

SIMULATED ANNEALING BASED OPTIMIZED

DRIVER SCHEDULING FOR VEHICLE DELIVERY

Shashika Ranga Muramudalige

(158041K)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2018

ii

SIMULATED ANNEALING BASED OPTIMIZED

DRIVER SCHEDULING FOR VEHICLE DELIVERY

Shashika Ranga Muramudalige

(158041K)

Thesis submitted in partial fulfillment of the requirements for the degree Master of

Science in Computer Science and Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2018

iii

Declaration, copyright statement and the statement of the supervisor

 “I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text. Also, I hereby grant to

University of Moratuwa the non-exclusive right to reproduce and distribute my thesis,

in whole or in part in print, electronic or other medium. I retain the right to use this

content in whole or part in future works (such as articles or books).”

Signature: Date:

The above candidate has carried out research for the Masters thesis under our

supervision.

Name of the supervisor: Dr. HMN Dilum Bandara

Signature of the supervisor: Date:

Name of the supervisor: Eng. Nishal Samarasekara

Signature of the supervisor: Date:

iv

Abstract

Simulated annealing based optimized driver scheduling for vehicle delivery

Vehicle delivery is a major business where third-party drivers are hired to deliver vehicles

when they are relocated, sold, or while returning rental cars. This is motivated due to the busy

schedule of individuals and companies, convince, and cost saving. A vehicle delivery company

typically operates in a chosen geography varying from a region of a country to a set of

countries that are nearby. Hence, the drivers are also geographically dispersed. This is a

complicated process due to the wide variation in collection/delivery locations, driver

availability, time bounds, types of vehicles, special skills required by drivers, and impact due

to traffic and weather. Currently the process is manipulated manually by a scheduling manager

who creates next day’s schedule at the end of the working day based on the jobs received.

However, as the number of jobs and drivers increase, it is hard to decide on the most

appropriate driver for the job such that both the customer and company goals are optimally

satisfied. We propose an automated driver scheduling solution to maximize the number of

vehicle deliveries and customer satisfaction while minimizing the delivery cost and

distributing driver income based on their availability. Proposed solution consists of a rule

checker and a scheduler. Rule checker enforces constraints such as deadlines, vehicle types,

license types, skills, and working hours. Scheduler uses simulated annealing to assign as many

jobs as possible while minimizing the overall cost. Using a workload derived from an actual

vehicle delivery company, we demonstrate that the proposed solution has good coverage of

jobs while minimizing the cost and equitably distributing the income among drivers based on

their availability. Moreover, the proposed solution has the flexibility to tolerate exceptions due

to breakdowns, excessive traffic, and bad weather without a considerable impact on the

majority of the already scheduled jobs.

Keywords: Optimization, Scheduling, Simulated Annealing, Vehicle Delivery

v

Dedication

I dedicate my thesis work to my family and many friends. A special feeling of gratitude

to my loving parents, Sarathchandra and Aruna Muramudalige whose words of

encouragement and push for tenacity ring in my ears. My sister Dulari Muramudalige

and my wife Sonali Muthukumarana have never left my side and are very special.

I also dedicate this thesis to my many friends and colleagues who have supported me

throughout the process. I will always appreciate all they have done, especially for

helping me develop my technology skills.

vi

Acknowledgment

I wish to thank my evaluation panel members who were more than generous with their

expertise and precious time. A special thanks to Dr. Dilum Bandara, my research

supervisor for his countless hours of reflecting, reading, encouraging, and most of all

patients throughout the entire process. Thank you Dr. Shehan Perera, and Mr. Afkam

Azeez for agreeing to serve on my evaluation panel and Eng. Nishal Samarasekara for

agreeing to serve as my external supervisor.

I would like to acknowledge and thank Department of Computer Science and

Engineering, University of Moratuwa, for allowing me to conduct my research and

providing any assistance requested. Special thanks go to both academic and non-

academic staff of the department for their continued support. I also gratitude to the

University of Moratuwa for the financial support as the research was supported in part

by the Senate Research Grant of the University of Moratuwa under award number

SRC/LT/2016/14.

Finally, I would like to thank the teachers, evaluators and colleagues that assisted me

with this project. Their excitement and willingness to provide feedback made the

completion of this research an enjoyable experience.

vii

Table of Content

Declaration, copyright statement and the statement of the supervisor iii

Abstract iv

Dedication v

Acknowledgement vi

List of Figures ix

List of Tables x

List of Abbreviations xi

1. INTRODUCTION 1

1.1 Motivation 1

1.2 Problem Statement 2

1.3 Objectives 3

1.4 Outline 3

2. LITERATURE REVIEW 4

2.1 Driver and vehicle scheduling in Limousine rental 4

2.2 Column generation based hyper-heuristic solution for bus-driver scheduling 7

2.3 Artificial neural systems for delivery truck scheduling 10

2.4 RMC truck dispatching using machine-learning techniques 11

2.5 Truck driver scheduling problem 13

2.6 Summary 14

3. PROBLEM FORMULATION 16

3.1 Constraints 16

3.2 Objectives 19

4. PROPOSED SOLUTION 21

4.1 Rule checker 21

4.2 Job scheduler 23

5. PERFORMANCE ANALYSIS 25

5.1 Workload Creation 25

5.2 Results 28

5.2.1 Comparison with other algorithms 32

5.2.2 Effects of the unavoidable delays and issues 37

5.2.3 Effects of public transportation use of drivers 40

5.2.4 Income distribution of drivers 42

6. SUMMARY AND FURURE WORK 44

viii

6.1 Conclusion 44

6.2 Future work 45

References 47

ix

List of Figures

Figure 4.1. Solution model for rule checker. 22

Figure 5.1. (a) Job distribution of dataset 1 and (b) Job distribution of dataset 2. 26

Figure 5.2. Driver distribution. 27

Figure 5.3. Job coverage against total driver available hours in each day. 31

Figure 5.4. Job coverage against different cooling rates. 32

Figure 5.5. Pseudo code of initial solution. 33

Figure 5.6. Pseudo code of enhanced hill climbing algorithm. 33

Figure 5.7. Job coverage against various algorithms. 36

Figure 5.8. Job coverage against various algorithms min-max range. 37

Figure 5.9. Impact of delayed jobs against different delays. 39

Figure 5.10. Impact of delayed jobs against different delays by regenerating the solution. 39

Figure 5.11. Job coverage against different travel time factors. 41

Figure 5.12. Profit against different travel cost factors. 41

Figure 5.13. Weekly average of driver availability and income with ±1H time window for

dataset 42

Figure 5.14. Weekly income/availability ratio with ±1H time window for dataset 1. 43

Figure 5.15. Weekly average of driver availability and income with ±1H time window for

dataset 43

Figure 5.16. Weekly income/availability ratio with ±1H time window for dataset 43

x

List of Tables

Table 2.1. Driver related symbols. 17

Table 2.2. Job related symbols. 17

Table 2.3. Solution related symbols. 17

Table 5.1. Driver availability by day. 25

Table 5.2. SA Acceptance rates against initial temperatures with 0.003 cooling rate. 28

Table 5.3. Results against different time windows on Monday for dataset 1 and 2 with 0.003

cooling rate. 29

Table 5.4. Results against different time windows across a week. 30

Table 5.5. Results against different time windows on Monday for dataset 1 and 2 with 0.03

cooling rate. 31

Table 5.6. Results against different time windows on Monday for dataset 1 and 2 with hill

climbing algorithm. 34

Table 5.7. Results against different time windows on Monday for dataset 1 and 2 with initial

solution. 34

Table 5.8. Results against different time windows across a week with hill climbing

algorithm. 35

Table 5.9. Min, max, average results against different algorithms on Monday for dataset 1. 36

Table 5.10. Impact of 5% of delayed jobs for dataset 1 and 2. 38

Table 5.11. Impact of 5% of delayed jobs for dataset 1 and 2 with regenerating the solution.

 38

Table 5.12. Impact of 10% of delayed jobs for dataset 1 and 2 with regenerating the solution.

 38

Table 5.13. Results against different travel time factors on Monday for dataset 1 and 2 with

±1H time window. 40

Table 5.14. Results against different public transportation cost factors on Monday for dataset

1 and 2 with ±1H time window. 40

xi

List of Abbreviations

ANN Artificial neural network

ANS Artificial Neural Systems

BDSP Bus Driver Scheduling Problem

DA Dispatch Area

GPS Global Positioning System

HC Hill Climbing

IBK Naive Bayes classifier

ILP Integer Linear Programming

J48 Decision tree

ML Machine Learning

NB K nearest neighbor

PART Rule based algorithm

RMC Ready Mix Concrete

RMP Restricted Master Problem

SA Simulated Annealing

SMO Support vector machine

TDSP Truck Driver Scheduling Problem

VD Vehicle Delivery

1

1. INTRODUCTION

While taxis and rental cars are popular services all around the world, there are other

forms of business-to-business services such as Vehicle Delivery (VD) using third-

party drivers. When a customer wants to move a vehicle from one place to another,

e.g., due to a sale or to return a rental car, he/she inquires a VD service to identify a

suitable driver and a schedule. This is motivated due to the busy schedule of

individuals and companies, convince, and cost saving. A VD company typically

operates in a chosen geography varying from a region of a country to a set of nearby

countries. Hence, the drivers are also geographically dispersed. The VD company

needs to allocate an inquiry to the most suitable driver based on a set of parameters

such as vehicle collection and delivery location and time, type of vehicle, driver’s

location and availability, labor laws, traffic, and weather constraints. Moreover, driver

allocation should focus on increasing customer satisfaction, operational efficiency,

balanced driver income, and company profit. This is a dynamic environment where the

schedules may change or even canceled due to reasons such as customer changing the

pickup/delivery time, canceling a job, the arrival of a last-minute job from a high-

priority customer, vehicle breakdown or accident, excessive traffic, or unexpected

driver unavailability due to sickness. Therefore, driver scheduling is also a complex

scheduling problem, though the volumes are not as high as taxies or rental cars.

