

PLATFORM AS A SERVICE (PAAS) AGGREGATOR: A

MULTI-CLOUD LIBRARY

Supervised by: Dr. H. M. N. Dilum Bandara

Prepared by: S.A.F.M. Pulle (158241A)

M.Sc. in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2017

PLATFORM AS A SERVICE (PAAS) AGGREGATOR: A

MULTI-CLOUD LIBRARY

Supervised by: Dr. H. M. N. Dilum Bandara

Prepared by: S.A.F.M. Pulle (158241A)

Thesis submitted in partial fulfillment of the requirements for the Degree

of MSc in Computer Science specializing in Cloud Computing

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2017

i

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief, it does not contain any material previously published or written by another person

except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other medium.

I retain the right to use this content in whole or part in future works (such as articles or

books).

Signature: ……………… Date:

……………….

Name: S.A.F.M. Pulle

The above candidate has carried out research for the Masters dissertation under my

supervision.

Signature of the supervisor: …………………………. Date:

……………….

Name: Dr. H. M. N. Dilum Bandara

ii

ABSTRACT

Platform as a Service (PaaS) has become a key enabler of software-driven innovation

facilitating rapid iteration and developer agility. While PaaS is capable of abstracting

the infrastructure from the PaaS consumer, this abstraction itself, by design, makes it

tightly coupled to a particular PaaS provider. Hence, a failure in any of the PaaS services

could put the PaaS user in trouble. For example, in 2014 distributed cache service in

Windows Azure was unavailable due to a network problem that caused service to be

unreachable. Consuming PaaS services from multiple service providers has been

identified as a solution for this tight coupling. These solutions rely on having another

third-party layer between the PaaS services and SaaS applications. However, this does

not fix the problem, as this just moves the problem from one layer to another still

creating a single point of failure.

We address this problem by developing a relatively thin, abstraction layer in the form

of a multi-cloud library named as the PaaS Aggregator. PaaS Aggregator, being a

library, is necessarily a part of the SaaS application. It provides a unified API for the

SaaS application developers to consume PaaS services. Thus, PaaS users do not need to

worry about vendor-specific implementations, as the multi-cloud library provides

seamless migration among different PaaS providers in case of a failure. PaaS

Aggregator identifies the accessible service providers at platform level, and in turn

invoke vendor-specific service calls. Proof of concept implementation of PaaS

Aggregator supports database, cache, and storage services provided by Windows Azure

and Amazon Web Services. Performance evaluation using a SaaS application

configured to use the PaaS Aggregator showed that the throughput and response times

are not affected when compared to the same application implemented on PaaS-specific

APIs. However, evaluations further showed that an inefficient log storage provider

might lower the overall performance of the application.

iii

ACKNOWLEDGMENTS

My sincere appreciation goes to my family for the continuous support and motivation

given to make this thesis a success. I also express my heartfelt gratitude to Dr. Dilum

Bandara, my supervisor, for the supervision and advice given throughout to make this

research a success. I am also thankful to the staff of the 99X Technology for providing

all the required data. Last but not least, I also thank my friends who supported me in

this whole effort.

I am also grateful for the support and advice given by Dr. Malaka Walpola and Dr.

Indika Perera, by encouraging continuing this research till the end. Further, I would like

to thank all my colleagues for their help on finding relevant research material, sharing

knowledge and experience and for their encouragement.

I am deeply grateful to my parents for their love and support throughout my life. I also

wish to thank my loving wife, who supported me throughout my work. Finally, I wish

to express my gratitude to all my colleagues at 99X Technology, for the support given

me to manage my MSc research work.

iv

TABLE OF CONTENTS

DECLARATION .. i

ABSTRACT ... ii

ACKNOWLEDGMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES ... vii

LIST OF TABLES .. ix

LIST OF ABBREVIATIONS .. x

CHAPTER 1 .. 1

1.1 Developer Perspective of Cloud ... 1

1.2 Problem Statement .. 2

1.3 Objectives and Output... 3

1.4 Outline... 4

CHAPTER 2 .. 6

2.1 Cloud Computing .. 6

2.1.1 Cloud Service Models ... 8

2.1.2 Platform as a Service ... 10

2.1.3 High availability and resiliency in PaaS .. 11

2.1.4 PaaS vendor landscape .. 13

2.1.5 PaaS development challenges .. 13

2.1.6 Summary .. 14

2.2 Container-based virtualization .. 14

2.2.1 Containers in Cloud environment .. 15

2.2.2 Docker ... 15

2.2.3 Container orchestration .. 16

2.2.4 Summary .. 17

2.3 Service Aggregation.. 18

2.3.1 IaaS Aggregator ... 19

2.3.2 OpenCloudware ... 20

2.3.3 PaaS Manager .. 21

2.3.3.1 Cloud Service Broker ... 22

2.3.3.2 Interoperability and portability of Cloud services enablers in PaaS 23

v

2.3.3.3 Summary .. 24

2.3.4 soCloud .. 24

2.3.5 Cloud federation .. 26

2.3.6 Summary .. 27

CHAPTER 3 .. 28

3.1 High-Level Architecture ... 28

3.2 Solution Overview .. 30

3.2.1 PaaS Aggregator Core ... 31

3.2.2 PaaS Aggregator Cache (PAC).. 33

3.2.2.1 Configuring Cache Provider ... 33

3.2.2.2 Cache Accessor Façades .. 34

3.2.3 PaaS Aggregator Database (PAD) ... 38

3.2.3.1 Configuring Database Provider .. 38

3.2.3.2 Database Accessor Façades ... 39

3.2.3.3 IDbAccessor API ... 39

3.2.3.4 DbLogAccessor API .. 40

3.2.3.5 DbAccessor Log Item Skeleton ... 41

3.2.3.6 IDbAccessor Architecture .. 42

3.2.4 PaaS Aggregator Storage (PAS) .. 44

3.2.4.1 Configuring Storage Provider .. 44

3.2.4.2 Storage Accessor Façades .. 46

3.2.4.3 IStorageAccessor API .. 46

3.2.4.4 IStorageLogAccessor API ... 49

3.2.4.5 IStorageAccessor Architecture .. 51

CHAPTER 4 .. 55

4.1 Workload... 55

4.2 Experimental Setup ... 57

4.3 PAD Performance ... 59

4.3.1 PAD - Throughput comparison ... 60

4.3.2 PAD – Response times comparison ... 61

4.4 PAD Performance – Switching across different providers 62

4.5 PAC Performance ... 65

4.5.1 PAC – Throughput comparison ... 67

vi

4.5.2 PAC – Response time comparison .. 67

4.6 PAS Performance .. 70

4.6.1 PAS - Throughput comparison .. 70

4.6.2 PAS – Response Time Comparison... 71

4.7 PaaS Aggregator – Overall performance .. 72

4.7.1 PaaS Aggregator – Overall Throughput Comparison 73

4.7.2 PaaS Aggregator – Overall Response Time Comparison 74

4.8 Summary ... 75

CHAPTER 5 .. 78

5.1 Summary ... 78

5.2 Research Limitations .. 80

5.3 Future Work .. 81

References .. 83

vii

LIST OF FIGURES

Figure 2.1: Different classes of utility computing. .. 8

Figure 2.2: Cloud service models and their responsibilities. ... 9

Figure 2.3: Scaling out web server nodes according to the configured parameters. ... 12

Figure 2.4: Maintaining a HA architecture in different PaaS services in AWS. 13

Figure 2.5: Docker architecture. .. 16

Figure 2.6: OpenCloudware high-level architecture. ... 21

Figure 2.7: PaaS Manager architecture. ... 23

Figure 2.8: Cloud service broker Architecture. ... 24

Figure 2.9: Conceptual view of a soCloud deployment. .. 26

Figure 2.10: Migration scenario illustrating impact on service endpoints. 27

Figure 3.1: Proposed high-level architecture. .. 29

Figure 3.2: PaaS Aggregator – components. ... 30

Figure 3.3: Configuration JSON schema. .. 32

Figure 3.4: Cache accessor configuration in config.json. .. 34

Figure 3.5: ICacheAccessor Façade. .. 35

Figure 3.6: Cache aside pattern. ... 36

Figure 3.7: CacheAccessor Architecture - PaaS Aggregator. 37

Figure 3.8: Database accessor configuration in config.json. 40

Figure 3.9: IDbAccessor Façade. ... 40

Figure 3.10: IDbLogAccessor Façade. .. 41

Figure 3.11: DbAccessor Log Item Skeleton. .. 42

Figure 3.12: PaaS Aggregator DbAccessor Architecture. ... 43

Figure 3.13: Database accessor configuration in config.json. 47

Figure 3.14: IStorageAccessor API. .. 47

Figure 3.15: StorageAccessor models. ... 49

Figure 3.16: IStorageLogAccessor API. .. 50

Figure 3.17: A Storage Checkpoint (Storage log item). .. 50

Figure 3.18: Master log item. ... 51

Figure 3.19: PaaS Aggregator Storage Accessor Architecture. 52

Figure 4.1: Experimental setup including the JMeter workload generator. 58

Figure 4.2: PAD Performance – Transaction Throughput vs. Time (accessing through

vendor-specific API). ... 60

Figure 4.3: PAD Performance - Transaction Throughput vs. Time (accessing through

PAD). ... 61

Figure 4.4: PAD Performance – Response time vs. Time (accessing through vendor-

specific APIs). .. 63

Figure 4.5: PAD Performance – Response time vs. Time (accessing through PAD). . 64

Figure 4.6: Resource utilization of the App service plan. .. 64

Figure 4.7: PAD – Switching between providers - Response time curve. 66

Table 4.3: CacheAccessor test setup parameters. .. 67

file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558073
file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558074
file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558075
file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558076
file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558077
file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558078
file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558079
file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558080
file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558081
file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558082
file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558083
file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558085

viii

Figure 4.8: PAC Performance – Transaction Throughput vs. Time (accessing through

vendor-specific API). ... 68

Figure 4.9: PAC Performance – Transaction Throughput vs. Time (accessing through

PAC). ... 68

Figure 4.10: PAC Performance – Response time vs. Time (accessing through vendor-

specific APIs). .. 69

Figure 4.11: PAC Performance – Response time vs. Time (accessing through PAC). 69

Figure 4.12: PAS Performance – Throughput vs. Active threads (accessing through

vendor-specific API). ... 71

Figure 4.13: PAS Performance – Throughput vs. Active threads (accessing through

PAS). .. 72

Figure 4.14: PAS Performance – Response time vs Time elapsed (accessing through

vendor-specific APIs). ... 73

Figure 4.15: PAS Performance – Response time vs Time elapsed (accessing through

PAS). .. 74

Figure 4.16: PaaS Aggregator Performance – Transaction Throughput vs. Time

(accessing through vendor-specific API). .. 75

Figure 4.17: PaaS Aggregator Performance – Transaction Throughput vs. Time

(accessing through PaaS Aggregator). ... 75

Figure 4.18: PaaS Aggregator Performance – Response Time vs. Time (accessing

through vendor-specific API). ... 76

Figure 4.19: PaaS Aggregator Performance – Response Time vs. Time (accessing

through PaaS Aggregator).. 77

file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558114
file:///D:/Asanka_backup/Asanka/MSc/2015%20Batch/Thesis/Artifacts/Thesis/Thesis%20-158241A%20-%20Final%20V3.docx%23_Toc483558114

ix

LIST OF TABLES

Table 4.1: DbAccessor test setup parameters. ... 59

Table 4.2: DbAccessor test setup parameters – switching between databases. 64

Table 4.3: CacheAccessor test setup parameters. .. 67

Table 4.4: StorageAccessor test setup parameters. .. 70

Table 4.5: PaaS Aggregator – overall performance test setup parameters. 73

x

LIST OF ABBREVIATIONS

Amazon EC2 Amazon Elastic Compute Cloud

API Application Program Interface

AWS Amazon Web Services

CaaS Cache as a Service

CSB Cloud Service Broker

DBaaS Database as a Service

HA High Availability

HS High Security

HuaaS Human as a Service

IaaS Infrastructure as a Service

IaaSM IaaS Manager

IT Information Technology

LXC Linux Containers

ORM Object Relational Mapping

OVF Open Virtualization Format

PaaS Platform as a Service

PaaSM PaaS Manager

PAC PaaS Aggregator Cache

PAD PaaS Aggregator Database

PAS PaaS Aggregator Storage

REST Representational State Transfer

SaaS Software as a Service

SSaaS Static Storage as a Service

SLA Service Level Agreement

SDK Software Development Kit

1

CHAPTER 1

INTRODUCTION

Cloud computing has become the pinnacle of utility computing over the last few years.

Cloud computing provides a centralized control over the computing resources in

distributed and interconnected data centers under the supervision and administration of

a single service provider. Cloud computing offers many economic benefits over the

traditional in-house IT systems and services due to economies of scale from the

suppliers’ point of view, more efficient resource utilization via demand aggregation, as

well as a considerable reduction in IT management cost per Cloud consumer due to the

concept of multi-tenancy architecture [1].

These benefits have led to increasing adaptation of Cloud services into many businesses,

which are seen as more lucrative, affordable, and astonishingly reliable alternatives

compared to conventional data center based in-house services. Nevertheless, drawbacks

of Cloud computing paradigm are also surfacing due to various concerns such as lack

of standardized service interfaces, protocols, and data formats are susceptible to vendor

lock-in [2]. These problems, although seems to be outweighed by the advantages Cloud

computing provides to most small businesses, can lead to underinvestment, an

economically inefficient consequences in the long run, and hence requires immediate

attention.

1.1 Developer Perspective of Cloud

Cloud computing as a paradigm has not only provided immense advantages to

businesses from profitability point of view, but it has also made the life of developers

considerably easier with respect to many concerns. Outsourcing the hectic and time-

consuming work in different levels has enabled them concentrating more on building

more feature rich and quality software. While there are three principal service models

in the Cloud stack, namely IaaS, PaaS, and SaaS, platform abstraction or PaaS has

always been qualified as the layer, which mostly eases the life of developers. PaaS

abstracts almost all the services at platform level that application demands. As a

developer, it is just a matter of executing APIs (mostly REST based) provided by the

particular PaaS provider to get the required service. Consequently, PaaS-aware

2

solutions allow developers to take advantage of reduced complexity and achieve a better

time to market figure, also being able to benefit from the auto-scalable features of Cloud

infrastructure [3].

1.2 Problem Statement

While it is quite apparent that PaaS provides many advantages and enables both

developers and operations teams work in tandem to build better software, there is a lot

of speculation about the growth and adoption of PaaS [6]. In fact, according to a study

published in Gigaom [8], “in 2015, with a combined market of @ $73 billion, most of

the growth will occur in the IaaS and SaaS space, with PaaS only progressing about $2

to $3 billion”. There are many contributing factors affecting this slow adoption to PaaS

over other service models. Among many challenges discussed by David [7], the threat

of data and service lock-in and the degree to which the underlying IaaS abstracted by

the PaaS provider are the most contributing factors. While the threat of lock-in is being

addressed through the container based virtualization approaches like Linux Containers

(LXC) and Docker, latter challenge still remains as a partially answered question.

