

WORKLOAD AND PERFORMANCE AWARE CAPACITY

PLANNING

W. A. D. Frank Prabath

(158239B)

Degree of Master Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2017

WORKLOAD AND PERFORMANCE AWARE CAPACITY

PLANNING

W. A. D. Frank Prabath

(158239B)

Thesis submitted in partial fulfilment of the requirements for the degree

of MSc in Computer Science specializing in Cloud Computing

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2017

i

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to

reproduce and distribute my thesis, in whole or in part in print, electronic or another

medium. I retain the right to use this content in whole or part in future works. (such as

articles or books).

Signature: Date:

The above candidate has carried out research for the Masters dissertation under my

supervision.

Signature of the supervisor: Date:

.................................

Name: Dr. H.M.N. Dilum Bandara

ii

ABSTRACT

Given a set of workloads and a performance target, there is a greater difficulty in predicting

the exact resource requirement prior to the execution of tasks. While over-provisioning of

resources is widely used, it causes a waste due to unused resources. Under provisioning is

risky with the possibility of poor performance, user frustration, and SLA violations. While

several models are proposed to determine the load, a system could handle for the given set of

resources and workloads, determining the required resources to satisfy the expected workload

and performance is a long-standing problem. The “Pay as You Go” model in Cloud computing

addresses this issue from a different angle. Even then, users do not have a clear idea about the

upper bound of their resource requirement, which is essential for financial planning. Moreover,

such knowledge is essential in private clouds as the pool of hardware resources needs to be

determined a priority based on resource requirement of each application. Such knowledge is

also essential in self-hosting.

We propose a model to predict the resource requirement given a workload mix and a

performance target. We especially focus on 3-tier web applications hosted on cloud

environments. First, a selected 3-tier web application is executed with different mixes of

workloads on virtual machines of different capacities. Then the resulting latency is measured.

This dataset is then used to build a model using machine learning to predict the resource

requirement given a different workload mix and a performance target. The same model is also

used to predict resource requirements of other 3-tier web applications. We tested several

machine-learning models for their ability to predict the capacity requirement, and random

forest gave the highest accuracy. The results showed an accuracy of 97.1% for the same

application and 77% for the other application we used as the sample. These results show that

the capacity can be reasonably estimated based on the proposed model.

iii

ACKNOWLEDGMENTS

I would like to express profound gratitude to my supervisor, Dr. Dilum Bandara, for his

invaluable support, encouragement, supervision and useful suggestions throughout this

research work. His continuous guidance enabled me to complete my work successfully.

I am also grateful for the support, motivation, and advice given by Dr. Malaka Walpola and

Dr. Indika Perera, by encouraging continuing this research until the end.

I am deeply grateful to my parents for their love and support throughout my life. I also wish

to thank my brother, who supported me throughout my work. Finally, I wish to express my

gratitude to all my colleagues at 99X Technology, for the support given me to manage my

MSc research work.

iv

TABLE OF CONTENTS

DECLARATION .. i

ABSTRACT ... ii

ACKNOWLEDGMENTS .. iii

LIST OF FIGURES .. vi

LIST OF TABLES ... vii

LIST OF ABBREVIATIONS ... viii

Chapter 1 ... 1

1.1 Problem Statement .. 2

1.2 Objectives ... 3

1.3 Outline... 3

Chapter 2 ... 4

2.1 Workload and Workload Measurements ... 4

2.2 Performance and Performance Measurements .. 5

2.3 Capacity Planning ... 5

2.3.1 Process-Based Capacity Planning ... 8

2.3.2 On the Fly Capacity Planning ... 11

2.3.3 Model-Based Capacity Planning ... 12

2.3.4 Rule-Based Capacity Planning .. 13

2.3.5 Capacity Calculation ... 14

2.4 Policy-Based VM Allocation in IaaS .. 16

2.5 Performance and Capacity Planning ... 17

2.5.1 Log-Based Performance Analysis ... 17

2.5.2 Adaptive Provisioning .. 18

2.6 Supervised Machine Learning .. 19

2.7 Summary ... 21

Chapter 3 ... 22

3.1 Methodology ... 22

3.2 Data Collection from Sample Application .. 23

3.3 Data Preprocessing .. 26

3.4 Model Generation ... 28

3.5 Evaluating Prediction Ability of Model for Different Applications 30

3.6 Summary ... 30

Chapter 4 ... 31

v

4.1 Experimental Setup ... 31

4.1.1 Computing Infrastructure Setup .. 31

4.1.2 3-Tier Web Application .. 32

4.1.3 Resource and Workload Combinations ... 32

4.1.4 Data Collection ... 37

4.2 Model Evaluation .. 38

4.2.1 Numerical Values for Workloads ... 38

4.2.2 Applying More Machine Learning Models... 42

4.3 Resource Forecasting .. 43

4.4 Summary ... 45

Chapter 5 ... 46

5.1 Summary ... 46

5.2 Limitation of Research .. 47

5.3 Future work ... 48

REFERENCES ... 49

Appendix A: Experimental Data – Load Test Results from Sample Application 51

Appendix B: Experimental data – Load Test Results from Rubis .. 54

Appendix C: Arranged data – Load Test Results from Sample Application 55

Appendix D: Arranged data – Load Test Results from Rubis .. 60

Appendix E: Processed data – Load Test Results from Sample Application 61

Appendix F: Processed data – Load Test Results from Sample Application 66

vi

LIST OF FIGURES

Figure 1.1 Relationship among the workload, capacity and performance 2

Figure 2.1 Concerns, factors, and methods of performance .. 10

Figure 2.2 Supervised Machine Learning .. 21

Figure 3.1 Research methodology on finding a suitable model. .. 23

Figure 4.1 Test application deployed in AWS. .. 32

Figure 4.2 Rubis application deployed in AWS. ... 35

Figure 4.3 Memory and CPU utilization of Application Server .. 37

Figure 4.4 Memory and CPU Utilization of Web Server... 38

Figure 4.5 KNN algorithm on sample data with equal weights. .. 40

Figure 4.6 KNN algorithm on sample data with different weights. 41

Figure 4.7 SVM algorithm on sample data with different weights. 42

Figure 4.8 Random Forest algorithm on sample data with different weights. 43

Figure 4.9 Random Forest algorithm on Rubis with different weights. 45

vii

LIST OF TABLES

Table 2.1 Workload measurements parameters. .. 5

Table 2.2 Different performance metrics. .. 6

Table 2.3 External performance metrics. ... 7

Table 2.4 A sample resources matrix. .. 9

Table 2.5 QoS attributes of different systems. ... 9

Table 2.6 Components used for resource allocation. ... 13

Table 2.7 Open issues in model-based planning. ... 13

Table 2.8 Advantages/disadvantages of rule and model based planning. 15

Table 2.9 Pricing models in cloud offerings. ... 16

Table 2.10 Policies for VM allocation. .. 17

Table 2.11 Different modes of metrics. ... 18

Table 2.12 Components of adaptive provisioning. .. 20

Table 3.1 Sub scenarios. .. 25

Table 3.2 Selected performance metrics. ... 26

Table 3.3 Data recorded from load testing for 3-tier application. .. 26

Table 3.4 Data arranged for user scenarios for users ... 26

Table 3.5 Weight for sub scenarios. ... 27

Table 3.6 Data prepared for the machine-learning model. ... 27

Table 3.7 Actual and model predicted values for capacity. ... 29

Table 4.1 Possible combinations for hardware and users. ... 33

Table 4.2 Hardware configuration for the 3-tier sample application. 33

Table 4.3 Configuration of AWS VMs. ... 34

Table 4.4 EC2 Instances used with CPU and memory. ... 34

Table 4.5 Sub Scenarios with equal weight for database operations in sample application. . 39

Table 4.6 Varying weight for database operations in sample app. .. 40

Table 4.7 Accuracy from algorithms. .. 44

Table 4.8 Varying weight for Database operations in Rubis. .. 44

viii

LIST OF ABBREVIATIONS

AMI Amazon Machine Image

ANN Artificial Neural Network

AWS Amazon Web Services

CIDR Classless Inter Domain Routing

DB Database

DOS Denial of Service

EC2 Elastic Compute Cloud

FLOPS Floating Point Operations per Second

HTTP Hyper Text Transfer Protocol

IaaS Infrastructure as a Service

IT Information Technology

JSON JavaScript Object Notation

KB Kilo Bytes

MIPS Millions of Instructions per Second

ML Machine Learning

OLTP On Line Transaction Processing

PaaS Platform as a Service

PPS Packets per Second

QoS Quality of Service

RDMS Relational Database Management System

RL Reinforcement Learning

SaaS Software as a Service

SLA Service Level Agreement

SOA Service Oriented Architecture

SQL Structured Query Language

SVM Support Vector Machines

TPS Transactions per Seconds

VM Virtual Machine

VPC Virtual Private Cloud

WIPS Web Interactions per Second

1

Chapter 1

INTRODUCTION

Every system or an application needs sufficient resources for the proper execution.

Most commonly used approach towards the capacity planning was adding required

resources as and when there was a need or a demand. Adding an additional processor,

memory, or storage, splitting the processing into multiple processing units, or tuning

up applications to handle an additional load were the common approaches [1].

There exist several models and approaches to determine the performance when the

workload and capacity are given. Yet, determining the capacity of the system when

the performance and workload are given is a long-standing problem. It is extremely

difficult to calculate the resource need for a given workload and performance target

due to many complexities. Applications are of different nature catering to different

needs of the users. The pieces of these applications must be placed in a single container

or multiple containers. Applications are required to have the availability need, which

adds more pressure to the Dev Ops teams as a demand to the applications will get

varied. Applications are required to maintain Service Level Agreements (SLAs) to

make sure users will not get dissatisfied while using the applications. Determining the

exact need of the resources required to execute applications is the long-standing

problem.

Researchers have suggested many alternatives to overcome this issue. The solution

provided by Cloud vendors is not an exact solution to the original problem, but a

different approach. The “Pay as you go” is a solution to provide resources when

required rather than the upfront focusing on the resources required. Most vendors do

not have the luxury of keeping resource pools and hence providing the resources

whenever requested. Therefore, it is imperative to be able to determine/estimate the

required resources. Finding an approach to determine the required capacity in early

phases of application development enables better financial planning, reduce project

risks, save developer time, and enables developers to focus more on tuning the

application to optimize more on the capacity.

