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Abstract 

Simulated annealing based optimized driver scheduling for vehicle delivery 

Vehicle delivery is a major business where third-party drivers are hired to deliver vehicles 

when they are relocated, sold, or while returning rental cars. This is motivated due to the busy 

schedule of individuals and companies, convince, and cost saving. A vehicle delivery company 

typically operates in a chosen geography varying from a region of a country to a set of 

countries that are nearby. Hence, the drivers are also geographically dispersed. This is a 

complicated process due to the wide variation in collection/delivery locations, driver 

availability, time bounds, types of vehicles, special skills required by drivers, and impact due 

to traffic and weather. Currently the process is manipulated manually by a scheduling manager 

who creates next day’s schedule at the end of the working day based on the jobs received. 

However, as the number of jobs and drivers increase, it is hard to decide on the most 

appropriate driver for the job such that both the customer and company goals are optimally 

satisfied. We propose an automated driver scheduling solution to maximize the number of 

vehicle deliveries and customer satisfaction while minimizing the delivery cost and 

distributing driver income based on their availability. Proposed solution consists of a rule 

checker and a scheduler. Rule checker enforces constraints such as deadlines, vehicle types, 

license types, skills, and working hours. Scheduler uses simulated annealing to assign as many 

jobs as possible while minimizing the overall cost. Using a workload derived from an actual 

vehicle delivery company, we demonstrate that the proposed solution has good coverage of 

jobs while minimizing the cost and equitably distributing the income among drivers based on 

their availability. Moreover, the proposed solution has the flexibility to tolerate exceptions due 

to breakdowns, excessive traffic, and bad weather without a considerable impact on the 

majority of the already scheduled jobs.  

 

Keywords: Optimization, Scheduling, Simulated Annealing, Vehicle Delivery 

  



v 

 

Dedication 

I dedicate my thesis work to my family and many friends. A special feeling of gratitude 

to my loving parents, Sarathchandra and Aruna Muramudalige whose words of 

encouragement and push for tenacity ring in my ears. My sister Dulari Muramudalige 

and my wife Sonali Muthukumarana have never left my side and are very special.  

I also dedicate this thesis to my many friends and colleagues who have supported me 

throughout the process. I will always appreciate all they have done, especially for 

helping me develop my technology skills. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

Acknowledgment 

I wish to thank my evaluation panel members who were more than generous with their 

expertise and precious time. A special thanks to Dr. Dilum Bandara, my research 

supervisor for his countless hours of reflecting, reading, encouraging, and most of all 

patients throughout the entire process. Thank you Dr. Shehan Perera, and Mr. Afkam 

Azeez for agreeing to serve on my evaluation panel and Eng. Nishal Samarasekara for 

agreeing to serve as my external supervisor.  

I would like to acknowledge and thank Department of Computer Science and 

Engineering, University of Moratuwa, for allowing me to conduct my research and 

providing any assistance requested. Special thanks go to both academic and non-

academic staff of the department for their continued support. I also gratitude to the 

University of Moratuwa for the financial support as the research was supported in part 

by the Senate Research Grant of the University of Moratuwa under award number 

SRC/LT/2016/14. 

Finally, I would like to thank the teachers, evaluators and colleagues that assisted me 

with this project. Their excitement and willingness to provide feedback made the 

completion of this research an enjoyable experience.  



vii 

 

Table of Content 

 

Declaration, copyright statement and the statement of the supervisor iii 

Abstract iv 

Dedication v 

Acknowledgement vi 

List of Figures ix 

List of Tables x 

List of Abbreviations xi 

1. INTRODUCTION 1 

1.1 Motivation 1 

1.2 Problem Statement 2 

1.3 Objectives 3 

1.4 Outline 3 

2. LITERATURE REVIEW 4 

2.1 Driver and vehicle scheduling in Limousine rental 4 

2.2 Column generation based hyper-heuristic solution for bus-driver scheduling 7 

2.3 Artificial neural systems for delivery truck scheduling 10 

2.4 RMC truck dispatching using machine-learning techniques 11 

2.5 Truck driver scheduling problem 13 

2.6 Summary 14 

3. PROBLEM FORMULATION 16 

3.1 Constraints 16 

3.2 Objectives 19 

4. PROPOSED SOLUTION 21 

4.1 Rule checker 21 

4.2 Job scheduler 23 

5. PERFORMANCE ANALYSIS 25 

5.1 Workload Creation 25 

5.2 Results 28 

5.2.1 Comparison with other algorithms 32 

5.2.2 Effects of the unavoidable delays and issues 37 

5.2.3 Effects of public transportation use of drivers 40 

5.2.4 Income distribution of drivers 42 

6. SUMMARY AND FURURE WORK 44 



viii 

 

6.1 Conclusion 44 

6.2 Future work 45 

References 47 

 

 

  



ix 

 

List of Figures 

Figure 4.1. Solution model for rule checker. 22 

Figure 5.1. (a) Job distribution of dataset 1 and (b) Job distribution of dataset 2. 26 

Figure 5.2. Driver distribution. 27 

Figure 5.3. Job coverage against total driver available hours in each day. 31 

Figure 5.4. Job coverage against different cooling rates. 32 

Figure 5.5. Pseudo code of initial solution. 33 

Figure 5.6. Pseudo code of enhanced hill climbing algorithm. 33 

Figure 5.7. Job coverage against various algorithms. 36 

Figure 5.8. Job coverage against various algorithms min-max range. 37 

Figure 5.9. Impact of delayed jobs against different delays. 39 

Figure 5.10. Impact of delayed jobs against different delays by regenerating the solution. 39 

Figure 5.11. Job coverage against different travel time factors. 41 

Figure 5.12. Profit against different travel cost factors. 41 

Figure 5.13. Weekly average of driver availability and income with ±1H time window for 

dataset 42 

Figure 5.14. Weekly income/availability ratio with ±1H time window for dataset 1. 43 

Figure 5.15. Weekly average of driver availability and income with ±1H time window for 

dataset 43 

Figure 5.16. Weekly income/availability ratio with ±1H time window for dataset 43 

 

  



x 

 

List of Tables 

Table 2.1. Driver related symbols. 17 

Table 2.2. Job related symbols. 17 

Table 2.3. Solution related symbols. 17 

Table 5.1. Driver availability by day. 25 

Table 5.2. SA Acceptance rates against initial temperatures with 0.003 cooling rate. 28 

Table 5.3. Results against different time windows on Monday for dataset 1 and 2 with 0.003 

cooling rate. 29 

Table 5.4. Results against different time windows across a week. 30 

Table 5.5. Results against different time windows on Monday for dataset 1 and 2 with 0.03 

cooling rate. 31 

Table 5.6. Results against different time windows on Monday for dataset 1 and 2 with hill 

climbing algorithm. 34 

Table 5.7. Results against different time windows on Monday for dataset 1 and 2 with initial 

solution. 34 

Table 5.8. Results against different time windows across a week with hill climbing 

algorithm. 35 

Table 5.9. Min, max, average results against different algorithms on Monday for dataset 1. 36 

Table 5.10. Impact of 5% of delayed jobs for dataset 1 and 2. 38 

Table 5.11. Impact of 5% of delayed jobs for dataset 1 and 2 with regenerating the solution.

 38 

Table 5.12. Impact of 10% of delayed jobs for dataset 1 and 2 with regenerating the solution.

 38 

Table 5.13. Results against different travel time factors on Monday for dataset 1 and 2 with 

±1H time window. 40 

Table 5.14. Results against different public transportation cost factors on Monday for dataset 

1 and 2 with ±1H time window. 40 

 

  



xi 

 

List of Abbreviations 

 

ANN   Artificial neural network 

ANS   Artificial Neural Systems 

BDSP  Bus Driver Scheduling Problem 

DA   Dispatch Area 

GPS  Global Positioning System 

HC   Hill Climbing 

IBK   Naive Bayes classifier 

ILP  Integer Linear Programming 

J48   Decision tree 

ML  Machine Learning 

NB   K nearest neighbor  

PART   Rule based algorithm 

RMC   Ready Mix Concrete 

RMP  Restricted Master Problem  

SA   Simulated Annealing 

SMO   Support vector machine 

TDSP  Truck Driver Scheduling Problem 

VD  Vehicle Delivery 

 



1 

 

1. INTRODUCTION 

 

While taxis and rental cars are popular services all around the world, there are other 

forms of business-to-business services such as Vehicle Delivery (VD) using third-

party drivers. When a customer wants to move a vehicle from one place to another, 

e.g., due to a sale or to return a rental car, he/she inquires a VD service to identify a 

suitable driver and a schedule. This is motivated due to the busy schedule of 

individuals and companies, convince, and cost saving. A VD company typically 

operates in a chosen geography varying from a region of a country to a set of nearby 

countries. Hence, the drivers are also geographically dispersed. The VD company 

needs to allocate an inquiry to the most suitable driver based on a set of parameters 

such as vehicle collection and delivery location and time, type of vehicle, driver’s 

location and availability, labor laws, traffic, and weather constraints. Moreover, driver 

allocation should focus on increasing customer satisfaction, operational efficiency, 

balanced driver income, and company profit. This is a dynamic environment where the 

schedules may change or even canceled due to reasons such as customer changing the 

pickup/delivery time, canceling a job, the arrival of a last-minute job from a high-

priority customer, vehicle breakdown or accident, excessive traffic, or unexpected 

driver unavailability due to sickness. Therefore, driver scheduling is also a complex 

scheduling problem, though the volumes are not as high as taxies or rental cars. 