Although much research work is happening in the Cloud spectrum, still the IaaS

transparency in PaaS offerings becomes more questionable when compared to the

advantages it provides. In my current assignment where we developed a fully SaaS

application on top of Windows Azure, we experienced some adverse consequences due

to this very fact. Among which service unavailability and service unreachability are the

most commonly experienced issues we faced over the last couple of years [36, 37]. We,

as developers, train our mindset on PaaS guarantees, could not simply apply

workarounds in some situations, which cause massively negative impact on our SaaS

consumers. Most of the issues that we faced up to now can be boiled down to one simple

observation. That is the tight coupling of PaaS users to a specific PaaS provider, which

itself is tightly coupled to a set of libraries/middleware and IaaS(es).

It is imperative to address this problem to realize the full benefits of PaaS. There exist

solutions like Jelastic [29], OpenCloudWare [27], and PaaS Manager [20] which

provide some level of transparency in the form of a REST interface which abstracts the

underlying platform-specific implementations, thus by getting rid of tight coupling to a

particular PaaS provider. However, since the application now has to depend on these

3

hosted environments, they introduce another layer of coupling as well as the risk of

single point of failure. What we really need is a thin abstract layer which can provide a

simple unified API which hides the underlying provider so that if it is required to

migrate to a different service provide, it will not be a total rewrite of the data access

layer so that the transition would be smooth.

Therefore, the problem that this research attempts to address can be stated as:

How to aggregate multi-cloud PaaS services to enhance availability?

Given that it is relatively easier to connect to many PaaS providers, we focus on the

sub-problem of how to seamlessly switch among different service providers when it is

required to provide an uninterrupted service. From the developers’ point of view, the

proposed solution should not be tightly coupled to implementations of each PaaS

provider. Hence, the proposed solution should enable developers to utilize a standard

API to access platform services without worrying about vendor-specific

implementations. Whereas from a business point of view, there should not be a profit

loss due to prolonged downtime of the system due to the interrupted service of a

particular PaaS. Hence, the proposed solution should be free from potential single point

of failure, as well as should not hinder application performance such as throughput and

latency.

1.3 Objectives and Output

The main idea of this research is to come up with a way to answer the aforementioned

issue that is prevalent in individual PaaS environments. In essence, at the end of the

research, the choice of selecting PaaS providers will be given to PaaS consumers.

Ideally, there should not be any tightly coupled PaaS dependencies in a SaaS offering.

The objective is to provide a thin layer between the PaaS and SaaS layers, which will

enable the developers to utilize a standard API which abstracts the underlying vendor-

specific implementations and at the same time providing necessary configurations to

switch among different PaaS providers when and if necessary. Another key objective

of this research is to make this layer as thin as possible, i.e., not to make it another tight

dependency to SaaS. Making SaaS providers heavily depend on this layer may cause

adverse outcomes.

4

Due to the vastly different types of services provided at PaaS level, it would be

impractical to support each vendor-specific service available at platform level.

Therefore, we focus on the following main PaaS services that are required by all

applications:

● Database as a Service (DBaaS) – DBaaS is a Cloud-based approach to the

storage and management of structured data. DBaaS provides a flexible, scalable,

on-demand platform that is oriented toward self-service and easy management,

particularly in terms of provisioning a business' own environment.

● Static Storage as a Service (SSaaS) – SSaaS is an on-demand storage service

that can be used to reliably store application content such as media files, static

assets, and user uploads. It allows users to offload your entire storage

infrastructure and offers better scalability, reliability, and speed than just storing

files on the file system.

● Cache as a Service (CaaS) – CaaS will allow multiple applications to access

managed in-memory cache instead of slow disk-based databases.

Conceptually, providing support for other types of services will be the same. The reason

for selecting the three above-mentioned services is based on how widely they are used

among the other types of PaaS services. Compute as a service is another very widely

used essential PaaS service. However, as we found out during our literature survey, high

availability and uninterrupted service at compute level is being achieved predominantly

through containerization. Technologies like Docker [26] together with container

orchestration providers like Kubernetes [28], Jelastic [29], etc., are market leaders,

which provides uninterrupted services at compute level.

1.4 Outline

The rest of the document is structured in the following manner. Chapter 2 contains the

literature review, which covers the theoretical aspects of different types of Cloud

technologies, container-based virtualization, Cloud services aggregation at different

layers, as well as relined work on this area. Chapter 3 presents the high-level

architecture of the proposed library, which enables SaaS application developers to

develop applications without worrying about the underlying vendor-specific complex

5

implementation to achieve uninterrupted services by deploying their applications across

different PaaS layers. Chapter 4 presents evaluation of our proposed approach using a

real-world application. Concluding remarks, research limitations, and suggested future

works are discussed in Chapter 5.

6

CHAPTER 2

LITERATURE REVIEW

Chapter 2 is organized as follows. Section 2.1 describes the basics of Cloud Computing,

its evolution as a utility computing paradigm over the time, different service models in

Cloud Computing, the concept of PaaS, and threats to PaaS. Section 2.2 focuses on

container-based virtualization, several popular container-based implementations in the

Cloud like Docker, and container orchestration platforms like Kubernetes and Jelastic.

Section 2.3 describes the concept of service aggregation with respect to different service

models in Cloud Computing.

2.1 Cloud Computing

Companies, individuals, startups, etc., who possess big ideas to streamline their

businesses and drive sales through the roof. But to get there, those ideas need business

and enterprise applications come from giant application providers like SAP, Oracle,

Microsoft, Apple, etc. These applications were used to be really expensive. Other than

the massive price tag, behind each of these applications, there is a world of other

complexities as well. They need dedicated data centers with office space, power,

cooling, bandwidth, networks, servers and storage, and a complicated software stack,

which requires a team of experts who can configure, install and run them. Users require

an internal IT department to customize this software, testing and staging environments,

production failover environments and then when new versions of these software come

out, users would upgrade and that might bring the whole system down due to

incompatibilities. When users need to get these things done for dozens of applications

for enterprise needs, it is easy to comprehend that why big companies and enterprises

need large and dedicated IT departments in-house.

Cloud computing is a better way to run businesses. Instead of running applications on

one’s own datacenter, they run in a shared datacenter. What is needed is a plugin, like

a utility, which enables especially smaller businesses to start business with the minimum

capital expenditure. Furthermore, it reduces operational expenditure as users are paying

only for what they use. Applications delivered on demand as services over the Internet

and the infrastructure which comprised of hardware and system software, can be

referred to as “Cloud computing” [2]. Businesses are running all kinds of apps these

7

days, including custom-built apps. The main reason behind this is that you can be up

and running in just a few days, which was nearly unheard of with traditional business

software couple of years back. They cost less because users do not need to pay for

dedicated IT department, office space, and software product dependencies to run. Thus,

it turns out they are more scalable, more secure and more reliable than the vast majority

of traditional apps out there in the market.

The basic reason why Cloud providers are able to give massive scale advantages to

businesses is because they are built based on an architecture called multi-tenancy. With

a multi-tenant app, there is not a copy of the app for each business using it, it is one app

that everyone shares but it is flexible enough for everyone to customize for his/her

specific needs. A very good analogy is a giant office building where everyone shares

the infrastructure and services like security. However, each office can customize their

respective office space. This means apps are elastic, they can scale up to tens of

thousands of users or down to only a few. Upgrades are taken care for you, so your apps

get security and performance enhancements and new features automatically. The other

important factor worth mentioning here is that the way you pay for Cloud apps are very

much different. When a user’s app is up there in the Cloud, user does not buy anything

at all. It is all rolled up into a predictable monthly subscription. In business terms, Cloud

apps do not eat up one’s IT resources, instead business can focus on projects that will

really impact the business, like deploying more and more apps.

Cloud computing has evolved considerably during the past years into an alternative for

many companies as a means of hosting and maintaining their enterprise applications

[9]. Most public Cloud providers follow a utility computing business model, which

allows Cloud users to use Infrastructure as a Service (IaaS), Platform as a Service (PaaS)

or Software as a Service (SaaS), services that are provided on a pay-as-you-go basis [2].

The technical and financial models adopted by cloud computing have awakened the

interest of many companies that have seen in Cloud computing an alternative to

maintaining private data centers and a means of reducing costs. Clouds allow companies

to externalize their system maintenance processes as well as providing them with a

scalable solution regarding the computing resources they may require at any given

moment and the costs of using these resources. Figure 2.1 shows different classes of

utility computing, where service providers fall into different areas in the spectrum

8

depending on the flexibility at the infrastructure level and their level of abstraction

presented at developers who mainly work at the platform level.

2.1.1 Cloud Service Models

Higher the responsibilities you push towards Cloud service provider, less the control

you have over application security, customization, etc. However, the good thing about

this approach is that, because the service provider has a better control, they will provide

better scalability, disaster recovery, less complexity on development cycle thus faster

time to market. Figure 2.2 shows a subset of the different components within each

service model along with who has responsibility for those components.

With SaaS, only flexibility that the consumer gets is just altering various configurations.

Other than that, SaaS consumer has very little control over the Service Level

Agreements (SLAs), maintenance cycles, infrastructure, etc. The main advantage is that

the time to market is very less, hence the consumer can quickly be up and running with

the application, thus does not have to worry about all the underlying infrastructure or

platform level upgrades, etc. All these things will be taken care of by the service

provider. SaaS providers will make sure that the technology updates, support for various

kinds of devices, and all other platform level functionality will be available for you as

and when required [10]. Famous examples are Google Docs and Human as a Service

(HuaaS).

Figure 2.1: Different classes of utility computing.

9

With PaaS however, the consumer will be given much more flexibility over the

application they develop, although they do not have to manage and take care of the

underlying infrastructure components like hardware, operating system, database

systems, programming stacks, etc. Instead, PaaS consumers can focus on building better

software by utilizing those robust platforms provided by the PaaS provider. The

downside is that the developers must work within the constraints of the platform, which

may not be optimal for high performing architectures.

Another disadvantage is that the consumer is highly rely on the SLAs of the PaaS

providers. Some of these PaaS providers like Windows Azure run on top of Windows-

based infrastructure, an IaaS provider. When Azure is facing service outages or any

other issues, the developers are at the mercy of PaaS providers to stay highly available.

When the PaaS service goes down the developers are mostly helpless and must wait

until the PaaS provider restores services [10]. Famous examples are Microsoft’s Azure,

Google’s App Engine, SalesForce’ Force.com, and Amazon’s Elastic Beanstalk.

With IaaS, consumers can control almost all the services provided from infrastructure

level except the hardware (indeed, at least for some extend you can decide which

Figure 2.2: Cloud service models and their responsibilities [23].

10

hardware configurations you need). IaaS service providers will provide the

infrastructure services as a collection of APIs over the Internet, which will enable the

IaaS consumers to spawn up IaaS level services within minutes. Application can be built

to scale on demand as the workload fluctuates, thus optimizing the infrastructure usage.

The downside is the consumer is constrained to a subset of virtual Cloud servers. Some

applications require very specific hardware requirements, which may not be available

from the Cloud service provider [10]. Typical representatives of infrastructure services

are Amazon’s EC2 and Amazon’s S3.

2.1.2 Platform as a Service

While Cloud computing provides quite a lot of advantages, Platform as a Service (PaaS)

stands out as a game changer for modern application development [4]. It enables

businesses to foster rapid application development by outsourcing lots of configuration

work to PaaS provider, which seems very vital in a world of complex and immensely

scalable and distributed systems. As IaaS is a great way to introduce Cloud computing

for making the IT operations of a business more scalable and efficient, private Cloud

service delivery is in no way limited to IaaS. This is where the PaaS becomes handy.

As PaaS abstracts the underlying infrastructure layer, it does not matter how complex

and secured the infrastructure is. This important factor itself is providing a significant

opportunity for driving maximum value even from private Clouds.

PaaS provides IT organizations with significant benefits such as [5]:

● Capex is minimized - Improved time to market

Because of the availability of several automated tools and technologies,

developers can quickly design and deploy Cloud-aware applications with very

minimum capital expenditure. This encourages many startup initiatives to

blossom, as the developers with innovative ideas for new Internet services no

longer require the large capital outlays in hardware to deploy their service or the

human expense to operate it.

● Ability to access services available in any Cloud

As the services built on top of PaaS platforms are available from anywhere, it is

very easy to customize, extend and integrate software as a service offerings from

public Cloud providers.

11

● Legacy application re-engineering and re-architecting

As developers do not need to worry about the infrastructure anymore, it enables

the businesses to re-architect the legacy applications to integrate existing

applications with the new entrants which can cut IT operational costs, increase

agility in business, broaden the reach to customers and more importantly enable

developers to focus more on core competencies rather than infrastructure issues.

● Ability to address integration issues through Cloud-aware applications

In a situation where a particular SaaS depends on the hybrid Cloud environment,

as the infrastructure is abstracted, PaaS can provide seamless integration of both

the environments, which will immensely make the life of developers easier from

implementation, configurations and deployment point of view.

2.1.3 High availability and resiliency in PaaS

According to the specifications of PaaS, consumers should not be worried about the

high availability of the platform itself. Compared to traditional in-house application

development where a considerable time is allocated to understand High Availability

(HA) concerns of the underlying platform and how they may be aligned into an

application’s final design, running an application on PaaS does mean that the developers

are freed from such concerns.

As the underlying infrastructure of the platform is hidden and abstracted from the PaaS

consumers, it is important that the required and promised availability figures be

maintained at service provider level. The difference between PaaS high availability and

traditional solutions boils down to better contract management. As a Cloud service

consumer, it is paramount that good SLA definition with the service provider is

established.

In order to provide high availability of the services provided at PaaS level, different

service providers follow different approaches. If we take a typical web application as

an example, we can configure the website to automatically scale up or out based on

different KPIs to provide high availability. We can also configure to increase the

number of web server instances according to the shape of the traffic a particular web

server is received. Under the hood, it will utilize the load balancer and maintain the

12

traffic flow smoothly across the spawned web server nodes to provide better user

experience, thus a better availability.

Various Cloud service providers tackle the high availability concern in various ways.

More restricted PaaS solution like Windows Azure will not let us go deeper into

infrastructure level and configure the High Security (HS) zones, load balancer rules,

etc. Instead, all of these concerns will be handled at the infrastructure level. However,

a provider like AWS allows us to perform more granular configurations. Figure 2.3

shows how we can configure the auto scaling rules in computing resources depending

on the resource utilization, while Figure 2.4 shows how we can maintain the nodes

highly available in the AWS environment by enabling redundancy at different levels.

It is important to notice that auto scaling at IaaS is more flexible compared to scaling at

PaaS level.

Figure 2.3: Scaling out web server nodes according to the configured parameters [24].