2

1.1 Problem Statement

The proposed research plans to address this problem where required resources/capacity

could be planned based on the expected workload and performance needs. Our focus

is mainly on 3-tier web applications, as they are very common and would have a wider

impact if the problem is addressed. However, making such estimates is nontrivial given

that there are vastly different web-applications with different performance targets,

workloads, resource requirements (computational, storage, and bandwidth), and built

using a variety of platforms, tools, and libraries.

Figure 1.1(a) shows the typical model for performance estimation of a system for

known capacity and workload. For example, in [2] researchers came up with a

technique to forecast the performance of co-hosted applications via measuring the

application’s response to different levels of pressure on the shared memory subsystem

and measuring the pressure on the memory subsystem [2].

 (a) (b)

Figure 1.1 Relationship among the workload, capacity and performance

Figure 1.1(b) shows the estimation of the capacity of a system based on the known

performance target and known workload. This is required in several cases. For

example, identifying the resources need in Public Cloud is still an important aspect to

have an initial idea of the needs of the application and to perform proper budgeting,

even though Pay as you go model does not affect the performance. Private Clouds and

hosted applications too need to know the capacity needs and the resource requirements

for proper planning to make sure required resources will be available when there is a

need. Therefore, the problem this research plan to address can be formulated as

follows:

How to estimate capacity requirement of a three-tier web application given the

workload and performance targets?

3

1.2 Objectives

This research addresses the above problem based on the following set of objectives:

• To understand the behavioral pattern of 3-tier web applications under different

load and resource capacities. Raw data to be classified under varying

workloads and performance. The latency will be considered as the

performance, while the load to the Application server of the 3-tier web

application will be considered as the workload.

• To develop a model to capture the relationship between workload,

performance, and capacity, System’s behavior is to be modelled using Machine

Learning. The initial model needs to be incrementally modified to reach to an

accurate model, which will provide results closer to the actual results.

• To validate and demonstrate the utility of the proposed model using appropriate

simulation and experimental techniques.

1.3 Outline

The rest of the thesis is structured as follows. Chapter 2 focuses on performance and

workload in general, capacity planning and meeting SLAs for performance and then

to a detailed discussion on traditional process-based approaches to the model based

and rule based models. Chapter 3 presents the research methodology for achieving the

objective of capacity planning with the focus on workload and performance. Chapter

4 presents the evaluation of the proposed approach using a load test results of a 3-tier

web application. We discuss the process of selecting training and test data to obtain a

model and then the verification of the model against a set of test data from a different

application. Chapter 5 summarizes the findings, the limitations associated with the

proposed technique, and the suggestions for the future work.

4

Chapter 2

LITERATURE REVIEW

This chapter focuses on the ideas on workload, performance and various parameters

to measure workload and performance. Capacity planning, its impact to the business

and consequences of not meeting QoS will be discussed later. The traditional process-

based approach towards the capacity planning is discussed in Section 2.3.1. Model-

based (Section 2.3.3) and rule-based approaches (Section 2.3.4), two major branches

of capacity planning are discussed. Latest ideas on focusing the capacity during the

application design rather than during the process of deployment is another key area

discussed under capacity calculation. In Section 2.4 we discuss the policies associated

with allocating VMs. The ways in which capacity is planned against the performance

using log-based analysis is covered in Section 2.5.1. How benefits could be obtained

via adaptive provisioning is discussed in Section 2.5.2.

2.1 Workload and Workload Measurements

The workload is the amount of work an application, host, or a Virtual Machine (VM)

has to do. Workload can also be classified as quantitative (the amount of work to be

done) or qualitatively (the difficulty of the work). The parameters listed in Table 2.1

should be evaluated to measure the load against the system. When the workload

measurements parameters are concerned, processing oriented transaction represents

the load given to the processor for processing, Input and output oriented transactions

represent the load associated with handling input and output during the processing to

capture and send data. The size of the disk and the space available in the disk. The

requirement associated with responding back to user, backing up, printing and network

connections are needed to be considered. The number of concurrent users for the

application and their think time have also played a major role as think time can vary

from user to user. Understanding of the time duration in which shows an intensity level

for the workload, what makes those intensity levels, monitoring the systems to detect

unusual patterns and the judgement of whether system has exposed to security

vulnerabilities also known as Denial of Service (DOS) attack should also be

considered. 3-tier web application architecture, which consists of presentation,

5

application, and data tiers have different workloads, such as number of page views per

second, HTTP requests made per second, and the number of bytes transferred per

second.

Table 2.1 Workload measurements parameters.

Parameter

Processing Oriented Transactions

Input/output Oriented Transactions

Disk space Requirement

Response Time

Backup Requirement

Print Requirement

Network Requirement

Concurrent Users

Think Time

2.2 Performance and Performance Measurements

Computer performance is characterized by the amount of useful work accomplished by a

computer system or computer network compared to the time and resources used. Performance

is measured based on both the internal and external factors [3]. Internal factors that help in

diagnosis of performance failures are bottleneck detection (utilization of processors, storage

devices, and networks) and number of requests waiting in the various software and hardware

queues. Table 2.2 lists a set of factors to identify the performance. Measurement of user-

perceived satisfaction and statistics are considered as the external performance metrics. Table

2.3 lists metrics affecting the external performance.

2.3 Capacity Planning

Capacity planning is a process to predict the types, quantities, and timing of critical

resource capacities that are needed within an infrastructure to meet accurately

forecasted workloads [1]. The main ingredients leading towards the capacity planning

are:

1. Type of resources required (processing power, storage, memory, power

associated with accessing input and out, etc.),

6

2. Quantities available of the resources in need,

3. The availability of the resources at the right time and

4. The upfront thinking and the decisions taken on the capacity based on the

workload predictions.

The success of the capacity planning is the allocation of the right resources at the right

quantities at the right time, avoiding both over allocation and under allocation. Upfront

planning and allocation of resources have considered as an art for a long time. The

experience and expertise of the experts on the computer systems, extensive knowledge

of the domain, empathically understanding of the user personas, and the behavior of

the users was considered as the dominant factors of the capacity predictions [4].

Table 2.2 Different performance metrics.

Metric Description

Throughput Total number of messages processed in each time interval.

Transactions per second

(TPS)

The number of atomic Transactions processed in a unit time. This is

an average value and it does not necessarily to be the distributed

throughout the processing.

Work done per transaction Any request to perform a transaction will trigger few more

dependent sub tasks. Requesting service calls with external systems,

DB accesses, complex processing associated with schema, etc.

Think time The delays from users when responding to the questions generated

by the applications. Throughput does have a direct relation to the

think time, based on the transaction whether it is machine to machine

or machine to human

Concurrent users Any system has a user base using the system. A subset of all the

users is considered as active users, who is connected to the system.

The Concurrent users use the resources of the system at a given

time. The number of concurrent users a system supports is the key

to any system.

Message size The larger the message size will lower the performance

Latency Additional delays associated when a transaction triggers external

system calls

Non-functional

Requirements

Support towards additional non-functional parameters makes the

system complex such as Impact with secure delivery, Impact with

availability and up time

7

Table 2.3 External performance metrics.

Metric

User’s Geographical Location

Bandwidth of the Internet connection

Time of the Day

Performance Characteristics of the User’s local machine

Probability that requests are rejected

Organizations will lose valuable income, and its public image could be put at a great

risk, in situations where users of the systems experience a great difficulty in using

those systems. The Quality of Service (QoS) parameters are often set at the deployment

stage, rather than at designing phases, which makes System designers and analysts not

to worry too much about taking QoS requirements into account when designing and/or

analyzing computer systems. Lack of awareness about the issues that affect

performance and the lack of a framework to reason about performance are other key

reasons for the less focus on QoS parameters, which often neglects sizing a database

service, analysis of a datacenter cost and availability, sizing of an e-business based on

SOA, and improper allocation of resources to a web service. The QoS attributes of an

IT system that are very much important to set the expectations of its users. Not all the

systems can be measured against the same set of QoS attributes, even though response

time, throughput, availability, reliability, security, scalability, and extensibility are

most common.

The discussion starts with a closer look at a process based capacity planning, in which

a manual process is used with the delegation of the process to a team in which team

will be responsible for monitoring and collecting data and then to make the necessary

forecasting. The focus towards the on the fly capacity planning will be the analysis on

the relationship between the concurrent demand and the availability of the resources.

Model based capacity planning is mostly towards the modelling the given system

based on analytic and simulation models, which heavily requires the knowledge about

the domain. Rule based capacity-planning focuses on the usage of Machine Language

and the Fuzzy logic in determining the capacity.

8

2.3.1 Process-Based Capacity Planning

Most of the IT infrastructures do not undergo proper capacity planning. Application

development does not have a much of a focus on the environment in which the system

should be deployed and the load on the system, until users complaining against it. A

reactive approach for this is a manual process involves with a set of activities by

delegating the process of capacity planning with a dedicated team and formulate a

process as shown below, which has multiple steps, focusing more towards the very

close monitoring and measuring of the performance of the system [4]:

1. Nominating the process owner for the capacity planning.

2. Identifying the key resources required to be measured.

3. Measuring the utilizations or performance of the resources.

4. Comparing the utilizations to maximum capacities.

5. Collecting the workload forecasts from developers and users.

6. Transforming the workload forecasts into IT resource requirements.

7. Mapping the requirements onto the existing utilizations.

8. Predicting the time when the environment will be out of capacity.

9. Updating the forecasts and utilizations.

Nominating a process owner and empowering that role to coordinate with all the other

stakeholders is very critical. End users of the system are unable to predict the future

needs and even if the end users are capable of predicting, lack of experience, skills and

tool prevent doing so. Reluctance from the capacity planners to use the proper tools,

rapid changes in the overall IT direction of the companies, messing up with the

planning with managing, and always focusing on important but not urgent activities

like budget planning, without the focus on the important-urgent activity of technical

planning. Process owner needs to bridge a relation with stakeholders to get everything

required to make a better judgment on capacity planning.

