantaneous fuel consumption of vehicles and assumptions and limitations of those
work. Finally, we look into existing efforts to monitor driver behavior, explore the im-
pact of driver behavior on fuel economy and the proposed methods to mitigate adverse
effects.

Details about our dataset and exploration analysis of the dataset are presented in
Chapter 3. We discuss in detail how internal and external factors influence fuel con-
sumption of the vehicle.

In Chapter 4 we develop a machine-learning model for instantaneous fuel con-
sumption prediction with the intention of identifying possible fuel frauds. In this chap-
ter, we present details about three different models we examined for the task, namely
Random Forest, Gradient Boosting and Multi-Layer Perceptron. We also discuss what
are the factors we selected to develop these models, experimental results and their
analysis

In Chapter 5 we propose a novel framework to analyze driver behavior in real-time,
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identify fuel-inefficient driving patterns and provide continuous feedback to the driver
so that they can continuously maintain a fuel-efficient driving behavior. We propose
to use historical data to derive heuristics to classify driver behavior for fuel efficiency.
This framework is especially useful in the fleet industry not only to save money in
terms of saving fuel and maintaining better health of vehicles, but also to do better
appraisals for their drivers. Fleet managers can use statistics from our framework to
identify better drivers and appreciate them, which would encourage drivers to follow
fuel efficient driving patterns.

Finally, in Chapter 6 we summarize our work, discuss the limitations of the pro-
posed approaches, remaining challenges and the path forward.
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2 LITERATURE REVIEW

Several factors influence the fuel consumption of fleet vehicles; hence, essential to
understand before attempting to predict fuel consumption. Moreover, it is also im-
portant to consider data analysis techniques to monitor driver behavior and promote
eco-driving behaviors. Therefore, the literature survey focuses on these areas and as-
sociated technologies. Section 2.1 discusses factors which influence fuel consumption
of fleet vehicles. Section 2.2 presents existing work to predict fuel consumption of
vehicles. A summary of these current work is given at the end of this section indi-
cating findings and limitations. Further, this section includes a brief introduction to
machine-learning techniques used in this research. Section 2.3 illustrates current work
which use data analysis to monitor driver behavior and promote eco-driving behaviors.
Finally, in Section 2.4 a summary of the literature review is given.

2.1 Factors influencing fuel economy of fleet vehicles

The fuel economy of a vehicle is defined as the relationship between the distance trav-
eled and the amount of fuel consumed by that vehicle [10]. Fuel economy can be
measured in terms of volume of fuel per unit distance or the distance traveled per unit
volume of fuel consumed. Numerous factors influence fuel consumption of a fleet
vehicle. Broadly these factors can be categorized as internal factors; elements control-
lable by the diver and external factors; elements out of control of the driver.

Ahn et al. [11] identified numerous variables that influence vehicle energy and
emission rates. They have classified these variables into six main categories as:

i. Travel-related – Distance traveled and number of trips went in the considered pe-
riod

ii. Weather-related – Temperature, humidity and wind effects

iii. Vehicle-related – Engine size, the condition of the engine, whether the vehicle
is equipped with a catalytic converter, whether the vehicle’s air conditioning is
functioning and the soak time of the engine

iv. Roadway-related – Roadway grade, Surface roughness

v. Traffic-related – Vehicle-to-vehicle and vehicle-to-control interaction

vi. Driver-related – Differences in driver behavior and aggressiveness
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Viswanathan in [12] has studied reasons for the variation in fuel consumption of
heavy vehicles running on highways. She has categorized those reasons into four as:

i. Due to vehicles

ii. Due to road

iii. Due to the usage (Driver)

iv. Due to ambient conditions (Temperature, wind, etc.)

2.2 Fuel consumption prediction using vehicular data analytics

Ahn et al. [11] presented several hybrid regression models to estimate fuel consump-
tion and emission rates of hot stabilized light-duty vehicles and light-duty trucks. For
this analysis, they have used a laboratory generated data set. Even though the labora-
tory may not precisely capture the real-world scenario, one plus point about this data
set is it contains harsh accelerations; as per the industry threshold accelerations higher
than 3ms-2 are considered as harsh accelerations. To develop a prediction model, they
have selected instantaneous speed and acceleration as explanatory variables arguing
that those two can capture most of the impact on fuel usage and emission rates of a
vehicle.

The authors of this research have tried out different mathematical models using
linear, quadratic, cubic and quartic combinations of instantaneous speed and acceler-
ations. With empirical evidence, they have finalized the model as a combination of
linear, quadratic, and cubic combinations of speed and acceleration, which has given
reasonable results. However, in some situations, this model has predicted minus values
for the dependent variable. To eliminate getting minus values, they have considered a
log-transformed regression model. In testing, they have seen a significant variation in
the difference between predicted value and the actual value of positive accelerations
vs negative accelerations. Ahn et al. have explained this variation saying it is because
acceleration exerts energy, but negative acceleration or deceleration does not. To ad-
dress this situation, they propose to use two different models for the two cases. The
proposed models for Measure of Effectiveness(MOE) are as follows.
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ln(MOE) =
3∑
i

3∑
j

(Le
i,j × si × aj)fora ≥ 0 (2.1)

ln(MOE) =
3∑
i

3∑
j

(M e
i,j × si × aj)fora < 0 (2.2)

where L and M are constants, s denotes speed and a denotes acceleration.

The coefficient of determination (coefficient of determination indicates how well
the regression model approximates the actual data points) of this final model is from
0.92 – 0.99. However, this model may not demonstrate the same results when it is
applied to a real-world scenario as the model has been developed using a laboratory
generated dataset. Impact of real-world external factors might not be reflected in this
dataset. Further, this proposed model assumes vehicles to be hot stabilized which is
not a realistic assumption in the fleet industry.

Viswanathan [12] has tried to develop a predictive model to identify and classify
usage and driving parameters that affect fuel consumption. She has analyzed a dataset
of trucks traveling on highways. She has used Random Forest and Gradient Boosting
machine learning models for this analysis praising their predictive power and simplic-
ity. Performance of each model has been evaluated using Nash- Sutcliffe efficiency.

Random Forest, the first algorithm author of [12] has used is an ensemble algo-
rithm that uses a collection of regression/ decision trees to make the prediction. Nash-
Sutcliffe efficiency of fuel consumption prediction by Random Forest based model is
0.808 which indicates that Random Forest can capture the relationship between predic-
tive parameters and dependent parameter very well. The other predictive model used
in this research, Gradient Boosting is also an ensemble learning algorithm for regres-
sion and classification problems. The Nash-Sutcliffe efficiency for Gradient Boosting
is 0.69. Therefore, this research concludes that Random Forest is better than Gradient
Boosting to predict fuel usage of heavy vehicles running on highways. Further, the
researcher has concluded that the most influencing factors for fuel consumption are
Speed, Distance with cruise control, Distance with trailer, Maximum speed, Coast-
ing. She has arrived this conclusion considering variable importance given by Random
Forest (see Table 2.1) and selection frequency given by Gradient Boosting (Table 2.2)

However, this research is restricted to vehicles running on highways. Further, the
author of [12] has not considered external influential factors on fuel consumption such
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Table 2.1: Importance measurement of input variables by Random Forest.

Variable Importance Measurement
Speed 75.575
Distance with trailer 13.944
Distance with cruise control 13.092
Max speed 12.374
Coasting 9.717

Table 2.2: GAM boosting- Selection frequencies.

Variable Selection Frequencies
Speed 0.365
Coasting 0.185
Max speed 0.170
Distance with trailer 0.125
Distance with cruise control 0.65

as road conditions and ambient conditions. Furthermore, the prediction has been car-
ried out in trip wise where the instantaneous impact of various factors was not captured.

In [13], the authors have evaluated four different predictive models in predicting
fuel consumption of heavy/ medium duty vehicles based on driving cycle information,-
vehicle speed, acceleration and road grade. The evaluated predictive models are a
polynomial regression model, an artificial neural network, a polynomial neural net-
work and multivariate adaptive regression splines (MARS). The primary assumption
authors make in this research is that fuel consumption of a given vehicle only depends
on known driving cycle properties. They justify their assumption using “road load
equation” [13]. Using this equation, authors have shown that under constant vehicle
weight fuel consumption is determined by driving cycle properties.

Based on the assumption that fuel consumption of a given vehicle only depends on
known driving cycle properties, authors have used speed, acceleration and road grade
to model fuel consumption. In this study, they have used four different driving cycles
conditions as shown in Figure 2.1. Each of these driving cycles contains different driv-
ing characteristics such as idling, creep, transient and cruise mode [13]. Each of four
models has been trained using one of four cycles as a training cycle and other three
cycles as testing cycles. Among these four cycles, they could observe that data col-
lected from Heavy Heavy-Duty Diesel Truck (HHDDT) driving cycle could contribute
to developing a better predictive model. It is intuitive as HHDDT cycle contains a
variety of driving characteristics. Among the four different predictive models, MARS
has given the best predictive results with an average error percentage of -1.84% for the
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(a) Heavy Heavy-Duty Diesel Truck (HHTDDT) speed
trace.

(b) City Suburban Heavy Vehicle Cycle (CSHVC) speed
trace.

(c) New York Composite Cycle (NYCC) speed trace. (d) Hydraulic Hybrid Vehicle (HHV) speed trace.

Figure 2.1: Different driving cycles considered in related work [13].

laboratory generated data and -2.2% for real-world data.