13

2.1.4 PaaS vendor landscape

Since PaaS has started to become the most lucrative Cloud service model from the

Cloud service provider’s point of view [11], [12], the landscape for PaaS is expanding

very rapidly. Different vendors can include support for multiple languages, application

services, and data technologies, as well as integration and business process management

services. Some of the well-established PaaS players include [13]:

● Amazon Elastic Beanstalk

● Salesforce1 platform

● Google App Engine

● IBM Bluemix

● Oracle Cloud platform

● Red Hat OpenShift

● Windows Azure platform

● Heroku platform

2.1.5 PaaS development challenges

Although it is obvious that PaaS provides many advantages for businesses, downsides

are also surfacing from businesses and developers’ point of view. Given the vast

landscape of PaaS providers, it is none trivial to choose one platform among them to go

ahead with. Some are providing a very renown stable platform, but at a higher cost.

Some are cost effective, but do not provide all the services that might be essential in the

Figure 2.4: Maintaining a HA architecture in different PaaS services in AWS [25].

14

future for an application. Apart from the selection of a PaaS provider, following are

some of the challenges for PaaS when choosing a PaaS model:

● Vendor Lock-in

Vendor lock-in has been the most alarming challenge to PaaS consumers [14].

Vendor lock-in can be due to (a) Uncertainty of selecting an unknown

technology and (b) Learning curve of a technology. Vendor lock-in has occurred

mainly due to the growing number of Cloud computing service providers and

service offerings, especially in computing and storage services. Once a

particular customer decided to go ahead with a PaaS provider, their offerings tie

the user to a specific technology and protocols, which cannot be switched or

replaced without significant switching cost.

● Interoperability

In a highly scalable and distributed environment, it is very common that Cloud

applications will have to interact with other applications that may be hosted in

very different service provider. This will become even cumbersome if a

particular application is aiming for a higher level of scalability and availability,

where parts of the applications are deployed in several PaaS providers. Because

the heterogeneous nature of different PaaS providers, this is a nightmare unless

otherwise they expose a standard API based on REST or SOAP. Even so, that

will make our application tightly coupled with the underlying platform it works

with in a particular instance.

2.1.6 Summary

Cloud computing enables the businesses and developers to achieve considerable

advantages over the traditional datacenter approach. From the main Cloud service

models, Platform as a Service has become very popular with its stack of vital devops

advantages over others. Since PaaS landscape is growing extensively, vendor lock-in

has become an alarming issue, which prevents most potential businesses to move to the

Cloud. This problem can lead to underinvestment, an economically inefficient situation,

and therefore deserves our attention.

2.2 Container-based virtualization

As it goes with traditional hypervisors, which are used to achieve high level of

virtualization, container based systems enables us to achieve system virtualization with

high degrees of both isolation and efficiency [15]. Stephen et al. [15] showed how

15

container-based virtualization enable us to spawn very much secure containers, which

are another abstraction of the concept of virtual machines, yet very efficient. They used

Linux-VServer as the representative instance of a container-based system.

Unlike the traditional hypervisors, container-based virtualization the operating system

leveling system level, instead of the hardware level. In other words, guest operating

systems that runs at each container (a.k.a. virtual environment), shares a lot of the host

operating system resources. This sharing itself gives the containers a great advantage

over traditional virtual machines, as they are leaner and smaller than hypervisor guests.

As the containers themselves are simply resources managed in the same address space

by the host kernel, sharing information across the containers are also much easier and

efficient.

2.2.1 Containers in Cloud environment

Containers have been considered as a cheap way of packing a hosted environment as

conceptually, it is very simple way of bundling an application with everything that it

depends on historically, when deploying an application. However, with the rise of Cloud

computing, Cloud provider’s consider containers as the best technology to achieve

higher density and elasticity in a very cost efficient manner. Containers provide a unit

of an execution environment for applications hosted in the PaaS. In other words,

containers are closer to infrastructure (IaaS) compared to PaaS. Each application and

service pushed into PaaS (to be launched and executed) requires runtime configurations,

control resources and isolation between the other applications hosted in the same

environment or the data center. Containers allow these features by their design. That is

the reason why containers are more suitable to Cloud environment.

2.2.2 Docker

Docker is an open source container based technology (Like LXC, FreeBSD jails, AIX

Workload Partitions and Solaris Containers). Essentially Docker allows developers to

package up an application and all of its parts from the stack that it runs on, the

dependencies they are associated with it, package it all up in this box which is called

the container. The main idea behind Docker containers is that it enables the applications

to run in an isolated environment, the application has all that it needs to run inside this

container. It means that the underlying host (i.e., the OS) environment is completely

16

abstracted from the application. The problem that Docker solves is the “dependency

hell”.

Docker virtualizes the operating system, only our applications, and all of its

dependencies are contained in one black box. This is referred to as Dockerizing. This

makes them extremely fast, portable, scalable, high density and fast deployment. The

guest OS is outside of the Docker container; hence, developers do not need to worry

about it. Docker is comprised with two major components. Docker itself, which is the

open source container virtualization platform and the Docker hub, which is the platform

for sharing and managing Docker containers. As Figure 2.5 illustrates, Docker uses a

client-server architecture. The Docker client talks to the Docker daemon, which does

the heavy lifting of building, running, and distributing your Docker containers. Both the

Docker client and the daemon can run on the same system, or you can connect a Docker

client to a remote Docker daemon. The Docker client and daemon communicate via

sockets or through a RESTful API. Docker registries hold images. You upload or

download images from these public or private stores.

2.2.3 Container orchestration

Orchestration comes in handy when it comes to managing several hundreds of container

nodes to scale applications in the Cloud. In a large-scale distributed setting, it is

important to create a layer of abstraction that allows the developers and administrators

to work collectively on improving the behavior and performance of the desired service,

Figure 2.5: Docker architecture [26].

17

rather than any of its individual component containers or infrastructure resources. This

is where the container orchestration kicks in.

Kubernetes [28] is Google’s approach of container orchestration, which enable handling

of a large cluster of Docker containers. In a large-scale distributed environment,

managing Docker nodes will become a nightmare. Therefore, Google started the

initiative of building a cluster management, networking, and naming system to allow

container technology to operate at Google scale [16]. Kubernetes enables automating

deployment, scaling, and operations of applications containers across a cluster of

Docker hosts. It is a container orchestration platform where we can use certain rules and

configurations to scale applications on the fly with Docker node replication.

Jelastic [29] is another container orchestration environment which can be used to

manage container nodes in a clustered environment. Through certified containers, they

claimed that they could easily migrate the containers among many IaaS providers, as

containers do not care what the Guest OS is (As long as the Guest OS supports the

containerization). Service consumers can have many container types including Docker

and Rocket. They do not expose implementation level details. However, they emphasize

in their feature catalog and whitepapers that they can live migrate containers across any

selected IaaS to achieve high availability. However, they do not specifically mention

what are the types of services they can migrate at platform level and how they are doing

it. However, they also claim that they have quite a lot of enterprise level customers who

have been working on their platform to achieve a highly scalability and availability.

2.2.4 Summary

With the advent of Cloud revolution, container based virtualization has become the most

feasible approach to achieve higher density and superior elasticity when it comes to

spawning of virtual environments. Among the container-based technologies, Docker

has become very popular lately. A large-scale distributed application with millions of

container nodes requires an automated container cluster management and monitoring

framework. Using a Cloud orchestration tool, we can automate the deploying and

migrating of cluster container nodes, but still there are loose ends when it comes to think

about our problem. As containers are closer to infrastructure than the platform,

provisioning of platform level services in other nodes when migrating is not possible at

18

least at the container level. Even if we can achieve that in orchestration software, then

again orchestration itself becomes another dependency which can intern become a

single point of failure.

2.3 Service Aggregation

Service aggregation by its definition enables us to provide a common interface, which

can be used to provide services across different service providers [19]. Aggregation

service in the context of Cloud computing will mainly act as a hub or a dashboard which

can be used to deploy different services under various service providers.

The Cloud service orchestration is a widely used concept of Cloud service aggregation,

which is also studied and researched by many. Some entities have tried to provide a

total eco system, which can manage several underlying Cloud providers by exposing a

public subscription based API. But they are not flexible enough to let the Cloud

consumers choose the underlying appropriate Cloud service provider, instead the

system will automatically provision appropriate instances to get the work done. All what

Cloud consumers are supposed to do is to setup and configure the parameters to scale

in and out underlying services [17].

Some entities have tried to expose a web-based Cloud service aggregation API and

service, which can be used to manage and monitor the underlying Cloud services [4].

All what this service does is providing a unified standard API which can be used by the

Cloud consumers to get the services via a public hosted REST API. Apart from the API,

they have also provided some value added features such as monitoring, information

services, etc. on top of the hosted service. As they have the full control over what kind

of traffic flow through their API from clients, they could easily gather that information

and provide a monitoring interface, which may be very useful for audit purposes for

their service consumers. The downside of this approach is simply the single point of

failure. As this type of a hosted solution will impose a single point of failure to their

subscribers, they need to make sure that it is up and running all the time, which is a very

subtle challenge as they are also hosting this service on top of an existing IaaS provider

like Amazon. Cloud service brokering does look very similar to this approach, which

shows more or less the same characteristics. In this section, we will be looking into

several approaches, which try to provide Cloud aggregation implementations [18].

19

2.3.1 IaaS Aggregator

Lee at el. [19] developed an abstraction model that will act as an aggregation layer on

top of various IaaS providers to provide services at the infrastructure level. With the

alarming rate of IaaS market entrants, they wanted to provide a uniform common

interface and a description of IaaS services across multiple IaaS service providers

through their interface. The issue they are trying to address is the provider lock-in, a.k.a.

how easily can you distribute data from one provider to another [19]. The authors

supported various services from the two market leaders in IaaS at that time, AWS and

GoGrid. They were able to provide an IaaS proxy, which acts as a hub over the vendor-

specific infrastructure. As of today, they are able to provide IaaS proxy support for

AWS, GoGrid, and other service providers whose interfaces are compatible with AWS

or GoGrid. They have also provided a management interface where users can monitor

the resources being provisioned, their health status, etc.

IaaS aggregator has been prototyped to manage multiple IaaS resources from multiple

providers [19]. This clearly backs up the problem that we are trying to solve. Although

there are multiple service providers available at platform level, as most of the services

they offer show a common pattern, they can be provisioned from a common interface

similar to what Lee et al. [19] proposed for infrastructure level. As they have provided

a web interface, they could easily track the service API calls and collect the usage, traffic

information that reach their services which enabled them to provide a management

interface to monitor the resources available for their customers.

However, at the meantime, they really do not provide a solution for the reliability issue

that they were trying to solve in the first place, as the IaaS failure problem is now passed

into their layer resulting in a single point of failure. At IaaS level, if the IaaS aggregator

is down, customers can easily login to the respective IaaS provider’s management portal

and check out the services. This is not desirable for customers, could lead to state

management problems (once the proposed layer comes up again), and it is not possible

at platform level as the underlying infrastructure is abstracted from the PaaS consumer.

20

2.3.2 OpenCloudware

OpenCloudware is an open source initiative funded by French authorities aiming at

providing an ambitious objective of enabling large-scale enterprise distributed

applications to be deployed on any Cloud with minimum code level changes.

OpenCloudware allows distributed application developers to think and model them

using several virtual environments to assemble them, build, deploy and operate them

with the PaaS layer, which will be aggregating multiple IaaS services, but the whole

process is IaaS-agnostic [4].

The authors have come across many challenges when providing the support for multiple

IaaS support for various PaaS services. One key challenge they emphasize on is the

“management of the lifecycle of applications across different Cloud service providers”

[4]. Under the same challenge, they also show some other key areas that should be

addressed such as:

● How to hide the technical heterogeneity between the components?

● How to deploy whatever the application technology and the execution

infrastructure automatically?

These are some of the valid questions that even our solution needs to address. Even

though we are not providing a hosted solution that should work in a distributed manner,

hiding the vendor specific complexity, heterogeneity, and automatically deploying

services across different IaaS providers are two of the biggest areas of our research.

OpenCloudware implements a model called vApp as the building block of the PaaS

layer, which is based on an extension of the standard Open Virtualization Format

(OVF). vApp describes the node types of the virtual application, different nodes of it,

the underlying relationship between the nodes and also the SLA that the end user would

like to have. This descriptive model can then be used to spawn instances of the

underlying IaaS to provide the PaaS-level services.

They are able to provide support for various commercially available IaaS services like

Amazon, Windows, GoGrid and almost all the popular open source counterparts. As

this is an open source initiative, developers can also integrate it for new IaaS providers

by implementing their Federation proxies. The multi-PaaS controller will act as an API

21

and aggregate the IaaS provider services and deploy the vApps seamlessly according to

the way we configured them.

The OpenCloudware project has a large scope and is still in development. However,

certain parts of the projects are already available as prototypes. As the scope is so vast,

they could not find a way to connect everything as a production environment.

2.3.3 PaaS Manager

Similar to the IaaS Aggregator discussed previously, David, Neves and Sousa [20]

proposed to provide an aggregator service in PaaS. The authors attempt to provide a

common interface to unify the information and management processes of applications

created in PaaS environments. Their research outcome takes the form of a PaaS API

aggregator, which aims at providing a solution to vendor lock-in syndrome. The authors

demonstrate the proposed aggregator by connecting CloudFoundryarket leaders in

PaaS, namely Java-based PaaS CloudBees, VMWare’s CloudFoundry, Tier 3’s Iron

Foundry and Salesforce.com’s Heroku.

Figure 2.6: OpenCloudware high-level architecture [27].

22

As shown in the Figure 2.7, Range of services provided by PaaS Manager can be

categorized into two groups [20]:

● Management Services: Creating and managing applications and databases.

Migrating applications between vendors, if feasible.

● Information Services: Acquire information concerning applications and

databases, Monitor applications in real-time.

PaaS Manager follows the REST-based approach. However, there is no seamless failure

monitoring/handling mechanisms built into their API manager. They anyhow have

included an operation called Migration of applications among PaaS vendors, this is

when we, as developers, decide that we should move our PaaS service provider from A

to B for a particular service, we can ask the PaaS Manager to check the feasibility of

doing it and continue with it. Further, this migration is supported only for Applications

hosted and deployed from GIT repositories. It simply creates an application in the new

vendor and ask the new app to create a GIT hook and get the application deployed. This

migration approach is something we may adapt to our research as we are clearly looking

into failure recovery. Next, we discuss several related works on the PaaS Manager.

2.3.3.1 Cloud Service Broker

The Cloud service broker is a framework to achieve a harmonious integration between

different services provided at Infrastructure and Platform level [18]. The framework

comprises of three main components:

● IaaS Manager (IaaSM) – An external entity that could help distressed the

workload by brokering the relationship between the Platform and Infrastructure

layer. IaaSM provides a seamless API translator, which consists of three key

components (IaaS Discovery Interface, IaaS Management Interface, and IaaS

Functional Interface). This layer does the same thing as PaaS Manager, but at

Infrastructure level.

● PaaS Manager (PaaSM) - This provides a common interface to unify the

information and management processes of applications created in PaaS

environments. This is the component that we are interested in.

● Cloud Service Broker (CSB) – This is the most important component of this

framework as far as the research is concerned. CSB interconnects IaaSM,

PaaSM, and other user interfaces via a service bus.

