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Abstract 

 

Complex Event Processing (CEP) plays a major role in real-time analytics such as 

identifying possible frauds in credit card transactions and geospatial analysis. In CEP, events 

that are received from different data sources are stored in memory and processed on the fly. 

Scaling is one of the most important features of a CEP engine. Contemporary CEP engines 

provide several options to scale event processing vertically and horizontally. For example, 

these include scaling with Storm cluster, distributed object cache, and publisher-subscriber 

model, all of which come under random or attribute based partitioning. These approaches 

help to handle a large number of queries, queries that need a large memory, events which 

come in high rate, and complex queries that might not fit within a single machine. However, 

it is difficult to scale pattern and sequence detection in CEP for high event rate because the 

pattern and sequence detection depend on a set of events happened overtime. Existing scaling 

approaches based on random or attribute based partitioning affects the continuous event flow 

and event ordering, which are most important attributes for pattern and sequence matching. 

 

We propose a novel approach to scale pattern and sequence detection queries for high 

incoming event rate. In the proposed approach incoming events are kept in a queue, grouped 

into partitions based on time interval defined in the query with some overlapping events, then 

the events are pushed to several CEP engines and processed simultaneously. Finally, the 

processed events are filtered and reordered before publishing out from the CEP. Performance 

analysis showed that the proposed technique increase the throughput by 800%, while 

increasing the per event latency from 2-3 milliseconds to 8-10 milliseconds (~400% 

increase) due to queuing nature of the solution. 
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1. INTRODUCTION 
 

As the World moves to an era where data are the most valuable asset, being able to 

efficiently process large volumes of data in real time can help to gain a competitive 

advantage for businesses. Then we need a solution to deliver low latency, high 

volume, and scalable environment enabling data collection, both in real time and as 

batch analysis, and firing notifications of multiple types across numerous endpoints. 

Complex Event Processor is the most common enabling technology to perform real-

time analytics [1]. In Complex Event Processing (CEP), event streams are processed 

in real time through filtering, correlation, aggregation, and transformation, to derive 

high-level, actionable information. CEP is now a crucial component in many 

business IT systems. For instance, it is intensively used in stock trading based on 

market data feeds; fraud detection where credit cards with a series of increasing 

charges in a foreign state are flagged; transportation where airlines use CEP products 

for real-time tracking of flights, baggage handling, and transfer of passengers [2]. 

 

CEP is a technology for extracting higher-level knowledge from situational 

information abstracted from processing business-sensory information [3]. Business-

sensory information is represented in CEP as event data, or event attributes, 

transmitted as messages over a digital nervous system, such as an electronic 

messaging infrastructure. CEP offers the users a way to automate the detection of 

anomalies or other interesting phenomena. For example, correlating all the trades 

made by all the traders to detect all the various blunders they might have done [4]. 

 

1.1 Complex Event Processing 

Most of the enterprise-level CEP engines have an architecture similar to Figure 1.1, 

where CEP engine receives events from different data sources in different formats as 

different streams. Then, events from different streams are processed based on a 

predefined set of queries. After processing those events, outputs are also emitted as 

another set of streams. Here, a query can contain rules that tell the CEP engine what 

needs to be done for the received events. Rules can be classified as filter, pattern, 
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transform, aggregate, split, compose, translate, enrich, and project. The most 

important rules types are filter, transformation, and pattern detection [5].  This 

processing happens in near real time, typically within a few milliseconds. 

 

 

Figure 1.1: High-level overview of CEP operation. 

 

In most of the real-world scenarios, a single CEP engine cannot process the events 

with limited resources. At this situation, we need to scale the CEP engine to handle 

[6]: 

● Large number of queries. 

● Queries that needs large working memory. 

● Complex query that might not fit within a single machine with supporting 

high event rate. 

● Large number of events. 

Being able to scale CEP systems into multiple nodes facilitates increasing the 

throughput and high availability while simultaneously maintaining low response 

time. 
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1.2 Motivation 

While scaling is one of the most important features of a CEP engine, it is not easy to 

scale CEP engines horizontally due to the in-memory states they maintain. Following 

approaches are being used to scale CEP engines: 

● Using an Enterprise Service Bus (ESB) [7] - The key architectural insight in 

the system is to separate the integration functionalities of the ESB and the 

complex event facilities. This results in a stateless ESB, which can be scaled 

out by adding more processing nodes. A dedicated CEP cluster can then be 

tuned to handle high throughput and scaled out separately. 

● Using distributed object cache [8] - This approach uses a distributed object 

cache for interaction between CEP engines. This is typically used for a query 

that needs to maintain a large window and all events in the window would 

need a large working memory. Distributed caching technology also increases 

the performance other than scalability CEP applications. 

● Scale CEP on top of a Storm cluster [9] - Queries are deployed in CEP 

engines and run on top of a Storm deployment. Storm cluster provides the 

platform for inter-communication between engines. Because CEP engine runs 

inside storm, it allows to spawning multiple instances of CEP engines to run 

across a storm cluster. This results in a system that is horizontally scalable 

and capable of handling large volumes of events per time unit. 

● Publisher-subscriber model [10] - Event publishers push events to a queue of 

a Message Broker, CEP engines act as subscribers, consume events from 

Message Broker and does the processing. Subscribers can be scaled as per the 

need, and message selectors that supported by Message Brokers like Kafka, 

AMQP, and ZeroMQ can be used to filter out the events when consuming 

them. This approach is based on random or attributed based partitioning 

strategy. 

 

These approaches are based on a random partition, which means events are 

partitioned randomly without being considerate of their conditions or attributes. This 

is suitable for handling a large number of queries, queries that need a large working 

memory, a complex query that might not fit within a single machine, and high event 



4 
 

rate. However, these approaches cannot be applied for all possible scaling use cases. 

For example, they are not successful in scaling pattern and sequence detection 

queries and events that cannot be partitioned randomly.  

 

Let us consider an example to understand this further. Assume a situation where a 

bank tries to find out possible money laundering situation by analyzing the real-time 

account transaction data. Consider Figure 1.2 which shows a series of a transaction 

from account A to B, then from account B to C, and finally, from account C to A. 

This is a possible money laundering activity which bank needs to detect. Following 

CEP Query 1.1 can be used to detect this suspicious series of events: 

 

 

Figure 1.2: Possible money laundering transaction flow. 

 

from every (a1 = transactionStream 

→ a2 = transactionStream[a1.toAccountNo == a2.fromAccountNo] 

→ a3 = transactionStream[(a2.toAccountNo == a3.fromAccountNo)  and 

(a1.fromAccountNo == a3.toAccountNo)] 

within 5 min 

select a1.fromAccountNo as suspectAccountNo 

insert into possibleMoneyLaunderingActivityStream; 

 

Query 1.1: Siddhi query to detect possible money laundering transaction. 

 

If we adopt partition-based scalability to deal with the large number of transactions 

the bank may need to handle, transfer from A to B may be partitioned and send to one 

CEP engine while B to C transfer may be sent to another CEP engine. While the 

same query runs on both the CEP engine, neither will generate an alert as neither see 

the correlated series of events. Therefore, partitioning-based scaling fails under 

pattern and sequence queries. 
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1.3 Problem Statement 

The problem that this research going to address can be stated as follows:  

How to provide large-scale pattern and sequence detection in CEP while supporting 

high event rates? 

 

CEP queries that contain pattern and sequence detections are unable to scale by 

random or attribute based partitioning because the pattern and sequence detection 

depend on the set of events happened overtime. Therefore, partitioning the events by 

attribute or random affects the continuous event flow and event ordering, which are 

the most important properties for pattern and sequence detection. We envision a 

solution where incoming events are partitioned based on time interval with some 

overlapping events. Then, partitioned events are pushed to CEP engines, which 

process events parallelly. Due to this nature, duplicated pattern detections can occur 

and detected events can get disordered. This would affect the “exactly one” quality of 

service scenario. Hence, our research should address the issue of event duplication 

and event reordering which are the side effects of the envisioned approach. 

 

1.4 Objectives 

The address the problem statement, following list of objectives are to be achieved: 

● Design a scaling approach that is independent of the internal implementation 

of a CEP engine. 

● Develop a suitable approach to scale CEP engine that can be effectively 

applied to queries that contain pattern matching and sequence conditions. 

● Scale event processor to be able to handle a high rate of incoming events. 

● Design an approach to overcome event duplication and event reordering that 

arise due to the use of multiple CEP engines. 

● Analyze the performance (throughput and latency) of the proposed technique 

and its correctness using a set of real-world workloads. 
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1.5 Outline 

This thesis presents the proposed approach for scaling complex event processors 

while especially focusing on pattern and sequence detection queries. Chapter 2 

presents the literature review. It covers many areas related to CEP and scaling such 

as CEP characteristics, scalability attributes, common dimensions of scaling, and 

existing scaling approaches. Existing scaling approaches provide details about how 

scaling is achieved with CEP and aspects to consider when using a specific scaling 

approach. Chapter 3 presents the proposed solution for scaling pattern and sequence 

queries in CEP. It also discusses the techniques that used for scaling such as event 

partitioning based on time, event reordering with K-slack and event duplication 

handling. Moreover, details of how these techniques are implemented on top of 

WSO2 Siddhi CEP engine are presented. Chapter 4 presents the evaluation of the 

proposed approach using real-world workload. This includes details about the 

throughput improvement of the proposed solution, accuracy metrics, and latency 

variations with compared to the existing default Siddhi CEP engine. It also discusses 

the system resource (memory, CPU, and thread) utilization as well. Concluding 

remarks and suggestion for future works are presented in Chapter 5. 
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2. LITERATURE REVIEW 
 

Section 2.1 provides an introduction to CEP, CEP internals, architecture, and 

characteristics. Section 2.2 presents some of the well-known CEP engines and their 

implementation. Attributes of CEP scalability is discussed in Section 2.3, while 

Section 2.4 discusses pattern and sequence detection. Existing scaling approaches, 

related pros and cons of those approaches are discussed in Section 2.5. Section 2.6 

discusses various out of order event handling approaches and their similarities and 

differences. 

 

2.1 Introduction to CEP 

The Complex Event Processor (CEP) emerged as a solution for analyzing fast-

moving Big Data and continues to grow its usage in event processing domain. At a 

very high level, CEP receives incoming events in 'Event Streams' via input handlers, 

processes them, and notifies the output via callbacks. Here, we use the term Event 

Streams when the events in a particular Event Stream have a definite schema and 

when they are logically ordered in time.  

 

 

Figure 2.1: CEP internal constructs. 
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CEP engine typically supports four types of queries, namely Filtering, Event 

Windows, Event Patterns and Sequences, and Joining Events [11]. However, we are 

mainly focusing on event patterns and sequences 

. 

CEP query language has the following structure: 

 

from <incoming stream>[<incoming stream filter>]#<window on the stream> 

insert into <outgoing stream> <outgoing stream attributes> 

 

Here, when events arrive from the incoming event streams, they are filtered, and only 

the success events of the filter will flow to the window. These windows, based on 

their configuration, sustain some of the incoming events for a period of time for 

further processing, like aggregation calculations. Finally, all these events will be 

projected on the outgoing event streams based on the defined outgoing stream 

attributes.  

 

2.1.2 Characteristics of CEP Systems 

Complex Event Processing (CEP) engines are designed to process a large volume of 

data or events by simultaneously evaluating multiple queries over event streams. 

Some of the unique characteristics of CEP designed to process streams in real time 

within a few milliseconds are as follows: 

● The input to CEP systems is continuous, possibly infinite stream of events. 

● Event streams require real-time processing, low latency event detection and 

are usually too big to be stored in their whole entirety. 

● Input event streams are volatile, i.e., the arrival rate can vary, events can 

arrive in bursts and out of order, be lost or intentionally omitted, and 

timestamps may be imprecise. 

● Input events usually exhibit strong temporal relationships, and come from 

external sources and not from a central database or permanent store. 