However, the assumption in this analysis makes results less useful for real-world
scenarios because the constant weight is not practical for most of the fleet vehicles. For
example, the number of passengers on public transport buses or taxi service vehicles
or the load of distribution trucks is not constant even throughout the same journey.
Further, the influence of weather, an important critical factor towards fuel usage of a
vehicle, is not considered in this study. A summary of fuel consumption prediction
methods discussed above is given in Table 2.3.

2.2.1 Machine learning techniques for fuel consumption prediction

There are different machine-learning techniques to address complex classification and
regression problems. Among these classification and regression models, “ensemble
learning” methods have gained more significant interest. Ensemble learning can be
defined as the process of generating multiple models such as classifiers and then ag-
gregating their results to obtain better predictive performance [14]. Two well-known
ensemble-learning methods are boosting and bagging [15]. In boosting, successive
models give extra weight to training instances that were incorrectly predicted/ classi-
fied by previous models. While making the prediction/ classification, a weighted vote
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Table 2.3: Summary of fuel consumption prediction work.

Ref Dataset Techniques Conclusions Limitations
[11] Laboratory

generated
dataset

Hybrid
regression
models

Proposed model (a
function of
instantaneous speed
and acceleration
levels) estimates fuel
usage with COD
exceeding 90%

Only vehicles traveling
on highways are
considered

Only for hot stabilized
vehicles

Dataset is not real-world
[12] Usage and

driving
parameters

Random
Forest,
Gradient
Boosting

RF is a good model to
estimate fuel usage of
heavy vehicles

Speed has the highest
impact

Harsh acceleration &
green band driving
don’t have a
significant effect on
fuel consumption

Instantaneous variation of
FC was not reflected in
data set as information is
for per journey

Only trucks running on
highways are considered

Impact of external factors
are not considered

[13] Laboratory
generated
dataset for
training,&
real time
dataset for
testing

Polynomial
model,
ANN,
Polynomial
NN, MARS

MARS is the best
predictive model

Assume fuel
consumption of a given
vehicle depends only on
driving cycle (Weather
and traffic data are
neglected)

is considered. Whereas in bagging, successive models do not depend on earlier mod-
els, instead, each model is independently constructed by a bootstrap sample of data.
Prediction/ classification is developed based on a simple majority vote.

2.2.1.1 Random Forest

Random Forest (RF) proposed by Breiman [16], is an ensemble predictive model based
on a collection of decision/regression trees. Instead of making the prediction based on
just one tree, Random Forest uses a group of trees to take the decision. Being different
from other bagging (bootstrap aggregation) techniques, Random Forest adds an addi-
tional layer of randomness to bagging. Like other bagging models, Random Forest
also constructs each decision/ regression tree using a bootstrap of sample data with re-
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placement. However, the tree building procedure is different. Instead of splitting trees
using the best split among all variables, in a Random Forest each node is divided using
the best among a subset of predictors randomly chosen at that node [15]. This strat-
egy enables Random Forest to be robust against over-fitting and be outstanding among
many other classifiers including discriminant analysis, support vector machines, and
neural networks [14]. Further, facilitating the estimation of variable importance and
outlier detection are other benefits of this algorithm. Random Forest is reasonably fast
to obtain and can be easily parallelized [17]. A fine-tuned version of Random For-
est can be obtained by backward-elimination of predictors based on the given variable
importance.

Random Forest has been used in a myriad of domains to carry out predictions/
classifications and they are applicable for time series analysis as well. For example,
Herrera et al. [17] used Random Forest to forecast hourly urban water demand in a
city in southeastern Spain. Chen et al. [18] used Random Forest to predict droughts
and demonstrated that Random Forest outperforms Auto-regressive Integrated Moving
Average (ARIMA) in that context.

2.2.1.2 Gradient Boosting

Gradient Boosting (GB) is another ensemble predictive algorithm for regression and
classification problems. Like other boosting algorithms, GB builds the model in stages
and generalizes them by allowing optimization of an arbitrary differential loss func-
tion [19]. Different functions are used as the loss criteria; least square, least absolute
deviation, and Huber-M loss function for regression and logistic likelihood for classi-
fication. Carrying out variable selection during the fitting process can be recognized
as a key feature of GB [20]. Further GB algorithms provide prediction rules that have
the same interpretation as common statistical models. This becomes a major benefit
of GB over other machine learning algorithms such as Random Forest, which provides
non-interpretable “black-box” predictions.

2.2.1.3 Artificial Neural Network

Artificial Neural Network (ANN) is a machine-learning technique inspired by biolog-
ical neural networks and is mostly used to estimate or approximate complex functions
that can depend on many inputs. Being analogs to neurons in the brain, ANN contains
lots of processing units. ANNs can be used to derive linear and non-linear relationships
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between a vast number of inputs and outputs. The architecture of the neural network,
number of hidden layers and number of processing units (perceptrons) per each layer,
loss function, activation functions and optimization function are critical considerations
in designing a neural network for a problem [21]. ANNs are commonly used in a
myriad of domains such as robotics, transportation, and finance.

Following advantages of ANN were considered while selecting it as one of the
predictive models in this study. ANN requires less formal statistical training. Fur-
ther ANN can implicitly detect complex nonlinear relationships between explanatory
variables and response variables. Ability to identify all possible interactions between
independent and dependent variables is also an advantage [22].

2.3 Analyzing driver behavior to improve the fuel economy of fleet vehicles

Walmun and Simonsen [6] examined the data generated by a fleet management system
in Norway to find out determinants of fuel consumption by heavy-duty trucks. They
concluded that even though under some conditions factors associated with infrastruc-
ture and vehicle have a more significant impact than driver behavior, in general driving
pattern has a considerable influence on fuel usage of vehicles.

Furthermore, Fleetcarmar, a telematics platform provider, has published an anal-
ysis of real-world driving behavior [7] trying to quantify the effects of several facets
of driver behavior on fuel consumption including speed, acceleration, breaking and
idling. FleetCarma demonstrated that the impact of driving behaviors on fuel economy
varies with the mass of the vehicle; higher the mass, higher the fuel consumption sen-
sitivity to the driving behavior. Therefore, they bring up the point that fleet managers
should address fuel economy problems of larger vehicles first to maximize savings.
They have also shown that driver behavior can be enhanced through consistent feed-
back, and thereby fuel economy of the vehicle can be improved. Following are their
suggestions for drivers to increase fuel economy.

• Reduce harsh acceleration and hard breaking – Try to keep harsh acceleration
events less than 10% and hard breaking below than 15% of the acceleration
during a journey

• Reduce idling time – Aim to eliminate idling event longer than 1 min.

• Reduce high speeds and use cruise control whenever possible
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Following are the suggestions to motive drivers to adhere to fuel-efficient driving
behaviors,

• Continuous feedback - Provide feedback on how drivers are currently doing and
where they can improve on.

• Goal setting and management - Setting achievable goals for drivers is vital to
improving driver behavior and reducing fuel spends. Managing goals makes it
easy to reward drivers who meet the goal and plan additional driver behavior
strategies for those who are having difficulty achieving the goal.

We have considered these recommendations in modeling our solution to tackle the
problem of motivating drivers toward Eco-driving.

Figure 2.2: Eco-driving coaching service components.

Several current work have attempted to use individual driver feedback, based on
data analytics, to improve the fuel economy of vehicles. A white paper published by
CGI Group [5], a Canadian IT consulting company, talks about a driver-centric coach-
ing program based on data analytics. Their client Scania, a fleet management company,
has implemented a driver coach portal integrated with their fleet management system
with the intention of encouraging drivers for fuel-efficient driving habits and other Eco-
friendly driving patterns. Driver behaviors promoted by this portal are more roll-out,
less hard braking, less idling, less hard accelerations, less high rpm, and more use of
cruise control. Figure 2.2 shows the components of Eco-driving coaching portal. Trips
are scored against benchmarks in the portal. Through a monitoring function, coaches
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can see how their drivers are performing and provide instructions manually either by
mobile phone or any other means. We attempt to automate this manual process.

Figure 2.3: A cluster norm table for a particular fleet used for evaluating the trip performance.

CGI has tried to analyze the dataset generated through this portal to find out the re-
lationship between driving behavior and fuel consumption. In that analysis, they have
clustered data in a two-dimensional space of distance and average speed using some au-
tomatic and manual clustering techniques. Figure 2.3 shows the resultant cluster norm
table. In each cluster, the first column indicates the best fuel consumption, next average
and the last is the worst. An interesting fact to be noticed is that depending on the dis-
tance traveled and average speed, the figure of efficient fuel consumption changes. For
instance, while 27 L/100 km is the efficient consumption for long-distance journeys,
that figure for short-distance trips is 40L per 100km. The conclusion is, classifying
driving behaviors just looking at fuel usage figures is not appropriate. Further, they
have shown that depending on where the vehicle is traveling 10% - 30% of the varia-
tion in fuel consumption can be attributed to the driver behavior, e.g., driving behavior
impact is higher for long-distance travels.

Although authors of this study considered weather information, only the average
temperature and wind speed have been considered. However, other weather condi-
tions like rain, fog, hail, and snow are also known to have a significant effect. In our
study, we use the overall weather condition as the parameter representing the impact
of weather.
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Figure 2.4: Architecture of the intelligent driver system introduced in [8].