23

As a proof of concept, the authors are developing a prototype of the CSB and PaaS

Manager working together in tandem to complete the whole architecture.

2.3.3.2 Interoperability and portability of Cloud services enablers in PaaS

In [21], the authors propose a distributed architecture that allows developers to create

and expose services through a Service Delivery Platform (SDP). They make use of the

flexibility and scaling capabilities of the Cloud to enable service developers to make

use of different platforms without worrying about the vendor-specific implementations.

Their Cloud enabled SDP architecture, exposes a standardized API through the PaaS

Manager so that the service developers can simply choose the best possible PaaS

offering, which yields best possible performance and other requirements without

worrying about vendor specific lock-ins.

At a very basic level, the SDP can be seen as a collection of service enablers, which are

orchestrated by a Service Broker and exposed for third parties’ application development

in an

SOA paradigm [21]. PaaSM will make sure that API calls issued against the developer

interface will be executed against the appropriate PaaS provider. They do not need to

worry about the actual PaaS implementation details as the PaaSM abstracts those details

into a standardized API. The authors also showed how a new service can be registered

Figure 2.7: PaaS Manager architecture [20].

24

into PaaSM and more importantly, how the services can be migrated from one PaaS to

another.

2.3.3.3 Summary

PaaS Manager goes in parallel with what we are trying to achieve through our research.

It answers certain parts of our research problem, but it fails to emphasize on seamless

migration of PaaS services across different providers when there is a need. At the same

time, PaaS Manager itself is another layer where the application developers have on,

which makes it a single point of failure. However, clearly we can adapt the concepts

they have been used to implement the uniform interface, which abstracts the vendor-

specific implementations.

2.3.4 soCloud

soCloud is a service oriented, component-based PaaS for managing portability,

provisioning, elasticity, and high availability across multiple Clouds [22]. Paraiso et al.

[22] are mentioning about taking the scalability across multiple Cloud providers.

Normally, in Cloud environments, we are talking about scale out and scale up (or

horizontal and vertical scaling). With the enterprise level, large-scale distributed

applications, applications are typically deployed across many nodes. These nodes may

Figure 2.8: Cloud service broker Architecture [18].

25

reside in the same Cloud provider or across different Cloud providers. In order to

support this sort of scalability, the application logic itself should not be coupled to a

vendor-specific implementation. This is because the in a particular instance, the

underlying infrastructure can be of any type.

soCloud discusses how to provide services for managing provisioning, elasticity, and

high availability across multiple Clouds. Paraiso et al. [22] show how we can use the

concept of Cloud federation to support applications deployed in a distributed-Cloud

environment. Their architecture consists of two components called soCloud master and

soCloud agent. Master handles node management (provisioning, deployment and

replication) while the agent is where the actual application logic resides.

The authors managed to demonstrate their research with ten existing IaaS/PaaS

providers, which are already available in the market, which include giants like AWS,

Azure, CloudBees, Heroku, etc. They used SOA based component deployment strategy

called FraSCAti, which has to be installed on every node where soCloud master/agent

resides. An example use case deployment is shown in Figure 2.9 where soCloud PaaS

provides high availability by replicating itself on different clouds. As shown in the

Figure 2.9, there is one replication of the soCloud master. Then, the deployment is done

in three steps. In the first step, the soCloud master is deployed in dotCloud. In the second

step, the soCloud master (deployed in dotCloud) dynamically deploys another soCloud

master in CloudBees. Automatically, the first soCloud master becomes leader and the

second one the follower. The soCloud master leader is active, while the soCloud master

follower is passive. By active, they mean the soCloud master processes the operations

in the system. By passive, they refer to the standby soCloud master used as replication.

One limitation of this work is the lack of support for storage, as authors focus only on

computing.

If we really want to use this in our Cloud providers, we need to ask them to install all

the dependencies to support soCloud architecture (Like FraSCAti, Web containers, and

JVM). However, it at least shows that PaaS-level abstraction is still possible. This

research is anyway aimed at highly distributed applications, which requires near perfect

node deployment management and which assume every now and then node failures,

which may not be the first priority of common 3-tier transaction web based application

26

deployed in Cloud. This research is predominantly aiming at providing a scale out

solution for highly distributed applications in the cloud.

2.3.5 Cloud federation

Tobia et al. [10] proposed a novel concept way back in 2011 called Federation into

Cloud. The reason why this is considered as a remarkable concept is because they had

this frame of mind that one day many Cloud providers will become a threat to the Cloud

consumers. The authors discuss about federation at IaaS, PaaS, and SaaS levels.

Although they do not provide any implementation details of a federated solution, the

authors provide a high-level architecture, which can be used to provide a federated

solution in Cloud. The authors also discussed different types of PaaS services available,

their categorizations, and types of PaaS services likely to be federated. [10]. Our multi-

cloud library architecture is inspired by this conceptual architecture. However, the

authors discuss about functionalities like resource migration, resource redundancy, and

combination of resource services at the multi-cloud library as the proposed library is

not only meant for the PaaS layer. From the services they discussed, we are mainly

focusing on the abstraction API as well as the resource migration.

If we closely look at the Figure 2.10, which illustrates the migration of a service and the

impacts on the service endpoints and the thereon based application, Multi cloud library

Figure 2.9: Conceptual view of a soCloud deployment [22].

27

also follows the same design principle by providing simple configuration options to

change the service endpoints. This research has played a vital role in identifying a

proper convention based configuration system in PaaS Aggregator to provide the end

user with a simple interface to define the underlying PaaS providers for the selected

services.

2.3.6 Summary

Cloud aggregation is the only practical way to provide an implementation, which can

be used to seamlessly switch among different IaaS providers when and if necessary.

However, providing a hosted version of the aggregator service will inevitably make it a

liability since it will become a single point of failure. Of course, if we go with that

approach, as every API call is proxying through our service, we can gather lots of audit

level information, thus by providing a common interface to manage and monitor the

services in a web-based interface. One of the main architectural decision of the Multi

Cloud library to make it as thin as possible to avoid unnecessary coupling.

Figure 2.10: Migration scenario illustrating impact on service endpoints [10].

28

CHAPTER 3

METHODOLOGY

This chapter discusses about the proposed solution and approach to implement the

multi-cloud library. Section 3.1 focuses on the high-level architecture of the proposed

solution. In Section 3.2 we discuss each component of the proposed architecture,

algorithms, and data structures used in different components and how they contribute

to different aspects of the library.

3.1 High-Level Architecture

PaaS Aggregator will be a part of the application itself, i.e., the application will utilize

the functionality provided by the PaaS Aggregator, instead of vendor-specific SDKs to

access the platform services. PaaS Aggregator will provide a standard API, which will

abstract the platform-specific implementations. These standard API calls will be

translated into appropriate vendor-specific API calls depending on the configurations

and the availability of the platform. This architecture is inspired by the concept

described in [10] such as providing a resource API to access underlying services in a

unified manner and also a management API to safely migrate consumers among service

providers. It also discusses how important it is to take the redundancy services out of

the application logic to provide better interoperability in the application architecture.

Since this can only be done by getting rid of vendor-specific implementations from the

application, the multi-cloud library can be taken as the placeholder of these

dependencies.

High-level architecture and the integrating modules that support the defined operational

processes of the proposed PaaS Aggregator is illustrated in Figure 3.1. When Service 3

cannot access its primary configured PaaS provider (i.e., PaaS Provider 3), it

automatically switches to PaaS Provider 2 to fulfil the request. Services shown inside

the PaaS Aggregator are the service APIs, which are used to access the underlying PaaS

services from the respective providers. At the same time, it uses a log (depending on the

service) to store the subsequent updates so that when the primary provider comes online,

it can replay the missing updates to sync the data stores. Synchronizing process may

take place asynchronously as well, depending on the availability requirement.

29

The proposed library will be responsible for:

● Routing API calls based on the currently selected and active PaaS environment.

● Switching the PaaS provider for a particular service, if it is not accessible in the

currently selected provider due to service outage or service unreachable issues.

● Providing different kinds of failover mechanisms such as active-active and

active-passive. This is important as in active-active scenario, the Cloud

consumer should always maintain an active service instance which is costly. To

provide an active-passive setup we plan to use an update-based logging

mechanism, which can be used to recover the services up to the position where

the services can be resumed.

Proposed architecture illustrated in Figure 3.1 cannot be used for migrating compute

services (e.g., Web sites and scheduled workers) across different service providers.

Because the PaaS Aggregator is an integral part of the service layer of the application,

this architecture assumes that the environment it resides is available all the time. For the

services we chose to demonstrate the effectiveness of the PaaS Aggregator, we can

efficiently use this approach. PaaS Aggregator will be implemented by wrapping

different SDKs in a library with well-defined simple interfaces. There will be endpoints

defined in the framework to extend the functionality with regards to multiple services

Figure 3.1: Proposed high-level architecture.

30

in PaaS and also multiple vendor support. Depending on the consistency and availability

level that the application demands, we can use the secondary provider (shown in Figure

3.1) with a low hardware configuration to reduce the cost. For example, if the secondary

is supposed to be used as a read-only service in case of a sudden failure in the primary

service, we can use a secondary service with relatively lower specification. If a

secondary is not required at all, only a primary can be provided in the configurations,

with the objective of extending to multiple services for better availability in the future.

3.2 Solution Overview

The PaaS Aggregator architecture has a modular design that allows the entire system to

remain fully operational even if some PaaS vendor API is not operating correctly.

Although the context of this research is to provide the ability to access services in Azure

and AWS, they are not the only two PaaS providers available in the market. Therefore,

an important design principle that is visible all across the PaaS Aggregator architecture

is the room for extensibility. As shown in Figure 3.2, PaaS Aggregator solution is

comprised with four main components, namely PaaS Aggregator Core, PaaS

Aggregator Cache, PaaS Aggregator Database, and PaaS Aggregator Storage. PaaS

Aggregator Configuration Provider is responsible for defining the configurations of the

selected PaaS providers. These modules are expected to be exposed as nuget packages

[38] so that only the required dependencies can be easily downloaded and referenced.

Depending on the service accessed, relevant vendor-specific SDK will be used to access

the underlying service. Next, we discuss the details of these four main components.

Figure 3.2: PaaS Aggregator – components.

31

3.2.1 PaaS Aggregator Core

As the name implies, this is the core of the PaaS Aggregator library. To utilize any of

the API methods provided by PaaS Aggregator, this component has to be referenced.

This component provides the following two main functionalities:

• Facades

PaaS Aggregator adapts façade design pattern [39]. Not only the service APIs

that abstract vendor-specific implementation, but also all the extensible library

functionalities should be exposed as facades in the core. The main idea to

separate out the service API facades from the respective services themselves is

to provide a logical interface to extend the PaaS Aggregator to support additional

service providers. Details on how to extend these facades to provide support for

other PaaS providers are discussed in respective sections where the service APIs

is detailed.

Log service storage accessor interfaces are also included in the core. Log service

storage accessors are abstracted into a façade so that the service consumers could

decide what kind of underlying log storage provider to use depending on the

service they are consuming in PaaS Aggregator. For example, a NoSQL storage

backend can be used as the logging provider for the database service in PaaS

Aggregator. It is a matter of providing storage method implementations

according to the façade and inject it into the appropriate factory to resolve the

service. PaaS Aggregator will make sure that the injected storage backend will

be used (if provided with). Logging will be extensively discussed below in

respective sections where the service APIs is detailed.

• Configurations

PAC also parse the PaaS provider-specific configurations and injected them into

specific services used in the system. PaaS Aggregator expects the configurations

are placed in a JSON file in accordance with the given format in the root

directory of the currently executing assembly. The skeleton of the configuration

file is shown in Figure 3.3 and the file should be named as config.json.

Configuration root object contains three array variables called caches,

databases, and storages. As the name implies, each variable holds configured

32

service provider credentials and other information that is essential for the PaaS

Aggregator to communicate with service providers. There has to be one primary

provider configured for each service which will be given the highest priority

when trying to fulfil a request. Each configuration is discussed in detail under

each service API section, respectively.

In our Proof of Concept (PoC) implementation all of this sensitive information

is kept in plain text format. They should be encrypted using some kind of an

encryption mechanism or to utilize a different mechanism such as Azure Key

Vault [30].

Figure 3.3: Configuration JSON schema.

33

3.2.2 PaaS Aggregator Cache (PAC)

This is the cache accessor component of PaaS Aggregator. If a SaaS application is

interested in utilizing cache services provided by PaaS providers, this particular module

needs to be referenced. Our PoC PaaS Aggregator supports services offered by Redis

cache from Windows Azure and DynamoDb from AWS. Both the cache providers are

key-value pair NoSQL storages where the cached object will be stored in JSON format

with a unique key to refer to it.

3.2.2.1 Configuring Cache Provider

From the supported cache providers in PaaS Aggregator, what provider(s) to use in the

application is configured in config.json file. There is a dedicated section in config.json

to configure cache accessor details as shown in Figure 3.4. Under each cache provider

configuration, following four mandatory fields should be filled:

• name – This is the name given to a particular cache configuration. This name

must be unique among the cache providers configured.

• provider – This denotes the underlying PaaS provider name and the service

flavor that it provides. The two cache providers available in our PoC PaaS

Aggregator are azure-redis and aws-dynamo. This is used by the

CacheAccessorFactory to instantiate the appropriate cache accessor to serve the

requests.

• primary – This denotes whether the cache provider is the preferred accessor that

should be used every time when it is accessible. If this is set to false, it will not

be utilized when the primary cache provider is accessible and capable of serving

the requests. config.json can contain only one primary cache provider.

• connection-string – This is where the cache accessor platform-specific security

information should be kept. For Azure Redis provider, primary connection

string copied from Azure management portal should be placed here. For AWS

DynamoDb provider, there are three types of information (awsaccesskey,

awssecretaccesskey, and region) that should be pasted here separated by using

a pipe symbol (|). Additional cache providers introduced later may adopt a

different convention when configuring the platform-specific connection

information.

34

3.2.2.2 Cache Accessor Façades

Cache Accessor Façades are located at PAC. There are two types of facades that can be

found in PAC related to this.

• ICacheAccessor – This abstracts all the necessary function definitions, which in

turn standardize the cache accessors. CacheProviderFactory provides the

application with an instance, which implements ICacheAccessor depending on

the configurations passed into it and the availability of the underlying resources.

• CacheAccessorModel – Every object that will be stored in the cache should be

inherited from CacheAccessorModel. This is an abstract class, which holds one

virtual property called Key. Key primarily represents the cached object

reference.

Following section provides a detail description of the cache accessor API and how it

can be used to manipulate data in cache.

Figure 3.4: Cache accessor configuration in config.json.

3.2.2.3 ICacheAccessor API

As shown in Figure 3.5, ICacheAccessor is a template interface that exposes four main

functionalities. For each function, it expects the implementations to expose their async

version as well. This is particularly important as the public API guideline from

Microsoft [31] recommend that for the sake of performance and scalability, we should

expose async versions of our API methods.