Therefore, the VD industry requires a robust and scalable solution to maximize the 

customer satisfaction, efficiency, driver earnings, profit, and driver satisfaction. The 

solution should be capable of covering as many jobs as possible while minimizing 

overall cost and equitably distribute the income among drivers.  

 

1.1 Motivation 

Currently, driver scheduling is mostly manipulated manually by an experienced 

scheduling manager, who creates the next day’s schedule at the end of the previous 

working day based on the orders received. The scheduling manager also needs to keep 

track of the progress of jobs (usually by calling drivers and customers) and make 
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necessary adjustments due to dynamism as the day progresses. However, as the 

number of jobs and drivers increase, it becomes difficult to decide on the most 

appropriate driver for a job such that both the customer and company goals are 

optimally satisfied. Moreover, last-minute schedule changes could trigger a chain 

reaction to subsequent jobs. Therefore, the industry is in need of scalable and 

automated scheduling solutions that increase customer satisfaction, efficiency, 

company profits, and driver satisfaction. The company needs to maintain driver 

satisfaction as drivers are the primary asset, which is hard to replace and find in VD 

industry. Recruiting and training drivers are also costly processes which add to the 

bottom line of the company. Therefore, it is essential that drivers should not be idle, 

and jobs should be assigned relatively giving them an opportunity to earn a fair income 

based on their availability and willingness to contribute.  

However, as the driver, route, and vehicle scheduling problems are known to be NP-

hard, we cannot get the optimal solution within polynomial time [1], [2], [3]. 

Researchers have worked on driver, route, and vehicle scheduling problems and 

proposed various techniques.  Therefore, it requires identifying a suitable heuristic-

based solution that can still maximize the customer satisfaction, efficiency, driver 

earnings, and company profit. 

 

1.2 Problem Statement 

We consider a vehicle delivery company with a set of drivers that are spread around 

given geography. We assume the set of jobs to be assigned is known a priory. These 

jobs are typically assigned by an experienced scheduling manager at the end of the 

previous business day. Handling last minutes jobs is left as future work. Therefore, in 

this context the problem to be addressed can be formulated as follows: 

Given a set of drivers D and jobs J, how to automatically schedule drivers while 

maximizing customer satisfaction, efficiency, profit, and driver satisfaction? 

Problem is more formally expressed in Chapter 3. 
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1.3 Objectives 

Following set of objectives are to be used to address the above problem statement: 

• Identify parameters related to the drivers and customers and then formulate the 

driver scheduling problem as a constrained optimization problem with multiple 

objectives 

• To conduct a comprehensive literature study to identify suitable appropriate 

approaches to solve the given constrained optimization problem  

• Solve the constrained optimization problem using a suitable technique 

• To evaluate the performance of the proposed solution using a dataset from a 

real vehicle delivery company. Moreover, we plan to compare the results with 

other well-known solutions to similar problems 

 

1.4 Outline 

The rest of the thesis is organized as follows. Literature review is presented in Chapter 

2. Problem formulation including driver and job constraints and research objectives 

are presented in Chapter 3. Solution approach with the proposed rule checker and job 

scheduler are presented in Chapter 4. Performance analysis is presented in Chapter 5 

while summary and future work are presented in Chapter 6. 
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2. LITERATURE REVIEW 

 

Researchers have worked on driver, route, and vehicle scheduling problems for years 

and have proposed various methodologies and algorithms to solve the problem in a 

particular setting. We present related work on the driver and vehicle scheduling that is 

more relevant to driver scheduling problem in the vehicle delivery industry. Under 

each approach, we explore both the problem formulation and solution approach. 

 

2.1 Driver and vehicle scheduling in Limousine rental 

An automated driver and vehicle scheduling solution for a limousine renting company 

is proposed in [4]. The rental company has drivers and single depot where all vehicles 

are parked. Various trips are requested by customers daily. Therefore, the company’s 

goal is to schedule resources to cover as many trips as possible. The quality of service 

is a crucial issue, a schedule must comply with a set of important constraints, while 

optimizing some economic objectives. The rental company covers the Paris city and 

its suburbs, representing a surface of approximately 12,000 km2. Based on planners 

experience in allocating past jobs, this extensive area has been partitioned into 26 

zones. Additionally, major traffic generators, such as large hotels or airports have been 

precisely identified. More than 95% of the places involved in the problem match these 

specific locations. If it is not the case, the place is approximated to the zone center it 

belongs to. Travel times between all the identified locations have been pre-computed 

and stored in the database. To avoid having a null value within a zone, a threshold 

value has been set. Because travel times fluctuate a lot in big cities, authors have 

introduced possible travel time variations according to the type of day 

(working/holiday period) and the time range within the day. 

Every evening, according to the already booked trips (on average 70% of the total), a 

schedule is manually determined for the day after. This problem is highly 

combinatorial because instances can involve hundreds of trips, drivers, and vehicles 

per day. Moreover, the problem has to deal with various constraints and available 

resources. Real-Time management is then achieved throughout the day, including 
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change requests. Much uncertainty surrounds the trips as they can be booked, canceled, 

or modified at the last minute according to the customers’ wishes. Furthermore, this 

problem takes place in a dynamic environment because the company provides services 

in the Paris area where daily congestion and delays are high.  

Authors proposed a sequential, two-phase heuristic algorithm to solve the scheduling 

problem, where a constrained model is first used to get an initial solution, which is 

then optimized using SA. It is a random search technique inspired by annealing process 

where a solid is slowly cooled until its structure reaches a minimum energy 

configuration. Constraints and objectives are formulated considering a set of trips, 

drivers, and vehicles. 

The primary objective of the solution is to meet trip demands of customers. Therefore, 

the first goal is to find a schedule that maximizes the number of trips covered. The 

secondary objective is to reduce the number of working drivers and used vehicles. To 

reduce costs, it is also useful to minimize the number of upgrades, the time drivers 

spend waiting, and driving between trips. Authors mathematically formulate a set of 

constraints for capacity, category, features, skills, maximum spread time, possible 

sequences, and pairing constraints. Based on these constraints initial schedule is 

constructed. The initial solution is motivated by the Best Fit Decreasing Strategy 

introduced in [5] to tackle the bin-packing problem. The trips are sorted in decreasing 

order of duration, subsequently labeled one by one by a driver-vehicle pair that can 

handle it. After each assignment, a forward checking procedure is applied to prevent 

future conflicts.   

The initial schedule is then improved using an SA algorithm, which can find the global 

optimum in a large search space. It is well-known that the neighborhood is one of the 

most essential components of any SA algorithm [4]. For this reason, authors define 

and experiment with different neighborhood operators ranging from simple to complex 

compound moves, as follows: 

• 1_change –  Affects one variable (driver or vehicles) at a time 

• swap – Affects two variables 
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• 1_change_&_re-assigns – Picks a variable at random and assigns to a new 

value within its domain, if the variable does not create any conflict the value is 

stored, and then loop through all unassigned variables to assign values 

• Ejection_chain [6] – Is a mechanism which loops through all possible variables 

within its domain without creating any conflicts. It reduces the weakness of not 

maintaining the full employment of the resources like in 1_change 

• Ejection_chain_&_re-assigns – Merges two former neighborhood operators. It 

overcomes their weaknesses and takes advantage of their respective strengths 

Computational experiments were conducted ten datasets which were taken from the 

limousine rental company and representing different workloads. Due to the incomplete 

and non-deterministic nature of the methods, twenty independent runs were carried out 

on each instance with different random seeds. For neighborhood comparison, authors 

used a pure Hill Climbing algorithm with one instance, despite its tendency to fall into 

local optima and its incapacity to escape from them, Hill Climbing is a neutral 

algorithm, requiring almost no tuning of parameters, and thus, particularly adequate 

for comparing different neighborhoods [4].  