Therefore, the VD industry requires a robust and scalable solution to maximize the

customer satisfaction, efficiency, driver earnings, profit, and driver satisfaction. The

solution should be capable of covering as many jobs as possible while minimizing

overall cost and equitably distribute the income among drivers.

1.1 Motivation

Currently, driver scheduling is mostly manipulated manually by an experienced

scheduling manager, who creates the next day’s schedule at the end of the previous

working day based on the orders received. The scheduling manager also needs to keep

track of the progress of jobs (usually by calling drivers and customers) and make

2

necessary adjustments due to dynamism as the day progresses. However, as the

number of jobs and drivers increase, it becomes difficult to decide on the most

appropriate driver for a job such that both the customer and company goals are

optimally satisfied. Moreover, last-minute schedule changes could trigger a chain

reaction to subsequent jobs. Therefore, the industry is in need of scalable and

automated scheduling solutions that increase customer satisfaction, efficiency,

company profits, and driver satisfaction. The company needs to maintain driver

satisfaction as drivers are the primary asset, which is hard to replace and find in VD

industry. Recruiting and training drivers are also costly processes which add to the

bottom line of the company. Therefore, it is essential that drivers should not be idle,

and jobs should be assigned relatively giving them an opportunity to earn a fair income

based on their availability and willingness to contribute.

However, as the driver, route, and vehicle scheduling problems are known to be NP-

hard, we cannot get the optimal solution within polynomial time [1], [2], [3].

Researchers have worked on driver, route, and vehicle scheduling problems and

proposed various techniques. Therefore, it requires identifying a suitable heuristic-

based solution that can still maximize the customer satisfaction, efficiency, driver

earnings, and company profit.

1.2 Problem Statement

We consider a vehicle delivery company with a set of drivers that are spread around

given geography. We assume the set of jobs to be assigned is known a priory. These

jobs are typically assigned by an experienced scheduling manager at the end of the

previous business day. Handling last minutes jobs is left as future work. Therefore, in

this context the problem to be addressed can be formulated as follows:

Given a set of drivers D and jobs J, how to automatically schedule drivers while

maximizing customer satisfaction, efficiency, profit, and driver satisfaction?

Problem is more formally expressed in Chapter 3.

3

1.3 Objectives

Following set of objectives are to be used to address the above problem statement:

• Identify parameters related to the drivers and customers and then formulate the

driver scheduling problem as a constrained optimization problem with multiple

objectives

• To conduct a comprehensive literature study to identify suitable appropriate

approaches to solve the given constrained optimization problem

• Solve the constrained optimization problem using a suitable technique

• To evaluate the performance of the proposed solution using a dataset from a

real vehicle delivery company. Moreover, we plan to compare the results with

other well-known solutions to similar problems

1.4 Outline

The rest of the thesis is organized as follows. Literature review is presented in Chapter

2. Problem formulation including driver and job constraints and research objectives

are presented in Chapter 3. Solution approach with the proposed rule checker and job

scheduler are presented in Chapter 4. Performance analysis is presented in Chapter 5

while summary and future work are presented in Chapter 6.

4

2. LITERATURE REVIEW

Researchers have worked on driver, route, and vehicle scheduling problems for years

and have proposed various methodologies and algorithms to solve the problem in a

particular setting. We present related work on the driver and vehicle scheduling that is

more relevant to driver scheduling problem in the vehicle delivery industry. Under

each approach, we explore both the problem formulation and solution approach.

2.1 Driver and vehicle scheduling in Limousine rental

An automated driver and vehicle scheduling solution for a limousine renting company

is proposed in [4]. The rental company has drivers and single depot where all vehicles

are parked. Various trips are requested by customers daily. Therefore, the company’s

goal is to schedule resources to cover as many trips as possible. The quality of service

is a crucial issue, a schedule must comply with a set of important constraints, while

optimizing some economic objectives. The rental company covers the Paris city and

its suburbs, representing a surface of approximately 12,000 km2. Based on planners

experience in allocating past jobs, this extensive area has been partitioned into 26

zones. Additionally, major traffic generators, such as large hotels or airports have been

precisely identified. More than 95% of the places involved in the problem match these

specific locations. If it is not the case, the place is approximated to the zone center it

belongs to. Travel times between all the identified locations have been pre-computed

and stored in the database. To avoid having a null value within a zone, a threshold

value has been set. Because travel times fluctuate a lot in big cities, authors have

introduced possible travel time variations according to the type of day

(working/holiday period) and the time range within the day.

Every evening, according to the already booked trips (on average 70% of the total), a

schedule is manually determined for the day after. This problem is highly

combinatorial because instances can involve hundreds of trips, drivers, and vehicles

per day. Moreover, the problem has to deal with various constraints and available

resources. Real-Time management is then achieved throughout the day, including

5

change requests. Much uncertainty surrounds the trips as they can be booked, canceled,

or modified at the last minute according to the customers’ wishes. Furthermore, this

problem takes place in a dynamic environment because the company provides services

in the Paris area where daily congestion and delays are high.

Authors proposed a sequential, two-phase heuristic algorithm to solve the scheduling

problem, where a constrained model is first used to get an initial solution, which is

then optimized using SA. It is a random search technique inspired by annealing process

where a solid is slowly cooled until its structure reaches a minimum energy

configuration. Constraints and objectives are formulated considering a set of trips,

drivers, and vehicles.

The primary objective of the solution is to meet trip demands of customers. Therefore,

the first goal is to find a schedule that maximizes the number of trips covered. The

secondary objective is to reduce the number of working drivers and used vehicles. To

reduce costs, it is also useful to minimize the number of upgrades, the time drivers

spend waiting, and driving between trips. Authors mathematically formulate a set of

constraints for capacity, category, features, skills, maximum spread time, possible

sequences, and pairing constraints. Based on these constraints initial schedule is

constructed. The initial solution is motivated by the Best Fit Decreasing Strategy

introduced in [5] to tackle the bin-packing problem. The trips are sorted in decreasing

order of duration, subsequently labeled one by one by a driver-vehicle pair that can

handle it. After each assignment, a forward checking procedure is applied to prevent

future conflicts.

The initial schedule is then improved using an SA algorithm, which can find the global

optimum in a large search space. It is well-known that the neighborhood is one of the

most essential components of any SA algorithm [4]. For this reason, authors define

and experiment with different neighborhood operators ranging from simple to complex

compound moves, as follows:

• 1_change – Affects one variable (driver or vehicles) at a time

• swap – Affects two variables

6

• 1_change_&_re-assigns – Picks a variable at random and assigns to a new

value within its domain, if the variable does not create any conflict the value is

stored, and then loop through all unassigned variables to assign values

• Ejection_chain [6] – Is a mechanism which loops through all possible variables

within its domain without creating any conflicts. It reduces the weakness of not

maintaining the full employment of the resources like in 1_change

• Ejection_chain_&_re-assigns – Merges two former neighborhood operators. It

overcomes their weaknesses and takes advantage of their respective strengths

Computational experiments were conducted ten datasets which were taken from the

limousine rental company and representing different workloads. Due to the incomplete

and non-deterministic nature of the methods, twenty independent runs were carried out

on each instance with different random seeds. For neighborhood comparison, authors

used a pure Hill Climbing algorithm with one instance, despite its tendency to fall into

local optima and its incapacity to escape from them, Hill Climbing is a neutral

algorithm, requiring almost no tuning of parameters, and thus, particularly adequate

for comparing different neighborhoods [4].

Authors observed that the swap mechanism behaves poorly and quickly trapped in a

local minimum. The reason for this is that the evaluation function is dominated by the

weighted number of assigned variables. The swap mechanism leaves this number

unchanged and thus, cannot improve the objective function for long. 1_change

modifies the value of a variable without creating conflicts. Its results outperform those

of the swap neighborhood but remain unsatisfactory because the algorithm rapidly falls

to a local minimum. Furthermore, the decrease is too slow to be employed in a real-

time context. Ejection_chain overcomes the first difficulty encountered by 1_change

with its aggressive search strategy. The curve of 1_change_&_re-assigns delineates a

rapid decrease because this neighborhood continually seeks a maximal consistent

assignment. Eventually, Ejection_chain_&_re-assigns combines the respective

strengths of the two previous neighborhoods and provides the best results.

7

Moreover, authors compared results between manual scheduling and SA. Results

based on real data sets show a significant improvement compared with the actual

practice.