● CEP systems must cope with a large number of submitted queries in real-time 

and must process a large number of events, out of which only a small 

percentage is of interest. As such, they are often used for monitoring. 
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● CEP systems are usually concerned with relationships between events and 

their patterns, rather than with individual events. They combine data from 

multiple sources and infer from it more high-level and useful information. 

● The processing in CEP systems is directed by newly arrived events rather 

than historical data (as compared to databases). 

● CEP systems follow DAHP (database active, human passive) model, in which 

a system does continuous processing and notifies a user. In comparison, 

traditional database systems employ HADP model (human active, database 

passive), meaning that data is simply stored and users’ query it manually. 

 

2.2 CEP Engines 

There are many CEP engines exists in the CEP world [12]. Each of them has many 

common functionalities which are implemented and achieved in different ways [13]. 

This section discusses some well-known CEP engines such as Esper, Oracle CEP, 

Apama and WSO2 Siddhi CEP engines. 

 

2.2.1 Esper CEP Engine 

Esper is a Java or .NET library for complex event processing. It is an open-source 

CEP engine [14]. The main elements in the Esper architecture resemble any 

DSMS/CEP system.  As shown in Figure 2.2, Esper Engine contains many different 

components like Esper Service Provider, EPL Queries, Event Objects and 

Subscribers to perform various operations when processing events in real-time. It 

processes complex queries written in a language called EPL (event processing 

language). Esper and Event Processing Language (EPL) provide a highly scalable, 

memory-efficient, in-memory computing, SQL-standard, minimal latency, real-time 

streaming-capable Big Data processing engine for historical data, or medium to high-

velocity data and high-variety data. Esper Engine contains SQL-like language to 

write queries. It can process 2M events/second for simple filtering queries on a four 

core hardware machine. 
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Figure 2.2: Architecture overview of Esper engine. 

 

2.2.2 Oracle CEP 

Oracle Complex Event Processing (Oracle CEP) provides a modular platform for 

building applications based on an event-driven architecture [15]. At the heart of the 

Oracle CEP platform is the Continuous Query Language (CQL) which allows 

applications to filter, query, and perform pattern matching operations on streams of 

data using a declarative, SQL-like language.  

 

 

Figure 2.3:  Conceptual view of Oracle CEP application. 

 

Oracle CEP has the capability of deploying user Java code (POJOs) which contain 

the business logic. Running the business logic within Oracle CEP provides a highly 

tuned framework for time and event driven applications. In Oracle CEP, rules are 

expressed as queries using the Oracle Continuous Query Language (Oracle CQL). 

These queries are persisted to a data store and are used for processing the inbound 

stream of events and generating the outbound stream of events. Queries typically 

perform filtering and aggregation functions to discover and extract notable events 
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from the inbound event streams. As a result, the number of outbound events is 

generally much lower than that of the inbound events. As shown in Figure 2.3 

adapters, channels, processors, and business logic POJOs can be connected arbitrarily 

to each other, forming event processing networks (EPN). Oracle CEP can process 

40,000 events/second for simple filtering queries. 

 

2.2.3 Apama CEP 

The Apama Event Processing Platform is a complete design and deployment 

environment for CEP applications [16]. From graphical design tools to research and 

backtesting utilities, the complex event processing (CEP) platform provides analysts, 

developers and administrators a full life-cycle design center that is optimized for 

CEP solutions. 

 

 

Figure 2.4: Overview of Apama architecture. 

 

As shown in Figure 2.4 Apama CEP is built with three main components. They are 

Integrated Adaptor Framework, Event Correlator and Enterprise Management and 

Monitoring Environment. Apama Integrated Adapter Framework supports the 
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building of new connection, general infrastructure adapters, as well as plug-ins that 

are available for both Capital Markets and other applications and support a range of 

APIs that extends the Apama functionality via plug-ins of components for the 

support of specialized analytics and third party provides. Apama CEP engine 

contains SQL-like query language. Apama Engine can process 1Million events/day. 

 

2.2.4 WSO2  Siddhi CEP Engine 

WSO2 Complex Event Processor (WSO2 CEP) is an enterprise-grade server that 

integrates with various systems to collect, analyze, and notify meaningful patterns 

real time [17].  The core back-end runtime engine behind the WSO2 CEP server is 

WSO2 Siddhi. Siddhi is a lightweight, easy-to-use Open Source CEP under Apache 

Software License v2.0. Siddhi CEP processes events which are triggered by various 

event sources and notifies appropriate complex events according to the user specified 

queries. Siddhi Query language supports Filters, Windows, Pattern, Sequences, Joins 

and event aggregation. Siddhi uses an SQL-like query language, but queries are 

evaluated on continuous event streams. 

 

 

Figure 2.5: High-level architecture of WSO2 CEP engine. 

 

As seen in Figure 2.5, at a very high-level Siddhi receives incoming events in Event 

Streams via Event Receivers (Input Adapters), processes them, and notifies the 

output via Event Publishers (Output Adapters). Here, we use the term Event Streams 
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when the events in a particular Event Stream have a definite schema and when they 

are logically ordered in time.  

 

WSO2 Siddhi CEP architecture consists of three main components, namely input 

adapters, Siddhi-Core, and output adapters. Next, each of these components is 

discussed in detail. 

 

Input Adapters 

Input event streams to the Siddhi engine are handled by input handlers. Usually, in 

practical scenarios, there can be several input event streams to the event processing 

engine from different event sources. These different event streams can be in different 

forms or wrappers like XML messages, JSON messages, POJOs, emails, or 

proprietary binary messages. The input adapters provide an interface to these 

different event streams and convert them into a common easy to process 

representation, which is currently a tuple data structure. There are several input 

handler implementations to handle different event forms. 

 

Siddhi-Core 

The most important part of the Siddhi is its rule processing engine called Siddhi 

Core. Input events are processed according to the constructs defined by the input 

queries and emit detected event pattern as an output event. Siddhi core consists of 

several sub-components such as executors, event queues, processors and callback 

handlers. Normalized input events from input adapters are appended into input 

queues where processors fetch them from there and append resulting events to output 

queues. Each sub-component of Siddhi-core will be described later. 

 

Siddhi supports an SQL-like query language called SiddhiQL to provide user queries 

to the processing engine. The query compiler does the validation and interpretation of 

SiddhiQL using ANTLR language recognizer. Validated queries are compiled into 

query object model, which is used by the Siddhi-core to drive its processing. Siddhi’s 

internal data object model will be explained in next few sections. 
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Output Adapters 

Output adapter does the reverse operation of input adapter. Once a complex event 

pattern is detected by the event processing engine, the resulting event is converted to 

a representation suitable format and notified to event subscriber (i.e. event sink) by 

the output adapter. There can be several event sinks who accept resulting event 

stream in different formats like XML messages, JSON messages, emails, SMS 

messages, Database updates, etc. There are separate output adapters for each of these 

different formats. 

 

Apart from the above main modules, Siddhi has a pluggable user interface module 

which can be used to display useful statistics and monitoring tasks. 

 

WSO2 Siddhi Query Architecture 

The architecture of a basic Siddhi query (having Filter, Transform, and Window) is 

illustrated in Figure 2.6. Here, the events flow from the Input Handler of the 

incoming Event Stream to its respective Stream Junction. The Stream Junction is 

responsible for sending the events to all components that are registered to that Event 

Stream. In Siddhi, we can find two main types of Stream Subscribers; Stream 

Callback, which is used to notify an event occurrence on a particular stream, and 

Query Handler Processors - which are responsible for filtering and transforming the 

events for further processing. Only the event that passes the filter conditions will be 

outputted from the Query Handler Processor, which will indeed be fed into the 

Window processor where the events will be stored for time, length or uniqueness-

based, or other custom processing. The events are then fed into the Query Projector 

to perform event attribute level processing such as average, group by and having. 

Finally, the output of Query Processor will be sent to its registered Query Callback 

and its output stream’s Stream Junction where the event will be fed to all the Queries 

and Stream Callbacks registered to that Event Stream. 
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Figure 2.6: Siddhi query architecture [18]. 

 

2.3 Attributes of CEP Scalability 

Complex event processing systems have a very wide variety of scalability 

requirements. Following lists some of the important scalability attributes as identified 

by Etzion and Niblett [19]: 

● The volume of events - The most straightforward variable is the number of 

input events processed per second. It is also the most benchmarked variable in 

the literature [20]. Another dimension of the volume of events is the message 

size. The larger message size can affect the performance of some components 

quite a bit. 

● Event processing agents - A useful CEP system must also scale to support a 

large collection of event processing agents. Large computations are often 

most easily presented as simple steps of a complex event processing network. 

This requires that data can be passed fast from Event Processing Agent (EPA) 

to next EPA or that there is some other optimization to remove this step. 

● Producers and consumers - A CEP system must accommodate many 

producers and consumers of the data. A substantial number of individual 

users might want to make their data available to others. The system must also 

be able to send the processed data and identified complex events to the 

correct subscribers. 

● Window size - Window size has the major role in deciding the complexity of 

the query. Window size affects on how many events a computation is applied 

at a time. For example, pattern detection might be applied for all events for 

the last five minutes. The window size can have drastic effects on rules if the 
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computational complexity grows faster than linearly with respect to the input 

size. 

● Computational complexity - Even though the focus in this research is in 

scaling, the traditionally much researched challenge of computational 

complexity still plays a big role [19]. Most of them depends on how well the 

computation can be partitioned, parallelised, and distributed [21]. 

● Environment - The developer of a CEP system must take into account the 

specifics of the system. Different environments offer variable amounts of 

memory and CPU cycles. Some environment has limitations in power 

consumption. In a distributed environment message passing adds limits to 

latency. Sometimes the bottlenecks can even reside outside the CEP part of 

the system, for example in input or output channels like message queues or 

web services transmitting the events [19]. 

● Constants - There are several other factors that influence the constants of the 

computational requirements. In addition to the already noted variable 

message size, its encoding also matters much. While SOAP enveloped, XML-

based messages might offer good support for enterprise integration patterns, 

their serialization and deserialization are computationally expensive 

compared to lighter and flatter representations. 

 

2.4 Pattern and Sequence Detection 

Pattern and sequence detection is the crown-jewel of CEP. Pattern matching lets a 

business situation be inferred or identified. Pattern detection over event streams is 

increasingly being employed in many areas including financial services, RFID-based 

inventory management, click stream analysis, and electronic health systems. A 

pattern query addresses a sequence of events that occur in order (not necessarily in 

contiguous positions) in the input stream and are correlated based on the values of 

their attributes. It involves combining several methods, such as grouping and 

correlating, as well as filtering and aggregation to identify a specific pattern or 

sequence of events within or across streams. In the pattern, there can be other events 
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in between the events that match the pattern condition, but Sequence must exactly 

match the sequence of events without any other events in between.  

 

Correlations 

The first step of applying a pattern or sequence is to group relevant events, forming a 

"window". These events are correlated using a common set of techniques called 

window policies; they are temporal windows, spatial correlation, and direct filters.: 

 

1. Temporal windows, also known as time windows, can be used to do a stateful 

event correlation based on the event occurrence. Based on the time, a 

"peephole" is created in the event stream, and the state of the previous events 

in the stream is used with the current event’s state to determine a pattern. For 

example, stock value declined by five percent within one hour of buying the 

stock. 

2. Spatial correlation or dimension-based windows are similar to temporal 

windows. The difference is that the peephole focuses on number of events 

rather than time. This technique is also called count windows, as the count of 

events determines the window. For example,  three consecutive high stock 

prices in the stock ticker 

3. Direct filters can be applied on the attributes of the event or on aggregated 

events. For example, Event.CurrencyPair == EURUSD. 

 

Event patterns are implemented using a specialized state machine approach. The state 

machine for event patterns listens to events, and at a given time it has a current state. 