Authors observed that the swap mechanism behaves poorly and quickly trapped in a 

local minimum. The reason for this is that the evaluation function is dominated by the 

weighted number of assigned variables. The swap mechanism leaves this number 

unchanged and thus, cannot improve the objective function for long. 1_change 

modifies the value of a variable without creating conflicts. Its results outperform those 

of the swap neighborhood but remain unsatisfactory because the algorithm rapidly falls 

to a local minimum. Furthermore, the decrease is too slow to be employed in a real-

time context. Ejection_chain overcomes the first difficulty encountered by 1_change 

with its aggressive search strategy. The curve of 1_change_&_re-assigns delineates a 

rapid decrease because this neighborhood continually seeks a maximal consistent 

assignment. Eventually, Ejection_chain_&_re-assigns combines the respective 

strengths of the two previous neighborhoods and provides the best results.  
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Moreover, authors compared results between manual scheduling and SA. Results 

based on real data sets show a significant improvement compared with the actual 

practice. 

• at least 80% of the workload is automatically assigned 

• the constraints are all satisfied 

• the operational costs are reduced 

• the solution is displayed within a short amount of time (10 min) 

Within a short time, the solution supplies good quality schedules in which the major 

part of the trips is assigned. The constraints are all satisfied whereas the operational 

costs, including the number of resources, the number of upgrades, and the total idle 

time are reduced. However, the results show that total idle time of drivers has increased 

in SA-based solution compared to manual scheduling. 

Authors proposed a simultaneous approach for a driver and vehicle scheduling 

problem in a Limousine rental company. This research work forms a sound basis for 

our problem though the context is somewhat different. 

 

2.2 Column generation based hyper-heuristic solution for bus-driver scheduling  

Column generation based hyper-heuristic solution in [7] addressed the bus-driver 

scheduling problem (BDSP). Authors presented a solution to public transit providers 

who are facing continuous pressure to assign bus drivers to particular duties while 

improving service quality and reduce operating costs. Before scheduling the driver 

tasks, the vehicle routes must be constructed. A trip is a movement of a vehicle on a 

given path. It is the basic unit of service in the sense that each trip must be operated by 

a single vehicle. A vehicle block is a sequence of trips to be done by one vehicle from 

the time that it leaves the depot until it returns to the depot. From the viewpoint of 

driver scheduling, drivers can only be relieved at some designated places called relief 

points. The time slots when the vehicles are at the relief points are known as relief 

opportunities. The work between two consecutive relief opportunities on the same 

vehicle is called a piece of work (or task) for the driver. The work of a driver in a day 

is known as a duty (or shift). Note that not all relief opportunities will be used to relieve 
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drivers and therefore a driver may be covering several consecutive pieces of work, 

called a spell. According to which period the duties cover, the legal duties can be 

classified into five types as an early duty, late duty, night duty, day duty, and middle 

duty. 

Column generation approach is used to solve linear programming problems with many 

columns, and it assumes that there exists a sub-problem to optimize [9]. Column 

generation has been widely used in vehicle routing problems.  It is well-known that 

one of the drawbacks of column generation is the so-called “tailing-off” effect, where 

many iterations that do not significantly modify the optimal value of the Restricted 

Master Problem (RMP). Hyper-heuristic is an emerging technique in search and 

optimization [8], which reduces drawbacks in column generation.  

Authors then build a mathematical formulation and implement an objective function 

with the set of legal duties and the set of pieces of work to be covered. The column 

generation algorithm for the BDSP is initialed by giving a small set of duties 

(columns). The pricing subproblem of BDSP is typically modeled as a constrained 

shortest-path problem solved over a directed acyclic graph and then solved using 

dynamic programming techniques [9]. Nevertheless, because of the drawback that the 

subproblems for generating the columns would be computationally expensive in real 

problem instances [10], column generation did not make much progress toward solving 

large instances. Thus, authors, main work relies on the subproblem to speed up the 

whole process of column generation. Hence, authors propose the column generation 

based hyper-heuristic methodology to solve the BDSP. This approach provides two 

significant advantages. First, because column generation is known for its poor 

convergence, it is not necessary to select only one column with lowest reduced cost; 

in fact, any column with a negative reduced cost will do, which improves the overall 

efficiency. Thus, more than one duty with negative reduced costs may even be possible 

to be brought into the restricted subset per iteration. Second, the diverse columns with 

a negative reduced cost that are selected (or generated) can be performed efficiently.  

 

The outline of the algorithm consists of following seven steps: 
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• Step 0 (preprocessing) – Generate all valid duties. Then these duties form a 

column pool 𝑃. 

• Step 1 (construct an initial solution) – Take a small subset of the duties 𝑝 ⊂ 𝑃 

as inthe itial set of columns. 

• Step 2 (solving the RMP) – Solve the Linear Programming (LP) over the 

current duty subset and compute the shadow prices of the set of columns 𝑝. 

• Step 3 (duty management) – Control the column pool 𝑃 and remove the 

columns in the RMP if necessary. 

• Step 4 (selection of new duties) – Select duties with a negative reduced cost 

which will improve the solution and add them to the RMP. 

• Step 5 (stopping criterion) – If the stopping criterion is met, then go to Step 6; 

else go to Step 2. 

• Step 6 (finding integer solutions) – Solve ILP and obtain an integer solution. 

 

Authors demonstrated that the proposed solution is more scalable and outperforms all 

other well-known scheduling algorithms such as linear programming and SA. They 

use five instances which respectively increase the data size (number of pieces of work). 

In most cases of datasets, the proposed method could find solutions which similar to 

best-known solutions. The method does not perform well in some small-size datasets 

compared to linear programming, even to SA. However, as the size of instance 

increases, their method performs better. This is because that, for a small dataset, the 

algorithm is too complex, and its computing time is long. However, for large datasets, 

the classic methods meet the problem of the combinational explosion which is the 

typical feature of an NP-hard problem. The proposed algorithm shows its advantage 

of saving computing time when increasing the size of the dataset. 

Column generation algorithms are best used when there is a more extensive dataset 

with a limited number of constraints. In our case, we have to deal with the relatively 

small size of the dataset with a large number of constraints where column generation 

approach may provide inefficient results.  
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2.3 Artificial neural systems for delivery truck scheduling 

Feasibility of using artificial neural systems for delivery truck scheduling using a small 

scale, dynamic routing, and scheduling problem is presented in [11]. This research has 

addressed to a specific problem domain related to scheduling of delivery trucks from 

a regional distribution center. 

Authors proposed to demonstrate the applicability of Artificial Neural Systems (ANS) 

in the more general business environment. In this environment, data is often noisy and 

solutions to specific problems are in most instances non-optimal and in many cases 

unknown. As such, the learning capabilities of neural systems can be utilized as a 

source of improved solutions. Because these problems and NP-hard, there is no neural 

or heuristic approach exists that can optimally solve large-scale or small-scale dynamic 

driver vehicle scheduling problems. ANS could function in the domain of unstructured 

and pattern recognition problems. However, it is important to limit the search space 

initially because ideal problem domains have an infinite search space. With 

experiential knowledge, which could be captured in a ANS, significantly reduce the 

search space.  There are four general phases in the development of an operational, 

artificial neural system, namely: 

1. Conceptualization and development of initial ANS framework 

2. Operational development and training of network 

3. Testing and retraining of operational network 

4. Implementation and tracking 

The ANS is formulated using an organization that operates a large regional package 

distribution center in a medium-size commercial/urban area. From this center, three 

delivery trucks are loaded and dispatched to separate delivery areas (DA). The delivery 

areas are divided geographically into six zones. A DA can be serviced by multiple 

trucks, or one truck can service multiple areas. Within a DA there normally will be 

multiple deliveries along with possible pickups, all performed by the same truck. Not 

all DA’s will have scheduled pickup points, one pickup point can serve multiple 

delivery areas.  
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The example problem was selected for expositional purposes only and was restricted 

to three trucks and six locations for simplicity of explanation. Even with this small 

problem size, over 262,000 possible combinations of trucks and delivery areas are 

generated. All of those combinations are not feasible from a real-world point of view, 

and in fact, an organization may utilize no more than ten or twenty of the combinations. 

Authors use multi-layer perceptron, feed-forward, continuous valued input, and 

supervised learning environment to find a solution to dispatch delivery vehicles 

optimally. 

Authors discuss some of the drawbacks of the solution too. Standard optimization 

routines must wait until all data is known and then solve the problem. If the input 

dataset or other parameters change, optimization techniques require recalculation or 

modification of the model, while an adaptive neural system can modify itself. Authors 

show that further research is needed to determine if indeed neural systems can solve 

the complex and dynamic problems encountered in the business environment. 

Therefore, this approach would not provide acceptable results in dynamic 

environments where frequent changes in the datasets and parameters could occur. 