Preparing the resource matrix as in Table 2.4 with the combination of the resources

categorized into types, configuration details quantity the base requirement, utilization

of the resources at the maximum capacity and the availability of the excess capacity to

get a good understanding of the resources is required [4]. The forecasted workload

need will be taken from the developers and the end users, which needs to be

transformed to the IT resource requirements. Resource requirement is mapped to

9

utilizations, which helps to predict out of capacity and to forecast the utilization need

for the future [1].

Table 2.4 A sample resources matrix.

Resource

Type

Configurations Quantity Base

Requirement

Utilization to

Maximum

Capacity

Excess

Capacity

Processor

Memory

Disk space

Network

bandwidth

Performance and throughput expectations from the different systems are calculated

based on different measurements and metrics. As per the Table 2.5, which shows

different measurements considered in different systems and components, it is obvious

that determining performance involve careful consideration of multiple metrics.

Table 2.5 QoS attributes of different systems.

System Throughput Metric

OLTP System Transactions per Second (tps)

Web Site HTTP requests/sec

Page Views per Second

Bytes/sec

E-commerce Site Web Interactions Per Second (WIPS)

Sessions per Second

Searches per Second

Router Packets per Second (PPS)

MB transferred per Second

CPU Millions of Instructions per Second (MIPS)

Floating Point Operations per Second (FLOPS)

Disk I/Os per Second

KB transferred per Second

E-mail Server Messages Sent Per Second

10

Performance is the major consideration in capacity planning, which spans across many

concerns, factors, and methodologies. Determining the performance involves with

careful consideration of many concerns, related to latency, throughput, capacity and

modes having a very high dependability with the expectations from the system in the

given scenario. The demand for the application and the system in which the application

has been deployed are two major factors affecting the performance. Even though, the

resources allocated are lower, the application would meet the expected performance

when the demand for the application is also lower. The analysis methods have been

very widely used to find the performance of the systems. Figure 2.1 shows these

concerns, factors, and methods associated with determining the performance [5].

Figure 2.1 Concerns, factors, and methods of performance

11

2.3.2 On the Fly Capacity Planning

Capacity planning is the art in which based on the relationship between concurrent

demand and resource availability. Performance issues cannot be easily solved in an

environment when deployment topology of applications is complex. When the code

base is considered as a black box and performance is getting narrow down to its

simplest form, adding additional resources may solve performance issues, yet it is not

the best approach. An approach that closely monitors the code execution to take

decisions on the call stack sampling (contains execution state, information about

monitors in running applications) and the resource utilization feeds from the operating

system of an already running system gives a better understanding about the system. A

simulation of tuning actions (change to the code or the environment in which the

application runs) based on the changes in the resource demand spanning over resource

and code changes gives a reasonable figure for the on-the-fly capacity planning.

Latent bottleneck causing from shifting the resource demand, zero-sum games where

additional demand, causing the existing processes to run slowly and head fakes in

which the inability to determine which process causing the performance issues are few

daemons associated with performance tuning.

Analysis of the stats collected from different resources and the way systems has

performed when the resource demand is getting shifted is the core process associated

with on-the-fly capacity planning, with the differentiation of focusing on tuning

actions rather than the arrival of work [1].

The effectiveness of modelling tuning plans (an unsorted set of tuning actions with the

implication that their impact on performance be considered as a unit) is higher when

the concurrent demand and concurrent capacity is observed over the arrival rate and

the service time of the resources. There is a continuous set of work requests to the

server, which makes the demand for the resources required as a function of the rate at

which requests are made and the time the request happened. As per the Little’s Law,

the demand is a product of arrival rate and the service time, which is a very important

point in determining the demand [1].

12

There is a possibility that concurrent demand to exceed the concurrent capacity of a

resource. This will create a backlog to be served which multiplexed resources or gating

(e.g., locks) in such a way to tolerate concurrent demands.

2.3.3 Model-Based Capacity Planning

System modelling is carried out based on measured control inputs and control outputs.

Model-based approaches extensively require the domain knowledge [4]. Even though,

it is difficult to model a complex system. Model-based approaches provide more

internal details, which makes it easier to understand the functioning of systems. Model-

based approaches have following advantages:

• Analytic models are less expensive to construct and tend to be computationally

more efficient to run than simulation models.

• Because of their higher level of abstraction, obtaining the values of the input

parameters in analytic models is simpler than in simulation models.

• Simulation models can be made as detailed as needed and can be more accurate

than analytic models.

• There are some system behaviors that analytic models cannot (or very poorly)

capture, thus necessitating the need for simulation.

Linear regression is also used to model the system as a black box under the control

theory based approaches. Control theory and queueing model are the major subclasses

of this family. Careful monitoring on demand and the responses from the application

to the demand variations plays a key role in finding the requirement for the resources.

Controlling the admission involves careful study of queueing theory and the domain

in which the applications are running. The component VM scaling has the

responsibility of dynamically allocating the resources. Table 2.6 discusses components

of the model and the responsibilities associated with the major components [3]. This

is a good measure to show the major steps to come up with capacity planning based

on a model, which starts from the identification of the relation between the control

input and output to the controlling and scaling based on the computing resources.

Model-based capacity planning has several more issues, which makes them a solution

in an academic world rather than providing benefits to an actual Business scenario.

13

The open issues from model-based approached on capability planning could be

categorized as follows in Table 2.7.

Table 2.6 Components used for resource allocation.

Monitor Admission Control VM Scaling

Identifies the relation

between control

input and control

output

Applies both queueing theory and

linear regression.

Queueing theory requires more of a

domain knowledge.

Linear regression is having the

challenge of defining the relationship

among control variables.

Allocates resources dynamically

for computing resources.

Vertical scaling involves

changing the size of a VM

instance

Horizontal scaling involves

adding or removing VM instances

Table 2.7 Open issues in model-based planning.

Open Issues in Current Model Based

Approaches

Open Issues in New Trends for Model Based

Approaches

There exists a different type of models and it is

not very much clear on which model type to be

used as there does not exist much of details on

the advantages and limitations on each model.

Even though most of the new studies have been

carried out using linear methods, settings of QoS

targets heavily depends upon the non-linear.

It is difficult to set an appropriate controls inputs

to determine the out controls as the relationships

between controls for input and output varies

significantly when workload regions get

changed.

Even though nonlinear controls need simpler

implementations, quick response and less cost

involves, it requires a rigorous mathematical

analysis, which is a as a big disadvantage.

Inability to determine the feasibility of control

inputs since for certain output controls, there

exists negative values for input controls.

Resource allocation for distributed web

applications is not simply due to the complexity of

systems and the nature of resource sharing in a

cloud environment.

It is difficult to ensure the robustness to the

changing of the workload due to the

contribution of errors. When the error

contribution is getting larger, it has a bigger

impact to the performance.

The dawn on newer web applications and

introductions of powerful client side technologies

has shifted the load in to client browsers from the

servers.

2.3.4 Rule-Based Capacity Planning

Rule-based approaches help to take decisions where uncertainty plays a major role.

Machine Learning (ML) and Fuzzy control are the two major categories in rule-based

capacity allocation [4]. ML needs to go through a vast array of historical data related

to resource utilization and performance metrics for an efficient resource management.

The RL offers the ability to enhance the allocation policies without the model

knowledge by learning. The learning process of RL is such that the learning agent

14

learns to make accurate decisions with the interactions of the external systems, as RL

learns policies in dynamic environments based on finite MDP. SVM is widely used in

areas such as pattern recognition, classification, and data mining, yet are not suitable

for resource management of on-line applications due to the time complexity. ANN is

used to predict the resource demand for VM scaling. ML algorithms are not a good

candidate for resource management due to the performance issues, even though they

do not need much of a domain knowledge [4].

Fuzzy control approaches, on the other hand, are easy to implement and manage, as

those are governed by a set of predefined rules, which makes themselves a good

candidate for resource management in multi-tier systems. Falsification, inference

engine, and defuzzification are the main stages of its decision-making process. Unlike

ML algorithms, Fuzzy control approaches ensure performance guarantees as well.

However, it is required to conduct sufficient simulations to design a fuzzy control

system to achieve optimum performance [4].

The neediest of less domain knowledge and ability to learn from historical data are the

major advantages of rule-based approaches, which further requires a many number of

configuration parameters after running many simulations on different scenarios. Lack

of governing QoS parameters causes another challenge when using the rule-based

approaches to solve issues in resource allocations. Rule-based approach is the

appropriate and most suitable way to move forward as it has a more practical valid

reason. Table 2.8 summarizes the advantages and disadvantages of the rule and model

based planning.

2.3.5 Capacity Calculation

Another approach towards the capacity planning focuses on measuring the

performance values for a set of defined parameters, which are not perceptually based

and focuses on designating applications to perform better in the given environment.

Rather than focusing on tuning the application at the deployment stage, a much more

focus is given during the application design phase. All the possible optimization steps

are taken into the consideration. Usage of a caching strategy, usage of lower memory

and processor consumption, effective use of shared resources, proper usage of

15

configuration values, thorough testing and profiling are major aspects to focus before

the application goes to the production [6].

Table 2.8 Advantages/disadvantages of rule and model based planning.

Rule Based Model Based

Advantages Less Domain knowledge Depends heavily on Domain

knowledge

Based on Mathematical Based on Mathematical

Rules are derived from historical data Provides more insights

Keep QoS guarantees Issues with resource allocations could

be overcome by using control theory

Disadvantages Requires lots of simulations and

training

Difficult to model a complex system

using a mathematical model.

Load balancing and routing, clustering, state replication, auto-scaling systems, and

auto healing systems are some architectural concerns considered which will can scale

(both scale up and scale out). Disaster recovery, backup and recovery are other aspects,

which draws the attention to make the application available in any mode such as cold

standby, warm standby, hot-standby, and active-active.

Usage of monitoring tools and the type of hardware (physical, VM, and Cloud based)

to be used in the production environment are the other considerations. Additional

allocation of resources required to support the peak demand has also to be forecasted

for a period, while downtime is to be agreed.