Each state listens to several conditions when new events arrive, Siddhi matches those 

against the conditions. Then, event arrival order plays a very important role in pattern 

and sequence detection. State machine remembers any event that matches so far, and 

if there is an event that does not match, we destroy the state machine instance. When 

we use ‘*’ or ‘or’ key works the non-matching events are not blindly dropped, but 

they stay in the current state till a success matching occurrence, according to the 

sequence definition. 
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Pattern and sequence queries can have many Handler Processors; here, they will have 

a Handler Processor for each incoming event stream [11]. After events are received 

by the Handler Processor, it passes them to the Inner Handler Processors; these Inner 

Handler Processors are responsible for processing the states in pattern and sequence 

queries. Here, the Inner Handler Processors contain all the events that are partially 

matched up to its state level, and when a new event arrives, it tries to match whether 

it satisfies its Filter condition along with the partially matched events. If there is a 

match, it passes the corresponding previously matched events and the current event 

to the next state (Inner Handler Processor). 

 

 

Figure 2.7: WSO2 Siddhi pattern detection flow [18]. 

 

2.5 CEP Scaling Techniques 

Scaling is such an important functionality that provided by many of the CEP market 

players. Next, we discuss several commonly used CEP scaling approaches. 
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2.5.1 Common Types of Scaling 

System scalability can be achieved by scaling up or scaling out. Scaling up means 

using a high performance, faster computer with more CPU cores and more memory 

power, this is also referred as vertical scaling. Scaling out means adding more 

computers to a cluster of computers, this is also referred as horizontal scaling. 

Scaling up offers some clear benefits because it allows the software to run on a single 

machine with shared memory. This reduces the architectural constraints imposed on 

the software run on the hardware. Furthermore, management of a single big machine 

is easier than management of a cluster of computers. Vertical scaling is not always 

the perfect solution. It was also observed that to efficiently use all the power in one 

box; it might be necessary to use similar techniques as in a distributed system [22]. 

This is referred as scaling-out-in-a-box. When considering only hardware costs, 

scaling out can often be cheaper. Horizontal scaling can utilize affordable commodity 

hardware and the buyer does not have to pay hardware vendor a premium for highly 

specialized business hardware. However, to leverage distributed hardware the 

software must be carefully designed to distribute the processing. Execution running 

on one of the machine instances cannot refer to memory located on another instance. 

Sometimes the best results can be achieved by combining both vertical and 

horizontal scaling. Sometimes the biggest possible single machine is not fast enough, 

and the system builder must resort to a distributed, scale-out architecture [22].  

 

2.5.2 Partition-based Scaling 

Partition based scaling is the commonly used approach to scale the CEP [23]. This 

approach involves partitioning events in a random manner or based on the attribute. 

Many of the contemporary CEP engines support this approach. Using this approach, 

we can break the query into several steps in a pipeline that matches events against 

some conditions and republish the matching events to steps further in the pipeline 

[24]. Then we can deploy different steps of the pipeline into different machines. 

 

from every a1=StockStream[price > 70  symbol ='IBM'] →  

  a2=StockStream[price > 70  symbol ='IBM'] 

     [a1.price < 1.1*a2.prize][within.time=30] 

select a1.symbol, a1.prize, a2.prize 
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Query 2.1: Siddhi pattern query to detect unusual stock price change. 

 

For example, let us consider the Query 2.1. This query matches if there are two 

events within 30 seconds from IBM stocks that having price greater than 70 and 

having a price increase more than 10%. As seen in Figure 2.8 Option 1, we can break 

the query into three nodes, and each node will have to republish the matching events 

to the next node.  

 

 

Figure 2.8: Partition-based scaling [25]. 

 

However, queries often have other properties that allow further optimization. For 

example, although the last step of matching price increase is stateful other two steps 

are stateless. Stateful operations remember information after processing an event, so 

that earlier events affect the processing of later events while stateless operations only 

depend on the event being processed. Therefore, we can add multiple instances in the 

place of those stateless instances using a shared-nothing architecture. For example, 

we can break the query into five nodes as shown by Option 2 in the bottom part of 

Figure 2.8. 
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In addition, another favorable fact is that CEP processing generally happens through 

filtering where the number of events reduces as we progress through the pipeline. 

Therefore, pushing stateless filter like operations (e.g., matching against symbol 

“IBM”) to the first parts of the pipeline and scaling them in shared nothing manner 

should allow us to scale up the system for much higher event rates. For example, let's 

say that the StockQuote event stream generates 100,000 events per second, but only 

5% of them are about IBM. Therefore, only 5,000 events will make it past the first 

filter, which we can handle much easier than 100k events [25]. 

 

2.5.3 Publisher-Subscriber Model 

Publish/subscribe systems can typically scale to very high event rates with lots of 

publishers and subscribers [26], [27]. As seen in Figure 2.8, by using subscriptions 

events of interest can be sent from event sources to event sinks. In some systems 

filtering on event attributes can be done. This can be seen as a very simple form of 

complex event detection. For many applications though, the expressiveness of 

subscriptions is not enough. To correlate multiple events, applications can be built on 

top of publish/subscribe systems, to enable for complex event detection. These 

systems use the advantage of scalability and performance of a publish/subscribe 

middleware but are not capable of detecting a variety of complex event patterns. 

 

 

Figure 2.9: Publisher-Subscriber model for CEP scaling. 
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Here each CEP engine should analyze the deployed queries and subscribe to required 

event streams in the broker network. Generally, we match each event stream to a 

queue in the publish/subscribe system. In this approach, subscriber CEP engines can 

scale without any limitation hence it increases the overall throughput without 

restriction, and this scaling approach does not depend on underlying implementation 

of the CEP engine. However, this model increases the per event processing latency 

due to the Message Broker intervention. This model is not suitable for processing 

where events that cannot be partitioned by an attribute or random manner. 

 

2.5.4 Storm-based Deployment  

Let us discuss a little bit on Storm before moving to discuss scaling with Storm. 

Storm [28] is a distributed real-time stream processing platform that can be used to 

assemble and execute stream processing elements. The applications that run on top of 

Storm cluster are called topologies. 

 

A topology in Storm is a data flow graph of computation, which consists of elements 

called Bolts and Spouts, connected with streams. Streams are unbounded sequences 

of tuples, and a tuple is a list of values of any type [29], [30]. The sources of streams 

are Spouts, which read data from an external source, for e.g., stock exchange, 

sensors, or program logs. The streams are consumed by Bolts, which do some 

processing and possibly emit new streams that can be consumed by further Bolts. 

The processing done at Bolt can be anything, from filtering or aggregation to saving 

tuples to a database. An example of a topology can be seen in Figure 2.10. Topology 

can be seen as a blueprint for a runtime computation graph. At runtime, each 

component of a topology will run within some tasks, which are specified by a 

parallelism of that component. Every task for the same component executes the same 

blueprint code, but is a different instance and runs in a separate thread of execution. 

A task receives a tuple on its input queue, processes it and may emit new tuples to its 

output streams. 



23 
 

 

 Figure 2.10: Example Storm topology. 

 

Streams are divided between multiple tasks depending on specified stream grouping. 

Available stream groupings include shuffling stream in round robin fashion, 

replicating stream to all tasks, or shuffling stream depending on tuple attributes. An 

illustration of component tasks communicating over streams can be seen in Figure 

2.11. Spout nodes which are the event sources push events to one or more Bolt nodes 

which do event processing. A Bolt can push the processed events to another Bolt for 

further processing as well. 

 

 

 Figure 2.11: Tasks running on Storm topology. 

 

To sum up, topology is a computation graph, where one specifies Bolt and Spout 

components, the stream connections between them with stream groupings, and 

parallelism for each component. A Storm cluster can run multiple topologies at the 

same time. From the time it is submitted, a topology will run forever, or until it is 

killed. A submitted topology is run on a cluster by specified number of worker 
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processes. Every worker runs an equal share of topology tasks, and the number of 

workers or tasks cannot change during topology run. Each Bolt task receives tuples 

from an input queue and can emit tuples to other Bolt tasks. Spout tasks only emit 

tuples. This interaction is implemented using an open-source messaging middleware, 

ZeroMQ [31]. ZeroMQ is a native transport layer implementation of asynchronous 

messaging, supporting publish/subscribe, request/reply, N to N and pipeline 

communication. Storm uses ZeroMQ through native Java binding library. 

 

There are few CEP market players supports Storm-based deployment. Here, we can 

create queries, deploy them on top of a Storm cluster that runs a CEP engine on each 

of its bolts, and run it automatically. WSO2 CEP and Esper which are known CEP 

vendors support this capability [32], [30]. 

 

 

Figure 2.12: WSO2 CEP on Storm cluster. 

 

Figure 2.12 shows a Storm based deployment with WSO2 CEP [33]. Here one or 

more CEP nodes will be working as Receiver Nodes, Manager Nodes and Publisher 

Nodes. Here we will be deploying the Siddhi Queries (Execution Plan) through the 

Management Node and it will take care of splitting the queries and deploying them in 

the configured Apache Storm cluster, at the same time it will also configure the CEP 

Receive and Publisher Node to route the event to and from the Storm cluster 

accordingly. 
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2.5.5 Distributed Object Cache 

A Complex query that needs to maintain a large window and all events in the 

window would need a large working memory [8]. Then to scale this use case, we 

need to use a distributed cache to store the working memory. Oracle CEP engine 

contains this feature, where it uses distributed object cache to scale the complex 

event processing. 

 

Distributed caching technology can also increase the performance other than 

scalability of Oracle CEP applications.  For example, many event-driven applications 

need to join stream data with external data, such as data retrieved from a persistent 

store. A cache can be used to accelerate access to non-stream data, thereby 

dramatically increasing application performance. 

 

 

 Figure 2.13: Oracle CEP with Distributed Object Cache. 

 

Distributed cache in Oracle is called as Oracle Coherence. Figure 2.13 shows the 

architecture in which Coherence is combined with Oracle CEP to achieve high 

availability for the results computed by the Oracle CEP application. Oracle 

Coherence supports several basic cache configurations: replicated, partitioned, and 

multi-tiered.  Replication is used to increase the availability of cached data.  

Replicated data is cached redundantly at multiple members of the Coherence cluster 
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so that if one member fails, another member can continue serving requests for the 

data.  Partitioning, on the other hand, is a technique used to achieve massive 

scalability.  By partitioning data across many machines, the size of the in-memory 

cache can be scaled up linearly by adding additional machines.  Partitioning and 

replication can be combined to create caches that are both very large and highly 

available. 

 

Other than in Oracle CEP, distributed cache can be combined with CEP by following 

some specific approaches as mentioned in [34]. Integration of a CEP engine with 

distributed caches can go way beyond pushing stuff from one to the other (either 

input or output). The integration use cases can define as follows: 

1. Consume from a cache, emit to a cache. Quite trivial. 

2. Deal with very large stream window: the CEP engine must allow to directly 

swap in the cache as an underlying stream window backend storage, possibly 

with overflow to disk capabilities as well to trade off latency and capacity. 

3. Same as 2) but in a distributed way, so that the entire stream window is 

shared across several CEP engines for n+1 HA purpose. 

4. Integration of streaming data with reference data that sits in the cache for a 

continuous join between streams and cached reference data. The CEP engine 

needs to provide an abstraction for that and properly support it in the event 

processing language. 

 

2.5.6 Integrating with Enterprise Service Bus  

Integrating with Enterprise Service Bus (ESB) is another approach used to scale the 

complex event processing. This project is called as MMEA which is an integration 

and processing platform for the environmental data [7]. The key architectural insight 

in the system is to separate the integration functionalities of the ESB and the complex 

event facilities. This results in a stateless ESB, which can be scaled out by adding 

more processing nodes. A dedicated CEP cluster can then be tuned to handle high 

throughput and scaled out separately. 
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ESB is an integration product [35]. It can be used to connect multiple endpoints in a 

heterogeneous environment. The enterprise software often uses event-driven service-

oriented architecture. Many academics say that as an integration product acting as a 

centralized mediator for the business events, an ESB is a natural host for complex 

event processing [36]. The main issue is that the scalability models required by CEP 

and an ESB are completely different. ESB can often be completely stateless because 

it usually operates only on a single message at a time. However, in complex event 

processing, the data dependencies between events can be very complicated. Then, to 

address this issue, a prototype was developed for complex event processing enabled 

enterprise service bus, called MMEA Bus [7]. 