Linda and Manic [8] proposed an Intelligent Driver System to improve fuel econ-
omy by learning historically fuel-efficient driving behaviors. The proposed system
gradually builds a model of historically most fuel-efficient driving behavior for a fixed
set of routes. This model studies both the vehicle performance and GPS data while
modeling the most fuel-efficient driving behavior for a specific route. While driving,
the velocity of the vehicle is compared with the calculated optimal speed for that par-
ticular location. In an inefficiency is identified, a fuzzy Proportional-Derivative (PD)
controller is used to determining the best control action to take the vehicle to the opti-
mal velocity (see Figure 2.4). This decision is either conveyed to the driver via a spe-
cialized Human Machine Interface(HMI) or used directly as predictive cruise control.
If it is an unknown route, the velocity is compared with road default speed. However,
being bound to known routes is a limitation of this solution. Not only that, it does not
consider the impact due to weather or traffic conditions, which tends to change with
different times of the day, week, and year even for a given route. Therefore, sometimes
the control action determined by this system would not be the optimal action. Further,
in some situations it would be unsafe to adhere to those instructions, e.g., suggesting
to speeding up while the vehicle is under heavy rain.

Gilman et al. [9] have developed a reference architecture for context-aware driver
assistance systems to provide personalized assistance for fuel-efficient driving. They
have also developed a prototype as a proof of concept and that prototype collects, in-
tegrates, and analyses vehicle parameter, as well as diverse contextual data such as
weather, and traffic data. They emphasize the importance of context-awareness of
driver assistance systems to provide relevant feedback, especially for real-time assis-
tance. They have summarized contextual information as driver context, environmental
context and vehicle context. The summary is given in Figure 2.5. After analyzing these
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Figure 2.5: Context characterizing the driving situation illustrated by [9].

data, the proposed system provides off-line personalized feedback to improve future
driving behaviors. While the analysis of multiple factors gives an enhanced model, it
would be more effective if the feedback can be given in real time.

As the related work either select a limited set of relevant attributes that impact the
fuel consumption or feedback is given in offline, there is still a need to build a model
that is both comprehensive and can be used in real time.

2.4 Summary

The review of existing work in instantaneous fuel consumption prediction revealed that
most of them had developed models for synthetic datasets and datasets collected under
some controlled conditions, e.g., datasets collected from vehicles running on highways
or from hot stabilized vehicles. Further, most of them have overlooked the impact of
external factors even though external factors play a vital role in determining the fuel
economy of a vehicle. However, such models might not be applicable in real-world sit-
uations. Therefore, still, there is a requirement for an instantaneous fuel consumption
predictive model developed using a real-world dataset which covers typical influential
factors.

Furthermore, since numerous factors influence fuel consumption and the relation-
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ship between most of such factors and the fuel usage is non-linear, simple regression
models such as logistic regression or regression trees are not suitable to model fuel
consumption of a vehicle. Hence, exploring the existing work for different machine
learning model, we identify model ensembles and artificial neural networks as the
state-of-art models to handle such scenarios.

Survey on driver behavior monitoring and feedback systems raised the necessity
for a framework which monitors driver behavior in real-time and provides continuous
individual feedback in real-time. Even though existing work in this area have made
some progress, they either select a limited set of relevant attributes that impact the fuel
consumption, feedback is given in offline or feedback is given manually. Thus, there
is still a need to build a framework that provides comprehensive and useful feedback
and can be used in real time.
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3 DATASET

In this chapter, we describe our dataset and present exploration analysis of it. In Sec-
tion 3.1 we provide details on what are the parameters available in our dataset and how
we collected data. In Section 3.2 we elaborate on how internal and external factors
influence fuel consumption of the vehicle through the descriptive analysis.

3.1 Background

The dataset used for this research corresponds to a long distance, public bus in Sri
Lanka. The bus starts from Depot around 4:00 pm and goes to Colombo (i.e., the
commercial capital of Sri Lanka). Then bus leaves Colombo at 7:00 pm and travels
along A2, A4, and AB10 roads and reaches the destination around 7:00 am on the
following day. Figure 3.1 shows the route of the bus. Altogether, the bus travels around
365 km in one direction. The return journey is along the same route and typically
between 4:00 pm to 7:00 am on the following morning. About one-third of the trip is
through a mountainous region. This route captures almost all the external conditions
a vehicle could encounter in real-world driving. For example, the bus goes through
urban, rural, and mountainous areas, as well as driving times include peak, off-peak,
and night driving. Therefore, we believe that this is a rich dataset to analyze influencing
factors of fuel consumption.

Figure 3.1: Route of the bus - from Katubedda to Panama.

The bus is fitted with a GPS-based tracking device and a capacitive, high-precision
fuel sensor. Data collected via these devices is pushed to a cloud server in near real-
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time over a 3G connection. The dataset consists of outward and inward journeys be-
tween May 13 and August 31, 2015. The dataset contains the following parameters:

• Timestamp (date and time)

• Longitude (Min: 5.9186110N, Max: 9.8355560N)

• Latitude (Min: 79.5166670E, Max: 81.8791670E)

• Bearing (00 to 3600)

• Elevation (Min: 0m, Max: 2,524m)

• Distance traveled (km) – between two readings

• Speed (kmh-1)

• Acceleration (kmh-2)

• Ignition status (1 – Ignition On or 0 – Ignition Off)

• Current battery voltage (Min: 0v, Max: 29v)

• Fuel level (Min: 0L, Max: 218L)

• Fuel consumption (L)

From the above parameters, timestamp, longitude, latitude, bearing and speed have
been directly drawn from the GPS device mounted on the bus. Distance has been
derived as the distance between nearest GPS locations while acceleration is derived
from the speed. Elevation values have been obtained from Google API. The fuel sensor
mounted on the bus sends voltage values which are respective to fuel level in the tank.
Those voltage levels are converted to fuel levels using the following equation.

fuel level =
|V oltage−Min voltage| × tank size
|Max voltage−Min voltage|

(3.1)

The fuel consumption is calculated as the difference between the current fuel level
and the previous fuel level. While this dataset set consists of many primary influencing
factors of fuel usage of a vehicle, some crucial factors such as RPM value, the number
of passengers for the journey are missing.
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To capture the influence of external factors on fuel consumption, some parameters
were derived from existing parameters. Road traffic is indicated by the time of day.
Time of day was derived by rounding off the GPS timestamp to the nearest hour (e.g.,
12:00, 13:00, 14:00 and so on). Change of elevation is used to capture the changes
in road topography. Excessive idling is another parameter which causes an inefficient
fuel economy. We considered the vehicle to be excessively idling if the speed is zero
while the ignition status is on for more than one minute. We select one minute time
interval to eliminate stopping for traffic lights or at bus stops. Another important but
indirect environmental factor that affects the fuel economy is weather condition. When
the weather is bad, drivers are forced to slow-down leading the lower fuel economy.
The weather condition was obtained using a REST API provided by the World Weather
Online (WWO) developer portal [23]. WWO API provides a detailed weather report
for a given location, date, and time. However, for our analysis, we only extracted
the weather descriptor (i.e., weather condition) for a given location, date, and time
based on the bus’s route and schedule. Weather descriptors provided by WWO include
sunny, clear, partly cloudy, cloudy, overcast, patchy rain nearby, light drizzle, light rain
shower, moderate rain, moderate or heavy rain, mist, and fog.

3.2 Descriptive Analysis

Figure 3.2: Total fuel consumption of each journey.

The first and most important step in developing a better data mining model is to
understand the data through an exploratory data analysis. Looking at the total fuel
consumption of the bus, we could see that even though the bus is going on the same
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route for the almost same distance, there is a significant variation in fuel usage from
one day to another, see Figure 3.2. Some of the exceptional cases were caused by
changed routes, GPS device failures and bus breakdowns. Those were considered as
outliers and removed from the analysis. However, even when outliers were eliminated,
we could see a significant variation in fuel usage which was not intuitive.

Figure 3.3 shows the box plot of fuel consumption for outward and inward (i.e.,
return) trips. There is a significant difference in fuel consumptions for the outward
vs. inward journey, average fuel usage for the inward journey is around 85L whereas
for the outward journey it is 95L. Based on the analysis the following reasons were
identified as the potential causes for this substantial difference between the two drives.

Figure 3.3: Fuel consumption for inward and outward journeys.

Different traffic conditions: In the outward journey, the bus starts the journey from
Colombo in the evening around 4 p.m. which is a peak traffic hour. This bus
begins its journey from Katubedda, a suburb of Colombo and goes to the central
bus stand located in the center of Colombo. Close to Colombo, the bus might
experience extremely high evening traffic. Then the bus starts its journey from
the Colombo bus stand to Panama around 7.00 p.m. again through a road suf-
fers from heavy traffic. In contrast, the bus may experience comparatively less
traffic at Panama in the evening since it is a rural area. Alternatively, in the
morning bus may experience more traffic while arriving in Colombo compared
to Panama. However, since the bus reaches Colombo even before 7.00 a.m. in
its return journey, the roads should be clearer than the evening. Traffic impedes
buses getting their desired speed which contributes to most of the fuel consump-
tion. Figure 3.4 and Figure 3.5 show the impact of traffic on fuel usage of each
journey. Each graph illustrates the variation of mean speed and fuel usage for
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Figure 3.4: Comparing total fuel consumption and mean speed at each 10km for all trips from
Panama to Colombo.

Figure 3.5: Comparing total fuel consumption and mean speed at each 10km for all trips from
Colombo to Panama.

every 10km. Graphs indicate that fuel consumption in the urban area is higher
than the rural area in the evening as well as in the morning. These observations
are attributed to different traffic conditions in these two areas and time intervals.

The difference in experienced elevation in two journeys: According to the elevation
graphs in Figure 3.6, the bus experiences steeper roads for the journey from
Colombo to Panama when compared to the drive from Panama to Colombo.
Steeper roads cause higher fuel consumption due to high acceleration and en-
gine RPM.
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Figure 3.6: Change of elevation along the route in two directions.