• at least 80% of the workload is automatically assigned

• the constraints are all satisfied

• the operational costs are reduced

• the solution is displayed within a short amount of time (10 min)

Within a short time, the solution supplies good quality schedules in which the major

part of the trips is assigned. The constraints are all satisfied whereas the operational

costs, including the number of resources, the number of upgrades, and the total idle

time are reduced. However, the results show that total idle time of drivers has increased

in SA-based solution compared to manual scheduling.

Authors proposed a simultaneous approach for a driver and vehicle scheduling

problem in a Limousine rental company. This research work forms a sound basis for

our problem though the context is somewhat different.

2.2 Column generation based hyper-heuristic solution for bus-driver scheduling

Column generation based hyper-heuristic solution in [7] addressed the bus-driver

scheduling problem (BDSP). Authors presented a solution to public transit providers

who are facing continuous pressure to assign bus drivers to particular duties while

improving service quality and reduce operating costs. Before scheduling the driver

tasks, the vehicle routes must be constructed. A trip is a movement of a vehicle on a

given path. It is the basic unit of service in the sense that each trip must be operated by

a single vehicle. A vehicle block is a sequence of trips to be done by one vehicle from

the time that it leaves the depot until it returns to the depot. From the viewpoint of

driver scheduling, drivers can only be relieved at some designated places called relief

points. The time slots when the vehicles are at the relief points are known as relief

opportunities. The work between two consecutive relief opportunities on the same

vehicle is called a piece of work (or task) for the driver. The work of a driver in a day

is known as a duty (or shift). Note that not all relief opportunities will be used to relieve

8

drivers and therefore a driver may be covering several consecutive pieces of work,

called a spell. According to which period the duties cover, the legal duties can be

classified into five types as an early duty, late duty, night duty, day duty, and middle

duty.

Column generation approach is used to solve linear programming problems with many

columns, and it assumes that there exists a sub-problem to optimize [9]. Column

generation has been widely used in vehicle routing problems. It is well-known that

one of the drawbacks of column generation is the so-called “tailing-off” effect, where

many iterations that do not significantly modify the optimal value of the Restricted

Master Problem (RMP). Hyper-heuristic is an emerging technique in search and

optimization [8], which reduces drawbacks in column generation.

Authors then build a mathematical formulation and implement an objective function

with the set of legal duties and the set of pieces of work to be covered. The column

generation algorithm for the BDSP is initialed by giving a small set of duties

(columns). The pricing subproblem of BDSP is typically modeled as a constrained

shortest-path problem solved over a directed acyclic graph and then solved using

dynamic programming techniques [9]. Nevertheless, because of the drawback that the

subproblems for generating the columns would be computationally expensive in real

problem instances [10], column generation did not make much progress toward solving

large instances. Thus, authors, main work relies on the subproblem to speed up the

whole process of column generation. Hence, authors propose the column generation

based hyper-heuristic methodology to solve the BDSP. This approach provides two

significant advantages. First, because column generation is known for its poor

convergence, it is not necessary to select only one column with lowest reduced cost;

in fact, any column with a negative reduced cost will do, which improves the overall

efficiency. Thus, more than one duty with negative reduced costs may even be possible

to be brought into the restricted subset per iteration. Second, the diverse columns with

a negative reduced cost that are selected (or generated) can be performed efficiently.

The outline of the algorithm consists of following seven steps:

9

• Step 0 (preprocessing) – Generate all valid duties. Then these duties form a

column pool 𝑃.

• Step 1 (construct an initial solution) – Take a small subset of the duties 𝑝 ⊂ 𝑃

as inthe itial set of columns.

• Step 2 (solving the RMP) – Solve the Linear Programming (LP) over the

current duty subset and compute the shadow prices of the set of columns 𝑝.

• Step 3 (duty management) – Control the column pool 𝑃 and remove the

columns in the RMP if necessary.

• Step 4 (selection of new duties) – Select duties with a negative reduced cost

which will improve the solution and add them to the RMP.

• Step 5 (stopping criterion) – If the stopping criterion is met, then go to Step 6;

else go to Step 2.

• Step 6 (finding integer solutions) – Solve ILP and obtain an integer solution.

Authors demonstrated that the proposed solution is more scalable and outperforms all

other well-known scheduling algorithms such as linear programming and SA. They

use five instances which respectively increase the data size (number of pieces of work).

In most cases of datasets, the proposed method could find solutions which similar to

best-known solutions. The method does not perform well in some small-size datasets

compared to linear programming, even to SA. However, as the size of instance

increases, their method performs better. This is because that, for a small dataset, the

algorithm is too complex, and its computing time is long. However, for large datasets,

the classic methods meet the problem of the combinational explosion which is the

typical feature of an NP-hard problem. The proposed algorithm shows its advantage

of saving computing time when increasing the size of the dataset.

Column generation algorithms are best used when there is a more extensive dataset

with a limited number of constraints. In our case, we have to deal with the relatively

small size of the dataset with a large number of constraints where column generation

approach may provide inefficient results.

10

2.3 Artificial neural systems for delivery truck scheduling

Feasibility of using artificial neural systems for delivery truck scheduling using a small

scale, dynamic routing, and scheduling problem is presented in [11]. This research has

addressed to a specific problem domain related to scheduling of delivery trucks from

a regional distribution center.

Authors proposed to demonstrate the applicability of Artificial Neural Systems (ANS)

in the more general business environment. In this environment, data is often noisy and

solutions to specific problems are in most instances non-optimal and in many cases

unknown. As such, the learning capabilities of neural systems can be utilized as a

source of improved solutions. Because these problems and NP-hard, there is no neural

or heuristic approach exists that can optimally solve large-scale or small-scale dynamic

driver vehicle scheduling problems. ANS could function in the domain of unstructured

and pattern recognition problems. However, it is important to limit the search space

initially because ideal problem domains have an infinite search space. With

experiential knowledge, which could be captured in a ANS, significantly reduce the

search space. There are four general phases in the development of an operational,

artificial neural system, namely:

1. Conceptualization and development of initial ANS framework

2. Operational development and training of network

3. Testing and retraining of operational network

4. Implementation and tracking

The ANS is formulated using an organization that operates a large regional package

distribution center in a medium-size commercial/urban area. From this center, three

delivery trucks are loaded and dispatched to separate delivery areas (DA). The delivery

areas are divided geographically into six zones. A DA can be serviced by multiple

trucks, or one truck can service multiple areas. Within a DA there normally will be

multiple deliveries along with possible pickups, all performed by the same truck. Not

all DA’s will have scheduled pickup points, one pickup point can serve multiple

delivery areas.

11

The example problem was selected for expositional purposes only and was restricted

to three trucks and six locations for simplicity of explanation. Even with this small

problem size, over 262,000 possible combinations of trucks and delivery areas are

generated. All of those combinations are not feasible from a real-world point of view,

and in fact, an organization may utilize no more than ten or twenty of the combinations.

Authors use multi-layer perceptron, feed-forward, continuous valued input, and

supervised learning environment to find a solution to dispatch delivery vehicles

optimally.

Authors discuss some of the drawbacks of the solution too. Standard optimization

routines must wait until all data is known and then solve the problem. If the input

dataset or other parameters change, optimization techniques require recalculation or

modification of the model, while an adaptive neural system can modify itself. Authors

show that further research is needed to determine if indeed neural systems can solve

the complex and dynamic problems encountered in the business environment.

Therefore, this approach would not provide acceptable results in dynamic

environments where frequent changes in the datasets and parameters could occur.

2.4 RMC truck dispatching using machine-learning techniques

In [12], authors demonstrated that ready-mix concrete truck dispatching can be

automated through machine learning techniques. A construction project consists of a

wide range of complex tasks. Due to this complexity, most construction tasks are

performed by humans. Additionally, it is very difficult to accurately predict

performance and unavoidable errors. The managers or senior engineers play a key role

in construction and rarely are their positions replaced by an automated process. This

is because the tasks associated with most construction jobs are complex, highly

dependent on specific project constraints, environmental conditions, and must adapt

quickly based on incomplete as well as rapidly changing information. Feasibility of

automation in RMC dispatching was studied using six ML techniques, namely:

1. J48 - Decision tree

2. PART - Rule-based algorithm

12

3. ANN - Artificial neural network

4. SMO - Support vector machine

5. NB - K nearest neighbor

6. IBK - Naive Bayes classifier

Those techniques were selected and tested on data that was extracted from a developed

simulation model. The results were compared by a human expert to ensure the

accuracy of solutions. The simulation model consists of a single batch plant and three

projects in a day. The effective parameters on the performance of RMC were

extensively discussed in many kinds of literature such as [13], [14], [15] and based on

the conducted research the following attributes were selected to build the training sets:

Training set = {DD, AOC1, TT1, ST1, LP1, AOC2, TT2, ST2, LP2, AOC3, TT3, ST3,

LP3, OS}

• DD - day of delivery in the week

• AOCi - amount of ordered concrete for project i

• TTi - travel time for project i include loading, hauling, pouring and return

time

• STi - spacing time for project i (time between each pour)

• LPi - location of project i

• OS - order of supply

For constructing a real situation in the simulation model, a metropolitan area consisting

of seven suburbs was selected. In this area, there is a batch plant that supplies concrete

for all seven selected suburbs. The generated data by simulation is sent to the dispatch

manager of that batch plant for him to prioritize the projects in each day. The 200

instances are prioritized by the dispatcher in two stages with each time involving 100

instances. The same dataset was used in the six selected algorithms, and the ten-folds

cross-validation was selected for evaluating the selected algorithms. This means that

the data set was divided into ten-folds with around 90% of each fold used for training

and the remaining 10% of data being used for testing.