 

2.4 RMC truck dispatching using machine-learning techniques 

In [12], authors demonstrated that ready-mix concrete truck dispatching can be 

automated through machine learning techniques. A construction project consists of a 

wide range of complex tasks. Due to this complexity, most construction tasks are 

performed by humans. Additionally, it is very difficult to accurately predict 

performance and unavoidable errors. The managers or senior engineers play a key role 

in construction and rarely are their positions replaced by an automated process. This 

is because the tasks associated with most construction jobs are complex, highly 

dependent on specific project constraints, environmental conditions, and must adapt 

quickly based on incomplete as well as rapidly changing information. Feasibility of 

automation in RMC dispatching was studied using six ML techniques, namely:   

1. J48  -  Decision tree 

2. PART  -  Rule-based algorithm 
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3. ANN  -  Artificial neural network 

4. SMO  -  Support vector machine 

5. NB  -  K nearest neighbor  

6. IBK  -  Naive Bayes classifier 

Those techniques were selected and tested on data that was extracted from a developed 

simulation model. The results were compared by a human expert to ensure the 

accuracy of solutions. The simulation model consists of a single batch plant and three 

projects in a day. The effective parameters on the performance of RMC were 

extensively discussed in many kinds of literature such as [13], [14], [15] and based on 

the conducted research the following attributes were selected to build the training sets: 

Training set = {DD, AOC1, TT1, ST1, LP1, AOC2, TT2, ST2, LP2, AOC3, TT3, ST3, 

LP3, OS} 

• DD  - day of delivery in the week 

• AOCi  - amount of ordered concrete for project i 

• TTi  - travel time for project i include loading, hauling, pouring and return 

time 

• STi  - spacing time for project i (time between each pour) 

• LPi  - location of project i 

• OS  - order of supply 

For constructing a real situation in the simulation model, a metropolitan area consisting 

of seven suburbs was selected. In this area, there is a batch plant that supplies concrete 

for all seven selected suburbs. The generated data by simulation is sent to the dispatch 

manager of that batch plant for him to prioritize the projects in each day. The 200 

instances are prioritized by the dispatcher in two stages with each time involving 100 

instances. The same dataset was used in the six selected algorithms, and the ten-folds 

cross-validation was selected for evaluating the selected algorithms. This means that 

the data set was divided into ten-folds with around 90% of each fold used for training 

and the remaining 10% of data being used for testing.  
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Regarding comparison, the essential feature is accuracy. This reflects the ability of 

each algorithm to identify the correct decisions that are the primary task of a classifier. 

Regarding accuracy, ANN achieved the best performance and IBK was the worst. The 

accuracy rates of J48, PART, ANN, SMO, and NB are similar. In instances where 

algorithms are slightly different due to randomness concerns, which algorithms 

outperform others based only on accuracy cannot be identified [16]. Moreover, the 

best algorithm in one feature may not necessarily be the best in other performance 

metrics. The results show that, except for IBK which was outperformed by most of the 

other techniques, there is no significant difference between SMO, ANN, J48, NB, and 

PART. Thus, according to the ML approach, the performance of all selected 

algorithms, except for IBK, were the same. This demonstrates the strength of ML 

techniques in predicting human minds. Regarding solution building time, J48 and NB 

give better performance than PART, SMO, and ANN. In conclusion, authors 

demonstrated that the decision trees and k-nearest neighbor techniques give better 

results with lesser time than neural network and support vector machine based 

solutions.  

While the problem applies to a dynamic environment, it is more specific to the RMC 

trucks and drivers. However, our problem is highly combinative and complicated with 

many constraints and parameters and drivers compared to the RMC trucks scheduling 

problem. As authors demonstrated, decision trees and k-nearest neighbor techniques 

may provide acceptable results for our problem, but the computational time may 

increase due to the complexity.   

 

2.5 Truck driver scheduling problem  

A detailed discussion of the truck driver scheduling problem (TDSP) is presented in 

[17]. They present a literature review of the truck drivers scheduling problem since the 

year 2000 and to classify them to four criteria in which the primary objective is to offer 

a complete reference frame grouping the works dedicated to the truck driver 

scheduling. They suggest classifying the papers which related to truck drivers 

scheduling problem to the following four criteria. 
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1. The types of problems: Appropriation (driver, crew, vehicle) and Routing 

2. The nature of the goods transported (ordinary, hazardous) 

3. Types of work hours regulation (United States, European Union, Canada, etc.) 

4. The various constraints required (duty, rest duration, meal break, safety, etc.) 

According to the presented classification, authors note that: the interest of many 

researchers is focused on the work hour’s regulations and the constraints related to 

duty, rest, and meal break durations on the one hand and there are a lack of works 

treating the constraints related to the safety, psycho-physical, and driver’s experience. 

 

Above research papers implies that researchers have solved the driver, crew, and 

vehicle scheduling problems by using various standard and innovative algorithms for 

many years. There is no ideal way to solve these problems because these problems are 

NP-hard. Moreover, each solution thoroughly depends on the problem context, 

problem size, nature of the related constraints. However, there are several notable 

differences between the VD and other delivery problems. For example, in VD problem 

both the vehicles and drivers are geographically dispersed, whereas in limousine 

renting and bus scheduling problems vehicles and drivers are dispatched from a 

specific depot. Moreover, in VD problem most jobs are one way, types of vehicles and 

driver skills required to operate them drastically vary, some vehicles are not delivered 

on the same day as pickup (depending on distance and receiver availability), more 

flexible pickup/delivery times, and drivers are willing to work only on chosen 

geographies and times. Therefore, it is essential to formulate the optimization problem 

for the specific domain and devise a more fitting solution. 

 

2.6 Summary  

Several related work proposes to address the driver and vehicle scheduling problem 

using different optimization and machine-learning techniques. Because this is an NP-

hard problem, there is no ideal solution for this problem. Therefore, it is crucial to find 

out an appropriate approach in a given context that provides an acceptable result. 

Moreover, the chosen approach largely depends on the problem context such as the 
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size of the dataset (e.g., drivers and vehicles), number of constraints involved, and 

accepted output time. The problem we focus on contains a relatively higher number of 

constraints including multiples set of objectives to be achieved in priority order. In 

such cases, neural networks and machine-learning techniques generate enormous 

numbers of combinations that cannot be solved within a reasonable time. Therefore, a 

more scalable and computationally efficient approach is needed to solve driver 

scheduling in vehicle delivery problem. Based on the related work simulated annealing 

seems to be a more robust technique that can deal with highly nonlinear models, 

chaotic and noisy data, and with many constraints [23]. Moreover, it is flexible and 

able to approach global optimality than other local search methods. 

 

  



16 

 

3. PROBLEM FORMULATION 

 

In this chapter, we identify all parameters and constraints that affect the driver 

scheduling process. Then we used a constrained-based approach to filter out the 

possible search space as reducing the search space is important to achieve an 

acceptable solution in NP-hard problems.  

Let J be the set of Vehicle Delivery (VD) jobs, where each job j ∈ J has a pickup and 

delivery location and time, type of vehicle, and a preferred set of drivers (typically for 

recurrent jobs). These jobs are to be processed by a set of drivers D, where each driver 

d ∈ D has a set of required skills and is licensed to drive a set of vehicle categories. A 

driver has a home location, preference to work only on a set of geographies, preferred 

working days and times (e.g., part-time drivers), and is willing to accept only a given 

number of jobs per day/week. Moreover, regulatory requirements such as a maximum 

number of driving/working hours a day and days per week/month need to be met. Let 

fj be the fee for job j, which depends on the distance between pickup and delivery 

locations. Whereas cost per driver d for job j ( j
dc ) depends on the distance drove, 

driver’s skill level, and driver’s personal expenses to reach the pickup location, and 

return to the next job’s pickup location or return to the home. Our objective is to cover 

all jobs J with drivers D, such that fj -
j

dc  is maximized across all the jobs. Next, we 

describe each of the parameters and constraints in details and then formulate the 

optimization problem. Table 2.1 lists the driver related symbols. Table 2.2 and 2.3 lists 

the job and solution related symbols, respectively.  

 

3.1 Constraints  

To be eligible for a job, drivers need to satisfy the following set of constraints: 

Vehicle Type Constraint – Driver d must have a valid driving license to drive the 

vehicle type defined in job j, e.g., car, van, or truck. Therefore, 

 jtype ∈ dtype → d (1) 
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Table 2.1. Driver-related symbols. 