Due to the significant difference between the two directions, the dataset was di-
vided into two parts as inward and outward and the predictive models were developed
separately.

Next, we investigate the relationship of vehicular dependent and external factors
with fuel consumption of the bus. Among the available predictors, distance directly
influences fuel consumption of the bus (see Figure 3.7).

Figure 3.7: Impact of distance on fuel consumption.

Another crucial factor that affects the fuel economy is the speed of the vehicle [4,
24, 25]. Mean fuel consumption at each speed is depicted in Figure 3.8. According to
Figure 3.8, the bus consumes the least amount of fuel when it is traveling around 50
kmh-1. Therefore, 50kmh-1 can be considered as the most effective speed for this bus.
When the speed is lesser or hight than the most effective speed, the bus consumes more
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Figure 3.8: Mean fuel consumption at different speeds calculated across one minute samples.

fuel. Therefore, as illustrated in Figure 3.8, the relationship between fuel consumption
and speed is not linear. Such findings are important in modeling the fuel consumption
of a vehicle.

Figure 3.9: Fuel consumption variation with elevation.

Due to the traffic and elevation changes, location posses a substantial impact on
fuel consumption. As mentioned earlier, a vehicle climbing up on a steeper road con-
sumes more fuel due to high acceleration and engine RPM whereas when the vehicle
is descending it’s fuel consumption is relatively low. Figure 3.9 shows fuel usage and
elevation throughout the journey from Panama to Colombo. Note high fuel usage at
the beginning of the journey. Even though vehicle doesn’t experience heavy traffic in
this area, it is ascending to an area with higher altitude. Between 100km and 200km
one can observe low fuel consumption due to the descent of the vehicle in this area. At
the end of journey, despite vehicle is traveling in a relatively flat area, the fuel usage
is high. This can be attributed to relatively heavy traffic experienced in Colombo area,
the capital of the country. Further, according to Figure 3.9 the relationship between
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Figure 3.10: Variation of fuel consumption w.r.t. day of the week for journeys from Colombo
to Panama.

Figure 3.11: Variation of fuel consumption w.r.t. day of the week for journeys from Panama to
Colombo.

fuel consumption and the elevation is also not linear.

Figure 3.10 and 3.11 show the impact of day of the week on the fuel consumption.
It can be observed that depending on the day of traveling whether it is Sunday, Monday,
etc., fuel consumption varies. Because this bus is going between Colombo, the capital
of the country and Panama, a rural area, we expected to see increasing mean fuel
consumption from Sunday to Friday in the outward journey because the most plausible
scenario is people travel on Sunday to capital for work and leave the capital Friday for
the weekend. We thought fuel consumption for Saturday would be higher than Sunday
but less than Friday. Whereas for inward journey mean fuel consumption was expected
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to decrease from Sunday to Friday. Colombo – Panama graph matches our expectation
even though fuel consumption for Saturday is unexpectedly higher than that of Friday.
A possible reason would be that employees from Panama area work Saturday as well
and leave on Saturday. However, Panama-Colombo graph was much different than the
expected graph. As expected Sunday has the highest figure, but fuel consumption for
Wednesday also stands out. Sri Lanka calendar for this period provides the rationale
behind this surprising observation. There were three holidays falling into Monday –
Wednesday within these four months. Thus, the regular passengers of the bus might
have enjoyed a long weekend and reported to work on Wednesday. The takeaway from
this analysis is we would not be able to derive a linear relationship between the day of
the week and fuel consumption of the bus.

The correlation matrix of variables in the data set is given in Figure 3.12. However,
the correlation matrix was not useful to derive any important relationships other than
obvious ones.

Figure 3.12: Correlation Matrix for parameters of the data set from Panama to Colombo.

This exploratory data analysis provides useful insights to select a suitable predictive
model for this dataset. As some predictors have a non-linear relationship with the fuel
consumption, a linear forecasting model such as linear regression model would not be
appropriate.

27



4 FUEL CONSUMPTION PREDICTION

To identify the most suitable technique to predict fuel consumption, we carried out
a comparative study evaluating a set of alternative models to predict the fuel con-
sumption of the bus being considered. We first discuss data preprocessing and feature
selection in Section 4.1. We assessed the appropriateness of random forest, gradient
boosting, and artificial neural network algorithms for predicting fuel consumption in
Section 4.2.1, Section 4.2.2 and Section 4.2.3, respectively.

4.1 Data preprocessing and feature engineering

For the purpose of prediction, the target variable is fuel consumption of the bus within
a given time interval and the predictor variables are distance, speed, longitude, latitude,
elevation, and day of the week. More formally, our goal is to approximate the unknown
multiple regression function,

FuelConsumption = f(distance, speed, latitude, longitude, elevation,

acceleration, day) (4.1)

As mentioned in Section 3.2, the descriptive data analysis revealed that external
factors for the outward journey (the journey from Colombo to Panama) are significantly
different from those for the inward journey (the journey from Panama to Colombo).
Hence, we divided the dataset into two and developed separate models for two kinds
of journey. Outliers in the dataset due to known factors such as device breakdown and
change route were excluded from model building. Data points correspond to situations
where the bus engine was switch-off were also removed from the dataset.

Predictor variables to forecast the fuel consumption were selected based on the ex-
ploratory analysis described in Section 3.2 and the context knowledge. For instance,
time and longitude have a high correlation in this dataset, thus time was removed. Day
of the week seems to have more impact on fuel consumption than the date. Therefore,
we derived day from the date. Further, Random Forest provides importance score for
each variable which is useful in developing better predictive models. In the first itera-
tion of model creation, we used all the variables to build a Random Forest model and
considered variable importance indicated by it in selecting more influential parameters.
Finally, we selected distance, speed, longitude, latitude, elevation, and day of the week
as parameters of the instantaneous fuel consumption prediction model. The same set
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of parameters were used to build all three different models. Furthermore, essential data
preprocessing techniques such as handling missing values and scaling were applied to
develop a more accurate model.

4.2 Implementation details

4.2.1 Random Forest

To evaluate the RF algorithm random forest package in R [15] was used. This package
is based on Breiman’s random forest algorithm for classification and regression. This
predictive model can be fine-tuned using two parameters ntree – the number of trees
within the ensembles and mtry – the number of variables randomly sampled for a split.
The default value of mtry for regression is p/3, where p is the number of predictors.
To find the optimal value of mtry, a parameter sweep was conducted. Based on the
Out-Of-Bag (OOB) error estimate, mtry = 2 was selected as the best value. For ntree

parameter, we considered values of 250, 500, and 750. In the first construction of
the RF model, all the variables were fed into the model. Then variable importance was
plotted as shown in Figure 4.1. In this image, the graph in the left shows the percentage
of increment in MSE if a given variable is assigned values by random permutation.
Higher the %IncMSE higher the impact of that variable on the dependent variable.
The graph in the right shows the percentage of increment in node purity with respect to
each variable. Node purity is measured by Gini Index which is the difference between
Residual Sum of Squares before and after the split on a given variable. Again higher
the %IncNodePurity higher the impact of that variable on the dependent variable. This
variable importance graph was used to identify important variables or most relevant
predictors. Besides, based on the context knowledge several parameters like fuel level
and current battery voltage were removed from further analysis. The final model was
developed considering these fine-tunes such that the accuracy of prediction enhanced.

4.2.2 Gradient Boosting

To evaluate the GB algorithm, we used mboost package in R, which implements meth-
ods to fit generalized linear models (GLMs), generalized additive models (GAMs),
and generalizations using component-wise gradient boosting techniques. The mboost
package can thus be used for regression, classification, time-to-event analysis, and a
variety of other statistical modeling problems based on high- dimensional data. In this
study, we used GAM to predict fuel consumption as the relationship between given
predictors and fuel usage is non-linear. GAM can be accessed from gamboost function
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Figure 4.1: Variable importance given by Random Forest algorithm.

in mboost package. gamboost is flexible and provides efficient and helpful tools for
fitting generalized additive boosting models. Different base leaners such as bols and
bbs can be used to specify linear or non-linear relationship between independent and
dependent variables. Linear or categorical effects can be specified by bols. Smooth
effects can be defined in GB by the bbs base learner [26]. Therefore, based on the
exploratory analysis in section II, the model given for gamboost function was derived
as follows:

Fuelconsumption = bols(Long) + bbs(Lat) + bbs(Speed) + bols(Acc)+

bols(Elev.Change) + bols(Dis) + bols(Day) (4.2)

4.2.3 Neural Network

To evaluate how well an ANN can realize the relationship between predictors and
response of this dataset, neuralnet R package was used. It has been built to train multi-
layer perceptrons for regression analyses [21]. Theoretically, nuralnet can handle an
arbitrary number of predictors and responses, as well as hidden layers and hidden neu-
rons [21]. In this analysis, we used a multi layer perceptron with two hidden layers;
three neurons at the first hidden layers and two neurons at the second based on empir-
ical evidence; other structures had higher error values than this structure. Having few
predictive parameters might have caused deeper and wider Neural Networks to over-fit
and performed poorly in this problem.
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4.3 Results and discussion

4.3.1 Prediction using Random Forest

Figure 4.2: Predicted and observed instantaneous fuel consumption using Random Forest.