CacheAccessorRedis (in PaaSAggregator.Cache.Azure.Redis) and CacheAccessorDyn

35

amoDb (in PaaSAggregator.Cache.Aws.DynamoDb) are the two implementations of

those facades. API methods Store and BatchStore will write cache information into the

underlying provider while RemoveItem will delete the item from cache, if exists. By

design, objects stored in the Redis cache will have a Time-To-Live (TTL) value of 2-

hours, i.e., if an object is not removed within 2-hours, it will automatically removed

from the store. There is no such restriction in AWS DynamoDb. Items will reside in the

underlying storage until they are removed by the consumer.

Figure 3.5: ICacheAccessor Façade.

One important aspect in CacheAccessor compared to other two services in PaaS

Aggregator is that, it does not support a logging mechanism. This is because of the way

how the cache is supposed to behave. Applications use a cache to optimize repeated

access to data held in a data store. However, it is usually impractical to expect that

cached data will always be completely consistent with the data in the data store.

Applications should implement a strategy that helps to ensure that the data in the cache

is up to date as far as possible, but can also detect and handle situations that arise when

the data in the cache has become stale. In other words, as shown in Figure 3.5, PaaS

Aggregator implements the cache aside pattern; thus, by providing the flexibility to the

data layer of the application to provide an alternate method to get executed when there

is a cache miss occurred. Algorithm 3.1 shows how the Cache Aside Pattern is

implemented in PaaS Aggregator.

Architecture of the Cache Accessor in PaaS Aggregator is shown in Figure 3.7. As

mentioned earlier, when it comes to write operations, PaaSAggregator will simply write

to the first available cache provider configured, and it follows cache aside pattern to act

36

upon when there is a cache miss. Even though this behavior is optional in the function

API, it is highly recommended to follow the pattern for better data consistency and

availability.

Figure 3.6: Cache aside pattern [32].

37

Figure 3.7: CacheAccessor Architecture - PaaS Aggregator.

3.2.2.4 PaaS Aggregator Cache Accessor – Azure Redis

PaaS Aggregator provides an implementation of ICacheAccessor for the SaaS

applications developed on Windows Azure. There are several storage providers in

Azure that can be used as a Cache (Redis, Table storage, DocumentDb, and Blob).

Among those services, Azure Redis Cache is based on the popular open source Redis

cache. It gives access to a secure, dedicated Redis cache, managed by Microsoft and

accessible from any application within Azure. To use this a user has to create a node in

Azure Redis under his/her resource group in the subscription. When the required

resources are available, it is just a matter of extracting the access key in the portal and

use it in one of the cache configurations (under the connection-string) in config.json.

By default, TTL value of each item stored in Azure Redis Cache is set to 2-hours. PaaS

Aggregator will convert the objects passed into the API to a JSON before storing them.

3.2.2.5 PaaS Aggregator Cache Accessor – Amazon DynamoDb

From the cache providers available on Amazon (Redis, DynamoDb, S3, etc.), PaaS

Aggregator provides an implementation to use Amazon DynamoDb to store objects as

key-value pairs. When configuring the application to use DynamoDb, PaaS Aggregator

expects following three fields to be included in the connection-string:

• AWS Access Key

• AWS Secret Key

• Region name (e.g., ap-southeast-1)

38

As Amazon has different region names based on the service, it is important to extract

the correct region name and paste it. These three fields should be joined by a pipe (|)

and put the string in connection-string field.

3.2.2.6 Introducing New Cache Accessors

When it comes to extending the ICacheAccesor to provide additional cache providers,

there is more to it than just implementing the exposed methods. We need to update the

ICacheAccessor dependency resolver logic to instantiate an object of the new type based

on the name configured in config.json. If there is custom platform specific, access

information that are required, they should be extracted from the connection-string

property described above.

3.2.3 PaaS Aggregator Database (PAD)

This is the component where the dbAccessor resides in PaaS Aggregator. If a SaaS

application is interested in utilizing database services provided by PaaS providers, this

particular module needs to be referenced. Our PoC PaaS Aggregator supports services

offered only by Microsoft SQL Server. As long as there is a version of SQL server in

any underlying PaaS provider, users can use the PaaS Aggregator to access it in a

consistent manner, providing both high availability and enough logging mechanisms to

make database layer consistent throughout, regardless of the database that is currently

connected.

3.2.3.1 Configuring Database Provider

As PaaS Aggregator only supports SQL Server, all the configurations will look

identical. As shown in Figure 3.8 config.json has a section to configure database

accessor information. Under each database provider configuration, there are three

mandatory fields and one optional field that should be filled:

• name – This is the name given to a particular db configuration. This name must

be unique among the database providers configured.

• provider [optional] – This denotes the underlying PaaS provider name. Our PoC

PaaS Aggregator is shipped with the support for azure, aws, appharbour, and

local. At this juncture, this provider is not really in use as we only support for

one flavor of the database engines.

39

• primary – Denotes whether the db provider is the preferred accessor that should

be used every time when it is accessible. If this is set to false, it will not be

utilized until the primary database provider is accessible and capable of serving

the requests. There can be only one primary db provider in config.json.

• connection-string – This is the connection string information to the SQL Server

database instance. The connection string typically contains the server

information such as database name and required credentials to connect to the

server.

3.2.3.2 Database Accessor Façades

Two types of Database Accessor Façades are located at PAC, namely:

• IDbAccessor – This abstracts all the necessary function definitions, which in

turn standardize the dbaccessor. SqlDbAccessor in PaaSAggregator.Database

namespace provides the application with an instance that implements

IDbAccessor depending on the configurations passed into it and the availability

of the underlying resources.

• IDbLogAccessor – This abstracts all the methods required by the PaaS

Aggregator to log all the write operations. Every write operation will be

persisted in any of the implementation of IDbLogAccessor injected into

DbAccessor API. PaaS Aggregator is equipped with an implementation of

IDbLogAccessor in case there is no any custom implementation provided. This

out of the box implementation will utilize the server file storage to persist logs.

Next, we provide a detail description of the dbaccessor API and how the data will be

stored.

3.2.3.3 IDbAccessor API

As shown in Figure 3.9, IDbAccessor is an interface that exposes two main

functionalities. For each functionality, it expects the implementations to expose their

async version as well. All the operations result in an update on the backend database is

supposed to be directed to Execute API method as it is important to log these update

operations to maintain consistency among different database instances in case of a

failure in the primary database. There is no logging involved during the read operations.

The Read operation will return a SqlDataReader, which can be used to extract data out.

40

The Write operation will return the number of rows affected as a result of the command

executed in the backend. Our PoC PaaS Aggregator is only capable of handling SQL

Server based data stores. That is the reason why there is a dependency on SQL-based

data types in IDbAccessor. However, this abstraction can be updated in future so that it

can be used to support any backend data store.

Figure 3.8: Database accessor configuration in config.json.

3.2.3.4 DbLogAccessor API

This is the interface that is utilized by the DbAccessor in PaaS Aggregator to log all the

write operations sent to it. As shown in Figure 3.10, it exposes three main functionalities

to read, write, and list the log files.

Figure 3.9: IDbAccessor Façade.

41

It is very important from the PaaS Aggregator point of view that the underlying provider

for IDbLogAccessor is very robust and durable. That is the main reason why this

abstraction is exposed outside for the SaaS application designers to decide on such a

provider. Our PoC PaaS Aggregator supports one out of the box implementation, in

which it utilizes the server file storage to persist the logs (StorageLogAccessorLocal).

In case of no implementation is provided into the DbAccessor, PaaS Aggregator will

use StorageLogAccessorLocal and the logs can be located at “\App_Data\Logs\Databa

se\” or “\temp\PaaSAggregator\Logs\ Database\” depending on the application type

(web or desktop based).

Figure 3.10: IDbLogAccessor Façade.

Additional implementations of IDbLogAccessor can be added to the PaaS Aggregator

in future. Until then, they should be implemented by the PaaS Aggregator consumers

be implementing the interface and injected into DbAccessor. As an important note to

the IDbLogAccessor, the content passed into the Write method and the result expected

from Read method are JSON serialized version of type ExecuteSkeleton, which is

described below. FileName passed into IDbLogAccessor is based on the current server

time’s Unix timestamp.

3.2.3.5 DbAccessor Log Item Skeleton

Each database insert, update, and delete operation is logged in PaaS Aggregator. They

will be persisted in the form of a JSON serialized string as shown in Figure 3.11. Both

the command and the parameters will be available in each log item. Name, value and

the SQL db type of the parameter are the three attributes persisted in each parameter.

42

When it is required to restore from these log items, they will be read and invoke the

IDbAccessor Write method for each log item.

Figure 3.11: DbAccessor Log Item Skeleton.

3.2.3.6 IDbAccessor Architecture

As shown in the Figure 3.12, each database access operation, regardless of the operation

type, has to first acquire a connection with the respective database specified in the

config.json. Highest priority will be given to the primary database specified in the

config.json.

To use the logging capability of DbAccessor in PaaS Aggregator, users need to

introduce a table called ___Checkpoints which consists of a couple of columns to hold

the checkpoint timestamps. Each write operation will be logged in the injected log

storage provider and at the same time, an entry will be inserted into the ___Checkpoints

table. Timestamp used in the corresponding checkpoint will be converted to an integer

value and use that as the name of the log.

43

Figure 3.12: PaaS Aggregator DbAccessor Architecture.

If the connection cannot be established during an operation, PaaS Aggregator will

automatically try to switch to one of the secondary databases listed in the config.json.

Before executing the command in the secondary database, the system will check

whether the database is in sync status.

This is done by comparing the latest checkpoint entry in the database with the latest log

file name persisted. If they mismatch, the system will start finding out the matching log

file for the latest checkpoint entry found in the ___Checkpoints table. Then it will start

replaying the log items up until the latest log is located. Algorithm 3.2 shows how the

system initializes an active connection to one of the databases specified in config.json.

According to the Algorithm, it gives the highest priority to primary database provider.

If the primary is not accessible, it goes through the other configured providers to find

an active connection. Upon finding a successful connection, it checks whether that

database is in sync by comparing the latest log item stored in the log storage and the

latest checkpoint. If the database is not in sync, the log items will be executed before

releasing the database connection to the consumer.

44

Algorithm 3.3 shows the synchronization process by replaying logs on new connection

established. Taking the latest checkpoint into consideration, it collects all the log items

to be executed by comparing the log item name to the checkpoint name. Once the log

items are collected, they are executed in the order they were logged to maintain

consistency.

Algorithm 3.4 shows the implementation of Write operation. First, the write operation

will be executed on the database. Then a checkpoint will be added into the

___Checkpoints table. Then a log item will be pushed to the injected log accessor. These

three operations are executed in one transaction to maintain atomicity. This will enable

the system to keep all the databases in sync before they are ready to be used.

Because the consistency is very important in RDBMSs, the approach taken in the PaaS

Aggregator to synchronize the data stores is aggressive. Therefore, it is recommended

to keep a background service to take care of the synchronizing among the configured

databases periodically. This will result in minimizing waiting time when switching

among databases. At the same time, it is recommended to come up with a strategy to

remove outdated logs if they are not required. For example, as the databases are being

backed up periodically, it is not important to store outdated logs. Outdated unnecessary

logs will consume a lot of space both in the log storage as well as in the database storage.

3.2.4 PaaS Aggregator Storage (PAS)

This is the component where the storage accessor resides in PaaS Aggregator. If a SaaS

application is interested in utilizing storage services provided by PaaS providers, this

particular module needs to be referenced. Our PoC PaaS Aggregator supports services

offered by Windows Azure Blobs and Amazon S3.

3.2.4.1 Configuring Storage Provider

There is a section in config.json to configure storage accessor information as shown in

Figure 3.13. Under each storage provider configuration, following three mandatory

fields and two optional field should be filled:

• name – This is the name given to a particular storage configuration. This name

must be unique among the storage providers configured.

45

46

• provider [optional] – This denotes the underlying PaaS provider name. Our PoC

PaaS Aggregator is shipped with the support for azure-blob and aws-s3.

• primary – This denotes whether the storage provider is the preferred accessor

that should be used every time when it is accessible. If this is set to false, it will

not be utilized until the primary storage provider is accessible and capable of

serving the requests. There can be only one primary storage provider configured

in config.json.

• connection-string – This is where the connection string information to the

storage provider is kept. The connection string typically contains access keys as

well as other environment specific access details.

• master-container – This is the root container where the documents will be

uploaded to. This value can be realized as the base container in Windows Azure

Blob storage account or the root bucket in the AWS S3 account.

3.2.4.2 Storage Accessor Façades

Following two types of Storage Accessor Façades are located in PAS:

• IStorageAccessor – This abstracts all the necessary function definitions, which

in turn standardize the storage accessors. StorageProviderFactory will basically

provide the application with an instance which implements IStorageAccessor

depending on the configurations passed into it and the availability of the

underlying resources.

• IStorageLogAccessor – This abstracts all the methods required by the PaaS

Aggregator to log all the storage write operations. Every write operation will be

persisted in any of the implementation of IStorageLogAccessor injected into

StorageAccessor API. PaaS Aggregator is equipped with an implementation of

IStorageLogAccessor in case there is no custom implementation provided. This

out of the box implementation will utilize the server file storage to persist logs.

3.2.4.3 IStorageAccessor API

Figure 3.14 shows the storage API façade, which exposes functionalities to work with

storage items in cloud. The current version of the storage API is mainly targeted towards

SaaS applications, which are having regular uploads and downloads of static binary

content. The API does not yet expose any functionality to carry out real-time updates to

47

storage items. Shown below is a detail description of API methods provided in

IStorageAccessor. Each functionality exposed under IStorageAccessor contains both

sync and async version for better performance and scalability. Methods UploadStream,

DownloadStream, DeleteItem, and ListItems are serving the purpose of handling

storage items IsInSync flag denotes the current status of the storage provider.

Figure 3.13: Database accessor configuration in config.json.

Figure 3.14: IStorageAccessor API.

48

Unlike PAD, IStorageAccessor will not perform on the fly synchronizing when

switching across different storage providers that are configured in config.json. The

reason behind that is the cost of operation to restore object streams. Instead,

IStorageAccessor exposes a flag called IsInSync, which is set when the storage is

accessed. Algorithm 3.5 shows the approach to decide the sync status of the current

storage provider. This algorithm will query for the latest log item stored both in master

log provider as well as storage log provider. If the latest log item names match, it is an

indication that the selected storage provider is in sync.

As seen in Figure 3.15, items accessed through IStorageAccessor are wrapped in either

of the following models:

• StorageAccessorItemInfo – Holds item’s basic information. This abstraction is

added to the PAS to only retrieve items’ metadata.

o Name – Display name of the item.

o FolderHierarchy – Path to locate the storage item (virtual directory

structure).

o Metadata – Other important information about the storage item.

• StorageAccessorModel – If the requirement is to retrieve all the information

regarding the items stored, users need to use this type as this include the stream

as well.

49

3.2.4.4 IStorageLogAccessor API

This is the interface that is used by the Storage accessor in the PaaS Aggregator to log

all the write operations sent to it. As seen in Figure 3.16, it exposes two main

functionalities to retrieve, write the log files.