Symbol Description 

did Driver ID 

dtype Set of vehicle types driver d can drive with a valid driving license 

categories Set of vehicle categories d can drive based on special training 

dtime_max_day / dtime_max_week Maximum allowed driving time per day/week for driver d 

dwork_time Working days and hours of driver d 

djob_areas Set of preferred geographies driver d is willing to accept jobs 

djob_count No of jobs assigned so far to driver d on a given day 

dmax_jobs_day Maximum number of jobs driver d prefers to handle on a day 

ddrive_time_day / ddrive_time_week Total driving time of driver d for a given day/week 

 

Table 2.2. Job-related symbols. 

Symbol Description 

jid Job ID 

jtype Vehicle type demanded by job j 

jcategory Vehicle category demanded by job j 

jpickup_loc / jdelivery_loc Vehicle pickup/delivery location of job j  

jpickup_time / jdelivery_time Vehicle pickup/delivery day/time of job j  

jpreferred_drivers / 

jexcluded_drivers 

Customers may specify a set of drivers that they prefer/don’t prefer to 

work with based on the past experiences 

 

Table 2.3. Solution-related symbols. 

Symbol Description 

 fj The fee charged from a customer for job j (depends on job 

distance) 

 jtravel_time Estimated travel time for job j 

d
count

jobs  

Number of assigned jobs to driver d for on a given day 

λ Cost margin to assign a preferred driver 
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Vehicle Category Constraint – Some jobs demand specific driver skills and training, 

e.g., specific training may be required to operate certain luxury and heavy vehicles. 

Moreover, while delivering a high-end car or special-purpose vehicle to a new buyer, 

the manufacturer may train the driver on customer service and vehicle maintenance 

tips. Therefore, d must have the relevant training and skills to take the job: 

                                    jcategory =    jcategory ∈ dcategories →d                                           (2)  

 

Number of Jobs Constraint – As the VD company may also rely on part-time drivers, 

drivers have the flexibility to mention how many jobs they prefer to complete per day, 

without considering the complexity of jobs or income. Therefore, for a given day 

 djob_count + 1 ≤ dmax_jobs_day → d (3) 

 

Job Area Constraint – Drivers may mention their preferred area of work. Therefore, 

the driver should be assigned to jobs only within his/her preferred area: 

  jpickup_loc  djob_areas  jdelivery_loc  djob_areas → d (4) 

 

Driver Availability Constraint – Drivers have the flexibility to work on any day any 

time. Hence, their availability should match the job’s timeline as follows: 

 jpickup_time ∈ dwork_time  jdeliver_time ∈ dwork_time → d (5) 

 

Travel Time Constraint – For regulatory purposes, usually, there are limits on how 

many hours a driver can drive per day and a week. Therefore, for a given day and a 

week, total driving time of d and estimated driving time of the new job j should be 

within the maximum allowed:  

ddrive_time_day + jtravel_time ≤ dtime_max_day  ddrive_time_week + jtravel_time ≤ dtime_max_week → d (6) 
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where estimated travel time can be more accurately calculated today using services 

such as the Google Maps API [18] based on pickup/delivery location and time, traffic, 

and weather. Therefore, we define a job’s travel time as follows: 

 jtravel_time = ttf(jpickup_loc, jdelivery_loc, jpickup_time) (7) 

 

Feasible Sequences Constraint – Once a job is completed, it may not be possible to 

start the next job immediately. Therefore, a driver needs sufficient time to travel to the 

pickup location of the next job. This depends on many parameters such as delivery 

time of the previous job, availability of public transportation, and traffic. Therefore, 

                jnext_pickup_time = jdelivery_time + ttf(jdelivery_loc, jdelivery_time, jnext_pickup_loc) (8) 

 

Pairing Constraint – Frequent customers may specify a list of preferred or excluded 

drivers based on the past experiences. While such a list is typically specified per 

customer, from the modeling point of view, we can inherit job’s preference from 

customer’s list, without modeling the customer separately. Therefore, a preferred 

driver should be assigned when possible, while a driver in the excluded list of a job 

should not be assigned at all. Thus, the following constraints need to be satisfied: 

 did   jexcluded_drivers → d (9) 

 did ∈ jpreferred_drivers → d (10) 

However, a preferred driver cannot be assigned under all costs, as the objective is also 

to minimize the cost. Therefore, constraint (10) is enforced only when the cost of 

assigning a preferred driver is within a reasonable difference (say λ) from the other 

driver(s) with the least cost. 

 

3.2 Objectives  

Given a set of jobs J and drivers D, our main objective is to cover as many jobs as 

possible. This is required to improve customer satisfaction as some of the customers 

are engaged in a long-term business relationship. We further satisfy a secondary 
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objective, namely to maximize VD company’s overall profit. To minimize the cost, it 

is imperative to find the most appropriate driver who can do the job within the 

customer requested time frame with minimum cost. Drivers should not be idle, as they 

do not make any income when they are not driving. Hence, driver earning should be 

good, else they are likely to leave the company. Therefore, the objective function can 

be formulated as follows: 

  j ∈ J,  d ∈ D Max(|j with assigned d|) (11) 

 


−

DdJ,j

Max j
dj cf

 (12) 

 dincome  dwork_time (13) 

Constraint (11) maximizes the number of jobs with an assigned driver. Profit is given 

as fj -
j

dc . 
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4. PROPOSED SOLUTION 

 

As in many scheduling problems [4], we assume that every evening, the next day’s 

schedule is determined based on the already confirmed jobs and available drivers. It is 

difficult to estimate the job end time because it depends on operational inefficiencies, 

traffic, and weather which are hard to predict on a given day. While we investigate the 

flexibility of the automatically generated schedule in Chapter 5, dynamic scheduling 

to overcome last-minute changes is left as future work. Our solution consists of a rule 

checker that enforces the constraints in Section 3.1 and an optimization phase that 

attempts to cover as many jobs as possible while minimizing the overall cost. For 

optimization, we choose Simulated Annealing (SA) algorithm because it is used in 

global optimization problems in a wide range of areas including limousine renting in 

[4]. SA provides a reasonably optimized solution within a reasonable time and can be 

optimized according to the context [19]. 

 

4.1 Rule checker 

Given a set of job and drivers, the rule checker first evaluates the constraints in Section 

3.1 as shown in Figure 4.1. This reduces the search space of Simulated Annealing, as 

the number of potential drivers to be assigned to a job depends on the vehicle type, 

driver training, availability. When a new job comes, all drivers are evaluated. Rule 

checker proceeds with each constraint sequentially. When it goes through a constraint, 

it outputs the possible set of drivers who are eligible under the particular constraint. 

For the next constraint, only those filtered drivers would be fed. Likewise, the set of 

eligible drivers gradually decrease as we proceed through the constraints. Initially, rule 

checker proceeds with static constraints like vehicle type constraint, vehicle category 

constraint, job area constraint, and excluded driver check under pairing constraint, 

which can reduce the search space without depending on any external factors.  
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Figure 4.1. Solution model for rule checker. 

 



23 

 

Then the dynamic constraints such as travel time constraint and preferred driver check 

under pairing constraint are checked. Rule checker tolerates λ cost on selection 

between a any driver and a preferred driver. This enables assigning preferred drivers 

to a particular job to improve the customer satisfaction, as far as the additional expense 

is reasonable. 

 

4.2 Job scheduler 

Reduction in search space is essential to achieve an acceptable solution in NP-hard 

problems. This is achieved through the rule checker. Then the job driver (jid, did) pairs, 

which are identified as eligible for further processing, run through Simulated 

Annealing algorithm to find an optimal solution while maximizing the job coverage 

and minimizing the overall cost. Once, a driver is assigned to a job, his/her availability 

for other jobs will change. For example, once a job is assigned, a driver is not eligible 

for another job with pickup time that is less than the delivery time of the current job. 

Moreover, the cost of reaching the next pickup location can either reduce or increase. 

Therefore, after each job assignment, respective driver’s availability for all other 

unassigned jobs are rechecked using the rule checker, before considering for further 

job assignment by the Simulated Annealing algorithm. 

All distances and estimated times for VDs are taken from Google Distance API [20] 

to achieve more reliable and accurate estimates. Fee for a job fj is calculated based on 

the estimated distance between pickup and delivery locations of the job. We also define 

several parameters to make the solution more accurate. For example, a driver may need 

to use public transportation to reach the point of collection or to return to home or next 

job after a delivery. That journey may take more time than the driving time to/from 

delivery/pickup location, hence needs to be accurately captured while assigning 

subsequent jobs, as well as to estimate the departure/return time to/from a job. While 

the cost of public transportation is usually lower than taking a taxi or rental car, it still 

needs to be considered while calculating the cost of a job j
dc . We capture such delays 

and fees due to the use of public transportation by introducing two factors to multiply 

time and distance. A few countries or cities provide APIs to access bus and train 
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schedules, as well as associated fees. In such cases, the solution can be further 

improved by substituting values derived from such APIs instead of the proposed 

factors. 