 

The architecture of MMEA Bus tries to answer this mismatch by deploying CEP as a 

separate service outside the ESB. Here, a dedicated CEP cluster was built on Storm 

real-time stream processing framework. The cluster performed complex event 

processing with multiple Esper CEP engines, which ran on different machines with 

their contexts. The communication between the Esper engines happens over the 

network by passing complex events created by the engines. 

 

The architecture used in MMEA Bus is based on distributed, stateless instances of 

ESB that forward filtered events to a dedicated CEP cluster. Figure 2.14 shows the 

division of the responsibilities between the ESB and the CEP cluster, the physical 

setup and the message flows between the machines. The architecture allows 

exploiting the strengths of both the ESB and the CEP separately. The ESB is used to 

define adaptations and transports that operate only on one single message at a time. 

The scalability model utilizes parallel, stateless instances to the extreme, and it is 

very little, the ESB instances must know about each other. In CEP the data 

dependencies play a much bigger role. Thus want to limit all the extra work done on 

the CEP cluster to the minimum. This means that the events supplied to the CEP 

cluster are already in the correct format and free from other complications, such as 

access rights management and encryption. The sole purpose of the CEP cluster is to 

execute the pattern matching and other fundamental functions of CEP. 
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Figure 2.14: ESB in MMEA bus architecture. 

 

Figure 2.15 depicts a logical flow of the events inside the system. Events produced 

by the sensors are fed to the enterprise service bus, which converts them to an 

internal format in the adapters. The variety of possible protocols for sending events 

to the ESB is wide because supporting a new protocol in the ESB only requires 

writing a new adapter. The currently supported protocols are SOAP over HTTP, 

HTTPS and Java Message Service (JMS) with various data source dependent file 

formats. The events received by the ESB are run through a series of filters, which act 

as selectors for interesting data. The filters are stateless and defined by the users of 

the data. By defining filters, the users can subscribe to events and event streams they 

are interested in. 

 

In fact, they implement the first stage of an event processing network and can be seen 

as event processing agents. For example, filters could be implemented using XPath, 

which matches the interesting messages by some of its elements. If there are some 

restrictions (e.g., usage or billing limits) to the event streams the users are allowed to 

subscribe, they must be applied before these selectors. The selected events are 

forwarded to a message queue, which is read by a Storm cluster. The Storm cluster 
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consists of spouts, which read the message queue, and bolts, which run the data 

through Event Processing Language (EPL) statements (i.e., are event processing 

agents) or forward the events back to the ESB for further processing (i.e. act as local 

event sinks). The architecture fully decouples complex event processing from the 

enterprise service bus. This enables us to handle their scalability separately. In fact, 

this could even replace the whole event processing system built on Esper [14] and 

Storm [28] with something completely different.  

 

 

Figure 2.15: A closer look at the MMEA processing model. 

 

The distributed CEP service aims to provide a flexible platform for users to define 

their event processing networks. There are three kinds of nodes in the Event 
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Processing Network (EPN). First, there are event producers, which read tuples from a 

message queue. Second, these tuples are forwarded to the Event Processing Agents 

(EPA) all running an instance of Esper engine. There may be several statements 

running on one instance, but it is discouraged, because it inhibits parallelism, as 

explained later. The third type is a local event consumer, which acts as a leaf node in 

the network and forwards the received events back to a message queue of the ESB 

for further processing 

 

The selected level of distribution in this architecture is the engine level. It is a natural 

choice because Esper does not allow distributing a single engine on multiple 

machines. This decision imposes some limitations on this implementation. Engine 

level granularity makes multiple query optimization (MQO) less powerful [21]. 

MQO would help to prune unnecessary, overlapping computations when multiple 

queries have similar parts. Still, the queries running on the same machine could make 

use of MQO locally if the CEP engine supports it. Because there are multiple 

separate CEP engines running on different machines, the only way they can share 

data with each other is by messaging, that is, by creating and consuming events. This 

creates some overhead but makes implementation much simpler. This approach 

forces the user to think the event processing as a flow of events and defines the 

desired computations as a network. 

 

The two parts of MMEA Bus can be scaled out separately by adding more processing 

nodes in a cloud computing environment. The performance tests that performed show 

that one ESB instance can mediate 1,750 messages of 470 bytes scaled linearly by 

adding more instances. The throughput of the CEP cluster depends a lot on the 

computational requirements of pattern detection. Nevertheless, in a simple real-life 

example case, the throughput was 28,000 events per second on a cluster with eight 

worker nodes [7]. The latency of the system was very low; usually less than 10 ms. 

The implemented platform fits its integration purposes well because the ESB product 

offers a wide variety of different adapters and mediation patterns. But, above 

performance level is not sufficient for a real complex event scenario because many 
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CEP engines can perform processing in the range of millions in a second. By fronting 

CEP by an ESB cause a bottleneck in the processing as well. 

2.5.7 Comparison of Solutions 

 While there are many scaling approaches exist in CEP engines, a single scaling 

approach can only handle one or few scaling use cases. Some of the scaling 

approaches can handle a large number of queries, some of them are used for queries 

that need a large memory, some of them are used to handle queries which are not fit 

into a single machine and finally some scaling approaches are used handle events 

which come in high event rate. 

 

Partition-based scaling is the commonly used scaling approach in current CEP 

engines. This approach can handle a large number of events as well as a complex 

query that might not fit within a single machine. Through this approach, events are 

partitioned in random or based on an attribute and processed by several CEP engines 

parallel. Even though this approach can be applied to many real-time CEP queries, it 

cannot be applied for the pattern and sequence detection queries where events cannot 

be partitioned. Publisher-Subscriber model based scaling is also another simple 

approach which can be applied without much effort. In the approach, numbers of 

subscribers are increased to improve the scalability. However, this approach can only 

apply to a query that does not depend on event flow because we cannot make sure 

that all the related events are subscribed by same CEP engine. Then, this model 

cannot be applied to a pattern or sequence detection queries. 

 

Storm-based scaling is a novel approach which provides a distributed real-time 

stream processing platform to improve the scalability for CEP. Storm-based CEP 

scaling is another variation of partition-based scaling where events are partitioned 

automatically according to the CEP queries. This approach also contains the same 

bottleneck that partition-based approach has. Distributed cached based scaling is used 

by CEP engines like Oracle CEP to improve the scalability. In a CEP engine, a 

complex query that needs to maintain a large window and all events in the window 

would need a large working memory. Then to scale this use case, we can use a 
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distributed cache to store the working memory. This approach is somewhat feasible 

to handle any CEP scaling use case if there are more computer resources available. 

However, the important concern of this approach is the complexity of the 

deployment. 

 

ESB-based scaling is another unique way of scaling CEP compares to other 

approaches. This approach provides an easy integration or scalable solution for 

existing CEP engines without much effort. The key architectural insight in the system 

is to separate the integration functionalities of the ESB and the complex event 

facilities. This approach does not solve all the limitation that exists in other scaling 

approaches but provides easy integration with any heterogeneous environment 

because of ESB support. The main limitation of this approach is performance. 

Typically, a CEP engine can process millions of events per seconds for simple filter 

queries, and ESB can only handle few thousands of events per second then by putting 

ESB in front of the CEP engine causes the bottleneck for CEP processing as well. 

 

2.6 Out of Order Event Handling Approaches 

Out-of-order event arrival is present in general data stream processing applications. 

Handing the disorder consists of a trade-off between result accuracy and result 

latency. There are several known approaches to handle disordered events as given 

below. 

 

2.6.1 Buffer-Based Out of Order Event Handling 

The key idea in buffer-based [37] approach is to use a buffer to sort tuples from the 

input stream in ascending timestamp order before presenting them to the query 

operator. However, due to buffering and sorting, processing of the input tuples gets 

delayed, and it increases the latency. 
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2.6.2 Punctuation-Based Out of Order Event Handling 

Punctuation-based [38] approaches depend on special tuples (i.e., punctuations) 

within the data streams. This is to indicate that no future tuples with timestamps 

smaller than the timestamp of punctuation are expected. Punctuations explicitly 

inform a query operator when to return results for windows. Therefore, query 

operator can consume out-of-order input directly. Heartbeats and partial order 

guarantees are two example punctuation types. 

 

2.6.3 Speculation-Based Out of Order Event Handling 

In Speculation based approach [39] results are produced speculatively with or 

without applying a compensation technique to correct early emitted inaccurate query 

results when late arrivals are observed. Buffer-based and punctuation-based 

approaches are conservative approaches. They wait for late arrivals to avoid 

producing inaccurate results. Speculation-based approaches are aggressive. They 

assume in-order arrival of tuples and produce the results of a window immediately 

when the window is closed. When a late arrival event e is detected, previously 

emitted results which are affected by event e are invalidated. New revisions of these 

results are produced by taking e into account. However, for data streams that are 

highly out-of-order, one query result may be revised many times before the final 

exact revision is produced. This exhausts CPU may cause high result latency. 

 

2.6.4 Approximation-Based Out of Order Event Handling 

Approximation based approach [40] is related to computing approximate aggregates 

over data streams. These techniques summarize the raw data stream with a particular 

data structure (histograms, q-digests) and produce approximate aggregate results 

based on these summaries. Current approximation-based approaches follow an 

aggressive strategy. The difference from speculation-based techniques is that when a 

late arrival is received, approximation-based approaches only ensure that this late 

arrival is accounted for in future aggregate computations. However, it does not 

correct previously emitted results. For queries with small windows, this strategy 

leads to significant amount of query results with noticeable errors. 
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2.6.5 K-Slack Based Out of Order Event Handling 

 

 

Figure 2.16: Event reordering. 

 

K-slack transparently buffers and reorders events before they are processed by event 

detectors. It uses a buffer of length K to delay an event ei for at most K time units (K 

must be known a priori). It dynamically adjusts the buffer size to a big-enough value 

to accommodate all late arrivals, aiming to provide near exact query results. 

Although K-slack has originally being designed for non-distributed, single-threaded 

stream applications, it has been used in distributed environments as well [41], [42]. 

 

2.7 Comparison of CEP Engines 

In Section 2.2, we discussed various CEP engines. A summary of findings is listed in 

Table 2.1. Based on the properties we decided to go for an open-source CEP engine 

because it will be easier to get the source code and also developer community 

support for the research if needed. Then, we have drilled down both Esper and 

WSO2 Siddhi CEP engines from above mentioned CEP products because they are 

well-known open-source CEP engines. 

 

We focused on some other constraints like easy usability, consumability, high 

performance and public availability of online resources when making the final 

decision. Then, we selected WSO2 Siddhi CEP engine because it can process five 

million events per second for simple filtering queries (as shown in Figure 2.15). This 

event rate is far higher than the Esper CEP engine’s event processing rate [43], [44]. 

In addition to performance WSO2 Siddhi CEP engine contains many publicly 

available online resources, which provide more understanding about the product and 
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its functionalities. In addition, the simplicity of the Siddhi queries provides an added 

advantage for the research.   

 

Table 2.1: Comparison of CEP engines. 