Figure 4.2 shows the predicted and observed instantaneous fuel consumption. By
analyzing that graph, we could see that the algorithm is over predicting in some places
especially when the observed value is zero or almost. When those instances were
examined, we could see that the those are the cases when the bus is running at its
optimal or near optimal speed. When the bus is running at its optimal speed, their
fuel consumption is almost zero, but the Random Forest model is not capturing it well.
Once we carried out post-processing step to replace this over predicted values with
global average fuel consumption under the same situation, we were able to further
reduce the prediction error.

Figure 4.3: Predicted and observed instantaneous fuel consumption using Gradient Boosting.
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4.3.2 Prediction using Gradient Boosting

Figure 4.3 shows the prediction results of Gradient Boosting technique. The graph
shows the instantaneous observed fuel consumption vs. predicted fuel consumption. It
is clear that Gradient Boosting based model has not been able to capture the relation-
ship between fuel consumption and other influential factors. Instead, it just gives the
average fuel consumption as the predicted value.

4.3.3 Prediction using Neural Network

Figure 4.4: Predicted and observed instantaneous fuel consumption using Gradient Boosting.

Figure 4.4 shows the prediction results of Neural Network technique. As per the
graph, Neural Network based model also has not been able to capture the relationship
between fuel consumption and other influential factors.

4.3.4 Evaluation of prediction accuracy

We analyzed efficiency and error statistics of each predictive model to assess their
accuracy. Efficiency measure can be carried out using different methods. We used
Nash-Sutcliffe efficiency (NSE) coefficient to measure the predictive power of each
model, which is defined as follows [27]:

Nash− Sutcliffeefficiency = 1−
∑n

i=1(ESTi −OBSi)
2∑n

i=1(OBSi − ¯OBS)2
(4.3)

where ESTi and OBSi denote the i-th estimated and observed fuel consumption
values and n is the total number of samples. Three well-known error statistics were
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also calculated to assess the accuracy of each predictive model. Those three statistics
are Bias, Mean Absolute Error (MAE), and Root Mean-Squared Error (RMSE). Each
is defined as follows:

Bias =
1

n

n∑
i=1

(ESTi −OBSi) (4.4)

MAE =
1

n

n∑
i=1

|ESTi −OBSi| (4.5)

RMSE =

√√√√ 1

n

n∑
i=1

(ESTi −OBSi)2 (4.6)

Table 4.1: Nash- Sutcliffe Efficiency.

Model Nash-Sutcliffe Efficiency
Random Forest 0.26189
Gradient Boosting -0.00240
Neural Network -0.01304

Table 4.2: Error statistics of three techniques.

Error Statistic Random Forest Gradient Boosting Neural Network
Bias 0.004768 0.0004498 0.002744
MAE 0.022955 0.0258532 0.027562
RMSE 0.040459 0.0471540 0.047404

NSE evaluates the predictive power of a model. While the efficiency of one being
the perfect value, zero means the model is no better than just using the mean value of
the observed data [27]. As shown in Table 4.1, RF model has the largest NSE coeffi-
cient. Further, it is the only predictive model with positive measure. GB and ANN have
smaller negative coefficients closer to zero indicating that those models merely predict
the mean value of the observed data. Standard error statistics in Table 4.2 also provide
similar insights. The fuel consumption prediction graphs in Figure 4.2, 4.3, and 4.4
further verify insights of numerical analysis. While the RF captures the trend more
accurately, GB and ANN are only predicting the fuel consumption in a conservative
manner. Hence, in conclusion, the RF model has captured the relationship between
predictor variables and fuel consumption better than other two models.
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4.4 Identify prospective fuel frauds

Predicted fuel consumption values from a model like above can be used to identify
prospective fraudulent activities by drivers of fleet vehicles. Suppose for a given day,
F denotes instantaneous fuel consumptions recorded by the tracking device, where
F = {f1, ..., fn}. Also, suppose F ∗ denotes instantaneous fuel consumption predicted
by the model described above, F ∗ = {f ∗

1 , ..., f
∗
n}. We define excess fuel usage ratio as

follow:

γ =
1

n

n∑
i=1

|fi − f ∗
i |

f ∗
i + ε

(4.7)

where ε is a small number used for numerical stability.

We also define a constant η based on the predictive model accuracy and domain
expert consultation. We use the test dataset used for model evaluation to define eta in
a similar manner to γ as indicated in the following equation.

η =
1

N

N∑
i=1

|ti − t∗i |
t∗i + ε

+ 0.5 (4.8)

, whereN is the total number of instances in the test dataset, ti and t∗i indicate recorded
and predicted instantaneous fuel consumption values respectively and 0.5 is a buffer
added to compensate fuel sensor error as per domain expertise recommendation.

We suspect a fuel fraud may have occurred in a given day if γ > η.

Figure 4.5: Predicted and observed instantaneous fuel consumption of 29/08.

For example, consider recorded and predicted fuel consumptions for 29/08/2015
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shown in Figure 4.5. We can see that recorded fuel usage much deviates from the
predicted values and there is a spike around 1:10 a.m. To quantitatively analyze this
deviation, we calculate γ and η as in Equation 4.7 and 4.8, respectively. The value of γ
for this journey is 1.8764. The value of η is 1.3365. Because γ > η, to understand what
were the causes for this unusual fuel consumption of the vehicle, we have to enquire
the bus driver and carry out further analysis as discussed in the next section.

4.5 Verify identified prospective fuel frauds

As we discussed in Section 3.2 fuel consumption of a vehicle depends on various fac-
tors. Some of these factors are controllable by the driver such as speed, accelerations
and idling, but some of them are out of control of the driver such as road traffic, ele-
vation changes and adverse weather conditions. Since the proposed predictive model
does not consider all the influential factors, just because the predicted fuel consump-
tion is lower than the actual fuel consumption, one cannot conclude that a fuel fraud
has taken place. Instead, in practice, the driver of the particular journey is inquired
to explain excess fuel usage. While the driver can justify abnormal fuel consump-
tion for various reasons such as road traffic, extra load, severe weather condition, etc.
fleet managers should be able to verify these claims. For that purpose, we propose the
following key performance indicators to investigate suspicious fuel usages.

• Idling time

• Frequency of harsh events such as heavy acceleration and harsh breaking

• Speed profile

• Date and day of the week

Idling time Having the engine of a vehicle switch on without moving is known as
idling. Idling has a dramatic effect on MPG figures and thus is a popular met-
ric. However, considering all such situations for excess fuel investigations or
driver performance analysis is not practical, because there are inevitable sce-
narios where the driver does not have other option but keeps the vehicle idling,
e.g., waiting for traffic signals, waiting until passengers are getting on and off.
Hence, here we redefine idling as having the engine switch on without moving
for one minute. Drivers are accountable for excessive idling time throughout the
journey.
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Frequency of harsh events Harsh events such as harsh accelerations or harsh break-
ing result in high fuel spend. According to industry standards, accelerations
higher than 3ms-2 are defined as harsh accelerations and decelerations greater
than 3ms-2 are defined as harsh breaking. We propose to use the frequency of
such events throughout the journey as a key performance indicator.

Speed profile Speed profile of a trip provides a lot of useful information about the trip.
As key indicators, we propose to use the mean speed of the journey and skew-
ness of the speed histogram. We consider an average speed between 40kmh-1

and 60kmh-1 (which we called optimum range) as a reasonable average speed
for a bus (The values would be different for different vehicles. We choose this
range since we are analyzing a dataset of a bus in this research). Mean speed
less than 30kmh-1 might be an indicator of heavy road traffic. Skewness of the
speed histogram indicates speed variations throughout a drive. If the skewness
is positive or minor minus value that means the bus was driven in a lower speed
for a significant portion of the journey. If the skewness is a large negative value
bus has been driven in higher speed ranges. If the mean speed falls into optimum
range and speed profile has larger negative value the driving behavior is good.

Date and day of the week Date and day of the week affect fuel consumption of a
vehicle in different ways. Depending on the day of the week, e.g., whether it is a
Friday or Saturday, road traffic varies significantly and cause varied fuel spends
for vehicles. In general, we can expect the same traffic patterns for the same
days in the work. However, this is not guaranteed, because depending on the
date road traffic intensity might be changed. For instance, if a particular Friday
is a holiday, the roads might be clearer in that specific Friday compared to other
Fridays. Further, for fleets like public buses, generally, the load will be different
for different days in the week. As an example, if the bus is traveling from a city
area to a rural area, in a Friday the load will be higher than other days of the
week. Then again if a particular Friday is a holiday, the same bus would have
a higher load on Thursday of that week instead of Friday. Thus, it is important
to check what is the date of the suspected fuel consumption and what day of the
week it is.

4.6 Conclusions

We developed a fuel consumption prediction model which is useful in fuel frauds de-
tection where the actual consumption of the vehicle can be compared against the pre-
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dicted value. We evaluated the predictive ability of three predictive models, (RF, GB
and ANN) in predicting the fuel consumption of a long-distance public bus. Among
those three models, RF model could predict the fuel consumption more accurately
while capturing the trends in data. The most important factors of the fuel usage pre-
diction model were distance, location, elevation, speed, and day of the week. Finally,
we introduced a set of key performance indicators to verify detected suspicious fuel
usages.