13

Regarding comparison, the essential feature is accuracy. This reflects the ability of

each algorithm to identify the correct decisions that are the primary task of a classifier.

Regarding accuracy, ANN achieved the best performance and IBK was the worst. The

accuracy rates of J48, PART, ANN, SMO, and NB are similar. In instances where

algorithms are slightly different due to randomness concerns, which algorithms

outperform others based only on accuracy cannot be identified [16]. Moreover, the

best algorithm in one feature may not necessarily be the best in other performance

metrics. The results show that, except for IBK which was outperformed by most of the

other techniques, there is no significant difference between SMO, ANN, J48, NB, and

PART. Thus, according to the ML approach, the performance of all selected

algorithms, except for IBK, were the same. This demonstrates the strength of ML

techniques in predicting human minds. Regarding solution building time, J48 and NB

give better performance than PART, SMO, and ANN. In conclusion, authors

demonstrated that the decision trees and k-nearest neighbor techniques give better

results with lesser time than neural network and support vector machine based

solutions.

While the problem applies to a dynamic environment, it is more specific to the RMC

trucks and drivers. However, our problem is highly combinative and complicated with

many constraints and parameters and drivers compared to the RMC trucks scheduling

problem. As authors demonstrated, decision trees and k-nearest neighbor techniques

may provide acceptable results for our problem, but the computational time may

increase due to the complexity.

2.5 Truck driver scheduling problem

A detailed discussion of the truck driver scheduling problem (TDSP) is presented in

[17]. They present a literature review of the truck drivers scheduling problem since the

year 2000 and to classify them to four criteria in which the primary objective is to offer

a complete reference frame grouping the works dedicated to the truck driver

scheduling. They suggest classifying the papers which related to truck drivers

scheduling problem to the following four criteria.

14

1. The types of problems: Appropriation (driver, crew, vehicle) and Routing

2. The nature of the goods transported (ordinary, hazardous)

3. Types of work hours regulation (United States, European Union, Canada, etc.)

4. The various constraints required (duty, rest duration, meal break, safety, etc.)

According to the presented classification, authors note that: the interest of many

researchers is focused on the work hour’s regulations and the constraints related to

duty, rest, and meal break durations on the one hand and there are a lack of works

treating the constraints related to the safety, psycho-physical, and driver’s experience.

Above research papers implies that researchers have solved the driver, crew, and

vehicle scheduling problems by using various standard and innovative algorithms for

many years. There is no ideal way to solve these problems because these problems are

NP-hard. Moreover, each solution thoroughly depends on the problem context,

problem size, nature of the related constraints. However, there are several notable

differences between the VD and other delivery problems. For example, in VD problem

both the vehicles and drivers are geographically dispersed, whereas in limousine

renting and bus scheduling problems vehicles and drivers are dispatched from a

specific depot. Moreover, in VD problem most jobs are one way, types of vehicles and

driver skills required to operate them drastically vary, some vehicles are not delivered

on the same day as pickup (depending on distance and receiver availability), more

flexible pickup/delivery times, and drivers are willing to work only on chosen

geographies and times. Therefore, it is essential to formulate the optimization problem

for the specific domain and devise a more fitting solution.

2.6 Summary

Several related work proposes to address the driver and vehicle scheduling problem

using different optimization and machine-learning techniques. Because this is an NP-

hard problem, there is no ideal solution for this problem. Therefore, it is crucial to find

out an appropriate approach in a given context that provides an acceptable result.

Moreover, the chosen approach largely depends on the problem context such as the

15

size of the dataset (e.g., drivers and vehicles), number of constraints involved, and

accepted output time. The problem we focus on contains a relatively higher number of

constraints including multiples set of objectives to be achieved in priority order. In

such cases, neural networks and machine-learning techniques generate enormous

numbers of combinations that cannot be solved within a reasonable time. Therefore, a

more scalable and computationally efficient approach is needed to solve driver

scheduling in vehicle delivery problem. Based on the related work simulated annealing

seems to be a more robust technique that can deal with highly nonlinear models,

chaotic and noisy data, and with many constraints [23]. Moreover, it is flexible and

able to approach global optimality than other local search methods.

16

3. PROBLEM FORMULATION

In this chapter, we identify all parameters and constraints that affect the driver

scheduling process. Then we used a constrained-based approach to filter out the

possible search space as reducing the search space is important to achieve an

acceptable solution in NP-hard problems.

Let J be the set of Vehicle Delivery (VD) jobs, where each job j ∈ J has a pickup and

delivery location and time, type of vehicle, and a preferred set of drivers (typically for

recurrent jobs). These jobs are to be processed by a set of drivers D, where each driver

d ∈ D has a set of required skills and is licensed to drive a set of vehicle categories. A

driver has a home location, preference to work only on a set of geographies, preferred

working days and times (e.g., part-time drivers), and is willing to accept only a given

number of jobs per day/week. Moreover, regulatory requirements such as a maximum

number of driving/working hours a day and days per week/month need to be met. Let

fj be the fee for job j, which depends on the distance between pickup and delivery

locations. Whereas cost per driver d for job j (j
dc) depends on the distance drove,

driver’s skill level, and driver’s personal expenses to reach the pickup location, and

return to the next job’s pickup location or return to the home. Our objective is to cover

all jobs J with drivers D, such that fj -
j

dc is maximized across all the jobs. Next, we

describe each of the parameters and constraints in details and then formulate the

optimization problem. Table 2.1 lists the driver related symbols. Table 2.2 and 2.3 lists

the job and solution related symbols, respectively.

3.1 Constraints

To be eligible for a job, drivers need to satisfy the following set of constraints:

Vehicle Type Constraint – Driver d must have a valid driving license to drive the

vehicle type defined in job j, e.g., car, van, or truck. Therefore,

 jtype ∈ dtype → d (1)

17

Table 2.1. Driver-related symbols.

Symbol Description

did Driver ID

dtype Set of vehicle types driver d can drive with a valid driving license

categories Set of vehicle categories d can drive based on special training

dtime_max_day / dtime_max_week Maximum allowed driving time per day/week for driver d

dwork_time Working days and hours of driver d

djob_areas Set of preferred geographies driver d is willing to accept jobs

djob_count No of jobs assigned so far to driver d on a given day

dmax_jobs_day Maximum number of jobs driver d prefers to handle on a day

ddrive_time_day / ddrive_time_week Total driving time of driver d for a given day/week

Table 2.2. Job-related symbols.

Symbol Description

jid Job ID

jtype Vehicle type demanded by job j

jcategory Vehicle category demanded by job j

jpickup_loc / jdelivery_loc Vehicle pickup/delivery location of job j

jpickup_time / jdelivery_time Vehicle pickup/delivery day/time of job j

jpreferred_drivers /

jexcluded_drivers

Customers may specify a set of drivers that they prefer/don’t prefer to

work with based on the past experiences

Table 2.3. Solution-related symbols.

Symbol Description

 fj The fee charged from a customer for job j (depends on job

distance)

 jtravel_time Estimated travel time for job j

d
count

jobs

Number of assigned jobs to driver d for on a given day

λ Cost margin to assign a preferred driver

18

Vehicle Category Constraint – Some jobs demand specific driver skills and training,

e.g., specific training may be required to operate certain luxury and heavy vehicles.