Feature / CEP Engine Esper Oracle CEP Apama WSO2 

Siddhi 

Open-Source Yes No No Yes 

Performance (events/second) 2M 0.04M 0.0002M 5M 

Query Language SQL like SQL like SQL like SQL like 

Online Resources Many Few Few Many 

Developer Community Yes No No Yes 

Easy Use Better Good Better Best 

 

2.8 Summary 

In this chapter, we have provided an introduction to CEP engine and discussed the 

features and architecture of some well-known CEP engines like Esper, Oracle, 

Apama, and WSO2 Siddhi CEP engine. We also discussed the attributes of CEP 

scalability and important of the pattern detection and how it works as well. In the 

later part of the chapter, we have provided information about some commonly used 

and well-known scaling techniques like partition based scaling, publisher-subscriber 

based scaling, Storm based scaling, distributed object cache based scaling and scaling 

through ESB. Here, we have compared the pros and cons of existing scaling 

approaches that mentioned above. We have also done some comparison of the CEP 

engines and decided to go with WSO2 Siddhi CEP engine due to the open source 

nature and performance capabilities of the engine. 
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3. METHODOLOGY 
 

We propose a scalable solution for the pattern and sequence detection queries that 

can be implemented on most CEP engines. The proposed approach is independent of 

the internal implementation of a CEP engine, which allows incorporating with most 

of the CEP engines. Section 3.1 presents details of the proposed solution and 

discusses the key technologies and features of the solution. Implementation of the 

proposed solution on top of WSO2 Siddhi CEP engine is explained in Section 3.2. 

This section is also discussed on how events are partitioned with time and how 

pattern detected events are reordered and duplications are handled through the 

solution. 

 

3.1 Proposed Solution 

Among many approaches to scale Complex Event Processing (CEP), partition-based 

scaling is the most popular and accepted approach in the industry [45]. While 

partitioning is typically based on attribute value or multiple attribute values, we 

propose a technique based on time, where events are partitioned based on the within 

time that we define in the query. within time variable defines the time window that 

should be considered for detecting a pattern or sequence query.  

 

Figure 3.1 illustrates the key stages of the proposed solution. Initially, incoming 

events are partitioned based on time. Then the pattern is detected within a partition. 

Finally, pattern detected events are pushed to next stages to remove duplicated events 

and reorder them. This approach enables us to scale pattern and sequence detection 

operations, which are required to perform a whole set of events without grouping by 

an attribute. Because the events are partitioned based on time with some overlapping 

events, as well as processing occurs simultaneously in multiple CEP engines, this 

may result in duplicate pattern detections and leads to duplicate output events. 

Moreover, events could reorder as patterns can be detected at different times due to 

parallel processing of partitions by different CEP engines. 
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Figure 3.1: Overview of the solution. 

 

Next, we provide more details about the proposed technique. Here, we discuss the 

solution, side effects that arise when applying the suggested solution, and possible 

ways to overcome those issues. 

 

3.1.1 Partitioning Events by Time 

Events are pushed from various event sources to the CEP engine with a high 

throughput. In this case, incoming events get queued at the entry to the CEP engine. 

Then events in the queue are partitioned based on time values. Then each partitioned 

event group is pushed to one of the parallelly running CEP instances. To understand 

further, let us consider the following example Siddhi query for pattern illustrated in 

Figure 3.2: 

 

from every h1 = hitStream -> h2 = hitStream[h1.pid != pid and h1.tid == tid] -> h3 

= hitStream[h1.pid == pid]   

within 5 seconds 

select h1.pid as player1, h2.pid as player2, h3.pid as player3, h1.tsr as tStamp1 , 

h2.tsr as tStamp2 , h3.tsr as tStamp3 

insert into patternMatchedStream; 

Query 3.1: Siddhi query to detect ball passes between the players. 

 

Above Sidhi pattern query works on events that come through a stream called 

hitStream. hitStream contains the event related to a ball hit during a football game.  

Here we are looking for following three states, 

1. Ball hit from a player x of team 1 

2. Then, a ball hit from another player y of opponent team 2 

3. Finally, a ball hit from the same player x who hit first. 
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Moreover, these three states need to happen within five seconds.  

 

 

Figure 3.2: Example pattern query. 

 

The three states are not required to occur one after another. As it is a pattern query 

(and not a sequence query), there could be zero or more intermediate states.  To be 

relevant, these state transitions should happen within a time interval (as indicated by 

the value of “within” variable). For example, as shown in Figure 3.3, if within value 

is five seconds then we partition the events as 10 seconds batches by overlapping five 

seconds event groups of two consecutive partitions. By partitioning the events into 

batches of twice the within time, we make sure that no patterns or sequences are 

missed due to event partition and processing them individually. 

 

Figure 3.3: Partitioning input events by timestamp. 



39 
 

 

Figure 3.4: Partition distribution among CEP instances. 

 

As shown in Figure 3.4, once the events are partitioned based on timestamp, each 

partition is pushed to one of the CEP instances and processed parallelly. Here, CEP 

instance is shut down once processing is completed and re-initiated when it is 

required but number of CEP instance count will be less or equal to the user-defined 

value. We can instantiate a new runtime instance and scale up the processing 

automatically based on the input rate of events. Then each runtime instance can 

process partitioned event groups in parallel and output those processed events. 

Because of this parallelism, CEP can accept and process events at a higher 

throughput. It is a good approach to have a pool of Siddhi CEP engines and use them 

for event processing rather spawning a new Siddhi engine instance for each event 

partitions. But, we have to reset the state of the CEP engine before using it for 

processing of another event partition because if not it can produce some unexpected 

patterns or sequences. But as per the implementation of WSO2 Siddhi CEP engine, 

there is no way to flush the current state of the engine and reset it. Due to this, we 

have to spawn a new Siddhi CEP instance to process each event partitions.  
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3.1.2 Handling Event Duplication and Reordering 

As we partition events by time interval with some overlapping of events between 

partitions, it could result in event reordering and event duplication that we need to 

consider and solve. Next, we discuss a possible solution to address event duplication 

and reordering. 

 

Event duplication can be handled using a HashSet-based data structure [46]. HashSet 

creates a collection that uses a hash table for storage. Hash table stores information 

by using a mechanism called hashing. In hashing, the informational content of a key 

is used to determine a unique value, called its hash code.  The hash code is then used 

as the index at which the data associated with the key is stored. The transformation of 

the key into its hash code is performed automatically. Here, we have written the hash 

function of the event which returns the hash code by considering the attributes of the 

event. If attributes of events are equal, then hashcode of those events will also be 

equal. The hash code is then used as the index at which the data associated with the 

key is stored. The transformation of the key into its hash code is performed 

automatically.  

 

Figure 3.5 illustrates an example scenario of out-of-order events arrival. The event 

IDs are shown above the arrow and their corresponding event generation timestamps 

are shown below the arrow. In this example event e10 and e13 arrive late in the event 

streams. As shown in Figure 3.3 events are pushed to multiple Siddhi engines 

parallelly. In this case, there is a high possibility where events can get out of order. 

 

 

   Figure 3.5: Out of sequence events. 

 

As discussed in Section 2.6, there are several known approaches available to handle 

out of order events. They are buffer based approach, punctuation based approach, 

speculation based approach, approximation based approach and K-Slack based 

approach. Here, we have used K-Slack based implementation to overcome event 
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disordered issue. K-Slack based implementation is straightforward compared to the 

other scaling approaches that we discussed in Section 2.6. Even though K-Slack 

based approach increases the latency due to buffering and sorting delays when 

processing input events it has an important advantage where it dynamically adjusts 

the buffer size to a big enough value to accommodate all late arrivals, aiming to 

provide near exact query results. And also, K-Slack based approach does not need to 

keep entire history of the query results as like punctuation based event reordering 

approach. And also it does not require high CPU for processing and cause high result 

latency as like speculation based approach. The HashSet based data structure 

incorporated with the K-slack based implementation to handle the event duplication 

and event reordering at the same time to avoid unnecessary latency increment when 

detecting pattern or sequences.  

 

3.2 Implementation 

The proposed solution is to be implemented on the WSO2 CEP Siddhi engine. Siddhi 

is selected as it is open-source, has low latency, and capable of analyzing millions of 

events per second [47]. As shown in Figure 3.6, following steps are followed while 

implementing the proposed solution on Siddhi: 

● Buffer the incoming events in a queue to partition them. 

● Events are partitioned based on the time interval using the event timestamp. 

Here, partition time interval depends on the within time that mentioned in the 

query. For e.g., if within time is t seconds then partition time is 2t seconds. 

● Instantiate a set of Siddhi CEP engines and push event partitions into it.  

● Then at each CEP engine pattern recognition is performed based on the event 

arrival time to the Siddhi CEP engine. 

● Pattern detection happens simultaneously in different siddhi engines and 

results will be pushed to another processing layer to perform reordering and 

duplication handling. 
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Figure 3.6: Overall processing in Siddhi CEP engine. 

 

Next, we explain the detailed implementation on top of WSO2 Siddhi CEP Engine. 

Siddhi Wrapper component act as the overall processing manager, which controls 

overall scaling and processing of events. Siddhi Wrapper performs two primary 

operations as follows: 

● Partitioning the events based on “within” time interval of the query. 

● Instantiate multiple Siddhi manager instances and push events to them. 

Here, we used a queue-based data structure to store the event partitions; internally 

each event partition is also an event queue. When events are received at high arrival 

rate, they are queued and partitioned based on within time interval value that is 

mentioned in the Siddhi pattern or sequence query.  

 

Let us consider the following example scenario. If within time value is five seconds 

then we will partition the events by ten seconds (5 seconds × 2). Here time duration 

is calculated based on the timestamp value tagged in the event, but not with the 

system timestamp. As shown in Figure 3.7, events are partitioned as ten seconds 

event batches by combining two successive five second batches based on the 

timestamp defined in the event itself. Based on the inputs that were shown in the 

figure, they are divided into three partitions. 
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Figure 3.7: Partitioning events based on within time interval. 

 

In the meantime, Siddhi Wrapper instantiates necessary Siddhi processing engines 

instances in a proactive manner. Then, it pushes the event partition to Siddhi manager 

instance for processing. Each Siddhi manager instance runs similar query as defined 

in Query 3.1 and process incoming events. Number of Siddhi engine instances is a 

user configuration parameter of our implementation. Users can configure an 

appropriate value for the parameter by considering the input event rate and machine 

hardware resources.  

 

As illustrated in Figure 3.6, after processing the event partitions, output events of the 

pattern query is sent for further processing to another Siddhi processing instance to 

remove the duplicated events and rearrange the order of them. 

 

Siddhi CEP engine process events based on system timestamp, and it does not have 

the capability to do the processing using the user-provided external timestamp 
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(attribute of an event which specifies the timestamp of event origination). Let us 

consider the following scenario. If there is a pattern query which spans through (or 

within time interval) each five seconds, then events are pushed to multiple Siddhi 

CEP engines as shown in Figure 3.8. 

 

 

Figure 3.8: Partitioning and processing based on external time. 

 

If we do the processing based on external timestamp (which is an attribute), then we 

will consider the time that event is originated at event source for the processing. As 

illustrated in Figure 3.8, event partition is based on the time that an event gets 

originated from an event source. If partitioning is done based on the system 
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timestamp (or time that event arrives at Siddhi engine), there could be some 

differences in events that are in the partition as shown in Figure 3.9. This has an 

impact on overall processing and results as well, if events are partitioned based on 

system timestamp then the grouping of events depend on some external factors like 

event source efficiency, network delay, and IO operation. These external factors can 

change the way that an event gets grouped, due to this reason pattern detection is also 

get affected and leads to wrong outputs.   

 

 

Figure 3.9: Partition events based on System Time. 
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To overcome this behavior, some changes are required at Siddhi core to compare the 

timestamp of the event for the time-related operations rather considering system 

timestamp. Due to this change, overall processing would be more accurate as 

network/transport level delays or publisher level delays are neglected. This helps the 

evaluation/benchmarking process as well because we do not have to worry about 

keeping same publisher frequency and other external changes.  

 

After processing the events by multiple Siddhi engines parallelly, the output will be 

pushed to another Siddhi engine instance to handle event duplication and event 

reordering. Here, Siddhi engine runs a query which is similar to the following: 

 

define stream patternMatchedStream (player1 string, player2 string, player3 string, 

tStamp long, tStamp1 long, tStamp2 long); "); 

 

from patternMatchedStream#window.kslack(10000) select * 

insert into filteredOutputStream; 

Query 3.2: Siddhi query which reorders and remove duplicate events. 