One of the limitations of this work is ignoring the impact of some external con-
ditions such as traffic, weather, and the load of the bus. Integrating such additional
influencing factors would enhance the predictive ability even further and predicted
value would be more reliable.
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5 REAL-TIME MONITORING AND DRIVER FEEDBACK TO PRO-
MOTE FUEL-EFFICIENT DRIVING

In this chapter, we propose a framework to analyze driver behavior in real-time, iden-
tify fuel-inefficient driving patterns and provide continuous feedback to the driver so
that they can continuously maintain fuel-efficient driving behavior. We propose to use
historical data to derive heuristics to classify driver behavior for fuel efficiency. This
framework is especially useful in the fleet industry not only to save money in terms of
saving fuel and maintaining the better health of vehicles but also to do better appraisals
for their drivers. Fleet managers can use our statistics from our framework to identify
the better driver and appreciate them which would encourage the driver to adhere to
fuel-efficient driving patterns.

5.1 Overview of the proposed solution

Demir et al. [3] have stressed in their research that while most of the fuel consump-
tion models pay attention to the impact due to vehicle, environment, and traffic, very
little consideration is given for effects of driver behavior and operation. Gonder et
al. [4] demonstrated that efficient driver behavior could provide up to 20% fuel sav-
ings. While drivers can be educated on general guidelines to save fuel, further savings
can be achieved through individual feedback. This feedback is typically based on his-
torical data, which is used for driver training and appraisals. While such training could
improve the efficiency over time, it may saturate at a sub-optimal level. However, we
believe that much more useful feedback can be given through real-time driver monitor-
ing and feedback, where we could assist the drivers to change their driving behaviors
while on the road, and maintain an efficient and safe driving behavior. The results
could be immediate and more significant, as the driver is carefully pushed to reach a
more optimum efficiency level. However, it is essential to do this in a non-intrusive
manner while being aware of the environmental conditions, being conscious of im-
pact on other traffic, and encouraging safe driving. One possibility is gamification [5],
where the driver is rewarded for efficient and attentive driving than racing with other
drivers.

Related work mostly considers only the driver dependent parameters while ana-
lyzing the impact of driver behavior on fuel usage. However, external factors such as
weather, road traffic, road topography, and road conditions also influence the driving
behavior. Therefore, to provide more practical and useful feedback one should consider
both the driver-dependent and driver-independent factors on fuel usage. However, such
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driver behavior and fuel consumption analysis typically requires high-resolution data
from GPS-based tracking devices, various sensors, and other external sources. The
data need to be gathered across multiple days and vehicles. Given the volume, diver-
sity, and uncertainty of data, sophisticated data mining and data analytics techniques
are required to identify fuel inefficient driver behaviors and to provide useful recom-
mendations for individual drivers in real-time.

We propose a novel solution based on vehicular data analytics to encourage drivers
to adhere to fuel-efficient driving behaviors. A classification model, developed based
on historical data, evaluates driving behaviors for fuel efficacy considering vehicular,
GPS, weather, and traffic data. If a driving behavior is detected to be inefficient, a
fuzzy logic inference system decides what action the driver should perform to bring the
vehicle back to a fuel-efficient state. The suggested action is conveyed to the driver via
a mobile app as voice commands. A mobile app is selected to provide driver feedback
due to the pervasiveness and with the intention of enhancing usability and flexibility,
as well as to reduce costs. Voice commands are used, as they are non-intrusive and
would not compensate for safety.

The crucial step in this solution is identifying driving events (i.e., periods of driv-
ing), which are fuel inefficient. While a classification model could be used, the pri-
mary challenge is how to label fuel efficiency of a given event considering all driver-
dependent and driver-independent parameters. We address this problem by automat-
ically clustering data points in a high dimensional space, and then analyzing those
clusters for the fuel efficiency. Then we apply a label to the clusters and thereby in-
dividual data points are labeled. This labeling is more accurate than labeling just by
looking at the fuel usage, as fuel usage depends on external conditions where fuel inef-
ficient diving behaviors might be inevitable under some circumstances. For example,
the driver might be forced to drive slowly due to heavy rain or excessive idling in a
traffic jam.

We demonstrate the proposed technique using a dataset of a long-distance bus in
Sri Lanka. This dataset provides an ideal test bench, as it includes all types of external
conditions such as diving in urban and rural areas, driving within peak and off-peak
hours, night driving, and driving through the mountainous region. As we do not use
any parameter which is specific to this bus (e.g., load) or its route (e.g., latitude or
longitude), our approach can be generalized to other cases and vehicles. We selected
hierarchical clustering to cluster the data points based on their attributes, and then a
random forest was used to classify the clusters as fuel efficient or inefficient. The
developed classification model has an accuracy of 85.2%. To simulate the benefits
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of the proposed mechanism, we compared the fuel economy of a journey with the
historically best fuel economy for the same location, time, altitude, and weather, which
resulted in 16.4% savings.

5.2 Proposed system architecture

To enhance the fuel economy of fleet vehicles, we propose a system that monitors
drivers and provides individual feedback in real time. This system takes driver de-
pendent and driver-independent influences into consideration in deciding whether a
driving behavior is fuel efficient or not. Figure 5.1 illustrates a high-level overview of
the proposed system. We assume vehicles are equipped with a GPS-based tracking sys-
tem and a high-precision fuel sensor. Conventional floater-based fuel sensors are over
sensitive to potholes and bumpers on the road, and upward and downward slopes, as
well as rapid acceleration and deceleration. Therefore, high-precision fuel sensors are
typically used to obtain more accurate fuel levels. Vehicle-related data such as speed,
acceleration, the current location of the vehicle, and fuel level are first pushed to the
cloud-based back-end in near real time. Data can be transferred through commodity
technologies such as 3G/4G or Machine-to-Machine (M2M) communication.

Figure 5.1: Overview of the proposed system for real-time monitoring and driver feedback to
promote fuel-efficient driving.

An analytical engine running in the cloud-based backend combines GPS and fuel
data, as well as other data such as weather and traffic conditions to estimate the cur-
rent driving behavior. Today, relevant weather and traffic data could be pulled from
third-party data sources using a REST API. If the driving behavior is determined to
be ineffective, the analytical engine determines a suitable corrective action to take the
vehicle back to the fuel-efficient state. The action is communicated to the driver as a
voice alert using a mobile app.

40



Moreover, vehicle owners and fleet managers could be given a dashboard, which
summarizes driving behavior and its impact to fuel consumption (see Figure 5.1). The
dashboard may also indicate other metrics such as the percentage of time a driver ad-
heres to fuel-efficient driving habits and causes for the inefficiency. Such a dashboard
is useful in driver coaching and to appraise the performance of drivers based on driving
behavior and fuel efficiency.

Figure 5.2 shows the analytical engine residing in the cloud-based backend. Once
GPS, fuel consumption, and driving behavior related data arrive at the system, data are
preprocessed. Preprocessing is required to clean the data and to derive new parameters
such as isIdling (i.e., whether the vehicle is idling) and hour (i.e., time of day). Then
vehicular data and weather data are fed into a classification model, which decides the
fuel efficiency of the driving event. Driving behavior throughout one minute of time
under given external conditions is defined as a driving event. If classifier classifies a
driving behavior as fuel inefficient, then a fuzzy logic inference system decides the
control action given the related data. Predicted control action is then transferred back
to the driver as feedback. This process continues as new data points keep arriving from
the vehicle.

Figure 5.2: Data flow for one driving event.

The GPS-based tracking device sends data to the cloud when the bus takes a turn or
every 17 seconds whichever occurs first. Tracking device tracks other events of interest
such as rapid acceleration, deceleration, and ignition on/ off state too. However, they
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are timestamped with the last time reading from the GPS (due to hardware constraints
time is read from the GPS kit once every 5 seconds). This leads to uneven sampling.
Therefore, to make the sampling rate consistent, the dataset was aggregated to one
minute. Followings are the variables selected for further analysis.

• Speed (kmh-1)

• Acceleration (kmh-2)

• IsIdling

Ignition status =1 and Speed = 0 for one 1 min

• Elevation change (m) - Road topography

• Time of the day - Traffic condition

For the nearest hour

• Fuel mileage (kmL-1)

• Weather condition - Sunny, clear, partly cloudy, cloudy, overcast, patchy rain
nearby, light drizzle, light rain shower, moderate rain, moderate or heavy rain,
mist, and fog

These parameters were selected such that the driver impact (first three factors),
road topography, road traffic and weather conditions are captured. Driver behavior
impact is captured with speed, acceleration and idling. Here we considered a vehicle
to be in idling status if it is not moving for one minute even though the engine is on.
As mentioned above 1 minute was selected due to the information presented in [6]
and also 1 min can differentiate idling due to stopping at traffic lights and idling due
to driver carelessness. Time of the day captures traffic condition. Time is a better
representation of traffic condition as this bus travels overnight. With distance and fuel
usage we calculated fuel mileage for each driving event. The weather condition of the
location such as rainy, sunny, etc. given time indicates the impact of weather.

5.3 Clustering

We to classify driver behaviors as fuel-efficient or inefficient while considering both
the driver dependent and environmental parameters. However, it is important to rec-
ognize that sometimes the drivers will not be able to follow fuel-efficient driving be-
haviors due to external factors such as traffic and weather conditions. For instance,

42



consider the following two tables that indicate driving events in two different loca-
tions of the route. (As mentioned above in this analysis we considered 1mins driving
events. Therefore, mileage in the table is an indication of the vehicle performance in
that 1 minute instance.) Table5.1 contains information about driving events around
Wellawaththa, a suburb of Colombo. The bus is traveling through Wellawaththa area
around 5:00 p.m. which is a peak traffic time. Table5.2 contains information about
driving events around Udawalawa, an area out to Colombo. The bus is going across
this area in the night around 10:00 p.m., thus, the journey is not affected by traffic
in this part of the drive. Further, Udawalawa is a flat area with negligible elevation
changes. Hence, the bus is traveling at its optimal speed and fuel consumption for
those driving events are very low which results in higher mileages.