Moreover, while delivering a high-end car or special-purpose vehicle to a new buyer,

the manufacturer may train the driver on customer service and vehicle maintenance

tips. Therefore, d must have the relevant training and skills to take the job:

 jcategory =   jcategory ∈ dcategories →d (2)

Number of Jobs Constraint – As the VD company may also rely on part-time drivers,

drivers have the flexibility to mention how many jobs they prefer to complete per day,

without considering the complexity of jobs or income. Therefore, for a given day

 djob_count + 1 ≤ dmax_jobs_day → d (3)

Job Area Constraint – Drivers may mention their preferred area of work. Therefore,

the driver should be assigned to jobs only within his/her preferred area:

 jpickup_loc  djob_areas  jdelivery_loc  djob_areas → d (4)

Driver Availability Constraint – Drivers have the flexibility to work on any day any

time. Hence, their availability should match the job’s timeline as follows:

 jpickup_time ∈ dwork_time  jdeliver_time ∈ dwork_time → d (5)

Travel Time Constraint – For regulatory purposes, usually, there are limits on how

many hours a driver can drive per day and a week. Therefore, for a given day and a

week, total driving time of d and estimated driving time of the new job j should be

within the maximum allowed:

ddrive_time_day + jtravel_time ≤ dtime_max_day  ddrive_time_week + jtravel_time ≤ dtime_max_week → d (6)

19

where estimated travel time can be more accurately calculated today using services

such as the Google Maps API [18] based on pickup/delivery location and time, traffic,

and weather. Therefore, we define a job’s travel time as follows:

 jtravel_time = ttf(jpickup_loc, jdelivery_loc, jpickup_time) (7)

Feasible Sequences Constraint – Once a job is completed, it may not be possible to

start the next job immediately. Therefore, a driver needs sufficient time to travel to the

pickup location of the next job. This depends on many parameters such as delivery

time of the previous job, availability of public transportation, and traffic. Therefore,

 jnext_pickup_time = jdelivery_time + ttf(jdelivery_loc, jdelivery_time, jnext_pickup_loc) (8)

Pairing Constraint – Frequent customers may specify a list of preferred or excluded

drivers based on the past experiences. While such a list is typically specified per

customer, from the modeling point of view, we can inherit job’s preference from

customer’s list, without modeling the customer separately. Therefore, a preferred

driver should be assigned when possible, while a driver in the excluded list of a job

should not be assigned at all. Thus, the following constraints need to be satisfied:

 did  jexcluded_drivers → d (9)

 did ∈ jpreferred_drivers → d (10)

However, a preferred driver cannot be assigned under all costs, as the objective is also

to minimize the cost. Therefore, constraint (10) is enforced only when the cost of

assigning a preferred driver is within a reasonable difference (say λ) from the other

driver(s) with the least cost.

3.2 Objectives

Given a set of jobs J and drivers D, our main objective is to cover as many jobs as

possible. This is required to improve customer satisfaction as some of the customers

are engaged in a long-term business relationship. We further satisfy a secondary

20

objective, namely to maximize VD company’s overall profit. To minimize the cost, it

is imperative to find the most appropriate driver who can do the job within the

customer requested time frame with minimum cost. Drivers should not be idle, as they

do not make any income when they are not driving. Hence, driver earning should be

good, else they are likely to leave the company. Therefore, the objective function can

be formulated as follows:

  j ∈ J,  d ∈ D Max(|j with assigned d|) (11)

 


−

DdJ,j

Max j
dj cf

 (12)

 dincome  dwork_time (13)

Constraint (11) maximizes the number of jobs with an assigned driver. Profit is given

as fj -
j

dc .

21

4. PROPOSED SOLUTION

As in many scheduling problems [4], we assume that every evening, the next day’s

schedule is determined based on the already confirmed jobs and available drivers. It is

difficult to estimate the job end time because it depends on operational inefficiencies,

traffic, and weather which are hard to predict on a given day. While we investigate the

flexibility of the automatically generated schedule in Chapter 5, dynamic scheduling

to overcome last-minute changes is left as future work. Our solution consists of a rule

checker that enforces the constraints in Section 3.1 and an optimization phase that

attempts to cover as many jobs as possible while minimizing the overall cost. For

optimization, we choose Simulated Annealing (SA) algorithm because it is used in

global optimization problems in a wide range of areas including limousine renting in

[4]. SA provides a reasonably optimized solution within a reasonable time and can be

optimized according to the context [19].

4.1 Rule checker

Given a set of job and drivers, the rule checker first evaluates the constraints in Section

3.1 as shown in Figure 4.1. This reduces the search space of Simulated Annealing, as

the number of potential drivers to be assigned to a job depends on the vehicle type,

driver training, availability. When a new job comes, all drivers are evaluated. Rule

checker proceeds with each constraint sequentially. When it goes through a constraint,

it outputs the possible set of drivers who are eligible under the particular constraint.

For the next constraint, only those filtered drivers would be fed. Likewise, the set of

eligible drivers gradually decrease as we proceed through the constraints. Initially, rule

checker proceeds with static constraints like vehicle type constraint, vehicle category

constraint, job area constraint, and excluded driver check under pairing constraint,

which can reduce the search space without depending on any external factors.

22

Figure 4.1. Solution model for rule checker.

23

Then the dynamic constraints such as travel time constraint and preferred driver check

under pairing constraint are checked. Rule checker tolerates λ cost on selection

between a any driver and a preferred driver. This enables assigning preferred drivers

to a particular job to improve the customer satisfaction, as far as the additional expense

is reasonable.

4.2 Job scheduler

Reduction in search space is essential to achieve an acceptable solution in NP-hard

problems. This is achieved through the rule checker. Then the job driver (jid, did) pairs,

which are identified as eligible for further processing, run through Simulated

Annealing algorithm to find an optimal solution while maximizing the job coverage

and minimizing the overall cost. Once, a driver is assigned to a job, his/her availability

for other jobs will change. For example, once a job is assigned, a driver is not eligible

for another job with pickup time that is less than the delivery time of the current job.

Moreover, the cost of reaching the next pickup location can either reduce or increase.

Therefore, after each job assignment, respective driver’s availability for all other

unassigned jobs are rechecked using the rule checker, before considering for further

job assignment by the Simulated Annealing algorithm.

All distances and estimated times for VDs are taken from Google Distance API [20]

to achieve more reliable and accurate estimates. Fee for a job fj is calculated based on

the estimated distance between pickup and delivery locations of the job. We also define

several parameters to make the solution more accurate. For example, a driver may need

to use public transportation to reach the point of collection or to return to home or next

job after a delivery. That journey may take more time than the driving time to/from

delivery/pickup location, hence needs to be accurately captured while assigning

subsequent jobs, as well as to estimate the departure/return time to/from a job. While

the cost of public transportation is usually lower than taking a taxi or rental car, it still

needs to be considered while calculating the cost of a job j
dc . We capture such delays

and fees due to the use of public transportation by introducing two factors to multiply

time and distance. A few countries or cities provide APIs to access bus and train

24

schedules, as well as associated fees. In such cases, the solution can be further

improved by substituting values derived from such APIs instead of the proposed

factors.

SA is a probabilistic, single-solution-based search method inspired by annealing

process where a solid is slowly cooled until its structure reaches a minimum energy

configuration [21]. Optimization algorithms may converge to local optimums, and SA

has its technique to avoid those disadvantages. SA accepts worst solutions at higher

temperatures to avoid local optimums by setting its acceptance probability to a higher

value. The main parameters of SA algorithm are an initial temperature, a rule for

accepting a damaging move (i.e., higher cost solution), the rate at which the

temperature decrements, the maximum number of neighboring solutions that can be

generated at each temperature, and a stop criterion [22].

Optimization search algorithms mostly optimize a cost or distance matrix. In our

solution, our primary objective is to cover all possible jobs and then our secondary

objective is to optimize cost matrix to minimize the overall job cost. In SA

implementation, we prioritize to cover all possible jobs and then optimize the overall

cost.

It is essential to check out the reasons to select SA algorithm in driver scheduling over

other optimization algorithms [23]. SA is a robust technique that can deal with highly

nonlinear models, chaotic and noisy data, and with many constraints. Our solution is

also built on many constraints and may contain chaotic and noisy data. SA is flexible

and able to approach global optimality than other local search methods. SA is quite

versatile as it does not rely on any restrictive properties of the model. SA is easily

customizable and tuned. In our solution, the primary objective is not the cost

optimization. We prioritize the order of objectives to maximize the job coverage and

then minimize the job cost. We also able to get a stable solution within acceptable time

and results will be discussed in next chapter.

25

5. PERFORMANCE ANALYSIS

5.1 Workload Creation

We used two different job datasets each with 80 jobs, against a set of 60 drivers. These

datasets were created based on properties extracted from a dataset of a real VD

company. This includes the distribution of job locations, pickup and delivery times

(some jobs span across two days), driver skill distribution, and other constraints. Table

5.1 shows a summary of driver availability across a week. Figure 5.1 illustrates the job

locations for both datasets and Figure 5.2 illustrates driver locations. The size of circles

represents the number of jobs and drivers of a city. As most of the jobs are from urban

areas, recruited driver population also reflect somewhat matching behavior because

VD companies are likely to recruit drivers from areas where they get many job traffic

frequently. Jobs in the second dataset are more diverse than the first dataset; hence,

excepted to take more time to complete jobs. For each day’s workload, we plan the

schedule in the previous evening.

Table 5.1. Driver availability by day.

Day No of Drivers Average Available Time (H)

Sunday 13 7.23

Monday 58 9.56

Tuesday 48 8.48

Wednesday 49 7.51

Thursday 50 8.34

Friday 39 8.00

Saturday 33 9.59

Several parameters need to be considered as the problem runs in a dynamic

environment. Instead of assigning a currency value for job fee and costs, we calculate

it regarding the distance to be driven or distance on public transportation. We assume

that the cost of taking a unit distance on public transportation is 0.7 of the cost of

driving a vehicle. Moreover, the time required to take public transportation is

calculated by multiplying the estimated time from Google Distance API by a factor of

26

1.2 (for the region considered in the analysis, Google Distance API does not give the

time for public transportation). We later perform a parameter sweep to measure the

impact of these values on the effectiveness of the solution. Moreover, a job will be

assigned to a preferred driver, if the cost of assigning a preferred driver λ is within 50

form the lowest cost driver not in the preferred list.

(a) (b)

Figure 5.1. (a) Job distribution of dataset 1 and (b) Job distribution of dataset 2.