Figure 3.15: StorageAccessor models.

As in PAD, the log accessor in PAS also expects the log storage to be provided by the

API consumer. If an external implementation is not provided for the storage accessor,

it will use the out of the box implementation (StorageLogAccessorLocal) which utilizes

the server’s local file storage and will save the log items in either

“\App_Data\Logs\Storage\” or “\temp \PaaSAggregator\Logs\Storage\” depending on

the application type (web or desktop based).

Unlike PAD, IStorageLogAccessor in PAS only persists the metadata about a particular

storage item and the operation performed. While the IDbAccessor uses a table in the

database for checkpointing purposes, IStorageAccessor maintains a couple of folders

(or containers) in the underlying storage provider to store log items, as well as the actual

data stream.

50

Figure 3.16: IStorageLogAccessor API.

If the storage provider is Windows Azure, you will find a container called “storage-

logs” while in AWS S3, you will find a folder called “storage-logs” where the

checkpoints will be added. As shown in Figure 3.17, information persisted in a

particular checkpoint will contain following attributes:

• Key – Display name of the storage item.

• Operation – Operation performed on the item (Added, Modified or Deleted).

• Datetime – Operation timestamp in UTC.

Figure 3.17: A Storage Checkpoint (Storage log item).

These storage checkpoints are JSON serialized strings of type PaaSAggregator.

Core.ConfigModel.StorageEventLogItem. As shown in Algorithm 3.5 these

checkpoints will be checked against the master log items to decide whether the storage

is in sync.

Apart from the checkpoint, PAS sends log items to IStorageLogAccessor, which should

be persisted in a reliable manner for synchronizing purposes. These log items are called

master log items. Figure 3.18 shows the information stored in a master log item. In

addition to the information stored in a storage log item, following information are also

included in a master log item:

• LogId – This is the converted integer value of the Datetime attribute, which is

actually the name of the storage log item.

51

• Provider – This is the identification of the underlying storage provider on which

the operation took place. As of now, this can contain either “azure-blob” or

“aws-s3”.

Figure 3.18: Master log item.

3.2.4.5 IStorageAccessor Architecture

As shown in Figure 3.19, each storage item access request requires an active connection

to a configured storage provider in config.json. Highest priority is given to the primary

storage provider. StorageProviderFactory will hold the responsibility of spawning the

appropriate instance of the accessible storage provider.

As shown in the architecture diagram (Figure 3.19), each write operation will end up

creating two log items, one in the storage itself and one log item in master log storage.

Both the log item names should be the same and the name is the Unix timestamp of the

server’s current time. An important decision taken during the architecture of the PAS is

that the existing implementation of IStorageAccessor do not impose a restriction on the

operations performed, even if the storage is not in sync. As there is a flag to indicate the

sync status, that decision is outsourced to the API consumer.

Hence, switching across different storage providers will not trigger a syncing process

as the cost of that operation may be high. However, PaaS Aggregator provides a utility

(StorageSynchronizer), which can be used in a background service to run in a periodic

manner. This utility is capable of synchronizing the storage providers configured in

config.json. The algorithm used in the utility is shown in Algorithm 3.6. This algorithm

will scan through the storage configurations and compares each configured storage

providers sync status with respect to the latest log item stored in master log. If the

52

considered storage provider is not in sync, then the log items that need to be executed

are retrieved by calling Algorithm 3.7.

Figure 3.19: PaaS Aggregator Storage Accessor Architecture.

Once the log items are collected, PerformOperation will be called on each log item for

the selected storage provider. The PerformOperation method call will invoke methods

provided in the IStorageAccessor depending on the operation specified in the log item

to manipulate the log items between the source and destination storage providers. The

Getmasterlogitemsuntil shown in Algorithm 3.7 will query the IStorageLogAccessor

and retrieve the items to be replayed in the destination storage accessor by taking the

datetime stamps into consideration. It will go through log items stored in the master log

accessor and collects the logs into a stack until it encounters a log item which has the

53

matching name as the one provided in. Upon satisfying this condition, it will return the

collected log items to the DoSync.

3.3 Summary

PaaS Aggregator overall solution architecture is designed after carefully studying

Cache, Database, and Storage API’s provided by Windows Azure and AWS SDKs.

PaaS Aggregator follows a component based architecture, where each service it

provides, can be referenced without depending on all the library dependencies. PaaS

Aggregator Core defines all the facades and models that will be common to all the

components while PAC, PAD, and PAS implement functionalities abstracted in Core.

PAD and PAS provide additional logging facades where the consumer should inject an

implementation of it. PAC follows Cache Aside pattern where a cache miss will end up

retrieving data all the way from the origin and save them in the cache.

PaaS Aggregator is designed in such a way that, if the API consumer decides one day

to get rid of PaaS Aggregator, it is not going to be a tedious effort to rewrite the data

access layer. Whenever possible all the functionalities defined in PaaS Aggregator are

provided with an async counterpart, which will not make it a performance bottleneck

during I/O operations.

54

Whenever it is possible, enough endpoints are provided in the PaaS Aggregator to

extend the functionality to get better throughput and reliability. At the same time,

required known exception types are defined in each component to handle erroneous

situations. For maintaining consistency across different service providers, required

flags, and utilities are also provided together with the API. All the core components are

implemented in self-containing components so that each service can be individually

used without referencing to everything.

55

CHAPTER 4

PERFORMANCE EVALUATION

To demonstrate the effectiveness of the proposed multi-cloud library, we performed an

extensive set of performance evaluations so that we can demonstrate that the PaaS

Aggregator will not post any major overhead when it comes to performance. We

developed a set of test scenarios that executed on top of a popular dataset [33] under a

considerable workload.

Section 4.1 and 4.2 focus on test environments and setup, respectively. Sections 4.3,

4.5, and 4.6 present the test results for each service offered by PaaS Aggregator. Section

4.4 presents the test results collected when there is an infrastructure failure in database

provider where it resulted in PaaS Aggregator switching to the secondary provider.

Section 4.7 presents a summary of the overall performance.

4.1 Workload

As the initial problem definition that we are trying to solve came from a hosted web

application due to a cache service outage back in 2014, we used the same kind of an

environment for the performance evaluation. The web application was a single page

application where the front end was mostly written in JavaScript. There were REST

APIs exposed in ASP.Net Web API, which are responsible for handling simple

transactions. Those transactions include database transactions as well as

uploading/downloading of documents as binary content. Logged in users’ session

information were stored in Azure distributed cache for the performance. User base was

from the financial domain and maximum users concurrently users was around 1,000.

Average workload was around 750 to 800 concurrent users. Most users used the

application during the end of a particular fiscal year. Consequently, the workload that

we are trying to impose on the environment is a typical load/stress test on a web server.

We used JMeter [35] to play the workload against the web application. First, we

generated JMeter scripts to simulate a set of concurrent users who send requests to the

web server depending on the type of test scenario. With respect to storage access, we

assumed that the users will use the web server for static file accessing by uploading,

downloading, and listing down the files.

56

To test the PAD, we used the popular AdventureWorks [33] dataset, which is heavily

used in .Net-base applications. Adventure Works Cycles, the fictitious company on

which the AdventureWorks sample databases are based is a large, multinational

manufacturing company. The company manufactures and sells metal and composite

bicycles to North American, European, and Asian commercial markets. While its base

operation is located in Bothell, Washington with 290 employees, several regional sales

teams are located throughout their market base. The dataset is mainly a transactional-

based retail dataset.

• Test cases:

o Requests to access ONLY the database (MSSQL Server)

o Requests to access ONLY the cache provider (Amazon DynamoDB)

o Requests to access ONLY the storage provider (Azure Blob)

o Requests to access ALL the above mentioned services randomly

Each of the above mentioned tests were carried out against two different data layers

integrated into the API server. One data layer used the PaaS Aggregator to access

resources while the other used a vendor-specific SDK’s to do so. To simulate the web

application workload, we used JMeter to send requests from 1,000 concurrent threads

(users) with a ramp up time of 10 seconds. These numbers were selected based on the

statistics that we collected over the last three years. For each test case mentioned above,

following statistics were collected from the two types of data layers:

• Transaction Throughput vs. Threads

This shows total server’s transaction throughput for active test threads. In other

words, it shows the statistical maximum possible number of transactions based

on number of users accessing the application. The formula for total server

transaction throughput is as follows:

𝐴𝑐𝑡𝑖𝑣𝑒 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ∗ 1 𝑠𝑒𝑐𝑜𝑛𝑑

1 𝑡ℎ𝑟𝑒𝑎𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒

• Response Time vs. Time

This shows the web server’s response time to each request sent. Naturally, server

takes longer to respond when a lot of users requests it simultaneously, as well

as the type of service it has been requested for.

Equation 4.1: Total Server Transaction Throughput

57

4.2 Experimental Setup

We used a 3-tier web application (see Figure 4.1) where the front end is a REST based

API server which serves JSON objects to consumers. This API server was developed in

ASP.Net Web API 2.0 and hosted in IIS 8.0. The web application was hosted as a web

site in Windows Azure where the app service plan is set up to use the basic tier 2 (B1)

pricing model. This app service plan is equipped with a single Virtual Core and 1.75 GB

of memory. Auto scaling rules were set up to scale out the number of web application

instances to two, if the current average CPU utilization of the app service plan exceeds

80% or the average memory utilization exceeds 85%. The reason for using these values

is based on the statistics we collected over five years based on our workload on the web

application where the incident took place in 2014. As shown in the figure, the API server

is configured to use services from three service providers, namely Windows Azure,

AWS, and AppHarbor.

58

Figure 4.1: Experimental setup including the JMeter workload generator.

The service and data access layer resides in the same environment (as this is the same

set up that we have in current live environment). Service layer handles the business

logic while the data access layer handles database transactions, cache access, and

storage access for simple file manipulations. The data access layer is developed in such

a way that we can switch between an implementation which uses direct vendor-specific

SDKs to access the services and another implementation which will utilize PaaS

Aggregator to access the services. A configuration stored in the server decides which

data access layer to be used and then injected the appropriate implementation into the

service layer. Initially, the API server was deployed with the first version of data access

layer and carried out the performance test scenarios and then change the configuration

to utilize the vendor-specific APIs and collected the statistics.

59

Performance test case execution environment was Apache JMeter 3.1 installed on a

machine with an Intel Core i7-5600 @ 2.60 GHz (4 CPUs), 16 GB RAM, Intel HD

Graphics 5500, 1 TB of secondary storage. Average download and upload bandwidth

available for the JMeter node during the test case execution were 14 Mbps and 3 Mbps

respectively.

4.3 PAD Performance

We consider Throughput vs. Time and Response duration vs. Elapsed Time as

performance matrices. One important note worth mentioning here is that PaaS

Aggregator is not aiming at improving the performance of the data layer. The idea

behind the performance evaluation on PaaS Aggregator is to check whether

incorporation of into the data layer would introduce any additional overhead on overall

application performance.

To carry out performance test scenarios on dbaccessor, we extracted various query

executions and included in the service layer of the API server. These queries contain

simple SELECT statements as well as complex queries, which involves joining of

several number of tables to retrieve data. More than 45% of the queries got executed

during the test were write operations as PaaS Aggregator might under-perform during

these type of operations, as it needs to run back up operations for each write.

Same set of test scenarios were executed against the two aforementioned data access

layers and statistics were collected. As an implementation of IDbLogAccessor, we

incorporated Azure Blob as the primary log storage for the DbAccessor in API server.

Table 4.1 shows the JMeter test thread group parameters and the other set up parameters

that were used.

Table 4.1: DbAccessor test setup parameters.

Parameter Value

Number of threads (Users) 1,000

Ramp-up period (s) 10

Loop count (Number of time each thread gets executed) 3

Number of read ops per thread 7

Number of write operation per thread 6

60

4.3.1 PAD - Throughput comparison

As a step during the JMeter test script compilation, we added a graph result listener and

extracted the throughput graph in both occasions. Figure 4.2 shows the throughput

graph when the data layer is configured to use the direct vendor-specific SDKs to access

the database service, while Figure 4.3 shows the throughput of PaaS Aggregator enabled

data access layer. Throughput, in this scenario is the ability of the API server to handle

heavy load.

Figure 4.2: PAD Performance – Transaction Throughput vs. Time (accessing through vendor-

specific API).

With the high number of active threads were created during the initial phase of the tests,

both versions show a relatively high throughput (Transactions per second). However,

as the number of active threads decreases, the throughput decreases. But according to

Equation 4.1 (Section 4.2), ideally the transaction throughput should decrease in a linear

manner. However, as we can see, this is not the case up until the number of active

threads reach a value around 600. This is due to the App service configuration that we

have in Azure. Although we set up a scale out rule to spawn out another instance when

the resource utilization is high, the resources available for a given instance was not

enough to handle the workload. This is understandable when we observed the

measurements provided by Azure regarding the health of the App service (see Figure

4.6). We could observe during the initial phase that the CPU utilization of the instances

was almost 100%, which resulted in queuing of requests during the time.

61

Figure 4.3: PAD Performance - Transaction Throughput vs. Time (accessing through PAD).

Anyhow, if we compare the two graphs, transaction throughput is not much different

between the two implementations. Indeed, at the initial stages, the average throughput

exceeded when the data layer was configured to use the PAD. Throughput values can

be affected by the network bandwidth and delays, as well as JMeter internal processing

delays. However, on average, both the implementation showed a near identical

throughput distribution over the test period.

4.3.2 PAD – Response times comparison

The same characteristics are visible in the Response time graphs in Figure 4.4 and 4.5.

Response times for the API calls displays similar characteristics which suggests that the

introduction of PAD into the data layer does not add much of an overhead to the

application performance. As can be seen in both figures, overall performance of the

application is mainly affected by the few complex database update operations

throughout the testing period. At the meantime, the overall response times are 1.56%

higher for read operations and 8.90% higher for write operations in Figure 4.5 compared

to Figure 4.6.

This is possible due to the extensive logging that is built into PaaS Aggregator. From

one side, PaaS Aggregator needs to keep checkpoints for each write operation. This is

done by inserting new checkpoint entries to ___checkpoints table. This is not

necessarily a heavy operation. However, if there are unnecessary outdated checkpoints

62

available in the table that may affect the checkpoint read operations. Some of the

measures that we can take to avoid this are to:

• Introducing a non-clustered table index.

• Backup the database regularly and keeping a background housekeeping service

to delete checkpoints, which are older than a configured threshold.

Another improvement that we can propose as a future work is to abstract the check

pointing service and inject a custom implementation, which might be a much faster

version than using a SQL table.

Another contributing factor for the high response time, especially for write operations,

is the performance in the implementation of IDbLogAccessor. For each write operation,

PaaS Aggregator sends a JSON containing the command and parameters to the log

accessor. It is the log accessor’s responsibility to implement its functionalities as

efficient as possible for the overall performance of the data layer. For example, if the

service layer and data layer reside in South East Asia datacenter, and the log accessor

storage is located in a data center in West Europe, it will definitely have an impact on

the performance. Therefore, it is important to keep the database server, business layer,

and the log accessor as close as possible for better performance. However, with the time

response time improved, due to the number of threads the server needed to respond

dropped and as a result, the two instances could handle the load much better.