 

In above, events are sent to a Siddhi extension called K-slack to perform event 

reordering and to remove duplicated events. This K-slack based extension is a 

custom Siddhi window processor extension which buffers events and processes them 

based on provided configuration.  

 

Figure 3.10 illustrates the time batch window based K-slack implementation.  

Incoming events are buffered and reordered based on the timestamp of the event, at 

this situation K-slack Siddhi extension also verifies the hash value of the event to 

detect duplicated events and remove them; after that, those reordered events will be 

sent out based on fixed timer event. 

 



47 
 

 

Figure 3.10: K-slack based extension of Siddhi. 

 

As specified in Query 3.2, K-slack based extension accepts one parameter which is 

the fixed timeout value (specified in milliseconds) set at the beginning of the process. 

This extension uses the corresponding timestamp of the event for ordering the events. 

Once the timeout value expires, the extension drains all the events that are buffered 

within the reorder extension to outside. Internally the timeout has been implemented 

using a timer. Each time when the timer ticks, the events which are buffered within 

the extension are released. 

 

3.3 Summary 

We discussed the implementation of the proposed solution and how it was developed 

on top of WSO2 Siddhi CEP engine. Our proposed approach contains three primary 

steps which are partition events by time, handling event duplication and event 

reordering. In our proposed approach incoming events are sent to the Siddhi wrapper 

component which partition events based on event timestamp and push those 
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partitioned groups to multiple siddhi engines which are running parallel. Each Siddhi 

engine executes the pattern or sequence queries and sends the output to another 

Siddhi instance to perform event reordering and to remove duplicated events. Here, 

we have used K-slack based window implementation to reorder events and HashSet 

based data structure used to remove duplicated events. 
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4. EVALUATION 
 

This section provides the details about performance analysis of the proposed time-

based partition scaling approach. Section 4.1 discusses the benchmark and its 

features that used for the evaluation. Section 4.2 presents the experimental setup and 

hardware configurations. Section 4.3 analyzed the throughput improvement of the 

proposed solution with compared to the existing default Siddhi CEP engine. System 

resource (memory, CPU, and thread) utilization details are discussed in Section 4.4. 

Section 4.5 presents more in-depth information on accuracy metrics while latency 

variations are discussed in Section 4.6. 

 

4.1 Soccer Monitoring Benchmark 

Soccer monitoring benchmark is based on the DEBS (Distributed Event Based 

Systems) 2013 Grand Challenge [48], which we referred to as SMB2013 benchmark. 

SMB2013 benchmark focuses on conducting real-time streaming analytics on a 

soccer game. Figure 4.1 illustrates the flow of data in SMB2013. As shown in the 

Figure, incoming events are sent through a stream called sensorStream and it is get 

partitioned based on the within time that defined in the query then it goes through 

few set of queries to perform initial filtering and events are output through a stream 

called hitStream. Pattern detection occurs in the next step by looking the events in 

hitStream and pattern detected events are output through a stream called 

patternMatchedStream. Finally, event reordering and duplication handling occur for 

the events of patternMatchedStream and final output sends through 

filteredOutputStream.  

 

The data used for this benchmark is collected by the real-time locating system 

deployed on a football field of the Nuremberg Stadium in Germany and it contains 

47 Million rows events. Data originates from sensors located near the players’ shoes 

(1 sensor per leg) and in the ball (1 sensor). The goalkeeper is equipped with two 

additional sensors, one at each hand. The sensors in the players’ shoes and hands 

produce data with 200 Hz frequency, while the sensor in the ball produces data with 

2,000 Hz frequency.  
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Figure 4.1: Soccer monitoring benchmark event flow. 

 

 

Figure 4.2: Playing field and its dimensions [48]. 

 

The total data rate reaches roughly 15,000 position events per second. Every event 

describes a position of a given sensor in a three-dimensional coordinate system. The 

center of the playing field is at coordinate (0, 0, 0). See Figure 4.2 for the dimensions 

of the playground and the coordinates of the kickoff. The event schema is following: 

sid, ts, x, y, z, |v|, |a|, vx, vy, vz, ax, ay, az 

Table 4.1 describes the attributes of the event schema.  
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Table 4.1: Description of event attributes. 

Symbol Description 

sid Sensor Id- Produced the position event 

ts Timestamp- Defined in picoseconds e.g.: 

10753295594424116 (with the value of 

10753295594424116 designating the start and 

14879639146403495 the end of the game) 

x, y and z Position of the sensor in mm 

|v| Velocity of the ball in μm/s 

|a| Absolute acceleration of the ball in μm/s&sup2 

vx, vy and vz Direction by a vector with size of 10,000 (in m/s) 

ax, ay and az Constituents of absolute acceleration in three dimensions 

 

 

Figure 4.3: Stream partitioning of data. 

 

Here, the data file contains events that generated from sensors. In the benchmark, 

these events are pushed to sensorStream; then those events will be divided into 

ballStream and hitStream as shown in Figure 4.3. This benchmark uses the hitStream 

and find out the following pattern (logic) and notify: 

1. Ball hit from a player-x of team-1 

2. Then, a ball hit from another player-y of opponent team-2 

3. Finally, a ball hit from the same player-x who did it first. 

 

The corresponding Siddhi query is as follow: 
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from every h1 = hitStream -> h2 = hitStream[h1.pid != pid and h1.tid == tid] -> h3 

= hitStream[h1.pid == pid]   

within 2 seconds 

select h1.pid as player1, h2.pid as player2, h3.pid as player3, h1.tsr as tStamp , 

h2.tsr as tStamp1 , h3.tsr as tStamp2 

insert into patternMatchedStream; 

Query 4.1: Siddhi pattern query used for evaluation. 

 

Following tests are conducted for various combinations to analyse the throughput and 

accuracy of the proposed solution: 

1) Throughput against number of CPU cores. 

2) Throughput against different within time (i.e., batch time). 

3) Accuracy against number of Siddhi instances. Accuracy is defined in Section 

4.5. 

4) Accuracy against within time (i.e., batch time). 

 

4.2 Experimental Setup 

We used two different computers with different CPU configurations. One of them 

contains 32 core CPU, and other one contains 16 core CPU. Each computer instance 

was pre-configured with Oracle JDK 1.7.0_79-b15. All the tests are carried out by 

allocating -Xms16g -Xmx18g for memory and we used the Siddhi Engine version 

2.2.1. 

 

4.2.1 Prototype 

Tests were carried out using the implementation in Section 3.2. We used Siddhi 

version 2.2.2 to implement the proposed solution. To simulate the Siddhi manager 

instance, we spawned separate threads and partitioned data pushed to them. The 

component that was implemented is wrapped as a separate jar file with other 

dependencies and ran with JDK 1.7_79.  
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Here, number of Siddhi engine instances and batching time are configurable and can 

be passed as Java arguments to the test class that implemented. Usage of such 

prototype made it possible to simplify the testing process by reducing the testing 

time. Tests were conducted by setting multiple possible values for Siddhi instance 

count and batching time to get the better understanding about the performance and 

usability of the implementation.  

 

4.2.2 Hardware Configuration 

As our primary goal is to scale the pattern and sequence queries to handle a large 

number of events per second (TPS), we have to run multiple Siddhi CEP engine 

instances to verify the solution. Therefore, we used two high-end machines for tests. 

Most of the tests were carried out on a machine with 32-core IntelR XeonR CPU E5-

2470. Based frequency of the processor is 2.30 GHz and turbo frequency is 3.10 

GHz. It has 20 MB L3 cache. For all the tests, we allocated 16 GB of minimum 

memory and 18 GB of maximum memory by setting the Xmx and Xms values for 

Java Virtual Machine (JVM). To verify the throughput against the number of CPU 

core, we used another machine with 16 core CPU which has the same processor. 

 

4.3 Throughput of Scaled Solution 

As our primary objective is to achieve high throughput, we compare the performance 

of the proposed technique with the performance of default WSO2 Siddhi CEP 

engine. Same workload and set of queries were used in both cases. It makes sense to 

get statistics with default Siddhi engine and compare those values with the statistics 

that we got with our implemented solution because our solution is implemented on 

top of Siddhi CEP engine and we can clearly compare the performance results 

between those in a straightforward manner by following this approach. We also made 

sure that both tests were carried out with same system environmental parameters and 

configurations. 
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Figure 4.4: Throughput of the default Siddhi CEP engine. 

 

The initial test was carried out against the default WSO2 Siddhi CEP engine to 

measure throughput with the SMB2013 benchmark. As seen in Figure 4.4, 47 Million 

events were pushed to the CEP engine and throughput was calculated for each batch 

of one Million events of the distribution. As shown in figure initial throughput of the 

first set of one Million events is 12,509 events/sec. After that throughput steadily 

increased for next set of one Million events and went up to nearly 14,000 events/sec 

and gets stabilized in the 32 core CPU machine. And the similar behavior was 

observed in 16 core CPU machine as well where throughput was stabilized at 13,200 

events/sec. We can consider the initial phase of the test as the warm up period which 

allows to byte-code optimization. Overall throughput was distributed between 12K to 

14K events/sec for all the set of events. In Figure 4.4, there were some small hiccups 

for the initial set of events that pushed. We believe this is due to the warm-up of the 

performance test. 

 

As shown in Figure 4.4, there is no much difference observed in throughput when 

running the SMB2013 benchmark in 16 core and 32 core CPU machines. WSO2 

Siddhi CEP engine uses around from six to eight threads when processing a pattern 

or sequence query. To serve this requirement, it is required to have a four core CPU 
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machine. Even the processing happens on a machine which has more CPU cores; it 

does not use CPUs more than four cores since the implementation of Siddhi does not 

require it. As per the pattern and sequence design of Siddhi, events are processed 

sequentially then it does scale even more hardware resources are available. 

 

As you can see from Figure 4.5, tests were carried out on two different machines 

which have 32 core and 16 core CPUs. As per the proposed solution we enabled 

multiple Siddhi CEP engines. Statistics related to throughput was collected across all 

Siddhi Instances. 

 

 

Figure 4.5: Throughput in multi-core machines of the proposed solution. 

 

Throughput gradually increased from 14,921 events/sec to 109,815 events/sec when 

Siddhi instances are added one by one up to 20 from one. After that, throughput gets 

stabilized and continued between 100K to 120K events/sec until 100 Siddhi instances 

are spawned. While a similar pattern was observed on 16-core CPU machine, the 

resulting throughput was considerably lower. In this test, throughput gradually 

increased up to 32,621 events/sec from 9,488 events/sec when Siddhi instance count 

was increased to six from one. Throughput stabilizes between 25K to 28K events/sec. 
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This was the same behavior that observed when running the solution with parallel 

Siddhi CEP engines which are counted from seven to 100.  

 

As we are starting each Siddhi engine on a different CPU level thread, multiple 

threads are created and they can execute in parallel on available CPU cores. 

Consequently, the machine with 32-core CPU outperforms 16-core machine. 

Therefore, we can get better throughput by increasing the number of parallel CEP 

engines. As mentioned in the methodology section, in the proposed solution events 

are partitioned based on within time interval given in the query. For example, if 

within time interval is given as 30 seconds then event are partitioned by 60 seconds 

(30 seconds x 2) with overlapping events between the partitions. Because events are 

accumulated in the memory for some time, it has an impact on overall throughput 

and processing of the solution. 

 

 

Figure 4.6: Throughput in multi-core machines of the proposed solution. 

 

Tests were carried out with four different possible within time values as 2, 5, 10, and 

30 seconds by changing the Siddhi query that used for pattern detection in the 

benchmark. When within time was set as two seconds, throughput is increased from 

14,921 events/sec to 109,815 events/sec when 20 Siddhi engines are initialized. After 
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that throughput is stabilized, and it was between 100K events/sec to 110K events/sec 

range. When within time is five seconds, throughput is 14,428 events/sec when single 

Siddhi engine was processing events. However, it gradually increased up to 95,280 

events/sec when 20 Siddhi engine instances are processing events in parallel. After 

that throughput is stabilized and settled to a value between 85K and 95K events/sec. 