27

Figure 5.2. Driver distribution.

The tuning process of the SA algorithm is a delicate issue. It depends on the cooling

strategy such as linear or exponential, cooling rate, and the energy of the system [24].

We ran the simulation five times with same job and driver dataset, and same

configurations while varying the random seed. The simulation ran on a machine which

has Intel Core i5-5200U CPU, 2.20 GHz processor, 8 GB RAM, and 3 MB Cache. We

have implemented a Java-based simulator which initiates from a Java code for travel

salesman problem [25]. Different combinations were tested on datasets resulting in the

following set of parameters:

• initial temperature of 104,

• cooling rate of 0.003,

• terminating condition of temperature ≤ 1.

28

In tuning process, we tried various initial temperatures w.r.t acceptance rate, which

defines the percentage of accepted transitions overall generated transitions. The results

are listed in Table 5.2 Initial temperature with more than 40% of acceptance rate will

give reasonable results in SA [26]. That value is for a default SA algorithm which takes

the primary objective as the cost optimization. Because our primary objective is to

maximize the job coverage, it is essential to traverse through many possible transitions.

We used an initial temperature of 104 which has a higher acceptance rate and can be

processed within acceptable running time, and traverse through a relatively higher

number of transitions with cooling rate of 0.003.

Table 5.2. SA Acceptance rates against initial temperatures with 0.003 cooling rate.

Initial Temperature Acceptance Rate (%)

500 29

750 33

1,000 36

2,000 41

5,000 48

10,000 52

20,000 54

5.2 Results

In the VD business, pickup and delivery times on most jobs are not strict and can be

advanced or delayed by a couple of hours, as far as the client is kept informed. This

enables flexibility in optimally assigning jobs while minimizing costs, as well as

dealing with unexpected delays due to breakdowns, traffic, and weather. The solution

enables flexibility by using time windows.

Table 5.3 shows a summary of the resulting solution under varying levels of flexibility

in job pickup and delivery times. The number of jobs covered (aka., job coverage)

depends on constraints among jobs and drivers, driver availability, job

collection/delivery time, and time gap allowed to complete jobs. The job coverage is

29

highest when the time window is ±1 hour on Monday when the highest number of

drivers are available. When the time window is set to ±1 hour on Monday, 92.5% and

87.5% of the jobs are covered in dataset 1 and dataset 2, respectively. While an

increased time window provides more flexibility, it also reduces job coverage and

increases the driver idle time. Cost is a measurement of the distance traveled by the

driver to deliver the vehicle. This is the reason that the cost reduces as the number of

assigned jobs reduces with increasing time window. Execution time increases as the

time window increases, because of the increased search space in SA. Table 5.4 shows

the summary of results over a week in different time windows.

Table 5.3. Results against different time windows on Monday for dataset 1 and 2 with 0.003

as cooling rate.

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 4 7 74 70 68 65 63 59 55 52

Execution Time (s) 392 406 205 244 234 254 243 269 254 297

Cost (100) 6 9 170 166 157 154 146 149 138 133

Profit (100) 11 22 205 206 171 185 144 146 126 144

Figure 5.3 illustrates the total available hours against jobs coverage for both datasets

in each day. It shows that the number of assigned jobs is proportional to the available

number of drivers and their available times.

30

Table 5.4. Results against different time windows across a week.

 Tuesday

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 3 6 62 58 55 53 51 49 47 42

Execution Time (s) 372 381 227 290 238 293 261 304 268 316

Cost (100) 5 11 136 132 130 135 119 121 109 92

 Wednesday

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 3 5 58 55 48 47 42 40 38 37

Execution Time (s) 362 373 223 285 240 297 274 344 289 389

Cost (100) 5 11 119 133 99 135 97 121 78 92

 Thursday

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 3 6 67 62 59 56 53 50 49 42

Execution Time (s) 371 373 217 264 225 299 242 324 262 329

Cost (100) 5 12 154 140 132 132 118 132 120 95

 Friday

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 2 5 51 48 44 42 40 38 34 32

Execution Time (s) 348 359 224 265 236 299 252 317 271 326

Cost (100) 3 9 109 112 95 86 85 86 64 73

 Saturday

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 3 6 61 55 52 49 45 42 40 39

Execution Time (s) 350 339 211 258 219 269 222 289 228 307

Cost (100) 5 12 129 122 121 123 105 100 106 96

 Sunday

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 2 4 18 17 16 14 14 13 13 13

Execution Time (s) 287 323 255 295 252 294 245 306 254 302

Cost (100) 3 6 32 32 33 28 21 20 16 19

31

Figure 5.3. Job coverage against total driver available hours in each day.

Change of the cooling rate affects the number of transitions in SA under same initial

temperature. We increased the cooling rate to 0.03 without changing the initial

temperature. Table 5.5 shows the results against different time windows on Monday

for both datasets. Figure 5.4 shows the jobs coverage against different cooling rates

with different time windows in dataset 1. We still got same results or nearly same

results in each case with less execution time. However, the resulting solution was less

stable across different simulations, compared to when the cooling rate is 0.003.

Table 5.5. Results against different time windows on Monday for dataset 1 and 2 with 0.03

cooling rate.

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 4 6 73 69 69 64 62 59 54 52

Execution Time (s) 43 34 22 27 24 31 24 31 26 31

Cost (100) 9 13 163 178 166 159 148 157 129 138

Profit (100) 22 37 204 200 169 175 150 143 113 118

32

Figure 5.4. Job coverage against different cooling rates.

5.2.1 Comparison with other algorithms

Performance of the SA solution was also compared to two other algorithms. The results

were compared with the Hill Climbing algorithm which is another optimization

algorithm. The initial solution randomizes all available drivers and assigns to jobs

sequentially after checking the eligibility with rule checker. Initial solution propagates

through whole search space because all drivers and jobs are randomized. We also use

the initial solution as the initial seed for both SA and Hill Climbing. Figure 5.5 shows

pseudo-code for the initial solution. Simple hill climbing algorithm evaluates initial

state and then loop through neighbor nodes until there is no better solution than the

current solution. Simple hill climbing algorithm can quickly converge to local

optimums or plateau. An enhanced hill climbing algorithm was used to avoid above

disadvantages in simple hill climbing algorithm. It loops through some iterations and

finds a better solution. If the new solution is better than the previous solution, it is

assigned as best one. Then again loop through some iteration to find a better solution.

Likewise, it loops through until there is no better solution than the previous solution.

This mechanism provides flexibility to traverse through a relatively larger search space

33

than in pure hill climbing and reduce the possibility of optimum local convergence.

Figure 5.6 shows pseudo-code for enhanced hill climbing algorithm.

shuffle(drivers) -> i

jobs -> j

loop j -> [1: size(jobs)]

 if j < size(drivers)

 i = j

 else

 i = j - size(drivers)

 if driver is eligible

 job j -> driver i

end loop

Figure 5.5. The pseudo-code of the initial solution.

loop (improvement)

 loop

 if value(new) <= value(current)

 current = new

 end loop

 if value(current) <= value(best)

 best = current

 else

 improvement = false

end loop

Figure 5.6. The pseudo-code of enhanced hill climbing algorithm.

Table 5.6 shows results against different time windows on Monday for both datasets

with hill climbing algorithm, and Table 5.8 shows results against different time

windows across a week with hill climbing algorithm. Table 5.7 shows results against

different time windows on Monday for both datasets with initial solution. Figure 5.7

illustrates job coverage against various algorithm on Monday for dataset 1. It shows

that SA-based solution still gives a better solution regarding job coverage and hill

climbing also gives an acceptable solution, but it is less than SA performance in each

34

time window. The initial solution is unable to provide satisfactory results compared to

other two algorithms.

Table 5.9 shows min, max, and average results against different algorithms on Monday

for dataset 1 through different simulation runs. Figure 5.8 illustrates the min-max range

of job coverage against different algorithms. This implies SA provide a more stable

solution than other algorithms as its min-max range is relatively low in each case than

other algorithms.

Table 5.6. Results against different time windows on Monday for dataset 1 and 2 with hill

climbing algorithm.

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 3 6 71 66 65 62 61 57 52 49

Execution Time (s) 25 36 21 25 22 30 21 29 22 27

Cost (100) 5 17 163 332 158 163 149 154 139 136

Profit (100) 10 27 184 169 167 156 144 144 111 113

Table 5.7. Results against different time windows on Monday for dataset 1 and 2 with initial

solution.

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 1 2 31 30 34 31 33 31 29 27

Cost (100) 0.78 4 71 76 78 69 78 78 72 63

Profit (100) 1.52 4.6 83 85 76 70 72 49 53 50

35

Table 5.8. Results against different time windows across a week with hill climbing

algorithm.