Another important observation is that during the same period the CPU utilization

reached almost 100% (see Figure 4.6), which must have had an effect on the increasing

latency during the time. Even though there is a scaling-out rule specified for the app

service, as the instance size is basic, it had reached those figures.

4.4 PAD Performance – Switching across different providers

As the dbaccessor supports on-the-fly synchronizing among the providers when

switching across them, it is important to test how it performs under a relatively high

load. To test this scenario, we created three SQL server databases in Windows Azure,

Amazon RDS, and AppHarbor. Table 4.2 shows the JMeter thread group parameters as

well as the other test set up parameters. The regions we chose for the three databases

are East Asia, West Europe, and East US.

63

Figure 4.4: PAD Performance – Response time vs. Time (accessing through vendor-specific

APIs).

SQL Server databases created in Azure and Amazon are more or less having the same

performance levels. They are created in SQL Servers installed in Windows Server 2012

R2. Both the servers have near identical hardware. However, the AppHarbor database

was created in their free tier. It does not have the same configuration level when it comes

to hardware resources. Nevertheless, the idea was to start the JMeter test script

execution from the SQL Azure database and change the config.json by logging into the

Azure deployment environment to use the Amazon RDS database as the primary

database in the middle to simulate a database-switching scenario. Likewise, the system

will be switched to the database hosted in AppHarbor towards the end of the test

execution. Therefore, as we can see the performance overhead during the switching

between two service providers is mainly due to the amount of data that should be

synchronized and the hardware resources available in the active provider.

64

Figure 4.5: PAD Performance – Response time vs. Time (accessing through PAD).

Figure 4.6: Resource utilization of the App service plan.

Table 4.2: DbAccessor test setup parameters – switching between databases.

65

Parameter Value

Number of threads (Users) 1500

Ramp-up period (s) 10

Loop count (Number of time each thread gets executed) 3

Number of read/write requests per thread 14

As we can see in Figure 4.7, first switching from Windows Azure to Amazon happened

around 20:36 where it took some time to replay the logs stored in Azure blob storage to

sync the database hosted in the Amazon. Switching from Amazon to AppHarbor took

place around 20:38. At that time, JMeter had already executed 41,358 samples out of

63,000 test samples. Out of 41,358 API calls, more than 18,600 (45%) calls trigger an

update in the database, which causes the PaaS Aggregator to push a log item for each.

That is the main reason why the response time increase sharply around that time.

Replaying these logs in a relatively slow SQL server made the application wait until the

syncing operation completed. Even after the database was fully synced and capable of

handling the rest of the requests, response time does not reverted back to previous state

because of the hardware configuration in SQL Server. Another observation from Figure

4.6 is the continuous increase of response time of the request Products Review from

20:38 for some time even after the synchronization was completed. If we consider this

specific request, it is composed of number of complex queries which updates six tables

in the database. This is visible in the graph as the response time for this specific

operation is relatively high compared to other operations from the beginning. As the

SQL server switched at 20:38, this operation has become even slower to execute in

AppHarbor hosted database which is got basic hardware resources allocated to the SQL

server it resides. That is the reason why it kept climbing even though the storage

synchronization completed. As we discussed in the previous section, this is the reason

why we recommend maintaining a background service, which does the synchronizing

of databases asynchronously.

4.5 PAC Performance

For the performance testing we configures Caching in the hosted API server to store

logged in user sessions. Upon each login request, an authorization object is created by

retrieving information from the database. This is a complex object, which represents the

current logged on user’s privileges. A successful login will end up storing this type of

66

an object in JSON format. API server is configured to use a DynamoDb instance created

in East-Asia region.

Figure 4.7: PAD – Switching between providers - Response time curve.

One version of the Cache accessing logic in the data access layer used the AWS SDK

directly while the other version was configured to use the Dynamo Db as the cache

provider. The latter version used the IDbAccessor to access the database and create the

rights map. It also utilized the cache-aside pattern to recreate the cache objects, if there

is a cache miss. JMeter script to test the PAC performance comprised with three requests

per thread. These requests would:

• Log the current user in, create an entry in the cache for the current user.

• Accessing the current user’s privileges already stored in the cache.

• Logged out the user, thus removing the cache entry.

These requests were scattered across different threads intentionally to simulate a cache

miss scenario. Table 4.3 shows the JMeter thread group parameters as well as the other

test set up parameters used in the analysis.

67

4.5.1 PAC – Throughput comparison

Figure 4.8 and 4.9 show the transaction throughput variation with the active threads. As

the data layer which does not use PAC and Cache Aside pattern, it simply returned a

NULL value

avoiding the application to fail. However, the version that uses the PAC (see Figure 4.9)

and utilizes the IDbAccessor in PaaS Aggregator as well to retrieve the information

from the backend database which get cached. Because of this, the transaction throughput

curve does not look as smooth in the beginning as the other version.

Table 4.3: CacheAccessor test setup parameters.

Parameter Value

Number of threads (Users) 1000

Ramp-up period (s) 10

Loop count (Number of time each thread gets executed) 3

Number of read requests per thread 3

We believed that most of the login requests must have happened towards the beginning,

which causes the curve to fluctuate. Absolute throughput value fluctuated at times when

the application tries to recover from cache misses by retrieving the data again and trying

to recreate the cache and persist. However, the overall average transactions per second

the system could handle remained at 101.7 per second, which is a good indication that

PAC does not add any overhead on the cache accessing layer of the API server.

Although PAC-enabled version of the data layer has to do more work, it regained the

throughput during the latter part of the test and increased the throughput considerably

as a result of less number of cache misses. We are not doing any additional logging in

PAC, any additional overhead should have been from PAD. As we realized in the

previous section, there are ways to minimize that overhead and improve the overall

throughput of the CacheProvider.

4.5.2 PAC – Response time comparison

Figure 4.10 and 4.11 show the response time when the cache is accessed via the PAC

and directly through vendor-specific APIs. As we can see, response times fluctuated

when the PaaS Aggregator is configured in the data access layer. The reason for this

fluctuations, we believe, is the characteristics of the test scenario we selected. The test

68

scenario has a direct dependency on PAD when logging the current user in through the

membership provider.

This additional dependency adds up the extra response time, which we observed in

Section 4.3.2. This causes the overall response times on PAC to have a relatively higher

value compared to its counterpart, which is shown in Figure 4.10.

Figure 4.8: PAC Performance – Transaction Throughput vs. Time (accessing through vendor-

specific API).

Figure 4.9: PAC Performance – Transaction Throughput vs. Time (accessing through PAC).

Even though, the version which uses the PAC shows lots of fluctuations over the time,

when we look at the overall average line for all the three operations show more or less

identical behaviors. Therefore, as PAC is just a wrapper over the vendor-specific SDKs,

application will not experience any major performance bottlenecks, by introducing it to

69

the data layer. Another observation in Figure 4.11 is a cache miss occurred around 20:29

resulting in an I/O operation to the underlying database to fetch and store the data.

Figure 4.11: PAC Performance – Response time vs. Time (accessing through PAC).

Figure 4.10: PAC Performance – Response time vs. Time (accessing through vendor-

specific APIs).

70

4.6 PAS Performance

PaaS Aggregator storage provider test scenarios were executed on the Windows Azure

platform using the Azure Blob service. One version of the data access layer in API

server was configured to use the Azure SDK to access static contents stored in the blob

while the other version initiated an instance from PaaS Aggregator

StorageProviderFactory that ultimately access the blob based on the configurations.

An implementation of IStorageLogAccessor was injected into the PAS, which also

utilized the blob to store master log items. They were stored in the same storage account,

but in a separate container. Table 4.4 shows the JMeter parameters used when executing

test scripts. JMeter scripts were added to send four types of requests against the API

server as follows:

• Upload some binary content to the server

• Download some predefined binaries available in the blob

• List down file names stored in the blob

• Delete some items from the blob, if available

Table 4.4: StorageAccessor test setup parameters.

Parameter Value

Number of threads (Users) 1,000

Ramp-up period (S) 10

Loop count (Number of time each thread gets executed) 3

Number of read requests per thread 4

Number of files sent in upload request 20

4.6.1 PAS - Throughput comparison

Figure 4.12 and 4.13 show the throughput data collected over the period of test

execution. When the storage is accessed without using PaaS Aggregator, we can see

that the overall transaction throughput is around 30% less compared to the version

which accesses the storage via vendor-specific APIs . We believe following factors

affecting this fluctuation:

• Every time an instance of IStorageAccessor is initiated from PaaS Aggregator,

it checks whether the currently accessible storage is in sync. The way it does

this is by comparing the latest master log and latest local log item stored. No

query functionality is provided in the Azure blob SDK to retrieve the last blob

71

item added into a container. The only way to achieve this is to load all the blob

item metadata to the memory and query the metadata in memory. Hopefully

Microsoft will provide a better query facility in their future SDK versions to

facilitate this. Furthermore, it would have been better if we introduced the

functionality into IStorageProvider to check for this sync status, if only the

current storage provider is switched to another one due to inaccessibility.

• The other possible performance bottelenck is the choice of

IStorageLogAccessor storage provider. As it is the API consumer’s

responsibility to choose a reliable and efficient provider for this, it is very

important to choose the provider wisely from the point of view of the network

infrastructure (i.e., at least within the same region as the main storage), as well

as the SDK capability to provide enough capability to query the data stored in

it.

Figure 4.12: PAS Performance – Throughput vs. Active threads (accessing through vendor-

specific API).

4.6.2 PAS – Response Time Comparison

Figure 4.14 and 4.15 show the response for file upload and download operations. While

the PaaS Aggregator enabled version shows an increase in response time, the other

version shows an evenly distributed latency. This clearly emphasizes the two possible

performance overheads that we discussed in Section 4.6.1 which affected the response

times as well. These performance data could have been much better for PaaS

Aggregator, if the log storage layer was configured to use Amazon S3 over Windows

Azure Blob storage as S3 supports metadata querying via Amazon SimpleDB [34],

72

which would have made the querying very efficient. When the latest log item stored in

the master log provider is queried by the StorageFactory (as there are no metadata

querying facility provided by Azure SDK until now) it has to retrieve all the blob item

properties to the server memory and then query for the latest item. This is very costly;

hence, affects the overall performance of the request. Therefore, we have learnt that by

incorporating an efficient log storage provider into the PaaS Aggregator, the possible

minor bottlenecks that we saw during the test scenarios could easily be removed.

Figure 4.13: PAS Performance – Throughput vs. Active threads (accessing through PAS).

4.7 PaaS Aggregator – Overall performance

So far, we tested each service individually to investigate whether they introduce any

performance bottlenecks to the data access layer. I1 this Section, we test how the

application performs when all the provided services are accessed through PaaS

Aggregator. To test the overall performance, we agglomerate all the types of requests

issued to test each service individually and prepared a composite workload that issues

a mix of requests randomly against the server. Table 4.5 shows the JMeter test setup

parameters used in the evaluation. Even though the number of write operations are set

to 11, each file upload request will be issued with 20 binary files.

73

Table 4.5: PaaS Aggregator – overall performance test setup parameters.

Parameter Value

Number of threads (Users) 1,000

Ramp-up period (S) 10

Loop count (Number of time each thread gets executed) 3

Number of read requests per thread (Database, Storage and Cache) 9

Number of write requests per thread (Database, Storage and Cache) 11

Figure 4.14: PAS Performance – Response time vs Time elapsed (accessing through vendor-

specific APIs).

4.6.3 PaaS Aggregator – Overall Throughput Comparison

Figure 4.16 and 4.17 show the transaction throughput comparisons when the services

are accessed through vendor-specific APIs and PaaS Aggregator, respectively. Three

lines shown in each graph show the transaction throughput variation of each service

during the period of analysis. Maroon, Blue, and Green colors show the throughput

variations of PAC, PAD and PAS, respectively.

Clearly the throughput values achieved for CacheAccessor was much higher compared

to the other two accessors. This is because there were no CPU or memory intensive

work going on while accessing Cache.

74

Figure 4.15: PAS Performance – Response time vs Time elapsed (accessing through PAS).

Moreover, most of the login and log out requests must have been issued during the start

and end which resulted in a relatively low throughput values during those times. As the

throughput line of PAC stands out with high throughput values in the graph, the

fluctuations of the other two lines were not noticeable in this graph. However, we can

see that the overall transaction throughput values are around 6 to 8% higher when

accessing the services through vendor-specific APIs. The main reason for this is the

choice of log accessor storage provider and the absence of periodic synchronization

service as we discussed in previous sections.

4.7.1 PaaS Aggregator – Overall Response Time Comparison

As seen in Figure 4.18 and 4.19, the overall response times, when accessing services

through PaaS Aggregator are around 20% higher in average when compared to the

version which uses cloud vendor-specific APIs. The main contributing factor for these

numbers is the file upload request. The response time for this particular request, in

average, is around 40% higher in comparison. Moreover, some of the high volume data

retrieval requests contributed considerably to the overall response time distribution

(network latency may have also impacted).

75

Except those two types of requests, response time distributions of all the other requests

show identical behaviors with closer response times. We believe, by choosing an

efficient storage provider for the services in PaaS Aggregator, these response times can

be drastically reduced, thus by reducing the overall response times.

Figure 4.16: PaaS Aggregator Performance – Transaction Throughput vs. Time (accessing

through vendor-specific API).

Figure 4.17: PaaS Aggregator Performance – Transaction Throughput vs. Time (accessing

through PaaS Aggregator).

4.8 Summary

We investigated how PaaS Aggregator performed under a stressed workload when

comparing with a conventional SaaS application that is tightly coupled with a given

76

provider. We also discussed how the proposed multi-cloud library would perform when

the current active provider is not accessible any more. This on the fly synchronizing is

only available in PAD as of now, but there are enough provisions added into PAS, which

will enable us to maintain consistency over time. We observed that the performance

overhead that PAD and PAC bring into the data access layer is considerably low while

there was a considerable performance overhead introduced by PAS due to its extensive

logging mechanisms.

As we figured out during some of the test scenarios, the overall throughput and response

times may be affected by the extended logging functionality that is built into PaaS

Aggregator. We discussed how inappropriate selection of log storage providers might

slow down the requests, thus by affecting the overall performance of the application.

We also discussed it is advisable to maintain required background services in your SaaS

environment to periodically sync the environments using the utilities provided in the

PaaS Aggregator itself. We also saw that overall performance of the system when

simulating an environment, which access all the resources through PaaS Aggregator is

more or less identical, if we configured the system to access the resources otherwise.

Figure 4.18: PaaS Aggregator Performance – Response Time vs. Time (accessing through

vendor-specific API).

77

Figure 4.19: PaaS Aggregator Performance – Response Time vs. Time (accessing through

PaaS Aggregator).