SA is a probabilistic, single-solution-based search method inspired by annealing 

process where a solid is slowly cooled until its structure reaches a minimum energy 

configuration [21]. Optimization algorithms may converge to local optimums, and SA 

has its technique to avoid those disadvantages. SA accepts worst solutions at higher 

temperatures to avoid local optimums by setting its acceptance probability to a higher 

value. The main parameters of SA algorithm are an initial temperature, a rule for 

accepting a damaging move (i.e., higher cost solution), the rate at which the 

temperature decrements, the maximum number of neighboring solutions that can be 

generated at each temperature, and a stop criterion [22].  

Optimization search algorithms mostly optimize a cost or distance matrix. In our 

solution, our primary objective is to cover all possible jobs and then our secondary 

objective is to optimize cost matrix to minimize the overall job cost. In SA 

implementation, we prioritize to cover all possible jobs and then optimize the overall 

cost. 

It is essential to check out the reasons to select SA algorithm in driver scheduling over 

other optimization algorithms [23]. SA is a robust technique that can deal with highly 

nonlinear models, chaotic and noisy data, and with many constraints. Our solution is 

also built on many constraints and may contain chaotic and noisy data. SA is flexible 

and able to approach global optimality than other local search methods. SA is quite 

versatile as it does not rely on any restrictive properties of the model. SA is easily 

customizable and tuned. In our solution, the primary objective is not the cost 

optimization. We prioritize the order of objectives to maximize the job coverage and 

then minimize the job cost. We also able to get a stable solution within acceptable time 

and results will be discussed in next chapter. 
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5. PERFORMANCE ANALYSIS 

 

5.1 Workload Creation 

We used two different job datasets each with 80 jobs, against a set of 60 drivers. These 

datasets were created based on properties extracted from a dataset of a real VD 

company. This includes the distribution of job locations, pickup and delivery times 

(some jobs span across two days), driver skill distribution, and other constraints. Table 

5.1 shows a summary of driver availability across a week. Figure 5.1 illustrates the job 

locations for both datasets and Figure 5.2 illustrates driver locations. The size of circles 

represents the number of jobs and drivers of a city. As most of the jobs are from urban 

areas, recruited driver population also reflect somewhat matching behavior because 

VD companies are likely to recruit drivers from areas where they get many job traffic 

frequently. Jobs in the second dataset are more diverse than the first dataset; hence, 

excepted to take more time to complete jobs. For each day’s workload, we plan the 

schedule in the previous evening. 

 

Table 5.1. Driver availability by day. 

Day No of Drivers Average Available Time (H) 

Sunday 13 7.23 

Monday 58 9.56 

Tuesday 48 8.48 

Wednesday 49 7.51 

Thursday 50 8.34 

Friday 39 8.00 

Saturday 33 9.59 

 

Several parameters need to be considered as the problem runs in a dynamic 

environment. Instead of assigning a currency value for job fee and costs, we calculate 

it regarding the distance to be driven or distance on public transportation. We assume 

that the cost of taking a unit distance on public transportation is 0.7 of the cost of 

driving a vehicle. Moreover, the time required to take public transportation is 

calculated by multiplying the estimated time from Google Distance API by a factor of 
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1.2 (for the region considered in the analysis, Google Distance API does not give the 

time for public transportation). We later perform a parameter sweep to measure the 

impact of these values on the effectiveness of the solution. Moreover, a job will be 

assigned to a preferred driver, if the cost of assigning a preferred driver λ is within 50 

form the lowest cost driver not in the preferred list. 

 

           

(a) (b) 

Figure 5.1. (a) Job distribution of dataset 1 and (b) Job distribution of dataset 2. 
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Figure 5.2. Driver distribution. 

 

The tuning process of the SA algorithm is a delicate issue. It depends on the cooling 

strategy such as linear or exponential, cooling rate, and the energy of the system [24]. 

We ran the simulation five times with same job and driver dataset, and same 

configurations while varying the random seed. The simulation ran on a machine which 

has Intel Core i5-5200U CPU, 2.20 GHz processor, 8 GB RAM, and 3 MB Cache. We 

have implemented a Java-based simulator which initiates from a Java code for travel 

salesman problem [25]. Different combinations were tested on datasets resulting in the 

following set of parameters: 

• initial temperature of 104,  

• cooling rate of 0.003,  

• terminating condition of temperature ≤ 1.  
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In tuning process, we tried various initial temperatures w.r.t acceptance rate, which 

defines the percentage of accepted transitions overall generated transitions. The results 

are listed in Table 5.2 Initial temperature with more than 40% of acceptance rate will 

give reasonable results in SA [26]. That value is for a default SA algorithm which takes 

the primary objective as the cost optimization. Because our primary objective is to 

maximize the job coverage, it is essential to traverse through many possible transitions. 

We used an initial temperature of 104 which has a higher acceptance rate and can be 

processed within acceptable running time, and traverse through a relatively higher 

number of transitions with cooling rate of 0.003.  

 

Table 5.2. SA Acceptance rates against initial temperatures with 0.003 cooling rate. 

Initial Temperature Acceptance Rate (%) 

500 29 

750 33 

1,000 36 

2,000 41 

5,000 48 

10,000 52 

20,000 54 

 

 

5.2 Results 

In the VD business, pickup and delivery times on most jobs are not strict and can be 

advanced or delayed by a couple of hours, as far as the client is kept informed. This 

enables flexibility in optimally assigning jobs while minimizing costs, as well as 

dealing with unexpected delays due to breakdowns, traffic, and weather. The solution 

enables flexibility by using time windows.  

Table 5.3 shows a summary of the resulting solution under varying levels of flexibility 

in job pickup and delivery times. The number of jobs covered (aka., job coverage) 

depends on constraints among jobs and drivers, driver availability, job 

collection/delivery time, and time gap allowed to complete jobs. The job coverage is 



29 

 

highest when the time window is ±1 hour on Monday when the highest number of 

drivers are available. When the time window is set to ±1 hour on Monday, 92.5% and 

87.5% of the jobs are covered in dataset 1 and dataset 2, respectively.  While an 

increased time window provides more flexibility, it also reduces job coverage and 

increases the driver idle time. Cost is a measurement of the distance traveled by the 

driver to deliver the vehicle. This is the reason that the cost reduces as the number of 

assigned jobs reduces with increasing time window. Execution time increases as the 

time window increases, because of the increased search space in SA. Table 5.4 shows 

the summary of results over a week in different time windows. 

 

Table 5.3. Results against different time windows on Monday for dataset 1 and 2 with 0.003 

as cooling rate. 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 4 7 74 70 68 65 63 59 55 52 

Execution Time (s) 392 406 205 244 234 254 243 269 254 297 

Cost (100) 6 9 170 166 157 154 146 149 138 133 

Profit (100) 11 22 205 206 171 185 144 146 126 144 

  

Figure 5.3 illustrates the total available hours against jobs coverage for both datasets 

in each day. It shows that the number of assigned jobs is proportional to the available 

number of drivers and their available times. 
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Table 5.4. Results against different time windows across a week. 

 Tuesday 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 3 6 62 58 55 53 51 49 47 42 

Execution Time (s) 372 381 227 290 238 293 261 304 268 316 

Cost (100) 5 11 136 132 130 135 119 121 109 92 

 Wednesday 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 3 5 58 55 48 47 42 40 38 37 

Execution Time (s) 362 373 223 285 240 297 274 344 289 389 

Cost (100) 5 11 119 133 99 135 97 121 78 92 

 Thursday 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 3 6 67 62 59 56 53 50 49 42 

Execution Time (s) 371 373 217 264 225 299 242 324 262 329 

Cost (100) 5 12 154 140 132 132 118 132 120 95 

 Friday 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 2 5 51 48 44 42 40 38 34 32 

Execution Time (s) 348 359 224 265 236 299 252 317 271 326 

Cost (100) 3 9 109 112 95 86 85 86 64 73 

 Saturday 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 3 6 61  55 52 49 45 42 40 39 

Execution Time (s) 350 339 211 258 219 269 222 289 228 307 

Cost (100) 5 12 129 122 121 123 105 100 106 96 

 Sunday 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 2 4 18 17 16 14 14 13 13 13 

Execution Time (s) 287 323 255 295 252 294 245 306 254 302 

Cost (100) 3 6 32 32 33 28 21 20 16 19 
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Figure 5.3. Job coverage against total driver available hours in each day. 

 

Change of the cooling rate affects the number of transitions in SA under same initial 

temperature. We increased the cooling rate to 0.03 without changing the initial 

temperature. Table 5.5 shows the results against different time windows on Monday 

for both datasets. Figure 5.4 shows the jobs coverage against different cooling rates 

with different time windows in dataset 1. We still got same results or nearly same 

results in each case with less execution time. However, the resulting solution was less 

stable across different simulations, compared to when the cooling rate is 0.003. 