 Tuesday

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 3 6 59 55 52 50 49 47 43 41

Execution Time (s) 24 18 20 13 21 13 22 13 23 13

Cost (100) 5 12 129 127 127 126 120 115 98 98

 Wednesday

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 3 6 55 51 46 44 42 39 37 34

Execution Time (s) 28 16 21 13 22 14 24 14 24 14

Cost (100) 5 13 119 111 110 106 96 93 87 81

 Thursday

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 3 6 63 60 55 54 51 49 47 41

Execution Time (s) 27 16 22 13 23 14 24 13 24 14

Cost (100) 4 13 138 133 130 130 126 118 118 98

 Friday

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 2 5 48 45 42 39 38 37 33 31

Execution Time (s) 26 15 21 12 21 14 21 13 21 13

Cost (100) 3 11 108 10 99 95 87 89 79 73

 Saturday

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 2 5 56 50 46 46 42 40 38 37

Execution Time (s) 23 16 18 12 21 12 21 12 20 12

Cost (100) 4 14 126 120 118 111 104 103 103 97

 Sunday

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 2 4 16 15 14 13 13 13 13 13

Execution Time (s) 21 12 21 12 21 11 21 11 22 12

Cost (100) 3 7 32 33 31 26 32 26 23 23

36

Figure 5.7. Job coverage against various algorithms.

Table 5.9. Min, max, average results against different algorithms on Monday for dataset 1.

SA – Simulated annealing; HC – Hill climbing; IN – Initial solution;

Time Window (h) 0 ±1 ±2 ±3 ±4

Dataset SA HC IN SA HC IN SA HC IN SA HC IN SA HC IN

Job Coverage

Min 4 2 0 74 69 27 68 64 32 62 59 31 54 51 28

Average 4 3 1 74 71 31 68 65 34 63 61 33 55 52 29

Max 4 4 2 74 73 35 69 67 37 63 63 36 55 54 30

37

Figure 5.8. Job coverage against various algorithms min-max range.

5.2.2 Effects of the unavoidable delays and issues

More than one job can be assigned to a driver depending on his/her availability.

However, if a job gets delayed due to reasons such as an accident, breakdown, traffic,

and customer delay, all subsequent jobs of that driver gets affected. If the driver can

take the vehicle home, as it needs to be delivered on the following day, such delays

would impact jobs in the following day as well. Moreover, there are cases where the

driver may suddenly become unavailable due to sickness or even without knowing a

reason. In those scenarios, it is hard to assign another driver because they may be

already assigned to other jobs. Thus, this could result in a chain reaction. Table 5.10

shows the number of affected jobs w.r.t. different job delays in both datasets. Figure

5.9 shows the impact of delayed jobs against different time delays. When the delay is

increased, only a few jobs in the overall solution get affected as jobs are not tightly

packed. Results show that only 5% and 7% of jobs get affected even with 5 hours delay

in dataset 1 and dataset 2, respectively.

In some cases, VD company may get to know some unavoidable delays or issues soon

after they find the next day schedule, such as driver unavailability. In these scenarios,

we can regenerate the schedule without affecting to other available drivers. We

checked the impact of the delayed jobs by regenerating the solution. Table 5.11 shows

the impact of 5% of jobs delayed and Table 5.12 shows the impact of 10% of jobs

38

delayed. Figure 5.10 shows the impact of delayed jobs against different delays. When

5% and 10% jobs get delayed, only 4% and 11% of jobs get affected maximumly.

Table 5.10. Impact of 5% of delayed jobs for dataset 1 and 2.

Delay (H) 1 2 3 4 5

Dataset 1 2 1 2 1 2 1 2 1 2

No of jobs affected 1 1 2 2 3 3 3 4 4 5

% of jobs affected 1 1 3 3 4 4 4 6 5 7

Table 5.11. Impact of 5% of delayed jobs for dataset 1 and 2 with regenerating the solution.

Delay (H) 0 1 2 3 4

Dataset 1 2 1 2 1 2 1 2 1 2

Delayed Distance (km) - - 285 429 463 464 380 462 406 497

Job Coverage 74 70 74 70 74 69 73 69 73 69

% of jobs affected 0 0 1 1 4 4 4 4 4 4

Execution Time (s) 205 244 206 275 226 279 203 264 215 273

Cost (100) 170 166 171 172 160 170 162 166 162 163

Profit (100) 205 206 210 208 205 203 207 201 207 207

Table 5.12. Impact of 10% of delayed jobs for dataset 1 and 2 with regenerating the solution.

Delay (H) 0 1 2 3 4

Dataset 1 2 1 2 1 2 1 2 1 2

Delayed Distance (km) - - 807 1097 784 895 825 885 937 970

Job Coverage 74 70 72 69 68 65 69 62 68 64

% of jobs affected 0 0 2 1 8 7 7 11 8 8

Execution Time (s) 205 244 237 308 242 287 236 298 234 291

Cost (100) 170 166 167 171 151 159 154 152 149 156

Profit (100) 205 206 207 207 203 197 204 192 198 195

39

Figure 5.9. Impact of delayed jobs against different delays.

Figure 5.10. Impact of delayed jobs against different delays by regenerating the solution.

40

5.2.3 Effects of public transportation use of drivers

Drivers may want to use public transport to reach the vehicle pickup location and

return from a delivery. The initial travel time factor set to 1.2 and Table 5.13 shows

results against different travel time factors on Monday for dataset 1 and 2 with ±1H

time window. Figure 5.11 illustrates job coverage variation against different travel

time factors. It shows that there is no significant influence on job coverage with travel

time factor and only a few jobs can be affected when the travel time factor increased.

Initially, cost factor set to 0.7 and Table 5.14 shows the results against different cost

factors. Figure 5.12 shows the profit against different travel cost factors. When the cost

factor increases, the overall job cost gradually increases because VD company has to

cover the cost associated with the driver using public transportation to return to the

next job or home. Consequently, the profit gradually decreases with the increase of

public transport cost factor.

Table 5.13. Results against different travel time factors on Monday for dataset 1 and 2 with

±1H time window.

Travel Time Factor 1.1 1.2 1.3 1.4 1.5

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 74 70 74 70 74 69 73 69 73 69

Execution Time (s) 228 279 224 280 222 272 226 274 221 274

Cost (100) 170 177 173 179 163 170 154 166 155 163

Profit (100) 207 207 206 204 207 207 210 204 211 206

Table 5.14. Results against different public transportation cost factors on Monday for dataset

1 and 2 with ±1H time window.

Travel Cost Factor 0.5 0.6 0.7 0.8 0.9

Dataset 1 2 1 2 1 2 1 2 1 2

Job Coverage 74 70 74 70 74 70 74 70 74 70

Execution Time (s) 218 279 214 263 218 265 221 266 215 260

Cost (100) 145 146 154 159 161 174 178 189 192 200

Profit (100) 231 224 216 211 202 204 188 183 179 174

41

Figure 5.11. Job coverage against different travel time factors.

Figure 5.12. Profit against different travel cost factors.

42

5.2.4 Income distribution of drivers

Usually, drivers are paid only for the number of kilometers the vehicle is driven, and

subsistence expenses are reimbursed. Hence, a driver’s income is proportional to the

total distance of assigned jobs. Figure 5.13 and 5.15 show the weekly average of a

driver’s income w.r.t. to his/her average weekly availability for dataset 1 and 2,

respectively.

The Gini coefficient [27] is a measure of inequality of a distribution. The Gini

coefficient is equal to half of the relative mean difference. The Gini coefficient is often

used to measure income inequality. Here, zero corresponds to perfect income equality

(i.e., everyone has the same income) and one corresponds to perfect income inequality

(i.e., one person has all the income, while everyone else has zero income). The Gini

coefficient can be used to measure wealth inequality. It is also commonly used for the

measurement of the discriminatory power of rating systems in the credit risk

management. We calculated Gini coefficient of income : availability ratio to inspect

income distribution of drivers w.r.t their availability. Figure 5.14 and 5.16 respectively

show the income : availability ratio for dataset 1 and dataset 2 respectively. Gini

coefficient of all drivers is 0.194 and 0.218 for dataset 1 and dataset 2 respectively.

Thus, further confirms that driver income is balanced based on their willingness to

contribute.

Figure 5.13. Weekly average of driver availability and income with ±1H time window for

dataset 1.

43

Figure 5.14. Weekly income/availability ratio with ±1H time window for dataset 1.

Figure 5.15. Weekly average of driver availability and income with ±1H time window for

dataset 2.

Figure 5.16. Weekly income/availability ratio with ±1H time window for dataset 2.

44

6. SUMMARY AND FUTURE WORK

6.1 Conclusion

Vehicle delivery is a major business in many countries where third-party drivers are

used to delivering vehicles when relocate, sold, or while returning from rental cars. A

vehicle delivery company works in a certain geographical area and to fit the job

locations drivers are also geographically dispersed. The driver scheduling is usually

carried out by an experienced scheduling manager who schedules the next day’s

schedule at the end of the previous day. As the number of jobs getting increased, the

process becomes tiresome, error-prone, and sub-optimal as it is nontrivial to find an

appropriate driver while maintaining conflicting goals of the customer, driver, and

company.

Therefore, vehicle delivery companies require a reliable and scalable solution to

optimize driver allocation to increase the efficiency and reduce the company’s overall

cost. Unlike taxis and rental cars services, vehicle delivery consists of various driver,

customer, and job-related parameters, which makes the process more complicated.