78

CHAPTER 5

CONCLUSIONS

5.1 Summary

We proposed a simplified approach to enhance the availability of SaaS applications by

providing a framework to facilitate the SaaS application developers to utilize different

types of services without worrying about their corresponding vendor-specific

implementations. The framework is developed in the form of a library so that it

eventually becomes a part of the client application. The reason why this framework is

exposed as a library instead of a hosted REST API is to get rid of the vulnerability of

single point of failure. Apart from the simplified and unified service definitions, the

framework is also capable of migrating among different providers for a given service

when and if required. It is also equipped with required utilities to keep the information

consistent among different providers. Although the current framework is only capable

of handling limited number of platform services, the model can be adapted and extended

to support many services in future. Our ambition is to invite platform-level service

providers as well as open source contributors to provide adapters that can be plugged

into the framework so that at some point, developers will never be required to worry

any vendor-specific SDK at all. They can utilize this framework to do the

implementation once and then decide which PaaS provider to use based on a single

configuration file.

We presented an overall architecture of the PaaS Aggregator and how it works. One of

the key characteristics of the proposed architecture is the ability to switch among

different configured providers for a given service and the required information that it

provides for synchronizing purposes. Another important design decision that we have

built into in PaaS Aggregator overall architecture is the focus on extensibility. This is

very important as new PaaS providers can later provide implementations for their APIs.

We also discussed how most of the logging functionality is outsourced as a

responsibility of the SaaS application for the betterment of performance and reliability

of the overall application. It is essential to choose a storage provider which provides

those characteristics (especially metadata querying), as it can affect the overall

performance of the application. We also looked into how the background

79

synchronization among different providers should be done in dbaccessor and

storageaccessor. On the fly synchronization in database provider is available in PaaS

Aggregator and as of now, it cannot be switched off as the consistency is vital when it

comes to RDMSs. However, this process is not possible while accessing storage service

as the binary data synchronization is costly. Instead, PaaS Aggregator provides

information to decide whether the currently accessible storage is in sync or not. SaaS

applications can decide the way forward based on that. For example, if the storage is

not in sync, SaaS application can use the storage provider in read only mode until the

storage is back online. At the same time, PaaS Aggregator provides a utility to

synchronize storage providers defined in the configuration file. In order to make the

switching among different providers smooth, it is recommended to carry out

synchronization in a background service asynchronously.

As the solution for the problem at hand is to provide a thin layer into the application

data layer, it was important to verify that we do not introduce considerable overhead to

the application, thus by reducing the overall performance. Therefore, extensive stress

tests were carried out to test all the three services individually, as well as together. We

compared the transaction throughput of the server and response time of the requests

with and without the proposed PaaS Aggregator. Throughput and latency characteristics

of the proposed aggregator reduced marginally compared to the native application, due

to extensive logging available in PaaS Aggregator, if the log provider is not chosen

wisely. This can be overcome by choosing a log storage provider that supports metadata

querying. We observed that using Windows Azure Blob (which is not capable of

providing metadata querying) as the storage provider in PAS resulted in 40% of

transaction throughput drop. Moreover, it is recommended to choose the log storage

provider to be in the same region as the main service provider. Nevertheless, when we

tested the overall performance characteristics when all the services are accessed as a

mix, it turned out that the application overall performance averaged out over the time

period thus remained identical. Therefore, we can state that the reliability and

availability aspects overweigh the minor overheads that PaaS Aggregator introduces

into the applications.

In this way, our effort in providing a thin layer of abstraction in the data layer by means

of a library is providing us with positive results when it comes to alleviating vendor

80

lock-in syndrome in PaaS layer and improving the overall availability of the application.

Although PaaS Aggregator provides these possibilities with three of the most popular

services used in PaaS layer, we can easily extend the same architecture to support more

vendors for the existing services as well as adding more services into it.

5.2 Research Limitations

Our main objective was to provide a thin abstraction layer that is capable of providing

a unified API, thus by getting rid of tight coupling in SaaS applications to a particular

PaaS provider. However, by providing a library we assume that the hosted application

will always be online to migrate the data layer from provider to another. However, there

are other platform services like compute, schedulers, traffic managers, etc., which

cannot be migrated to a totally different service provider by this kind of a library

solution. Therefore, our PoC PaaS Aggregator implementation is capable of taking care

of platform services as long as the environment it resides in is stable and available. In

fact, solutions like Jelastic [29], OpenCloudWare [27], and PaaS Manager [20] are

capable of handling those platform services but these solutions are REST based hosted

services. Therefore, they are vulnerable to single point of failure, defeating their own

purpose of providing high availability. Consumers will have to depend on their services,

thus by creating another coupling in between SaaS and Platform layers. One of the

outcomes of this thesis is not only to provide an abstraction layer, which is capable of

providing the simplified interfaces which are provided by the hosted providers like PaaS

Manager [20], but also not to introduce any single point of failure risk into the SaaS

application by doing so.

PAD is only capable of handling operations in MSSQL databases. There is no support

for other database engines in PaaS Aggregator. Even though this seems like a possible

future work, this is tricky when it comes to synchronizing across different providers, as

well as query execution against different database engines. Furthermore, as we saw in

Section 4.6.2, if we choose an inefficient master log storage provider for PAS, it will

affect the overall performance of the PaaS Aggregator. Therefore, we can consider that

unavailability of an optimized master log storage provider built into PaaS Aggregator

is another limitation.

81

5.3 Future Work

Our work can be extended along the following directions:

Extending PaaS Aggregator to support more programming environments

As of now, PaaS Aggregator is implemented using .Net framework limiting its use to

.Net supported languages. The reason why we started with a .Net library is to support

the existing SaaS application which is .Net based. It will be advantageous, if we could

provide support for mainstream languages such as Java and NodeJs. Even with .Net-

based library, there are some improvements that we can still provide. For example,

dbaccessor in PaaS Aggregator is only capable of issuing SQL queries through

ADO.Net interface. With the rising popularity of ORM tools, we need to focus on

adding compatibility with ORMs like Entity Framework, Dapper.Net, and nHibernate.

Furthermore, we are planning to deploy the PaaS Aggregator components as Nuget

packages where the library can be referenced without any hassle and manage the

versions in a smooth manner. There will be four Nuget packages at the end, which look

like, PaaSAggregator.Core, PaaSAggregator.Database, PaaSAggregator.Cache, and

PaaSAggregagor.Storage. They can be referenced separately as long as the dependent

assemblies are available during the runtime.

Adding more services and provider support

It is useful to extend the solution to support for other platform services like Network

traffic manager, CDN, Active Directory, Service bus, etc., in PaaS Aggregator. This

requires some research into various types of functionalities provided by different service

providers and coming up with a standardized API. Also at the same time, we should

constantly extend the functionalities already available in existing supported services.

For example, the storage provider is only capable to handling simple binary content

upload and downloads, we need to extend it to support complex functionalities like

appending for log file manipulations.

Our PoC solution need to be extended to work on various other service providers beyond

Microsoft Azure and Amazon. Other service providers may contain different API

conventions, which need to be taken into account when providing support for them.

These should happen without diluting the important architectural decisions taken during

the initial implementations.

82

It is also important to come up with a mechanism to handle upgrading of vendor specific

SDKs inside PaaS Aggregator. As of now, it refers to the latest versions, but with the

time, we need to come up with a strategy to smoothly upgrade those SDKs.

Providing vendor-specific functionalities that cannot be abstracted

As the PaaS Aggregator abstracts the vendor-specific implementations, it only exposes

common functionalities that are available across majority of the PaaS providers.

However, different cloud providers may provide specific features that are not available

in other providers. Those features are expected not to be exposed through the API in

PaaS Aggregator by design. Therefore, we need to come up with a ponying mechanism

to allow the applications to utilize these vendor-specific features, if required.

Providing an implementation which uses provider native language

PaaS Aggregator acts as a mediator in the data layer of the application where the API

consumers need to adhere to the contracts provided in it. Therefore, if an application

already using AWS SDK is planning to migrate to PaaS Aggregator, the data layer needs

to be changed so that the correct contracts are invoked. If this API routing could take

place after the vendor-specific methods are called, then the amount of work that needs

to done by the PaaS Aggregator consumers will become less. It the meantime, it may

improve the performance in the application as we are using the native language of the

cloud provider.

83

References

[1] R. Harms and M. Yamartino, “The economics of the cloud,” [Online]. Available:

http://www.microsoft.com/presspass/presskits/cloud/docs/The-Economics-of-the-

Cloud.pdf. [Accessed: 20-Feb-2016]

[2] M. Armbrust et al., “Above the clouds: A Berkeley view of cloud computing,”

Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley,

Rep. UCB/EECS 28.13 (2009): 2009.

[3] C. David, P. Neves, and P. Sousa, “PaaS manager: A platform-as-a-service

aggregation framework,” Computer Science and Information Systems, vol. 11, no.

4, 2014, pp. 1209-1228.

[4] S. Kolb and G. Wirtz, “Towards Application Portability in Platform as a Service,”

in Proc. 8th Symp. Service-Oriented System Engineering, April 2014.

[5] Intel IT Center, “Platform as a Service (PaaS) Drives Cloud Demand,” Intel

Whitepaper, August 2013, [Online].Available:http://www.intel.com/content/dam

/www/public/us/en/documents/white-papers/cloud-computing-paas-cloud-

demand -paper.pdf

[6] W. Kim, S. D. Kim, E. Lee, and S. Lee, “Adoption issues for cloud computing,” in

Proc. 7th International Conference on Advances in Mobile Computing and

Multimedia, ACM, 2009.

[7] E. Anderson and D. M. Mitchell, “Hype cycle for cloud computing,” Gartner Inc.,

Stamford (2011): 71.

[8] Why PaaS growth is disproportional to other sectors. (2014, Oct 30). [Online].

Available: http://research.gigaom.com/2014/10/why-paas-growth-is-

disproportional-to-other-sectors/

[9] L. Wang, G. Von Laszewski, M. Kunze, and J. Tao, “Cloud computing: a

perspective study,” J New Generation Computing 28, no. 2 (2010): 137-146.

[10] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze, “Cloud

federation,” in Proceedings of the 2nd International Conference on Cloud

Computing, GRIDs, and Virtualization (CLOUD COMPUTING 2011), IARIA,

Sep 2011.

[11] C. Kanaracus, “PaaS Market to Reach $14 Billion by 2017, IDC Says,” InfoWorld

(November 8, 2013). [Online]. Available: http://infoworld.com/d/cloud-

computing/paas-market-reach-14-billion- 2017-idc-says-230440

84

[12] “Cloud-Related Spending by Businesses to Triple from 2011 to 2017.” IHS (press

release) (February 14, 2014). [Online]. Available: http://press.ihs.com/press-

release/design-supply-chain/cloud-related- spending-businesses-triple-2011-2017

[13] D. Sullivan “PaaS Providers List: 2014 Comparison and Guide.” Tom’s IT Pro

(January 31, 2014) with additions. [Online]. Available: http://www.tomsitpro

.com/articles/paas-providers,1-1517.html

[14] R. Cowan, “Tortoises and hares: Choice among technologies of unknown merit,”

The Economic Journal, Jan. 1991. [Online].

Available: http://links.jstor.org/sici?sici=0013-0133(199107)101%253A407%25

3C801%53ATAHCAT%253E2.0.CO%253B2-S

[15] S. Soltesz et al., “Container-based operating system virtualization: a scalable, high

performance alternative to hypervisors,” ACM SIGOPS Operating Systems

Review. Vol. 41, No. 3, ACM, 2007.

[16] A. Verma et al., “Large-scale cluster management at Google with Borg,” in Proc.

10th European Conference on Computer Systems, ACM, 2015.

[17] T. Aubonnet and N. Simoni, “Self-Control Cloud Services”, 2014 IEEE 13th

International Symposium on Network Computing and Applications (NCA), pp.

282-286, 2014.

[18] C. Goncalves, D. Cunha, P. Neves, P. Sousa, J. P. Barraca, and D. Gomes,

“Towards a Cloud Service Broker for the Meta-Cloud,” in Proc. 12th Conferencia

sobre Redes de Computadores, November 2012, Aveiro, Portugal.

[19] B. S. Lee, S. Yan, D. Ma, and G. Zhao, “Aggregating IaaS Service,” In Proc. 2011

Annual SRII Global Conference, Connecting Services to Science & Engineering,

San Jose, California, Mar. 2011.

[20] D. Cunha, P. Neves, and P. Sousa, “PaaS manager: A platform-as-a-service

aggregation framework,” Computer Science and Information Systems vol. 11,

issue 2, 2014

[21] D. Cunha, P. Neves, and P. Sousa, “Interoperability and portability of cloud service

enablers in a PaaS environment,” in Proc. 2nd International Conference on Cloud

Computing and Services Science, SciTePress, pp 432–437.

[22] F. Paraiso, P. Merle, and L. Seinturier, “soCloud: A service-oriented component-

based PaaS for managing portability, provisioning, elasticity and high availability

across multiple clouds,” Computing, 2014

85

[23] Kavis Technology Consulting, “Responsibilities in the Cloud,” [Online] Available:

http://www.kavistechnology.com/blog/responsibilities-in-the-cloud/

[24] C. Lin, “Scale a web app in Azure App Service,” [Online] Available: https://azure.

microsoft.com/en-gb/documentation/articles/web-sites-scale/

[25] “Web Application Hosting,” [Online] Available: https://aws.amazon.com/architec

ture/

[26] “What is Docker’s architecture?,” [Online] Available: https://docs.docker.com/e

ngine/understanding-docker/

[27] “OpenCloudware,” [Online] Available: http://www.opencloudware.org/bin/view

/Discover/OpenCloudware

[28] D. Bernstein, “Containers and Cloud: From LXC to Docker to Kubernetes,” Cloud

Computing, IEEE, vol. 1, no. 3, pp. 81-84, 2014.

[29] Jelastic: Multi-Cloud PaaS and CaaS for Business, [Online] Available: https://

jelastic.com

[30] Key Vault: Enhance data protection and compliance, [Online] Available: https://a

zure.microsoft.com/en-us/services/key-vault/

[31] API implementation guidance, [Online] Available: https://docs.microsoft.com/en-

us/azure/best-practices-api-implementation, 2016

[32] Cache aside pattern explained, [Online] Available: https://i-msdn.sec.s-msft.com/

dynim g/IC709568.png

[33] Microsoft Corporation, “AdventureWorks Sample Databases,” [Online] Available:

https://msdn.microsoft.com/en-us/library/ms124501(v=sql.100).aspx

[34] “Indexing and Querying Amazon S3 Metadata with Amazon SimpleDB,” [Online]

Available: https://aws.amazon.com/items/1465?externalID=1465

[35] “Testing and measuring performance with Apache JMeter,” [Online] Available:

https://github.com/apache/jmeter

[36] Microsoft Corporation, “Windows Azure Status History,” [Online] Available:

https://azure.microsoft.com/en-us/status/history/

[37] Lessons learned from recent cloud outages (2013). http://tinyurl.com/qz5maey

86

[38] Nuget: Package Manager for the Microsoft development platform. https://www.nu

get .org/

[39] A. Shalloway and J. Trott, “The Façade Pattern,” in Design Patterns Explained

Simply, vol. 2, 2002, pp 87 – 93.