If within time is 30 seconds, throughput is 13,267 events/sec when single Siddhi 

engine instance is initialized. It then gradually increased as multiple Siddhi engine 

instances were added. Throughput reached 80,482 events/sec with 25 Siddhi engine 

instances. However, there is a drop in the throughput and it decreased suddenly to a 

low value. After initializing 45 Siddhi engines, throughput is decreased to 13K 

events/sec, and it is reduced further when adding much more Siddhi engine instances 

for processing. 

 

 

Figure 4.7: Event partitioning logic.  

 

When the within time is 2, 5, and 10 seconds throughput gradually increased and get 

stabilized. However, when within time is 30 seconds even though throughput is 

increased gradually, it does not become stabilized rather it get dropped to a lower 

value. If within time is 30 seconds then events are get partitioned as 60 seconds 

batches. That means it contains many hundred thousands of events in a single 
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partition. As shown in Figure 4.7, if the maximum number of Siddhi engine instance 

count is high then there is a possibility where multiple partitions are get created and 

kept in the memory. In this situation, 60 seconds partition runs out of memory and 

starts swapping to disk space; this drastically reduces overall throughput.  

 

4.4 Resource Utilization 

We have gathered necessary system statistics to get a better understanding about the 

system resource (memory, CPU, and thread) usage. We used Java Flight Recorder to 

retrieve system resource related information and analyzed it using the Java Mission 

Control tool [49]. Below diagrams, which are represented by Figures 4.8, 4.9, 4.10, 

4.11, 4.12 and 4.13 are derived from that. 

 

We have used the same SMB2013 benchmark for below evaluation purposes as well. 

As defined in the query within time is set as two seconds for both evaluations of 

default Siddhi CEP engine and our proposed solution.  The graphs that are related to 

the proposed solution are related to the processing while having 20 parallel WSO2 

Siddhi engines. We have used 20 parallel Siddhi engines for the evaluation of the 

proposed solution because we have achieved maximum throughput when having 20 

parallel Siddhi CEP engines as shown in Figure 4.6. As per our tests, we have 

observed 800% of throughput improvement in our proposed solution compared to the 

default Siddhi CEP engine. 

 

Figure 4.8 shows the CPU utilization by the default WSO2 Siddhi CEP engine. It has 

consumed nearly 5% of the CPU consistently at all the time while processing events. 

This is expected as we are running a single instance of the Siddhi engine. Figure 4.9 

shows the CPU usage when running our proposed solution. As per the figure, you 

can see it has consumed 60% of the CPU when processing events in most of the time 

and there is a reduction in the CPU usage time to time as well. This behavior is 

expected since our solution instantiated 20 Siddhi engines simultaneously and there 

are around 28-30 active threads at most of the time. This means it required around 

more than 15 cores to run these threads as each CPU core can handle two threads at a 
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time as per the system configuration. Once processing is completed each thread 

which runs the Siddhi CEP engine is stopped, and another thread recreated to 

instantiate another Siddhi engine instance, that is why there is a sudden reduction in 

CPU usage in some situations. This behavior is consistent across the complete 

processing time of our proposed solution.  

 

 

Figure 4.8: CPU usage in default WSO2 Siddhi engine when processing. 

 

 

Figure 4.9: CPU usage in the proposed solution. 
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Figure 4.10 shows the thread count distribution when processing events. As you can 

see above, there are seven active threads used consistently. We have used a separate 

thread to push events, another thread to receive processed events from Siddhi and 

some threads are used internally in Siddhi for processing of pattern and other Siddhi 

queries. Figure 4.11 shows the usage of threads when processing is done with our 

proposed solution. Here you can see there are around 28 active threads and there is 

some sudden drops time to time. This pattern repeatedly continues for whole 

processing time. Because each Siddhi CEP engine runs in a separate thread, there 

will be multiple active threads at a time. Once processing is completed corresponding 

Siddhi engine instance is stopped and thread gets terminated as well. That is why 

there are some sudden drops in the total number of active threads in some situations. 

    

 

Figure 4.10: Thread count in default WSO2 Siddhi engine when processing. 

 

The machine that we used for testing contains 64 GB of total memory. But we have 

only allocated 16 GB as the minimum memory (committed memory) and 18 GB as 

the maximum memory (reserved memory) to provide a controlled environment for 

testing scenarios of default Siddhi engine and proposed solution. As you can see in 

Figure 4.12, memory usage is consistent and it is around 6 GB across all the time 

when processing was done. Figure 4.13 shows the memory usage when processing 

events with our proposed solution. Here, you can see memory usage is gradually 

increased and gone up to 16 GB which is the committed memory size; then its usage 
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is suddenly dropped and incremented again. This behavior is observed because after 

the committed memory is consumed by the events that are partitioned, garbage 

collector runs and get cleared the memory. We can see the same pattern of the 

memory usage continued in at all the time of the event processing. 

 

 

Figure 4.11: Thread count in the proposed solution. 

 

 

Figure 4.12: Memory usage in default WSO2 Siddhi engine when processing. 
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Figure 4.13: Memory usage in the proposed solution. 

 

4.5 Evaluation of Accuracy 

Several rounds of testing were carried out to verify and analyze the accuracy of our 

proposed solution. We can analyze the accuracy at two different levels. First, we 

have used the SMB2013 benchmark without Query 3.2, which does event reordering, 

and event duplication in a default WSO2 Siddhi CEP engine and got the necessary 

output of pattern-detected events. This output is considered as the template to verify 

the accuracy of our solution. Then accuracy can be defined into two main levels. 

1. Whether our proposed solution detects all possible patterns 

2. When level (1) is fulfilled, whether duplicate events are get removed and 

reordered. 

 

Due to the nature of tests, our proposed solution detected all possible patterns which 

are identified the default Siddhi CEP engine, and this is expected and proved through 
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our tests that conducted. This means our solution is achieved 100% accuracy for 

level-1.  

 

Figures 4.14 and 4.15 illustrate accuracy level-2. These tests were conducted to 

verify the effectiveness of both reordering and duplicated event handling approaches 

that we discussed in Section 3.1.2. These tests will provide the necessary expectation 

of reordering and duplicate handling capabilities of our proposed solution. 

 

 

Figure 4.14: Duplicated events (in %) vs. Siddhi instance count. 

 

We have conducted the accuracy tests with few different combinations. The tests 

were conducted with a various number of Siddhi instance count and buffer time. As 

we mentioned in the previous section events are get reordered using K-slack based 

implementation and Hash-based data structure used to avoid duplicated events. After 

events are get processed and output by multiple parallel Siddhi engines, pattern 

detected events are sent to another Siddhi engine which runs our K-slack based 

implementation to reorder the events and get removed the duplicated events at the 

same time. Here, events are buffered for some amount of time as batches to perform 

reordering and to remove duplicated events. Duplicated events were calculated by 

comparing with the pattern detected events of the default WSO2 Siddhi CEP engine.  
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As you can see in Figure 4.14, tests were conducted for two different buffer times 

which are 30 seconds and 60 seconds and also for two different within times which 

are two seconds and five seconds. Here, duplicated events are in between the range 

of 10% - 25% of the actual pattern detected events. And this percentage is changed as 

per the Siddhi instances count, different buffer time intervals and within time. We 

have conducted the accuracy tests with Siddhi instances from 1 to 100. When tests 

were conducted with 30 seconds buffer and two seconds within time, it was observed 

10.85% duplicated events as the minimum when Siddhi CEP instance count was one, 

and it was observed 22.69% of duplicated events as the maximum when Siddhi 

instance count was 25. With 60 seconds buffer time and two seconds within time, no 

any duplicated events are found while running with 10 Siddhi engine instances. As 

the maximum, 22.56% of duplicated events found when there were 75 Siddhi engine 

instances when buffer time was 60 seconds and within time was two seconds. When 

tests were conducted with 30 seconds buffer and five seconds within time, it was 

observed 10.20% duplicated events as the minimum when Siddhi CEP instance count 

was 95, and it was observed 25.89% of duplicated events as the maximum when 

Siddhi instance count was 50. With 60 seconds buffer time and five seconds within 

time, 3.39% duplicated events are found while running with five Siddhi engine 

instances. As the maximum, 26.31% of duplicated events found when there were 85 

Siddhi engine instances when buffer time was 60 seconds and within time was five 

seconds.  

 

As expected, duplicated event count is low when running with 60 seconds buffer. If 

buffer time is high, then more events get buffered in the memory; this increases the 

possibility of duplicated events gets removed as described in Figure 3.13. 

 

Figure 4.15 provides statistics of the tests that we conducted to analyze the 

disordered events. From above graph, you can see tests are conducted with 30 

seconds buffer and 60 seconds buffer with two different within times which are two 

seconds and five seconds. In scenarios where within time was two seconds, 

disordered event percentage was less than 7% compared to the patterned detected 

events in a default Siddhi CEP engine. When buffer size was 30 seconds and within 
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time was two seconds, it was observed 1.73% of disordered events as the minimum 

with 35 parallel Siddhi CEP engines. And 6.91% of disordered events are observed 

as the maximum with 95 parallel Siddhi CEP engines. When buffer size was 30 

seconds and within time was five seconds, it was observed 0.35% of disordered 

events as the minimum with one parallel Siddhi CEP engine. And 22.07% of 

disordered events are observed as the maximum with 100 parallel Siddhi CEP 

engines.  

 

 

Figure 4.15: Disordered events (in %) vs. Siddhi instance count. 

 

With 60 seconds buffer time and two seconds within time, 2.10% of disordered 

events are found while running with 10 Siddhi engine instances. As the maximum, 

6.91% of disordered events found when there were 95 Siddhi engine instances when 

buffer time was 60 seconds and within time was two seconds. It was observed 0.43% 

of disordered events while running with one Siddhi engine instance when buffer time 

was 60 seconds and within time was five seconds. As the maximum, it was observed 

23.43% of disordered events as well.  

 

As expected disordered events are less when buffer time was 60 seconds in our tests 

as per Figure 4.16. We can understand that buffer time has a direct impact on the 

total number of duplicated and disordered events based on above analysis. 
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4.6 Latency Evaluation 

Our proposed solution has an impact on overall latency on pattern detection as 

expected, but this totally depends on the buffer time that we used for reordering and 

duplication handling. It is a known fact that, if there is a queue or buffer used then it 

will impact the latency undoubtedly. However, calculating latency for pattern related 

queries is complex as output event count (pattern detected event count) is not 

matched with the input event count. Then, it is not possible to do the direct 

calculation of the per event latency. However, what we can do is calculating the 

delay in time on finding the pattern in own proposed solution compare to the default 

Siddhi CEP engine. 

 

First, we test with default WSO2 Siddhi CEP engine to identify the event latency. 

Here, we used the same Siddhi query that used for other tests. As per the query, we 

need to have three events to find out the pattern that is mentioned by the Siddhi 

query. The pattern is detected only after matching attributes in three different events. 

Then, to calculate the latency of the pattern detected output event we have used the 

timestamp of the first event that initiated the pattern. Based on that we have 

calculated the per event latency for all the output of the pattern query. There were 

811 patterns detected for our Siddhi query and latency for those events are given in 

Figure 4.16. As per Figure 4.16, maximum per event latency is 2.0305 milliseconds 

and the minimum latency is 0.0027 milliseconds. Event latency is less than 0.25 

milliseconds for more than 60% of the pattern detections. 

 

Figure 4.17 shows that there is a linear increment in latency when the number of 

Siddhi instances increase in our solution. This is expected due to our solution’s 

design, in our proposed solution when events are received; they are get partitioned 

based on within time interval at the entry phase. Here, event partitioning happens by 

considering the timestamp of the event and not the system timestamp as shown in 

Figure 3.11.  
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Figure 4.16: Latency in default WSO2 Siddhi CEP engine. 