We identified all related parameters and built up required constraints most of which

are unique to the vehicle delivery process. We have done a literature survey to figure

out existing optimization algorithms which can approach global optimality in a

chaotic, noisy environment with many constraints and easily customizable. We

proposed a rule and Simulated Annealing based technique for the driver scheduling

problem in the vehicle delivery industry.

Simulation results were derived using a workload trace from a real vehicle delivery

company. We used two different datasets each includes 80 jobs and 60 drivers, which

would be a reasonable maximum traffic per day in the company. Our solution was

capable of covering 82.5% and 78.5% of jobs respectively while minimizing overall

cost. Moreover, drivers’ income was equitably distributed according to their

availability as Gini coefficient of income : availability for both datasets were 0.194

and 0.218, respectively.

45

The proposed solution was compared with two other optimization algorithms, where

our solution outperformed Hill Climbing and Initial solution with better job coverage

and a more stable solution. Time windows are used to tolerate unexpected delays in

the process. It is also proved that only a few jobs get affected due to a delay in prior

jobs. Even if we reschedule the whole jobs due to some known issues, only a few jobs

get affected.

Therefore, we can conclude that our solution is capable of covering a considerable

amount of jobs while minimizing overall cost and equitably distributing drivers’

income based on their availability within acceptable computation time. Moreover, the

solution can tolerate unexpected delays in the process without a considerable impact

on the majority of jobs.

6.2 Future Work

In our solution, unavoidable delays are managed using flexible time windows.

However, several practical situations are difficult to capture under a time window, e.g.,

excessive traffic, temporary road closed, the road under immediate construction,

accidents, and breakdowns. Therefore, we need a mechanism to tolerate such events

better. We believe this can be addressed by a kind of mechanism presented in [28].

The approach allocates available road space (or equivalently travel time) on designated

roads to vehicles for the duration of their intended journey based on potentially

prioritized requests. This approach is similar to how road space is now dedicated to

public transport vehicles (via bus lanes) or multi-occupied private vehicles (via carpool

lanes). If there is a mechanism to predict traffic in a particular area at a given time, our

solution can be improved to consider those traffic when scheduling next day’s jobs. In

[29], a GPS-based traffic prediction approach using machine learning was proposed.

Customer satisfaction is the most prioritize objective in our solution. It is essential to

facilitate the addition, update, and cancellation of last-minute job requests arriving at

least within the day. Therefore, the solution needs to be improved further to capture

last-minute job requests. We believe this objective can be addressed by a mechanism

that always tries to allocate independent jobs which do not rely on already allocated

46

jobs. Therefore, we require a mechanism to evaluate the chain reaction effect of job

allocation.

Currently, our solution is only capable of finding the driver schedule when the total

job set is available. It means the company already agreed to process all jobs in the next

day. Although, the company may not be able to process all jobs as agreed. This is true

for even manual scheduling and has a negative impact towards company’s reputation.

Therefore, we require a real-time driver scheduling mechanism to provide real-time

feedback to the customer about the feasibility of processing the job without conflicting

with already scheduled jobs. This would enable a company to accept only the jobs that

can be completed within agreed timeline. Even though there are already allocated jobs;

we can still change the drivers among scheduled jobs to find the most optimized

solution as each driver needs to know their next day’s schedule only the previous

evening.

47

References

1. A. A. Bertossi, P. Carraresi, and G. Gallo, “On Some Matching Problems Arising

in Vehicle Scheduling Models,” Networks, vol. 17, no. 3, 1987, pp. 271-281.

2. A. Wren et al., “A Flexible System for Scheduling Drivers,” J. of Scheduling, vol.

6, Sep. 2003, pp. 437-455.

3. S. Fores L. Proll, and A. Wren, “An Improved ILP System for Driver Scheduling,”

Computer-Aided Transit Scheduling, Springer Verlag, 1999, pp. 43-61.

4. B. Laurent and J.K. Hao, “Simultaneous Vehicle and Driver Scheduling: a Case

Study in a Limousine Rental Company,” Computers & Industrial Eng., vol. 53,

2007, pp. 542-558.

5. S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer

Implementations, 1st ed. John Wiley & Sons, New York, USA, 1990.

6. F. Glover, “Ejection Chains, Reference Structures and Alternating Path Methods

for Traveling Salesman Problems,” Discrete Applied Mathematics, vol. 65, no. 1-

3, 1996, pp. 223-253.

7. L. Hong, Y. Wang, L. Shi, and L. Sujian, “A Column Generation Based Hyper-

Heuristic to the Bus Driver Scheduling Problem,” Discrete Dynamics in Nature

and Society, vol. 2015, 2015, pp. 1-10.

8. E. Burke et al., “Hyper heuristics: and emerging direction in modern search

technology,” Handbook of Metaheuristics, Springer, Berlin, Germany, vol. 57 of

Int. Series in Operations Research & Manage. Sci., 2003, pp. 457–474.

9. M. Desrochers and F. Soumis, “A column generation approach to the urban transit

crew scheduling problem,” Transportation Science, vol. 23, 1989, pp. 1–13.

10. R. S. K. Kwan and A. Kwan, “Effective search space control for large and/or

complex driver scheduling problems,” Annals of Operations Research, vol. 155,

no. 1, 2007, pp. 417–435.

11. D. L. Davis, E.L. Gillenwater, and J.D. Johnson “An Artificial Neural Syst.

Framework for Delivery Truck Scheduling,” in Proc. 23rd Annual Hawaii Int.

Conference on System Sciences, Kailua-Kona, HI, USA, vol. 3, 1990, pp 327-333.

12. M. Maghrebi, C. Sammut, and T.S. Waller, “Feasibility Study of Automatically

Performing the Concrete Delivery Dispatching through Mach. Learning

Techniques,” Eng. Construction and Architectural Management, vol. 22, no. 5,

2015, pp. 573-590.

13. C. W. Feng and H. T. Wu, “Integrating fmGA and CYCLONE to optimize the

schedule of dispatching RMC trucks”, Automation in Construction, vol. 15, no. 2,

2006, pp. 186-199.

48

14. C. W. Feng, T. M. Cheng, and H.T. Wu, “Optimizing the schedule of dispatching

RMC trucks through genetic algorithms,” Automation in Construction, vol. 13,

no. 3, 2004, pp. 327-340.

15. Y. Zhang, M. Li, and Z. Lui, “Vehicle scheduling and dispatching of ready mixed

concrete,” in Proc. 4th Int. Workshop on Advanced Computational Intell., Oct.

2011, pp. 465-472.

16. S. Garcia, A. Fernández, J. Luengo, and F. Herrera “A study of statistical

techniques and performance measures for genetics-based mach. learning:

accuracy and interpretability”, Soft Computing, Vol. 13, 2009, pp. 959-977.

17. M. Koubâa, S. Dhouib, D. Dhouib, and A. E. Mhamedi, “Truck Driver Scheduling

Problem: Literature Review”, Int. Federation of Automatic Control, IFAC-

PapersOnLine 49-12, 2016, pp. 1950–1955.

18. Google Maps API, [Online]. Available: https://developers.google.com/maps/.

[Accessed: Nov. 08, 2017].

19. Y. Xiang, S. Gubian, and F. Martin, “Generalized Simulated Annealing,”

Computational Optimization in Eng. - Paradigms and Applicat., 2017, doi:

10.5772/66071.

20. Google Distance Matrix API, [Online]. Available:

https://developers.google.com/maps/documentation/distance-matrix/. [Accessed:

Oct. 05, 2017].

21. E. Aarts, J. Korst, and W. Michiels, “Simulated Annealing,” Search

Methodologies, Burke E.K., Kendall G. ed. Springer, Boston, MA, 2005, pp. 187-

210.

22. S. Anily and A. Federgruen, “Simulated Annealing Methods with General

Acceptance Probabilities,” in J. of Applied Probability, Sep. 1987, vol. 24, pp.

657-667.

23. Simulated Annealing [Online]. Available:

http://www.cs.ubbcluj.ro/~csatol/mestint/pdfs/Busetti_AnnealingIntro.pdf.

[Accessed: Oct. 05, 2017].

24. Y. Nourani and B. Andresen, “A Comparison of Simulated Annealing Cooling

Strategies,” J. Phys. A: Math. and Gen. vol. 31, 1998, pp. 8373-8385.

25. Simulated Annealing for beginners [Online]. Available:

http://www.theprojectspot.com/tutorial-post/simulated-annealing-algorithm-for-

beginners/6. [Accessed: Oct. 05, 2017].

26. D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, “Optimization by

Simulated Annealing: An Experimental Evaluation; Part 1, Graph Partitioning,”

Operational Research, vol. 77, 1989, pp. 865-892.

49

27. Income inequality and dualism, [Online]. Available:

http://www.unc.edu/~nielsen/special/s2/s2.htm. [Accessed: Oct. 05, 2017].

28. V. Cahill et al., “The managed motorway: Real-time vehicle scheduling: A

research agenda,” in Proc. 9th Workshop on Mobile Computing Syst. and

Applicat., Napa Valley, California, USA, doi: 10.1145/1411759.1411771.

29. J. Rzeszótko, and S. H. Nguyen, “Machine Learning for Traffic Prediction,” J.

Fundamenta Informaticae - Concurrency Specification and Programming, vol.

119, Aug. 2012, pp. 407-420.