Once the high-level solution architecture is defined with performance in mind,

collecting capacity planning data, finding the requirement of the capability planning,

identifying non-functional requirements, and setting the benchmark for the

performance makes demands to identify the instance counts are required. These require

long-running performance test to conclude the architecture for the deployment, so that

capacity data could be gathered for the capacity calculation.

16

2.4 Policy-Based VM Allocation in IaaS

A special attention must be taken when the resources are allocated in the Cloud, where

resources in a pool must be managed. The need to have proper policies in place is very

vital for allocation of resources and during the process of placing the VMs, once the

computing need has been identified. Immediate, best effort, advanced reservation and

deadline sensitive are the most commonly used policies among the Cloud Providers

[7].

Cloud providers maintain different types of VMs, providing different QoS and

charging schemes to support the different needs of the customers. This has given Cloud

providers the flexibility in managing resources and utilize their resources at an

optimum level [8]. Table 2.10 lists most commonly used pricing models in Cloud

Computing. For example, AWS Elastic Compute Cloud (EC2 [9]) provides spot,

reserved and on demand pricing models for their customers.

Cloud Federation [10] has been yet another booming idea on allocating resources in a

Cloud environment, which helps to overcome during the high demand for the VMs, by

outsourcing the requests to other members of the same federation. Usage pattern, types

of requests and infrastructure costs are considered as the three major factors affecting

the resource allocation, which helps to focus more on pricing, profit utilization and

QoS. Policies as shown in the Table 2.10 are required not only to focus on the profit

aspects, but also to make sure service is based on the agreed QoS and SLA so that user

satisfaction has also been met [11].

Table 2.9 Pricing models in cloud offerings.

Pricing Model Characteristics

Reserved There exists a long-term commitment

On-demand Long-term commitment is not required

Hourly payment

Spot Lower charges compared to reserved and on-demand

Cloud provider can terminate this type and allocate to a higher bid

17

Table 2.10 Policies for VM allocation.

Policy Policy Description

Non-Federated Totally In-

House

Termination of Spot VMS with lower bids are considered

Federation-Aware

Outsourcing Oriented

Request a VM from a member in the Federated group and if not

available, Spot VM will be terminated

Federation Aware Profit

Oriented

Profit is compared against terminating a VM and outsourcing a VM

The number of requests for the Spot VMs, the impact on the load and the number of

members in the federation group are some other facts affecting the results when a

policy has been applied. It is also important to have Business focused policies to

prevent over-provisioning of IT resources, which optimizes the usage of IT resources.

So, that, consumption of physical, energy, and human resources will be very low while

increasing efficiency and minimizing IT budgets.

2.5 Performance and Capacity Planning

2.5.1 Log-Based Performance Analysis

Logging is a universal common approach used by the application developers, as an

easier way to track the execution flow of functionality in computer systems. The data

that get logged varies from system to system and can externally configure on what is

being registered. The most common types of log data are the details about the process

or the routine, timing details, the people or other sub-systems performed those routines

and much more, including the history of routines. An approach called “Process

Mining” techniques were used to explore, track and enhance the actual processes using

the knowledge from the logs [12].

An approach towards the performance measurement of SOA through log-based

analysis requires a wide variety of metrics, including the areas of business, IT

pervasiveness, financial, quality management, management, project, corporate, quality

and timelines together with technical aspects. When the metrics are accurate and

realistic, this will provide the facility to effectively diagnose the root causes associated

with the performance problems.

18

Once the metrics are defined, results should be mapped with the identified

performance metrics from the measurement tools. For further analysis, the adaptability

of SOA and enhance the performance, performance metrics must be combined with

advanced evaluation tools based on the logging capability [12]. Table 2.11 shows the

metrics categorized into 3 major areas.

Table 2.11 Different modes of metrics.

Process Metrics Place Metrics Activity Metrics

Average Throughput time Waiting time Waiting time

Minimum Throughput time Synchronization time Execution time

Maximum Throughput time Sojourn time Sojourn time

Log files were given to the system for the processing and mining together with the

mined-model. The plug-ins have the capability to provide the details to the supporting

key decision areas as per the following:

• Routing possibilities

• Average service time for a task

• Average throughput

• Minimum throughput

• Maximum throughput

• The bottleneck in the model

• Time spent in between two processes

2.5.2 Adaptive Provisioning

Cloud Provisioning is the process of deployment and management of applications on

Cloud infrastructures, such as VM, resource, and application provisioning (ensuring

an efficient utilization of virtualized IT resources). Creating and allocating VMs as

resources in Cloud environments for the applications has to overcome the issues

related with modeling workload and performance, deployment, monitoring and

virtualization techniques as it has to deal with uncertain behaviors and lack of

understanding of IT resources and network elements, errors in estimations (arrival

pattern, I/O behavior, service time distribution, and network usage) and highly

dynamic nature due to the usage by a larger number of users, as well as due to the

19

variations among different application types (high performance, web hosting, and

social networking) [13].

Provisioning techniques having the capability to automatically adopt to the demand by

facilitating dynamic resource allocation and satisfying SLAs requirement must be the

bare minimum need. Because Cloud vendors do not expose the details on underline

hardware, an approach taken from analytical performance and workload (arrival

pattern, resource demands) information must provide the necessary information about

the requirement to the provisioned, which is a very complex activity as provisioned

needs to make sure it calculates the best, optimum and efficient resources which ensure

reaching the QoS targets. Adaptive provisioning should also focus on automating

routine management tasks, flexibility of assigning virtualized IT resources when it is

needed while not over-provisioning and not impacting QoS limits. Several QoS

metrics to be considered are as follows:

• Monitored average request execution time

• Application instance queue size

• Expected arrival rate of requests

• Maximum number of VMs allowed

Adaptive provisioning needs collaboration of 3 major components. Performance

should be modelled to predict the load, which will be handled by the load predictor,

work load should be analyzed for a period by the workload Analyzer and the

understanding about the applications by the application provisioner. Table 2.12 shows

the components and a detailed description of their main functionality, which performs

the adaptive provisioning.

2.6 Supervised Machine Learning

Supervised Machine Learning is achieved via a set of data and making predictions

based on that set of data. Features (also called as the observations) are things that might

have an impact towards the target we want to predict. What we need to predict is called

as the Label, which the resource needs in our research. Supervised machine learning

is used to find the correlation between features and the label, based on algorithms.

Regression algorithms used to predict the value on the continuum over the series of

20

values. The model will be created so that the predictions will be able to make on future

features.

Table 2.12 Components of adaptive provisioning.

Component Functionality

Application

provisioner

Main points of contact in the system that receives accepted requests and

provisions virtual machines and application instances based on the input from

workload Analyzer and from load predictor and performance modeller.

VM and application provisioning is performed by the application Provisioner

component based on the estimated number of application instances calculated

by the load predictor and performance modeller: if utilization of data center

resources is low, application Provisioner is directed to destroy some

application instances.

Workload

analyzer

Generates estimation of future demands for the application. This information

is passed to the load predictor and performance modeller component.

Load predictor

and

performance

modeler

Solves an analytical model based on the observed system performance and

predicted load to decide the number of VM instances that should be allocated

to an application

Responsible for deciding the number of virtualized application instances

required to meet the QoS targets

Model parameters are obtained via system monitoring and load prediction

models.

Efficient mapping of requests, while the goal of VM Provisioning is to provide

applications with sufficient computational power, memory, storage, and I/O

performance to meet the level of QoS expected by end-users.

Responsible for generating estimation (prediction)

As shown in Figure 2.2, supervised learning, it starts from the Dataset in which we

need to give it to the Machine Learning. A cleaning of data is the next step in which

incomplete data will be removed, missing data will be replaced with default values and

formatting the data to suit the need so that the ML algorithm will be able to process

the data. A portion of the data (the majority of data) will be selected as the training

data and used to train the model. The rest of the data could be used to test the accuracy

of the model as we have the data from the system itself to make sure our predictions

are accurate by comparing the output from the model with the known dataset we have

reserved with the labelled dataset. An algorithm is used to train the model, mainly the

correlation between features and label. Linear regression, Neural network regression,

boosted decision tree regression are possible algorithms to be considered in regression

mode [14]. The score model takes the response came from train model into the

21

consideration and label dataset is used to determine the values of the train model to

compare the values each other.

Figure 2.2 Supervised machine learning.

2.7 Summary

In this chapter, we discussed the related work on capacity planning. The process-based

approach has little to offer as far as the accuracy of the capacity planning is considered,

since it only focuses on a set of steps to allocate resources without any measurements.

On-the-fly capacity planning focuses on dynamically allocating resources based on the

demand, in which this is not a good approach. Model-based capacity planning needs

extensive knowledge about the domain and it is mainly based on simulation models.

The capacity calculation is the calculation of the capacity for a set of defined

parameters and emphasis more about the capacity needs during the application design

phase. Policy-based VM allocation is the most preferred approach in Amazon EC2 to

provision VMs based on the availability and the need, in which the exact logic and the

allocation on VMs is only known to the Cloud vendors. Log-based performance

analysis helps to figure identify areas in which application showed the bottlenecks as

far as the performance is considered. Adaptive provision is another approach used by

cloud vendors, yet again fully visible only to the cloud vendors. An approach based on

the supervised Machine Learning will be chosen as the preferred approach, as there

exists a correlation between workload and the capacity towards the system

performance.

22

Chapter 3

METHODOLOGY

This chapter presents the approach and the methodology for building a model to

determine the capacity requirement when the workload and the required performance

SLAs are given. Section 3.1 discusses how we come up with a model that determines

the capacity for the given workload and performance need. We discuss the main steps

in the process including the data collection from sample application in Section 3.2,

preprocessing data to build the model under Section 3.3, and details of generating the

model under Section 3.4. Algorithms we used for the machine-learning approach,

selecting the score model, and evaluating the model against another application under

Section 3.5.

3.1 Methodology

Machine learning lets us find meaningful, predictive patterns in existing data, then

create and use a model that recognizes those patterns in new data [14]. A proper model

must be obtained as per Figure 3.1, which shows the steps in reaching a suitable model

to capture the relationship between workload, performance, and capacity. Machine

learning suits better, as it is based on creating experiments hoping to improve a

predictor, whereas traditional process focuses on incrementally building solutions by

completing discrete features. Either supervised learning, in which the value to predict

will be in the training data itself or unsupervised learning, in which the value to predict

will not be in the training data may be used depending on the availability of data and

accuracy of the model. Multiple iterations may be required to reach towards an

accurate model.