 

Table 5.5. Results against different time windows on Monday for dataset 1 and 2 with 0.03 

cooling rate. 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 4 6 73 69 69 64 62 59 54 52 

Execution Time (s) 43 34 22 27 24 31 24 31 26 31 

Cost (100) 9 13 163 178 166 159 148 157 129 138 

Profit (100) 22 37 204 200 169 175 150 143 113 118 



32 

 

Figure 5.4. Job coverage against different cooling rates. 

 

5.2.1 Comparison with other algorithms 

Performance of the SA solution was also compared to two other algorithms. The results 

were compared with the Hill Climbing algorithm which is another optimization 

algorithm. The initial solution randomizes all available drivers and assigns to jobs 

sequentially after checking the eligibility with rule checker. Initial solution propagates 

through whole search space because all drivers and jobs are randomized. We also use 

the initial solution as the initial seed for both SA and Hill Climbing. Figure 5.5 shows 

pseudo-code for the initial solution. Simple hill climbing algorithm evaluates initial 

state and then loop through neighbor nodes until there is no better solution than the 

current solution. Simple hill climbing algorithm can quickly converge to local 

optimums or plateau. An enhanced hill climbing algorithm was used to avoid above 

disadvantages in simple hill climbing algorithm. It loops through some iterations and 

finds a better solution. If the new solution is better than the previous solution, it is 

assigned as best one. Then again loop through some iteration to find a better solution. 

Likewise, it loops through until there is no better solution than the previous solution. 

This mechanism provides flexibility to traverse through a relatively larger search space 
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than in pure hill climbing and reduce the possibility of optimum local convergence. 

Figure 5.6 shows pseudo-code for enhanced hill climbing algorithm.  

 

 

shuffle(drivers) -> i 

jobs -> j 

 

loop j -> [1: size(jobs)] 

 

   if j < size(drivers)  

      i = j 

   else 

      i = j - size(drivers) 

   

  

   if driver is eligible 

                job j -> driver i 

   

end loop 

 

Figure 5.5. The pseudo-code of the initial solution. 

 

 

 
loop (improvement) 

 

   loop  

      if value(new) <= value(current) 

    current = new 

   end loop 

  

   if value(current) <= value(best) 

      best = current 

   else  

      improvement = false 

  

end loop  

 

Figure 5.6. The pseudo-code of enhanced hill climbing algorithm. 

 

Table 5.6 shows results against different time windows on Monday for both datasets 

with hill climbing algorithm, and Table 5.8 shows results against different time 

windows across a week with hill climbing algorithm. Table 5.7 shows results against 

different time windows on Monday for both datasets with initial solution. Figure 5.7 

illustrates job coverage against various algorithm on Monday for dataset 1. It shows 

that SA-based solution still gives a better solution regarding job coverage and hill 

climbing also gives an acceptable solution, but it is less than SA performance in each 
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time window. The initial solution is unable to provide satisfactory results compared to 

other two algorithms. 

Table 5.9 shows min, max, and average results against different algorithms on Monday 

for dataset 1 through different simulation runs. Figure 5.8 illustrates the min-max range 

of job coverage against different algorithms. This implies SA provide a more stable 

solution than other algorithms as its min-max range is relatively low in each case than 

other algorithms.  

 

Table 5.6. Results against different time windows on Monday for dataset 1 and 2 with hill 

climbing algorithm. 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 3 6 71 66 65 62 61 57 52 49 

Execution Time (s) 25 36 21 25 22 30 21 29 22 27 

Cost (100) 5 17 163 332 158 163 149 154 139 136 

Profit (100) 10 27 184 169 167 156 144 144 111 113 

 

 

Table 5.7. Results against different time windows on Monday for dataset 1 and 2 with initial 

solution. 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 1 2 31 30 34 31 33 31 29 27 

Cost (100) 0.78 4 71 76 78 69 78 78 72 63 

Profit (100) 1.52 4.6 83 85 76 70 72 49 53 50 

 



35 

 

Table 5.8. Results against different time windows across a week with hill climbing 

algorithm. 

 Tuesday 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 3 6 59 55 52 50 49 47 43 41 

Execution Time (s) 24 18 20 13 21 13 22 13 23 13 

Cost (100) 5 12 129 127 127 126 120 115 98 98 

 Wednesday 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 3 6 55 51 46 44 42 39 37 34 

Execution Time (s) 28 16 21 13 22 14 24 14 24 14 

Cost (100) 5 13 119 111 110 106 96 93 87 81 

 Thursday 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 3 6 63 60 55 54 51 49 47 41 

Execution Time (s) 27 16 22 13 23 14 24 13 24 14 

Cost (100) 4 13 138 133 130 130 126 118 118 98 

 Friday 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 2 5 48 45 42 39 38 37 33 31 

Execution Time (s) 26 15 21 12 21 14 21 13 21 13 

Cost (100) 3 11 108 10 99 95 87 89 79 73 

 Saturday 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 2 5 56 50 46 46 42 40 38 37 

Execution Time (s) 23 16 18 12 21 12 21 12 20 12 

Cost (100) 4 14 126 120 118 111 104 103 103 97 

 Sunday 

Time Window (h) 0 ±1 ±2 ±3 ±4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 2 4 16 15 14 13 13 13 13 13 

Execution Time (s) 21 12 21 12 21 11 21 11 22 12 

Cost (100) 3 7 32 33 31 26 32 26 23 23 
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Figure 5.7. Job coverage against various algorithms. 

 

Table 5.9. Min, max, average results against different algorithms on Monday for dataset 1. 

SA – Simulated annealing; HC – Hill climbing; IN – Initial solution; 

Time Window (h) 0 ±1 ±2 ±3  ±4 

Dataset SA HC IN SA HC IN SA HC IN SA HC IN SA HC IN 

Job Coverage                

Min 4 2 0 74 69 27 68 64 32 62 59 31 54 51 28 

Average 4 3 1 74 71 31 68 65 34 63 61 33 55 52 29 

Max 4 4 2 74 73 35 69 67 37 63 63 36 55 54 30 
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Figure 5.8. Job coverage against various algorithms min-max range. 

 

5.2.2 Effects of the unavoidable delays and issues 

More than one job can be assigned to a driver depending on his/her availability. 

However, if a job gets delayed due to reasons such as an accident, breakdown, traffic, 

and customer delay, all subsequent jobs of that driver gets affected. If the driver can 

take the vehicle home, as it needs to be delivered on the following day, such delays 

would impact jobs in the following day as well. Moreover, there are cases where the 

driver may suddenly become unavailable due to sickness or even without knowing a 

reason. In those scenarios, it is hard to assign another driver because they may be 

already assigned to other jobs. Thus, this could result in a chain reaction. Table 5.10 

shows the number of affected jobs w.r.t. different job delays in both datasets. Figure 

5.9 shows the impact of delayed jobs against different time delays. When the delay is 

increased, only a few jobs in the overall solution get affected as jobs are not tightly 

packed. Results show that only 5% and 7% of jobs get affected even with 5 hours delay 

in dataset 1 and dataset 2, respectively.  

In some cases, VD company may get to know some unavoidable delays or issues soon 

after they find the next day schedule, such as driver unavailability. In these scenarios, 

we can regenerate the schedule without affecting to other available drivers. We 

checked the impact of the delayed jobs by regenerating the solution. Table 5.11 shows 

the impact of 5% of jobs delayed and Table 5.12 shows the impact of 10% of jobs 
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delayed. Figure 5.10 shows the impact of delayed jobs against different delays. When 

5% and 10% jobs get delayed, only 4% and 11% of jobs get affected maximumly.   

Table 5.10. Impact of 5% of delayed jobs for dataset 1 and 2. 

Delay (H) 1 2 3 4 5 

Dataset 1 2 1 2 1 2 1 2 1 2 

No of jobs affected 1 1 2 2 3 3 3 4 4 5 

% of jobs affected 1 1 3 3 4 4 4 6 5 7 

 

Table 5.11. Impact of 5% of delayed jobs for dataset 1 and 2 with regenerating the solution. 

Delay (H) 0 1 2 3 4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Delayed Distance (km) - - 285 429 463 464 380 462 406 497 

Job Coverage 74 70 74 70 74 69 73 69 73 69 

% of jobs affected 0 0 1 1 4 4 4 4 4 4 

Execution Time (s) 205 244 206 275 226 279 203 264 215 273 

Cost (100) 170 166 171 172 160 170 162 166 162 163 

Profit (100) 205 206 210 208 205 203 207 201 207 207 

 

Table 5.12. Impact of 10% of delayed jobs for dataset 1 and 2 with regenerating the solution. 