Table 5.1: Driving events near Wellawaththa.

Distance (km) Speed (kmh-1) Fuel usage (L) Mileage (kmL-1)
0.1803 7.2784 0.34078 0.5289
0.1214 6.0153 0.09747 1.2453
0.3734 15.719 0.35774 1.0438

Table 5.2: Driving events near Udawalawa.

Distance (km) Speed (kmh-1) Fuel usage (L) Mileage (kmL-1)
1.6696 70.3359 0.0027 621.5171
1.3907 60.3271 0.0022 621.5171
1.3463 59.9492 0.0022 601.6583

When classifying driving events for efficiency, we must consider both driver-dependent
and driver-independent parameters such as weather, traffic and elevation changes. When
above two scenarios are considered driving events near Wellawaththa have lower mileage,
not necessarily because the driver was not driving properly but because of the road
traffic. In such a situation claiming it to be fuel inefficient and providing suggestions
such as speed up the vehicle is not practical. Therefore, we cannot solely rely only on
the fuel consumption to label driving behaviors for fuel efficiency, instead, we must
consider as many as possible external factors in labeling our dataset.

Manually tagging individual data points as efficient or inefficient driving, consid-
ering all the influences is a tedious task. Therefore, we propose to use an unsupervised
clustering technique to cluster the data points into different clusters in a high dimen-
sional space. Then we take the assistance of a domain expert(s) to analyze those clus-
ters and label them as either fuel-efficient or fuel inefficient considering not only the
fuel efficiency, speed, and acceleration, but also weather, road condition, and traffic.
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Once the clusters are labeled, respective data points can also be labeled based on their
cluster membership.

To demonstrate the proposed mechanism, let us combine two significantly different
set of data points along the bus route; data from a two hour (17:00 - 19:00) drive close
to Colombo (an urban area) and a two hour (22:30 – 00:30) drive close to Udawalawa
(a rural area). Figure 5.3 shows a scatter plot of the selected data points, where the
fuel usage is plotted against longitude. Black dots indicate the data points close to
Colombo, while red dots show the data points close to Udawalawa.

Figure 5.3: Fuel usage in an urban and a rural area. Dots – urban area and triangles – rural
area.

If our unsupervised clustering algorithm can cluster the dataset accurately, it should
identify at least two clusters, even without providing geographical information. How-
ever, a careful analysis of the distribution of data points reveals the following charac-
teristics:

• The number of clusters is unpredictable for a given journey. Since fuel consump-
tion depends on external factors, the number of clusters would vary widely.

• Clusters are not spherical.

• Clusters have uneven sizes. (i.e., different number of cluster members).

• Clusters have different densities, e.g., in Figure 5.3 the small cluster around
79.80 has a higher density than other clusters.

• Clusters do not adhere to a normal distribution.
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We choose hierarchical agglomerative clustering, as it is more desirable for cluster-
ing data points with the above characteristics [28]. The key advantages of hierarchical
agglomerative clustering techniques are the flexibility of exploring on different levels
of granularity, easiness of handling any forms of similarity or distance, and applica-
bility to any attribute type [28]. Moreover, if upper-level clusters on the dendrogram
are not providing enough information to label the clusters, we can drill down to lower
levels in the hierarchy, and then get smaller clusters and analyze their properties. This
benefit of hierarchical clustering enables more accurate labeling of fuel efficient and
inefficient events.

To implement agglomerative hierarchical clustering “hclust” function in R was
used. We used Euclidean distance to measure the distance between data points. Empir-
ical results showed that Euclidean distance provides better clusters compared to other
distance measures such as maximum, Manhattan, Canberra, binary, and Minkowski.
Similarly, ward.D2, single, complete, average, mcquitty, median and centroid algo-
rithms [29] were used for agglomeration. Among the algorithms considered, ward.2D
resulted in better clusters. In clustering fuel data, better clustering refers to the ability
to cluster events with the same external conditions into the same cluster.

Dendrogram in Figure 5.4 shows cluster hierarchy for the dataset considered in
Figure 5.3 (Each branch in the dendrogram represents a different cluster). We consid-
ered speed, acceleration, isIdling, elevation change, hour, and weather condition for
this clustering. Cutting the tree at level four results in seven clusters. Figure 5.5 plots
the same data points, labeled (colored) according to the clusters they belong to.

Figure 5.4: Dendrogram of clusters produced by hierarchical clustering.
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Figure 5.5: Seven clusters found in sample fuel consumption data points. Each color indicates
a different cluster.

Table 5.3 presents a summary of identified clusters. One can directly label cluster
two as inefficient, not only because of the lower mean fuel usage (5.28 kmL-1), but
also due to excessive idling at midnight. This is perhaps due to the driver having a
break, while the engine is running. The table provides evidence to prove the argument
that a driver cannot be accounted for inefficient fuel usage just based on the mean
fuel usage. For instance, consider the first cluster. Both the fuel consumption (11.44
kmL-1) and mean speed (6.86 kmh-1) are low. However, the time of the day is 17:00.
Therefore, one can conclude that road traffic might cause this lower speed. Thus,
asking the driver to speed up the vehicle under this condition is not practical. Domain
experts analyzed the resultant clusters and labeled for their fuel efficiency considering
all the driver dependent and external factors. Consequently, cluster six (Table 5.3) was
marked as inefficient because the mean fuel usage is not acceptable, even though all
external conditions are desirable.

In labeling the whole dataset, each journey was clustered separately because dif-
ferent trips might have driven by different drivers. While it is known that the different
drivers drive the bus on different days, the dataset did not contain information on who
drove on a given day. Clustering each journey separately would eliminate specific
driver behavioral impact on fuel consumption.
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Table 5.3: Summary of each cluster derived using hierarchical clustering.

Cluster
No

Mean
Speed

(kmh-1)

Mean
Acc

(kmh-2)

Mean
Elevation
Change

(m)

IsIdling
(Mode)

Time of
the day
(Mode)

Weather
Condition

(Mode)

Mean
Mileage
(kmL-1)

Fuel
Efficiency

1 6.86 -14.56 -0.02 0 17 Clear 11.44 Efficient
2 0 0 0 1 0 Cloudy 5.28 Inefficient
3 45.89 -5.53 6.36 0 23 Mist 214.86 Efficient
4 45.99 -109.83 -7.379 0 23 Mist 167.25 Efficient
5 28.35 -6,818.00 5.025 0 0 Mist 71.88 Efficient
6 61.12 273 -0.96 0 0 Cloudy 29.57 Inefficient
7 62.77 252.54 -0.05 0 0 Cloudy 556.3 Efficient

5.3.1 Classification of Fuel Usage

Once the historical data points are labeled, the next step is to develop the classification
model. The classification model should classify a data points as either fuel efficient or
inefficient. The dataset we are analyzing is not linearly separable and is known to have
outliers. Therefore, Random Forest (Random Forest) was selected as the classification
technique, as it can handle non-linear features, high dimensional data, and many train-
ing samples. We used Random Forest algorithm available in R random forest package
to build the classification model. mtry, the number of variables randomly sampled for a
split, was set to three as it gave the least Out-Of-Bag (OOB) error estimate of 14.13%.
ntree, the number of trees within the ensembles, was set to 500 based on the empirical
evidence. Historical data that were labeled via clustering in the previous step was used
to training the Random Forest-based classification model.

5.3.2 Determining the Control Action

If the classification model detects a driving behavior as fuel inefficient, the next task is
to determine what the diver should do to bring the vehicle back to a fuel-efficient state.
As seen in Figure 5.2 the decision-making process has two steps. First, the proposed
system checks whether the inefficiency is due to idling. If it is due to the vehicle being
idle, the system sends the feedback suggesting to stop the engine. If idling is not the
reason for detected inefficiency, then the system uses a fuzzy logic inference system to
determine the control action.

Many applications in the transportation domain use Fuzzy Logic inference systems
successfully [30, 31, 32]. The reason for the popularity of Fuzzy Logic Controllers
(FLC) is their ability to model real-world ambiguous reasoning. Nevertheless, FLC

47



emulates the need of an expert in the form of linguistic rules [33]. We choose driver-
dependent influences on fuel usage, speed, and acceleration as inputs to the fuzzy logic
system.

Figure 5.6: The membership function of speed.

Figure 5.7: The membership function of acceleration.

Figure 5.8: Fuzzy output membership function.
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Figure 5.6 and 5.7 show the corresponding membership functions respectively.
The fuzzy values of the speed are selected as Low (L), Optimum (O), and High (H) be-
cause through our exploratory analysis we could observe that fuel economy vs. speed
curve follows a bell curve. The corresponding fuzzy values of acceleration are se-
lected as Harsh Deceleration (HD), Acceptable (A), and Harsh Acceleration (HA) as
the expert advice is to use gentle acceleration and breaking. We decided on these fuzzy
values based on industrial norms.

Figure 5.8 shows the membership function of the fuzzy output, action to be taken
by the driver. Finally, the fuzzy rules of the inference system (i.e., control actions) are
derived as in Table 5.4 based on the fuzzy inputs and membership functions.

Table 5.4: Fuzzy rules.

Speed Acceleration Control Action
L HD Accelerate
L HA Accelerate Smoothly
O HD Keep the Speed
O HA Keep the Speed
H HD Break Smoothly
H A Break
H HA Break

5.4 Results

The performance of the classification model was assessed using 10-fold cross-validation.
To analyze the test results standard statistics were calculated. The results are given in
Table 5.5.