Let w will be the workload mix, p will be performance target, and c be the capacity

needed to handle workload w with performance p. w, p, and c are vectors as each

capture multiple attributes. Given a set of observations of (wi, pi, ci) our objective is to

build a model i f (wi, pi, ci) that captures the relationship between workload,

performance target, and capacity requirement. Deriving the function f, such that it will

fit the observations is the process of learning. Once the model is derived, it is to be

23

used to predict the required capacity cj to handle a given certain workload wj with

performance target pj.

Figure 3.1 Research methodology on finding a suitable model.

Identifying a suitable raw dataset is the starting point, which can be achieved through

data collection from a set of sample applications. Then the data need to be pre-

processed to make it suitable as an input to the machine learning algorithms to be

considered. Parameters of the selected algorithms need to be tuned to get a better model

with higher accuracy. Then the selected and optimized models need to be tested for

other applications to identify the most suitable model. Once we can predict the capacity

for the performance and workload at a higher accuracy, we select it as the evaluated

model. Then the finally chosen model should be able to predict the capacity for a given

workload and performance requirement for other applications with reasonable

accuracy.

3.2 Data Collection from Sample Application

The test data need to be collected from a load test against a 3-tier web application that

is representative of typical web applications. The database of the 3-tier web

application, application server, and the web server were deployed as cloud instances.

Application server processes a complex logic to generate the entire web page based on

24

the configuration settings persisted in the Database. It processes the form controls,

handles workflows, and use user security permissions to hide or show user controls on

the web page in the form of a JSON file. The Web server sends the generated JSON

file to the clients. Application server handles workflows within the same web page

and/or with other web pages based on the rules as the core of this selected application.

Therefore, as per our observations, the typical resource requirement of the Application

server is higher compared to both the Web and Database servers.

Another cloud instance was used to generate the load against the 3-tier application. A

dataset that covers a broad spectrum of user scenarios have to be selected to make sure

all the components of the application will be covered and a load will be applied not

only to the one component but to all the components. This step consumes a lot of time,

as we have to execute the same user scenarios (i.e., workloads) against the 3-tier web

application deployed on servers/instances of varying capacities. It was easier to

simulate varying capacities in a cloud computing environment, as the CPU and

memory can be fined tuned while keeping the same application deployment. For

example, Amazon EC2 allows keeping the same deployment in a VM and configuring

it to be a different type of VM with a different number of virtual CPU cores and

memory. Therefore, the application does not need to be re-deployed when the VM

instance type got changed.

The collected data is usually in a format, which is easier to run the load test. The easiest

and quicker way to run the load test was to have the environment ready for a hardware

setup and apply the load for the number of users we wanted to run against. We repeated

the same load for the next hardware setup, until we complete the load test across the

planned array of hardware configurations and users. For example, we can have the

application deployed in one VM and then apply workload while varying the number

of concurrent users.

A typical workload of a user consists of different scenarios, where scenario consists

of different actions/steps such as login to the web application, searching for an entry,

modifying and saving that entry, and logout. The latency will be obtained for each user

step to make the analysis easier. Hence, it is important to understanding different user

steps of the chosen web application using code walk-throughs. Then to have a good

25

coverage of the application’s functionality steps related to database reads, updates,

insertion, and joins need to be selected. For example, Table 3.1 shows the relationship

between scenarios and individual steps, where the same granular steps will be touched

by multiple scenarios. These granular steps give a better indication on the number of

database tables and database operations each step is associated with, so that we will

have a better gauge on the complexity of each scenarios of our experiment. Then

scenarios need to be picked to have a good mix of application steps.

Latency and resource utilization were selected as metrics to measure performance, and

each term is defined in Table 3.2.

Once we finalized the scenarios, we collected the data in the format similar to that of

Table 3.3. We measured the load by the number of users and the scenarios, capacity

by the hardware, and performance as the latency. We collected the data for different

capacities and different number of concurrent users. We got a diverse dataset as we

used different combination of scenarios, across different capacities against a range of

concurrent users.

Table 3.1 Scenarios and steps.

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Step A X X X X X

Step B X X X X X

Step C X X

Step D X X

Step E X X X

Step F X X X X X

Step G X X X X X

Step H X

Step I X

Step J X

Step K X

Step L X

Step M X

Step N X

Step O X

Step P X

Step Q X X X X X

26

Table 3.2 Selected performance metrics.

Metric Description

Latency Difference in the time between request and response

Resource Utilization Amount of CPU and Memory required to process

Table 3.3 Data recorded from load testing for 3-tier application.

Scenario Hardware

Average response time in seconds

N1

Users

N2

Users

N3

Users

N4

Users

N5

Users

N6

Users

N7

Users

Scenario_1 Hardware_1 x x x X X x x

Scenario_2 Hardware_2 x x x X X x x

 … … … … … … … …

Scenario_n Hardware_n x x x x X x x

3.3 Data Preprocessing

Our test data was in a form similar to Table 3.1. However, the dataset needs to be

transformed to a table format to determine the relationship between the performance,

workload, and capacity. Therefore, first, we arrange the data to a suitable format by

assigning numerical weights for the steps.

First, we need to map the type of operation, number of users, and latency it takes to

perform the operation against the capacity as seen in Table 3.4. We will read the values

in this table as the U1 number of users will take T1 latency to perform the Scenario1

against the Capacity1, U2 number of users will take T2 latency to perform the Scenario2

against the Capacity2, and so on.

Table 3.4 Data arranged for user scenarios for users

Type of Operation Users Latency Hardware

Scenario1 U1 T1 Capacity1

Scenario2 U2 T2 Capacity2

… … … …

Scenarion Un Tn Capacityn

We need to find the actual impact to the system from each step associated with a

scenario, as these operations represent the workload of our model. We need to convert

the complexity of each step/action to a set of numerical values as shown in Table 3.5.

As the focus is on 3-tier web applications, we consider the number of database tables

touched by a particular step to be representative of the workload, as selected step

27

retrieve, insert, or update records stored in multiple database tables. We know the

number of database tables touched by each step, as we walked through the code of the

application. We can also identify the type of database operations for each step.

Once this is known we have two options. The first option is to assign equal values to

query, create, and update database operations. We assigned a weight of one for

database query, database create, and database update. A weight of two was assigned

to varying values through query, create, and update database operations based on their

complexity. We assigned the weight of one for the database query, weight higher than

one for database create and weight much higher than database create to database update

in the second option. Database query operation is the lowest in terms of complexity

and performs faster than database create and database update. Database update

operation is with the highest complexity in RDMS compared to the database create, as

database updates will have to query the records and then to change the values [15].

Table 3.5 shows numerical values for each scenario, which is the sum of complexity

of all the steps associated with the scenario. Numerical values are the ideal

representation for the scenarios to build the model rather than having text labels. We

build Table 3.5 for both the options described above to cover equal weight and varying

weight.

Table 3.5 Weight for sub scenarios.

 Sub Scenario Database

Tables

Query Create Update Weight for User

Scenario

Sub Scenario 1 X x X x X

Sub Scenario 2 X x X x X

… … … … … …

Sub Scenario n X x X x X

Table 3.6 shows the prepared data having all numerical values for the user scenario,

latency and users, while hardware remains as the instance type. Such a dataset is useful

while applying a machine-learning model.

Table 3.6 Data prepared for the machine-learning model.

Sub Scenario Hardware Latency Users

x x x x

x x x x

… … … …

x x x x

28

3.4 Model Generation

We extracted 80% of the preprocessed dataset to train the machine learning models

while remaining 20% of the dataset was used as the test data. We model the dataset

such that capacity as the dependent variable while performance and workload as

independent variables. Once the model is created, we used the test data to check the

prediction accuracy of the chosen model. We randomly selected the training dataset

from the preprocessed dataset to make sure that the training dataset is well distributed.

To build a model we choose machine-learning models due to the following advantages

[16]:

• Comparatively more accurate than rules generated by humans

• No need to have the human involvement

• Flexibility in certain models support feature generation for any features

• Ability to explain the data from the automatically generated hypothesis

As our main goal is to automatically produce near accurate predictions based on the

data we collected, we choose following machine-learning models:

1. K-Nearest Neighbor (KNN) [17] – Given a workload and a performance

target, we can get a reasonable estimate of capacity requirement by analyzing

the capacity requirements of similar workloads and performance targets. For

this KNN is a suitable model where capacity recommended by k (≥ 1) nearest

neighbors based on their workloads and performance can give a reasonable

indication of capacity required to handle the given workload and achieve given

performance target. In this case, we model our problem as a classification

problem where data points are classified as based on their workload and

performance, and labeled based on the capacity.

2. Random forest [18] – In random forests, we can model the problem again as a

classification problem based on a set of decision trees. Random forests are a

combination of tree predictors such that each tree depends on the values of a

random vector sampled independently and with the same distribution for all

trees in the forest.

This makes random forests a good option for this experiment, as we want to

have a good classification model.

29

3. Support Vector Machine (SVM) [19] – SVM is also a supervised classification

algorithm that identifies the right hyperactive plane by careful classification

of data considering the distances to the planes. SVM easily handles feature

interactions and non-parametric; hence we do not have to worry about outliers

or whether the data is linearly separable. SVM has strong theoretical

foundations and excellent empirical successes on classification problems [19].

Each of the above algorithms has a different set of parameters to tune. For example, in

KNN value k needs to be set. In random forests, we need to set the number of trees.

Similarly, in SVM cost value needs to be set.

The key here is to have a model that could accurately determine the capacity for the

given performance and workload. We use the test dataset collected from the

application to verify the accuracy of the proposed model. As seen in Table 3.7 we used

it to cross check the predicted capacity for the given performance and workload values.

When the predicted value is same as the actual value, we considered the prediction to

be successful, which means that the capacity predicted from the model is same as the

value used in real data. We define accuracy as the number of capacity predictions that

are same as in original data. High accuracy indicates the chosen model is suitable in

predicting the capacity requirements, as well as scenario to number mapping is

effective in capturing the workload complexity.