Delay (H) 0 1 2 3 4 

Dataset 1 2 1 2 1 2 1 2 1 2 

Delayed Distance (km) - - 807 1097 784 895 825 885 937 970 

Job Coverage 74 70 72 69 68 65 69 62 68 64 

% of jobs affected 0 0 2 1 8 7 7 11 8 8 

Execution Time (s) 205 244 237 308 242 287 236 298 234 291 

Cost (100) 170 166 167 171 151 159 154 152 149 156 

Profit (100) 205 206 207 207 203 197 204 192 198 195 
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Figure 5.9. Impact of delayed jobs against different delays. 

 

 

 

Figure 5.10. Impact of delayed jobs against different delays by regenerating the solution. 
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5.2.3 Effects of public transportation use of drivers 

Drivers may want to use public transport to reach the vehicle pickup location and 

return from a delivery. The initial travel time factor set to 1.2 and Table 5.13 shows 

results against different travel time factors on Monday for dataset 1 and 2 with ±1H 

time window. Figure 5.11 illustrates job coverage variation against different travel 

time factors. It shows that there is no significant influence on job coverage with travel 

time factor and only a few jobs can be affected when the travel time factor increased. 

Initially, cost factor set to 0.7 and Table 5.14 shows the results against different cost 

factors. Figure 5.12 shows the profit against different travel cost factors. When the cost 

factor increases, the overall job cost gradually increases because VD company has to 

cover the cost associated with the driver using public transportation to return to the 

next job or home. Consequently, the profit gradually decreases with the increase of 

public transport cost factor.  

Table 5.13. Results against different travel time factors on Monday for dataset 1 and 2 with 

±1H time window. 

Travel Time Factor 1.1 1.2 1.3 1.4 1.5 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 74 70 74 70 74 69 73 69 73 69 

Execution Time (s) 228 279 224 280 222 272 226 274 221 274 

Cost (100) 170 177 173 179 163 170 154 166 155 163 

Profit (100) 207 207 206 204 207 207 210 204 211 206 

 

Table 5.14. Results against different public transportation cost factors on Monday for dataset 

1 and 2 with ±1H time window. 

Travel Cost Factor 0.5 0.6 0.7 0.8 0.9 

Dataset 1 2 1 2 1 2 1 2 1 2 

Job Coverage 74 70 74 70 74 70 74 70 74 70 

Execution Time (s) 218 279 214 263 218 265 221 266 215 260 

Cost (100) 145 146 154 159 161 174 178 189 192 200 

Profit (100) 231 224 216 211 202 204 188 183 179 174 
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Figure 5.11. Job coverage against different travel time factors.  

 

 

Figure 5.12. Profit against different travel cost factors.  
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5.2.4 Income distribution of drivers 

Usually, drivers are paid only for the number of kilometers the vehicle is driven, and 

subsistence expenses are reimbursed. Hence, a driver’s income is proportional to the 

total distance of assigned jobs. Figure 5.13 and 5.15 show the weekly average of a 

driver’s income w.r.t. to his/her average weekly availability for dataset 1 and 2, 

respectively.  

The Gini coefficient [27] is a measure of inequality of a distribution. The Gini 

coefficient is equal to half of the relative mean difference. The Gini coefficient is often 

used to measure income inequality. Here, zero corresponds to perfect income equality 

(i.e., everyone has the same income) and one corresponds to perfect income inequality 

(i.e., one person has all the income, while everyone else has zero income). The Gini 

coefficient can be used to measure wealth inequality. It is also commonly used for the 

measurement of the discriminatory power of rating systems in the credit risk 

management. We calculated Gini coefficient of income : availability ratio to inspect 

income distribution of drivers w.r.t their availability. Figure 5.14 and 5.16 respectively 

show the income :  availability ratio for dataset 1 and dataset 2 respectively. Gini 

coefficient of all drivers is 0.194 and 0.218 for dataset 1 and dataset 2 respectively. 

Thus, further confirms that driver income is balanced based on their willingness to 

contribute. 

 

Figure 5.13. Weekly average of driver availability and income with ±1H time window for 

dataset 1. 
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Figure 5.14. Weekly income/availability ratio with ±1H time window for dataset 1. 

 

Figure 5.15. Weekly average of driver availability and income with ±1H time window for 

dataset 2.  

 

Figure 5.16. Weekly income/availability ratio with ±1H time window for dataset 2. 
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6. SUMMARY AND FUTURE WORK 

 

 

6.1 Conclusion 

Vehicle delivery is a major business in many countries where third-party drivers are 

used to delivering vehicles when relocate, sold, or while returning from rental cars. A 

vehicle delivery company works in a certain geographical area and to fit the job 

locations drivers are also geographically dispersed. The driver scheduling is usually 

carried out by an experienced scheduling manager who schedules the next day’s 

schedule at the end of the previous day. As the number of jobs getting increased, the 

process becomes tiresome, error-prone, and sub-optimal as it is nontrivial to find an 

appropriate driver while maintaining conflicting goals of the customer, driver, and 

company.  

Therefore, vehicle delivery companies require a reliable and scalable solution to 

optimize driver allocation to increase the efficiency and reduce the company’s overall 

cost. Unlike taxis and rental cars services, vehicle delivery consists of various driver, 

customer, and job-related parameters, which makes the process more complicated.  

We identified all related parameters and built up required constraints most of which 

are unique to the vehicle delivery process. We have done a literature survey to figure 

out existing optimization algorithms which can approach global optimality in a 

chaotic, noisy environment with many constraints and easily customizable. We 

proposed a rule and Simulated Annealing based technique for the driver scheduling 

problem in the vehicle delivery industry.  

Simulation results were derived using a workload trace from a real vehicle delivery 

company. We used two different datasets each includes 80 jobs and 60 drivers, which 

would be a reasonable maximum traffic per day in the company. Our solution was 

capable of covering 82.5% and 78.5% of jobs respectively while minimizing overall 

cost. Moreover, drivers’ income was equitably distributed according to their 

availability as Gini coefficient of income : availability for both datasets were 0.194 

and 0.218, respectively. 
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The proposed solution was compared with two other optimization algorithms, where 

our solution outperformed Hill Climbing and Initial solution with better job coverage 

and a more stable solution. Time windows are used to tolerate unexpected delays in 

the process. It is also proved that only a few jobs get affected due to a delay in prior 

jobs. Even if we reschedule the whole jobs due to some known issues, only a few jobs 

get affected.  

Therefore, we can conclude that our solution is capable of covering a considerable 

amount of jobs while minimizing overall cost and equitably distributing drivers’ 

income based on their availability within acceptable computation time. Moreover, the 

solution can tolerate unexpected delays in the process without a considerable impact 

on the majority of jobs. 

 

6.2 Future Work 

In our solution, unavoidable delays are managed using flexible time windows. 

However, several practical situations are difficult to capture under a time window, e.g., 

excessive traffic, temporary road closed, the road under immediate construction, 

accidents, and breakdowns. Therefore, we need a mechanism to tolerate such events 

better. We believe this can be addressed by a kind of mechanism presented in [28]. 

The approach allocates available road space (or equivalently travel time) on designated 

roads to vehicles for the duration of their intended journey based on potentially 

prioritized requests. This approach is similar to how road space is now dedicated to 

public transport vehicles (via bus lanes) or multi-occupied private vehicles (via carpool 

lanes). If there is a mechanism to predict traffic in a particular area at a given time, our 

solution can be improved to consider those traffic when scheduling next day’s jobs. In 

[29], a GPS-based traffic prediction approach using machine learning was proposed.  

Customer satisfaction is the most prioritize objective in our solution. It is essential to 

facilitate the addition, update, and cancellation of last-minute job requests arriving at 

least within the day. Therefore, the solution needs to be improved further to capture 

last-minute job requests. We believe this objective can be addressed by a mechanism 

that always tries to allocate independent jobs which do not rely on already allocated 
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jobs. Therefore, we require a mechanism to evaluate the chain reaction effect of job 

allocation. 

Currently, our solution is only capable of finding the driver schedule when the total 

job set is available. It means the company already agreed to process all jobs in the next 

day. Although, the company may not be able to process all jobs as agreed. This is true 

for even manual scheduling and has a negative impact towards company’s reputation. 

Therefore, we require a real-time driver scheduling mechanism to provide real-time 

feedback to the customer about the feasibility of processing the job without conflicting 

with already scheduled jobs. This would enable a company to accept only the jobs that 

can be completed within agreed timeline. Even though there are already allocated jobs; 

we can still change the drivers among scheduled jobs to find the most optimized 

solution as each driver needs to know their next day’s schedule only the previous 

evening.   
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