 

 

Figure 4.17: Latency in the proposed solution. 

 

As per our tests, throughput is gradually increased when Siddhi instances are 

increased and latency is also increased as shown above in Figure 4.17. Due to the 

queue and partition approach of the solution, there is a possibility that partitioned 
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events are get queued for some amount of time until a Siddhi instance is available to 

process the partitioned events. If Siddhi instances are high, then no of event partitions 

are also will be high as per the implementation. Then this will also impact the latency 

of an event. 

 

In above we have provided necessary statistics about the throughput improvements 

and how it influenced in overall accuracy. As we mentioned in above, we have used 

the Soccer Monitoring 2013 (SMB2013) benchmark for the evaluation purposes. As 

per that, we were able to achieve 13,638 events/sec throughput in a default Siddhi 

CEP engine. We have used the same SMB2013 benchmark to verify our proposed 

solution as well. Table 4.2 provides throughput related improvement details of the 

proposed solution for the SMB2013 benchmark.  

 

As shown in Table 4.2, we could achieve 815% of improvement in overall 

throughput compared to the default Siddhi CEP engine when within time interval is 

defined as two seconds. If we have five seconds batch, then we could achieve 743% 

of throughput improvement and we could see 706% of throughput improvement with 

10 seconds batch. However, it reduces to 506% as the throughput improvement when 

the batch time is defined as 15 seconds. This implies if batch time increases then it 

affects the throughput improvement of the proposed solution. This is mainly due to 

the memory that allocated for the processing. Since we have allocated a fixed size 

memory as the maximum (18 GB) and batch time increases, we have to store 

millions of events in the memory; this leads to frequent GC (garbage collection) and 

I/O operations and results huge impact on overall throughput of our proposed 

solution. 
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Table 4.2: Test results summary on throughput improvement. 

Metric Throughput (events/sec) Percentage 

Improvement 

32 core Machine (2 seconds Batch) 111,207 815% 

32 core Machine (5 seconds Batch) 101,323 743% 

32 core Machine (10 seconds Batch) 96,247 706% 

32 core Machine (15 seconds Batch) 80,482 590% 

 

As we discussed above, there are some side effects due to the proposed approach, 

which are disordering and duplication of events. To overcome this, we have 

suggested an approach which is based K-slack and hash-based implementation. This 

implementation has helped to reorder the events and remove duplicated events at the 

same time. Table 4.3 summarizes the proposed solution’s overall accuracy based on 

batching time interval and the number of parallel Siddhi CEP instances as well. 

 

Table 4.3: Test results summary on accuracy. 

Metric Value 

Duplicated Events - 30 seconds Buffer & two seconds within Time 20.22% 

Duplicated Events - 30 seconds Buffer & five seconds within Time 19.39% 

Duplicated Events - 60 seconds Buffer & two seconds within Time 13.31% 

Duplicated Events - 60 seconds Buffer & five seconds within Time 17.13% 

Disordered Events - 30 seconds Buffer & two seconds within Time 3.94% 

Disordered Events - 60 seconds Buffer & two seconds within Time 2.98% 

Disordered Events - 30 seconds Buffer & five seconds within Time 11.00% 

Disordered Events - 60 seconds Buffer & five seconds within Time 10.32% 

 

As per Table 4.3, if the buffer is defined as 30 seconds and the within time in the 

query was defined as two seconds then there were 20.22% duplicated pattern 

detected events while there were 19.39% of duplicated events when the within time 

was five seconds. However, when the buffer time was increased, the total number of 

duplicated events reduced as well; according to our tests when the buffer size is 
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defined as 60 seconds, duplicated event percentage reduced to 13.31% when the 

within time was two seconds and 17.13% when the within time was five seconds. 

When the within time was two seconds 3.94% disordered events when we had 30 

seconds buffer, whereas this was reduced to 2.98% when the buffer is increased to 60 

seconds. The similar behavior was observed when within time was five seconds 

where disordered events reduced when buffer time was increased. 

 

We have done performance tests with different within time intervals to prove the 

capability of our proposed solution. As well as our accuracy tests gave some 

understanding on possible scenarios that we can use our solution. Now, we can get a 

clear understanding of the capabilities and limitations of our proposed solution from 

above provided test results. If there is a pattern detection scenario where duplicates 

are allowed (or not an issue), then our proposed solution would be ideal. Also our 

implementation is fit for use cases where false positives are acceptable. However, 

through our reordering and duplication handling approaches, we could achieve a 

considerable amount of accuracy in overall based on our evaluation.   

 

4.7 Summary 

Chapter 4 discussed the details related to the evaluation and the results that obtained 

through tests. We have used DEBS 2013 dataset as the benchmark for our evaluation 

process. The dataset that we used as the benchmark contains 47 Million events 

related to a football game. As per the test that we have done, we were able to achieve 

more than 800% of throughput improvement compared to the default Siddhi CEP 

engine. Throughput improvement is also varied based on 'within' time defined in the 

query, resources (memory and number of cores) allocated for the processing and 

number of parallel Siddhi CEP engines. We have also done tests to measure the 

accuracy and latency of our solution as well. Accuracy is determined based on 

whether our proposed solution detects all possible patterns and when all are detected, 

whether duplicate events are removed and reordered. In option 1, our proposed 

solution showed 100 % of accuracy compared with default Siddhi CEP engine. 

However, with option 2, there is some tradeoff with accuracy. We have observed 
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some latency increment on our proposed solution. This is due to the queueing and 

partitioning nature of our proposed solution.  
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5. SUMMARY 

5.1 Conclusion 

Scaling the Complex Event Processing is an essential requirement in the data 

analytics space. Scaling enables handling a large number of CEP queries, running 

queries that need large working memory, handling a large number of events, complex 

queries that might not fit within a single machine, and handling a large number of 

events. In this thesis, we have discussed the most common and available scaling 

approaches that can be used for CEP scaling purposes. They are, scaling through 

attribute-based partitioning, Publisher-Subscriber approach, Storm-based 

deployment, distributed cache, and scaling by integrating with Enterprise Service 

Bus. We have evaluated each of these scaling approaches and analyzed their pros and 

cons. Based on the analysis, we identified several bottlenecks while scaling Pattern 

and Sequence queries. Scaling pattern and sequence queries are bit tricky as in-

memory states need to be maintained between the nodes in the cluster. 

 

We proposed time-based partition to scale pattern and sequence CEP queries. In the 

proposed solution, incoming events are partitioned based on the within time that is 

specified in a CEP query. Those partitioned events are sent to parallelly running 

Siddhi CEP engines for pattern and sequence matching as defined in the query. Here, 

partitions are created by overlapping with each other, which could lead to duplicated 

output events as same patterns can be detected in two different Siddhi CEP engines. 

Due to the parallel processing by multiple CEP engines, it leads to the event disorder 

as well. Then, pattern detected output events are pushed to another Siddhi CEP 

engine to discard event disorder and event duplication issues. 

 

We conducted various tests to verify the performance of the proposed solution with 

compared to the default Siddhi CEP engine. The tests were carried out with different 

combinations of time batches of partitioned events and number of Siddhi CEP 

instances by allocating resources in various levels. Based on this analysis, we were 

able to achieve more than 800% of improvement in throughput. Through our tests, it 

was observed that throughput has increased when the batch time is reduced and the 
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number of CPU core is increased. As expected, we also observed an increase in per 

event latency with our proposed solution due to the queueing and partitioning nature 

of the proposed solution. We further conducted tests to verify the accuracy. The 

proposed solution was able to detect all possible patterns that are detected by a 

default Siddhi CEP engine which means we were able to achieve 100% accuracy. 

However, 13% - 20% of events got duplicated and 3% - 11% of events get disordered 

compared to patterns detected by the default Siddhi CEP engine. Duplicated and 

disordered events depend on batch time interval and number of parallel Siddhi CEP 

engines. 

 

5.2 Limitations 

In the proposed solution, incoming events are buffered in a queue and then 

partitioned before sending to multiple Siddhi CEP engines for event processing. Due 

to this buffering, the proposed solution needs more memory. Here, buffering and 

partitioning happen based on the time interval defined in the query. Then it is not 

ideal to use our proposed solution for patterns and sequences, which require 

correlating events within a large time window, e.g., minutes to hours. In the proposed 

solution, multiple Siddhi CEP engines are spawned in the same machine to process 

the partition, but this requires a large number of CPU cores. This issue can be 

overcome by implementing the same approach across multiple machines rather using 

a single machine for processing. 

 

The proposed solution increases the per-event latency compared to the pattern 

detection in default Siddhi CEP engine. Moreover, this latency depends on the within 

window time. Due to this, our solution might not be the most suitable to detect 

pattern instantly. However, in most cases the latency is increased by only a few 

millisecond ranges; hence, the proposed solution is still applicable in many 

applications that need near real-time event detection 

 

Due to the design and implementation of the proposed solution, pattern detected 

events might get duplicated or/and reordered. Then if there are any use case where 
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‘exactly one’ quality of service is expected then our solution is not the ideal answer. 

However, in most cases, patterns and sequences are used to find out some abnormal 

behaviors and react to them then in such cases duplicated or disordered pattern 

detection does not have a considerable impact on the overall solution. 

 

5.3 Future Work 

Above proposed solution is implemented in such a way, which can be deployed in a 

single node where communication between the Siddhi instances happens through 

Java method communication. However, this solution can be improved where it can 

be run in a distributed environment. Rather running Siddhi CEP instances on the 

same machine, it could be deployed on multiple machines as well. As seen in Figure 

5.1 events can be partitioned on a node and those partitioned events can be then 

pushed to CEP engine instances running on multiple machines. Due to this behavior, 

we do not require a single machine, which has a high number of CPU cores and 

memory that capable of running multiple Siddhi CEP engines. 

 

 

Figure 5.1: Distributed deployment of the proposed solution. 

 

In our implementation, we used buffer-based disorder handling (also known as K-

slack) approach because its implementation is straightforward compared to the other 
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scaling approaches that discussed in detail under Section 2.6. Even though K-Slack 

based approach increases the latency due to buffering and sorting delays when 

processing input events it has an important advantage where it dynamically adjusts 

the buffer size to a big enough value to accommodate all late arrivals, aiming to 

provide near exact query results. However, we can focus on other approaches like 

punctuation-based, speculation-based or approximation-based disorder handling 

approaches as well to reorder events in a more efficient manner for some specialized 

use cases. For example, speculation based approach is suitable for cases which have 

less out of ordered events and required output instantly at least in a partial manner. 

We could achieve ‘exactly one’ quality of service by investing more effort on this. 

 

As mentioned in Section 3 in our implementation, number of Siddhi instances is a 

user-defined configuration parameter. However, this could be improved in such a 

way that our solution decides the number of Siddhi instances in a self-calculated 

manner and tune itself automatically. The optimal parameter value needs to be 

calculated based on the hardware resource consumption and other factors like 

throughput and latency. 

 

Our proposed solution buffer incoming events in-memory and partition them based 

on within time defined in the query. Due to this, it is impossible to use our approach 

for queries which has longer within time because if event rate is high and within time 

is also high then we’ll end up storing millions of events in the memory, and this leads 

to an issue of high memory usage and eventually goes to out of memory situation. 

Then to cater the requirement of having longer within time, we may need to increase 

the memory allocated to the physical machine. However, this will not be a scalable 

solution in the long, run and we need to look for options on scaling pattern and 

sequence queries which have longer within time interval. Above limitation can be 

solved up to some extent if we go for a distributed deployment as shown in Figure 

5.1. But there are many factors that we need to consider here, for example limiting 

the number of partitions get created in the initial step and increasing the number of 

machines that run Siddhi instances to process partitioned events. By following this 

approach, we can reduce the time to keep the partitioned events in the initial 



76 
 

processing machine. But, delays introduced by the network to send events between 

the machines and time taken for data transformation are also influential in overall 

performance but yet another challenging area of research on scaling the pattern and 

sequence queries. 
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