Table 3.7 Actual and model predicted values for capacity.

Performance Workload Actual Capacity Value Model Predicted Capacity Value

P1 W1 AV1 MPV1

P2 W2 AV2 MPV2

… … … …

Pn Wn AVn MPVn

A model with the highest accuracy is then picked as the score model as shown in Figure

3.1, which is also considered as the candidate model. In addition, this model will be

used to predict the capacity for the given workload and performance requirement for

the applications of the same nature.

30

3.5 Evaluating Prediction Ability of Model for Different Applications

To be generally useful, the most accurate model for the chosen application should also

be able to predict the capacity requirements of similar 3-tier web applications. As the

model captures the relationship among workload, latency, and resources, we use the

model to predict the resource requirement given the workload and performance of

chosen application(s). Then the prediction accuracy is checked for the predicted

resource requirement against the actual capacity. The model that performs well on the

original application and new application is then chosen as the most preferred model

for capacity planning.

3.6 Summary

We proposed a methodology to predict the capacity requirement of a 3-tire web

application given a workload and a performance target. We set up a modular

environment using virtual machines. We then ran a set of load tests and collected the

performance of a given combination of workload and resources. Then the dataset is

preprocessed to map the workload complexity based on the number of database tables

involved and the type of database operations to be performed. Three machine-learning

models are then chosen to model and predict the capacity requirement given a

workload and a performance target. We then evaluate the prediction accuracy of a

given test dataset. The same models are also evaluated based on their ability to predict

the resource requirement for another 3-tier web application. Finally, we chose the

model that could predict the resource requirement of the other application with the

highest accuracy as the chosen model.

31

Chapter 4

PERFORMANCE EVALUATION

This chapter focuses on performance evaluation of the proposed technique. Section 4.1

focuses on setting up the test environment in the Cloud, while Section 4.2 focuses on

evaluating the performance of different machine learning models. Section 4.3 focuses

on the accuracy of each algorithm and shows the reason behind selecting the model to

find the capacity need for the given performance and workload.

4.1 Experimental Setup

The collect the data and evaluate the model we setup two 3-tier web applications, in

which one was from the Health Care domain and other was from E-Commerce where

we used the popular Rubis [20] website. Next, we describe the high-level architecture

of the deployment topology. Setting up both the web application environments in AWS

was the key, as we could emulate a production environment in AWS VMs with

appropriate configurations.

4.1.1 Computing Infrastructure Setup

It is critical to have a near-production environment setup to perform the

performance/load testing as we are planning to achieve high accuracy (e.g., 80% of the

capacity needed to have a performance benchmark against an expected user load).

Ideally, performance testing must be performed in the same setup that will be used by

the end users when they have the production environment to be used. However, having

the same setup in a cloud is not an easy step as performance testing cannot be isolated

from the security concerns associated with this deployment topology.

We setup a Virtual Private Cloud (VPC) [21] with four subnets within the VPC as

shown in Figure 4.1. We deployed the application using an application server, web

server and a database server in their respective subnets to perform the load testing. We

also setup a workload generator based on JMeter [22] version 3.2 on a separate VM.

Depending on the application used for testing, we changed the workload generated by

JMeter.

32

Figure 4.1 Test application deployed in AWS.

4.1.2 3-Tier Web Application

A highly data intensive web application from the Health Care domain was selected.

The selected application is associated with providing health care services and is

currently installed at different health care providers. These health care providers are

scattered all over Australia having different numbers of end users. End users are

themselves considered as elderly, in which they do not have much of a computer

literacy. Hence, agents deployed from the health care service providers reach the end

users and interact with this application. Due to the privacy issues associated with the

health care records, the application must be installed on an intranet while scaling based

on the varying user load and performance needs, which makes this an ideal application

for this research. Depending on the deployment and health care service provider,

number of concurrent users vary from one to 500. Hence, the capacity allocation needs

to be based on the expected workload and performance.

4.1.3 Resource and Workload Combinations

Table 4.1 presents the combinations of hardware we used to carry out the experiment.

The combinations are a mix from CPU cores, memory, and the number of concurrent

users. CPU Cores were varied from 1, 2, 4 and 8, while the memory was varied from

2, 4, 6, and 8 for each combination of CPU Cores. This creates 16 (4 × 4) parameter

combinations. We executed the user scenario for each combination that for the

33

concurrent users from one to 500 in different batches. Number of sessions were equal

to the number of concurrent users we used to generate the load.

Table 4.1 Possible combinations for hardware and users.

Having the AWS VMs from the t2 class, which is configured to ideally match with the

general-purpose web applications helped us to narrow down the hardware

combinations to the classes available in AWS. Table 4.2 presents the possible

combination of resources we could derive based on required CPU and memory. We

used the standard VMs as shown in Table 4.2. For example, T2.Micro instance type

represents an instance with 1 CPU Core and 1 GB of RAM. The entire experiment was

carried out using five different VM instances, namely T2.Micro, T2.Small,

T2.Medium, T2.Large, and T2.ExtraLarge. Separating out JMeter load generator to a

different VM made sure that it produced the same load to the application VMs in all

the scenarios. Table 4.3 lists the configurations of AWS VMs and Table 4.4 shows the

Amazon EC2 instance types we used for this experiment.

Table 4.2 Hardware configuration for the 3-tier sample application.

Instance Type CPU Cores Memory (GB) Ramp Up Think Time Ramped Down

1.vmT2.Micro 1 1 10 mins 2 mins 10 mins

2.vmT2.Small 1 2 10 mins 2 mins 10 mins

3.vmT2.Medium 2 4 10 mins 2 mins 10 mins

4.vmT2.Large 2 8 10 mins 2 mins 10 mins

5.vmT2.XLarge 4 16 10 mins 2 mins 10 mins

We used the same intranet deployment topology for the selected commercial

application, which gave us a setup similar to the production environment. Table 4.3

shows the configurations of the AWS VMs used for the instance type t2.large. The

instance type t2 is the classification from AWS for the general-purpose web

Applications. We managed to have the application deployed on different capacities by

changing the instance type of the VM from t2.micro, t2.small, t2.medium, t2, large and

t2.extralarge as shown in Table 4.4.

CPU Cores 1, 2, 4, 8

Memory (GB) 2, 4, 6, 8

Concurrent Users 1 to 500

34

Table 4.3 Configuration of AWS VMs.

AWS VM Instance Instance

Type

Processing

Power (GHz)

Memory

(GB)

Disk Space

(GB)

Database Server Instance t2.large 2.4 8 70

Web Server t2.large 2.4 8 30

Application Server t2.large 2.4 8 30

Firewall and Proxy Server t2.medium 2.4 3.75 100

JMeter Console + Load Generator t2.large 2.4 8 30

JMeter Load Generator t2.large 2.4 8 30

Table 4.4 EC2 Instances used with CPU and memory.

Instance Type CPU Cores Memory (GB)

1.vmT2.Micro 1 1

2.vmT2.Small 1 2

3.vmT2.Medium 2 4

4.vmT2.Large 2 8

5.vmT2.XLarge 4 16

The sample application was deployed in AWS VMs. Microsoft SQL instance was used

as the database, while the application was deployed as a combination of the web server

and application server.

Rubis application was also deployed in AWS. The sample commercial application and

the Rubis were deployed to the Windows environment. Rubis used MySQL as the

database instance. The application was deployed to the web server and application

server as shown in Figure 4.2. We configured a firewall and a proxy to maintain the

same deployment topology in the cloud as well. JMeter was used to generate the

workload for the varying number of concurrent users for the chosen scenarios.

We selected a set of scenarios to get a wider coverage of the application functionality,

as well as to hit the database as in its typical use. See Appendix A and Appendix B for

the scenarios chosen for the evaluation.

Ramp Up and Ramp down time was set to 10 minutes as JMeter should get all the

threads sent for the execution. Ramp up should be enough to avoid unnecessary and

large workload from the beginning of the test execution. Think time was set 2 minutes

35

in the range of 0 to 4 with an average of 2 minutes, at the load generator to have a

better variation in a random fashion. The results were collected during the steady state.

Figure 4.2 Rubis application deployed in AWS.

Both applications have a thin web front end deployed as the web server. Web server

forwards the requests to the application server for further processing while handling

the necessary business logic. Due to this design, application server handles a relatively

higher workload, e.g., for the user scenarios and the load we applied application server

introduced the highest latency to a response. This is the typical case in most 3-tier web

applications where the web server mostly act as a reverse proxy, while application

server does the real work. The minimum capacity requirement of commercial database

servers is well known and vendors usually provide further guidelines on number of

queries per second and type of queries. Therefore, the most difficulty in estimating

capacity requirement lies with the application servers, which is expected to run the

custom developed web application. Therefore, we consider the capacity estimation as

the capacity of the application server.

Based on the nature of the chosen application, novice users must use the search feature

to navigate from the point after the log in. Based on the deployment at client end,

different deployments will have a different set of data volumes. In certain

deployments, application caters only to a few end users with low data volume to be

searched for. However, the search will take a considerable amount of time when the

36

deployment is for a larger user base due to large data volume. Search time will also

vary based on the parameters provided and the number of database tables touched

based on the parameters given to the search.

Selecting and adding a basic entity is considered as a most common step in most of the

user scenarios. Selecting, editing, and saving special entities is the next major step.

There are special entities with very simple structures, in which structure could be

obtained from a single table, while certain special entities having complex structures

in which multiple tables are required with complex joins and associations.

Logging out from the application is not only closing the application, but also involves

adding logs and putting a load on the database. This is another key scenario we need

focus in our experiment to have our load widely spread. Therefore, JMeter generated

the load from log in to the application then executed different set of loads under

different scenarios and finally the logging out from the app.

Following list shows the user scenarios selected from the 3-tier web application.

• Launching the App

• Login to the App

• Select Advanced Search

• Enter n Fields to the Search

• Select Advanced Search Enter Fields N Search

• Select a Basic Entity

• Add a Basic Entity

• Select a Special Entity A

• Edit & Save and Entity

• Save a generated Entity

• Save a Special Entity B

• Save a Special Entity C

• Navigate different sections in Special Entity D

• Edit & Save and Entity

• Select Entity & enter fields

• Save a Special Entity E

• Logout

37

4.1.4 Data Collection

We collected and recorded the test results from the load test for the commercial

application and Rubis for the user scenarios from the system we set up with JMeter.