Table 5.5: Statistics of results of the classification model.

Statistical Measure Value
Accuracy 85.16%
Kappa statistics 0.7011
Mean absolute error 0.2082
Root mean squared error 0.3191
Relative absolute error 41.82%
Root relative squared error 63.95%
Precision 0.852
Recall 0.852

Accuracy indicates the percentage of correctly classified test cases whereas Kappa
statistic shows the agreement of prediction with the true calls. While mean absolute
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error measures the average magnitude of errors of the prediction without considering
the direction, root mean squared error gives the square root of the average squared
error. Table 5.5 depicts that the RF-based classifier has higher accuracy, precision,
and recall while having a lower error. Higher precision and recall mean that most of
the driving events identified as inefficient driving events are true inefficient driving
events and most of the inefficient driving events are correctly identified respectively.
Therefore, high precision and recall grantee that the feedback sent to the driver is not
intrusive and it is meaningful.

Figure 5.9: Actual fuel usage vs. adjusted fuel usage based on driver feedback for a selected
journey

To test our solution’s effectiveness in saving fuel, we carried out a simulation. We
assessed to what extent the fuel economy of the bus can be increased if we would fol-
low the historically best action in those detected inefficient driving events. Figure 5.9
shows both the actual fuel usage of the bus for a journey and the fuel usage when
inefficient events are replaced by the historically best fuel economy under the same
external conditions. We observed that the newly estimated fuel usage, based on his-
torically best fuel economy with driver feedback is in average 16.36% higher than the
actual fuel usage. This indicates an upper bound on expected gain in fuel efficiency,
as on any given day the driver may not be able to drive at the best efficiency at each
driving event. Nevertheless, aggregated saving over multiple days, routes, and vehicles
could still be significant from the feet owners point of view, as the proposed solution
is independent of the vehicle and route.

In the figure, there is one place where actual fuel economy is better than the histor-
ically best case. The possible reason can be that the classification model might have
misclassified an efficient driving event as an inefficient driving event.
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5.5 Conclusions

We proposed a novel framework based on vehicular data analysis to promote fuel-
efficient driving behaviors among drivers via real-time driver monitoring and feedback.
We demonstrated that by considering both driver dependent parameters such as speed
and acceleration, as well as external parameters such as weather, road traffic, and road
topography, more accurate and useful feedback can be given to the driver. The frame-
work consists of a classification model and a fuzzy logic controller. The classification
model classifies different driving behaviors as fuel efficient and inefficient. When a
particular driving behavior is detected to be inefficient, the fuzzy logic inference sys-
tem determines the corrective action to bring the vehicle back to a fuel-efficient state.
Results demonstrate that the proposed solution can achieve significant fuel saving.

A possible avenue to improve is to integrate other driver independent parameters
such as the load of the vehicle, road type, and real-time traffic data. Being able to
do the classification and fuzzy inference only on the smartphone is also of interest.
This would eliminate the need to send data to the cloud-based backend in (near) real-
time saving both the bandwidth and power. While weather and traffic data need to be
downloaded to the smartphone, it can be done less frequently.
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6 CONCLUSION

6.1 Summary

In this research, we tried to model and evaluate fuel consumption of fleet vehicles
based on vehicular data and data analytics methodologies and suggest suitable process
improvement/ re-engineering actions to improve the fuel economy. This objective was
narrowed down to three sub-objectives as follows:

• Detect possible fuel frauds

• Verify detected prospective fuel frauds

• Encourage drivers to maintain a better fuel economy for their vehicles

To achieve these objectives, we analyzed a dataset of a long-distance public bus
running in Sri Lanka. To identify possible fuel frauds, we proposed to predict instanta-
neous fuel consumption and compare recorded fuel usage values against the predicted
values. The predictive model is proposed to develop using various influential factors
of fuel consumption. For this purpose, we evaluated the predictive ability of three
machine-learning models. While the selected dataset has several essential parameters
that directly influence fuel consumption, several other relevant parameters such as load,
engine RPM, and traffic are not available. Even in the absence of such vital parame-
ters, we demonstrated that Random Forest model could predict the fuel consumption
more accurately (MAE of the final model is 0.0229) while capturing the trends in data.
More precisely, given a set of parameters such as distance, location, elevation, speed,
and day of the week, the Random Forest model informs us sensible fuel consumption
for the journey. A thresholding mechanism is used to identify possible fuel frauds by
comparing the recorded and predicted fuel usage values.

Nevertheless, as explained earlier fuel consumption of a vehicle is highly subjected
to external factors such as weather, traffic, etc. Hence, we cannot accuse a driver
of fuel frauds without a systematic verification. Thus, we had to identify better key
performance indicators to assess fuel consumption on the day of interest to verify its
validity. These indicators had to quantify the influence of each parameter - road traffic,
driver behavior, elevation changes, and weather conditions - on fuel consumption. We
proposed to use speed profile and frequency of harsh events as indicators of road traffic.
Further, total idle time and day of the week also can be used as indicators.
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Furthermore, we proposed a novel vehicular data analytics framework to promote
fuel-efficient driving behaviors among drivers via real-time monitoring and driver feed-
back which is the third objective of the research. We demonstrated that by considering
both driver dependent parameters such as speed and acceleration, as well as external
parameters such as weather, road traffic, and road topography, we could provide useful
and more accurate feedback to the driver. To achieve this, a classification model was
developed to classify different driving behaviors as fuel efficient or inefficient. When
a driving behavior is detected to be inefficient, a fuzzy logic inference system was pro-
posed to determine the corrective action to bring the vehicle back to a fuel-efficient
state. In our experiment using the dataset of a public bus, the accuracy of the classifi-
cation model was 85.16% and estimated improvement of fuel economy by following
provided feedback is in average 16.36%.

6.2 Research Limitations

In this section, we discuss the limitations of this research.

First, in this work, we have assumed that fuel consumption of a vehicle depends
only on instantaneous factors. However, this assumption may not hold true always,
because sometimes what happened in earlier time steps might still have an impact on
the current fuel consumption. For example, acceleration might not affect fuel usage
immediately. Another instance is, even though raining has stopped now, its impact
might still be significant, e.g., slippery or flooded roads. Hence, developing a more
reliable predictive model needs to release this assumption.

Second, the dataset used in this analysis possess some limitations. It does not con-
tain some of the key influential factors such as the load of the bus, RPM value. Further,
this dataset is suspected to contain fuel frauds. Even though we did not observe any
exceptionally high instantaneous fuel usages as evidence, we identified a couple of
days with unusual fuel consumptions due to obvious factors such as tracking device
malfunctioning and change of route. Those were removed from the analysis. Never-
theless, the refined dataset might still contain fraudulent fuel consumptions which are
hard to identify. Having such instances in the training dataset might have adversely
affected the analysis because such fuel usages do not indicate the correct relationship
between fuel consumption and explainer parameters.

The third limitation is, in the currently proposed framework for real-time driver
monitoring and feedback, data analysis happens on the server side. This cause the
system to suffer from network delay and would make it fail to provide timely feedback.
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Thus the feedback might not be useful.

Finally, real-world implementation and evaluation of the proposed frameworks im-
pose some limitations. Fraudulent activities identification and real-time feedback di-
rectly affect the career of fleet drivers; hence, the accuracy of fuel consumption predic-
tion model and fuel efficiency classification model should be very high. Currently, the
MAE of fuel usage prediction model is 0.0229 and the accuracy of fuel efficiency clas-
sification model is 85.16%. However, further improved models are preferable for real-
world deployments and evaluations. False positives, false alarms about suspicious fuel
spends or wrong feedback about driving patterns would cause for unsatisfied drivers.
Ultimately, this would lead for wrong analysis. Even with perfect predictive models,
challenges due to human factors should not be underestimated. How can we motivate
fleet drivers to voluntarily agree to be monitored? How can we encourage drivers to
follow recommendations given by our system? To answer these questions we might
have to work closer with the fleet management industry and its domain experts. Do-
main expertise is required for development of the proposed frameworks as well, to
verify fuel fraud and to label clusters for fuel efficiency. Nevertheless, the requirement
of domain expertise raises another limitation. Acquiring domain expertise is costly and
also it can add human biases to the process, e.g., verifying fuel frauds.

6.3 Future Work

As mentioned in Chapter 3, the dataset we analyzed did not contain some of the im-
portant influential factors of fuel consumption such as traffic, road type, RPM, and
the load of the bus. Further, in this research fuel consumption was calculated based
on fuel level measurements. Instead, one could consider fuel consumption estimation
using OBD2 port as a better way of capturing real-time fuel consumption. Integrating
above-mentioned additional factors and using OBD2 port would further improve the
predictive model and would allow identifying fuel frauds in a more reliable manner.
If variables such as traffic, road type, RPM, and the load of the bus are available, one
can improve the classification model to classify driving events and provide more useful
feedback to driver enhancing the usability of the system.

Modeling fuel consumption as a time series model considering the temporal re-
lationship of variables as well would provide a more accurate predictive model. Re-
cently, with the development of deep learning, Recurrent Neural Networks are used
to model temporal relationships. Exploring applicability of deep learning to fuel con-
sumption prediction would be a promising research direction.
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Moreover, being able to carry out the classification and fuzzy inference on the
smartphone itself is another avenue to explore. This would eliminate the need to send
data to the cloud in (near) real-time saving both the bandwidth and power. While
weather and traffic data need to be downloaded to the smartphone, it can be done less
frequently. Further investigation of suitable mechanisms to derive driver feedback also
would be a future direction.
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