Appendix A and Appendix B shows the initial collection of test data, which shows the

latency for each step against the hardware and the number of user load. We took 80%

from the data collected as a subset of the train data to build the model. The remaining

20% was used to evaluate the model. The load test data was collected against the

application server, as required the highest among of resources. The Figure 4.3 shows

the memory and CPU utilization of the Application server and the Figure 4.4 shows

the memory and CPU utilization of the Web server during the peak time from the

production deployment. It clearly shows that Application server is busy processing the

rendering logic to generate the JSON files, while the Web server delegates the tasks to

the Application server.

Figure 4.3 Memory and CPU utilization of Application server.

38

Figure 4.4 Memory and CPU utilization of Web server.

4.2 Model Evaluation

There were few decisions made during the process of carrying out the experiment.

Determining the proper algorithm for the evaluation model was the major decision as

it affects the overall result of the experiment. In determining the ideal algorithm,

selecting the right weight for the database operations was the other key to accuracy.

Mapping of each applications user scenarios in a way that we have a universal

approach to determine the user load is an important aspect of this whole exercise.

4.2.1 Numerical Values for Workloads

Steps fall under different categories where some involve only the Web server, some

involve Web and Application servers, while others involve all three servers. When a

database is involved the data touches one or more tables. Therefore, the number of

tables that each step touches can be considered as a workload parameter. The nature

of database operation (e.g., search vs. insert) is the other parameter.

39

The first experiment was carried out by assigning equal weights to the different types

of operations using the multiplication of the number of database tables with the type

of database operation. The numerical values calculated for each step are shown in

Table 4.5 when all the database operations were treated equally. The values collected

from the sample values as mentioned in Appendix C was combined with the numerical

values obtained from the equal weight.

Table 4.5 Sub Scenarios with equal weight for database operations in sample application.

Steps Database

Tables

Query Create Update Weight for Operation

Read=1, Create=1,

Update=1

Access Home Page 0 0 0 0 0

Login to the system 2 1 0 1 4

Edit configurations 4 1 0 0 4

Save Configurations 6 0 0 1 6

Perform Advanced

Search
8 1 0 0 8

Select an Entity 4 1 0 0 4

Create an Entity 4 0 1 0 4

Generate an Entity 6 0 0 1 6

Navigate among the

Pages
0 0 0 0 0

Logout 2 0 0 1 2

We first tried to predict the capacity using the K-Nearest Neighbour (KNN) algorithm.

RStudio [23] version 1.0.143 was used to generate the evaluation model using the

KNN. Different models were generated using different values for k starting from 1 to

10. The comparison of model predicted against the test data are shown in Figure 4.3

as follows. This prediction resulted in lots of deviation with the test data. Hence,

assigning numerical values to the step based on the equal weights from database

operations does not give a good evaluation model to proceed further. Even the

distribution of numerical values does not show a much variation as it expands into a

limited set only from 0 to 8.

As complexities of each database operation are different, we then introduced a weight

or cost based on the complexity of executing a query. For example, a read database

operation costs less compared to an update operation. Therefore, we set different

weights such that Read = 1, Create = 2, and Update=3. Table 4.6 shows the

corresponding numerical values for step when the varying weights are used.

40

Figure 4.5 KNN algorithm on sample data with equal weights.

Table 4.6 Varying weight for database operations in sample app.

Steps Database

Tables

Query Create Update Weight for Operation

Read=1, Create=2,

Update=3

Access Home Page 0 0 0 0 0

Login to the system 2 1 0 1 8

Edit configurations 4 1 0 0 4

Save Configurations 6 0 0 1 18

Perform Advanced

Search
8 1 0 0 8

Select an Entity 4 1 0 0 4

Create an Entity 4 0 1 0 8

Generate an Entity 6 0 0 1 18

Navigate among the

Pages
0 0 0 0 0

Logout 2 0 0 1 6

The values collected from the sample values in Appendix C was combined with the

numerical values obtained from the varying weight and the model was predicted using

41

the KNN algorithm again. Different models were generated using different values for

K starting from 1 to 10. The comparison of model predicted against the test data are

shown in Figure 4.4. In this case, the predictions had less deviation with the test data.

Hence, assigning numerical values to the step based on the complexity of database

operations gives a better evaluation model to proceed further. Even the distribution of

numerical values shows a much variation as it expands in a set only from 0 to 18.

Figure 4.6 KNN algorithm on sample data with different weights.

The decision was the varying values to the Database operations to determine the

numerical value for the steps.

42

4.2.2 Applying More Machine Learning Models

K-Nearest neighbour is not the best model, as it does not give an evaluation model

with a higher accuracy. This could be due to none linear increase in number of CPU

cores and memory, which leads to an unbalanced distribution of data. Then we tried

Support Vector Machine (SVM) algorithm. The values collected from the sample

values (as in Appendix C) was combined with the numerical values obtained from the

varying weight and the model was predicted using SVM implemented using RStudio.

Different models were generated using different values for cost varying across 0.1, 1,

10, and 100. The comparison of model predicted against the test data are shown in

Figure 4.5. However, this resulted in even less accuracy compared to KNN, where the

overall accuracy was less than 40%. Accuracy did not improve much with varying cost

values. This is probably due to a lower number of dimensions in our dataset where

KNN tend to work better.

Figure 4.7 SVM algorithm on sample data with different weights.

Then we also tried the Random Forest algorithm with weighted data. The model was

implemented using RStudio and different models were generated using different

values for trees varying from 1 to 1,000. The comparison of model predicted against

the test data are shown in Figure 4.6, where we can see good accuracy compared to

test data. The best accuracy of this model was obtained when the number of trees is

100. The exact data used for this model is shown in Appendix E.

43

Figure 4.8 Random Forest algorithm on sample data with different weights.

4.3 Resource Forecasting

We looked at different machine learning algorithms to have the best possible model to

predict the capacity requirement for the performance and the workload. The model

with the highest accuracy was picked to move forward with this experiment. We got

different models representing the relationships between capacity, performance, and

resources from the training data. Table 4.7 shows the accuracy of each algorithm we

used. It is clear that the model we got from the Random Forest is by far the better

model to go ahead with.

As per the objective of this experiment, we used Rubis as the new application to predict

the resource requirement given workload and performance target. The scenarios and

steps in Rubis are different to the scenarios and steps used in our sample application.

We use the same approach to calculate the numerical values for steps under each

44

scenarios. Table 4.8 shows the numerical values for the steps taken by assigning the

varying values for different database operations.

Table 4.7 Accuracy from algorithms.

Algorithm Accuracy

KNN (equal weight) 20.00%

KNN (varying weight) 50.00%

SVM 36.84%

Random Forest 97.14%

Table 4.8 Varying weight for Database operations in Rubis.

Steps Database

Tables

Query Create Update Weight for Operation

Read=1, Create=2, Update=3

Access Home Page 0 0 0 0 0

Query About me 1 1 0 0 1

Register User 1 0 1 0 2

View Item details 1 4 0 0 4

Sell Item 3 2 1 0 8

Bidding 4 3 0 2 18

The values collected from the sample values (as in Appendix A) was combined with

the numerical values obtained from the varying weight and the model was predicted

using the Random Forest algorithm. The exact training data given to the algorithm is

in Appendix E. The difference in this evaluation is the use of Rubis data as the test

data. The values collected from the Rubis application (as mentioned in Appendix B)

was treated as the test data. The exact test data given to the algorithm is listed in

Appendix F.

We use the model generated based on random forest and sample application training

data to predict the capacity requirement for Rubis. The comparison of model prediction

against the test data is shown in Figure 4.7. The accuracy of this model for the

prediction against the test data is 77.42%. Therefore, the model build for one

application can be used to reasonably estimate the capacity requirement of another 3-

tier application.

45

Figure 4.9 Random Forest algorithm on Rubis with different weights.

4.4 Summary

We collected a training dataset by varying number of CPU cores, memory, and the

number of concurrent users. Then the steps in the dataset were mapped to a set of

numerical values based on the number and type of database operations. It was realized

that assigning equal weights of the database operations such as insert, update, and joins

does not give an accurate model. Therefore, we assigned different weights based on

the complexity of database operations. This resulted in better prediction. We tried

KNN, SVM, and Random Forest algorithms to build the model, out of which Random

Forest produced the most accuracy prediction of capacity. We predicted the capacity

requirement for Rubis web application using the Random Forest based model and got

an accuracy of 77.42% in our predictions. These results indicate that by mapping steps

to a weighted numerical value a suitable machine-learning model can be used to predict

the capacity requirement of a 3-tier web application given the workload and a

performance target.

46

Chapter 5

CONCLUSIONS

Section 5.1 discuss the summary of the proposed technique and experimental results.

Section 5.2 focuses on the limitations of this experiment as we scoped this work on 3-

tier web applications while Section 5.3 suggests future work to extend this work to

improve accuracy as well as to support applications that are more complex.

5.1 Summary

Given a workload and a performance target, we proposed a technique to predict the

hardware capacity requirement. We specifically focus on 3-tier web applications,

where workload is given as a set of scenarios and a corresponding set of steps as well

as number of concurrent users while latency is given as the performance target.

Number of CPU cores and memory is predicted as the capacity requirement.

We first collected a dataset from a sample application while varying resources (number

of CPU cores and memory) and number of concurrent users against the same set of

scenarios. This dataset was then used to train a set of machine learning models to

capture the relationship among capacity, workload, and performance. Steps of a

scenarios put different load on the servers based on the type of requests. For example,

a database read is relatively simple to execute compared to an update. Therefore, we

used different weights to capture the complexity of database operations. In fact, our

tests results revealed that equal weights are not good at capturing the application

behaviour. Among the three machine-learning algorithms we tried Random Forest was

able to predict the capacity more accurately compared to K-Nearest Neighbor and

Support Vector Machine algorithms. Moreover, it was able to predict the capacity for

another web application with an accuracy of 77%. These results indicate that by

mapping scenarios and their steps of a web application to a weighted set of numerical

value a suitable machine-learning model can be used to predict the capacity

requirement of a 3-tier web application given a mix of workloads and a performance

target.

47

5.2 Limitation of Research

We specifically focused on 3-tier web applications. Even though, we were able to find

a suitable model for a typical 3-tier web application, there are some limitations

associated with the proposed technique.

While a 3-tier web application consists of one or more web servers, application servers,

and database servers, we predict the capacity of only the application server. Hence, it

is important to extend the capacity prediction to all three types of servers as a one

cohesive system. While there exists a large spectrum of applications like memory

intensive, CPU intensive, and bandwidth intensive, we focus on typical web

applications with a set of scenarios that interacts primarily with the database. However,

there are many other applications that relay on various other libraries to execute

complex business logic, generate bar codes, generates PDFs, etc. Hence, those cases

need more complex allocation of resources and both hardware and software level

optimizations. It is a constraint that the proposed approach cannot be used to build a

model for such applications.

We tested the proposed approach only against two web-based applications where one

who a commercial application while Rubis was primarily used in research and training.

It is important to evaluate the proposed technique across a collection of web

applications.

We define the resources as number of CPU cores and memory. However, storage,

bandwidth, and I/O Operations Per Second (IOPS) are other important parameters.

Moreover, throughput is also an essential performance metrics. However, a larger

collection of resource and performance parameters makes the number of combinations

much larger when it comes to building the test dataset. Furthermore, particular

language and platform used to develop a web application also have a considerable

impact on resource capacity. Therefore, such factors should also be considered to be

more accurate and comprehensive.

48

5.3 Future work

The focus of this research was to propose a new model to calculate the capacity given

the performance and workload. It is interesting to extend the model to capture

scenarios that are more complex. First is to predict the capacity requirement of web

and database servers. Next, is to consider more complex resources such as bandwidth

and IOPS. Another extension is to consider both latency and throughput as the

performance metrics. Moreover, extending the proposed weights to capture none

database operations such as generating a PDF file is of interest.

Even though JMeter automates load testing in each environment, it is time-consuming.

Therefore, it takes lots of time to carry out the load testing over a range of VMs to

collect the test dataset. Using a tool similar to Puppet [24] we can automate this

process. It is suggested to test the proposed technique against other web applications

and further fine-tune the model parameters.

It would be useful to expose capacity-planning as a service where the user could

provide a set of application scenarios and performance target or SLA to identify the

type of computing resources. This can be specifically customized for a cloud-

computing environment as available types of resource configurations are known.

49

REFERENCES

[1] N. Mitchell and P.F. Sweeney, “On the fly capacity planning,” In Proc. Object

Oriented Programming Systems Languages and Applications. Oct. 2013.

[2] J. Mars, L. Tang, R. Hundt, K. Skadron, and M.L. Soffa, “Bubble-up:

increasing utilization in modern warehouse scale computers via sensible co-

locations,” In Proc. 44th Annual IEEE/ACM Intl. Symposium on

Microarchitecture, pages 248–259, 2011.

[3] D. Menascé, V. Almeida, and L. Dowdy, “Performance by Design,” Prentice

Hall, 2004.

[4] R. Schiesser, IT Systems Management. Prentice Hall, 2010.

[5] M. Barbacci, M.H. Klein, T.A. Longstaff, and C.B. Weinstock “Quality

Attributes,” [Online] Available: http://www.sei.cmu.edu/reports/95tr021.pdf.

[6] M. Careem, “Capacity Planning for Application Design Part 1,” Dec. 2015.

[7] A. Nathani, S. Chaudhary, and G. Somani, “Policy based resource allocation

in IaaS cloud,” Future Generation Comput. Syst., vol. 28, no. 1, pp. 94-103,

2012.

[8] R.N. Calheiros, R. Ranjan, and R. Buyya. “Virtual machine provisioning based

on analytical performance and Qos in cloud computing environments,” In Proc.

Parallel Processing, Sep. 2011.

[9] “Amazon EC2,” [Online] Available: https://aws.amazon.com/ec2/

[10] “Manage Federation,” [Online] Available:

https://aws.amazon.com/iam/details/manage-federation/

[11] A.N. Toosi, R.N. Calheiros, R.K. Thulasiram, and R. Buyya, “Resource

provisioning policies to increase IaaS provider’s profit in a federated cloud

environment,” In Proc 13th IEEE Intl. Conf. on High Performance Computing

and Communications (HPCC’11), Banff, Canada, 2011.

[12] B. Sotomayor, R.S. Montero, I.M. Llorente, and I. Foster, “An Open Source

Solution for Virtual Infrastructure Management in Private and Hybrid Clouds,”

IEEE Internet Computing, Vol. 1, pp. 14-22, 2009.

[13] M. Asgarnezhad, R. Nasiri, and A. Shahidi, “A Systematic Method for

Performance Analysis of Service Oriented Architecture Applications, Intl.

Journal of Computational and Mathematical Sciences,” Vol. 4, 2010.

[14] “Machine Learning Cheat Sheet,” [Online] Available:

http://download.microsoft.com/download/A/6/1/A613E11E-8F9C-424A-

http://www.sei.cmu.edu/reports/95tr021.pdf
https://aws.amazon.com/ec2/
https://aws.amazon.com/iam/details/manage-federation/

50

B99D-65344785C288/microsoft-machine-learning-algorithm-cheat-sheet-

v6.pdf.

[15] C.H. Papadimitriou and M. Yannakakis, “On the complexity of database

queries,” In Proc. 16th ACM SIGACT-SIGMODSIGART Symposium on

Principles of Database Systems, May 12–14, 1997, Tucson, Arizona, pp. 12–

19.

[16] S. Kotsiantis, “Supervised learning: A review of classification techniques,”

Informatica, vol. 31, pp. 249–268, 2007.

[17] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov, “Neighbourhood

components analysis,” In L. K. Saul, Y. Weiss, and L. Bottou, editors,

Advances in Neural Information Processing Systems 17, pages 513–520,

Cambridge, MA, 2005. MIT Press.

[18] “Manual on setting up, using, and understanding random forests,” [Online]

Available:

https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf

[19] S. Tong and E. Chang, “Support vector machine active learning for image

retrieval,” In Proc. ACM Intl. Conf. on Multimedia, pages 107-118, 2001.

[20] “Rubis,” [Online] Available: http://rubis.ow2.org/

[21] “Amazon Virtual Private Cloud,” [Online] Available:

https://aws.amazon.com/vpc/

[22] “Apache JMeter,” [Online] Available: http://jmeter.apache.org/

[23] “R Studio,” [Online] Available: https://www.rstudio.com/products/rstudio/

[24] “Puppet,” [Online] Available: https://puppet.com/

https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf
http://rubis.ow2.org/
https://aws.amazon.com/vpc/
http://jmeter.apache.org/
https://www.rstudio.com/products/rstudio/
https://puppet.com/

51

Appendix A: Experimental Data – Load Test Results from Sample

Application

Steps Hardware

Average latency in seconds

5

Users

20

Users

50

Users

75

Users

100

Users

200

Users

400

Users

Access

Home Page
1.vmT2.Micro 12.032 0.887 1.4037 3.083

Login to the

system
1.vmT2.Micro 24.896 1.284 26.199 3.321

Edit

configuration
1.vmT2.Micro 5.075 3.404 10.677 7.58

Save

Configuratio

ns

1.vmT2.Micro 0.3 1.914 0.569 0.997

Perform

Advanced

Search

1.vmT2.Micro 0.462 0.582 0.221 0.327

Select an

Entity
1.vmT2.Micro 1.45 7.469 2.579 4.851

Create an

Entity
1.vmT2.Micro 0.088 2.764 0.894 8.448

Generate an

Entity
1.vmT2.Micro 44.366

77.34

5

131.84

3

286.38

5

Navigate

among the

Pages

1.vmT2.Micro 0.288 2.565 8.231 26.686

Logout 1.vmT2.Micro 0.461 6.218 6.358 41.672

Access

Home Page
2.vmT2.Small 1.468 2.357 18.198 10.003

Login to the

system
2.vmT2.Small 2.688 4.202 27.222 7.377

Edit

configuration
2.vmT2.Small 9.982 13.528 20.151 17.417

Save

Configuratio

ns

2.vmT2.Small 10.243 12.719 0.84 1.159

Perform

Advanced

Search

2.vmT2.Small 2.094 13.737 0.425 0.644

Select an

Entity
2.vmT2.Small 30.84 39.236 4.639 13.442

Create an

Entity
2.vmT2.Small 5.329 12.607 2.088 10.537

Generate an

Entity
2.vmT2.Small

141.87

7

244.87

1

326.42

9

443.21

9

Navigate

among the

Pages

2.vmT2.Small 8.104 3.838 40.912 50.946

Logout 2.vmT2.Small 28.276 20.772 45.506 82.27

Access

Home Page

3.vmT2.Mediu

m
 13.59 50.754 40.251

41.02

7

52

Steps Hardware

Average response time in seconds

5

User

s

20

User

s

50

User

s

75

Users

100

Users

200

Users

400

Users

Login to the

system

3.vmT2.Mediu

m
 27.781 12.34 57.24 46.093

Edit

configuration

3.vmT2.Mediu

m
 23.484 8.802 39.302 41.962

Save

Configuration

s

3.vmT2.Mediu

m
 0.768 1.864 11.518 6.378

Perform

Advanced

Search

3.vmT2.Mediu

m
 0.301 1.171 5.033 3.273

Select an

Entity

3.vmT2.Mediu

m
 3.961 10.826 46.888 43.123

Create an

Entity

3.vmT2.Mediu

m
 1.79 1.914 21.173 55.264

Generate an

Entity

3.vmT2.Mediu

m

327.59

3

114.85

3

193.35

4

552.57

7

Navigate

among the

Pages

3.vmT2.Mediu

m
 8.622 0.024 16.617 25.01

Logout
3.vmT2.Mediu

m
 19.554 0.251 47.682 34.464

Access Home

Page
4.vmT2.Large 3.489 18.044 68.131

Login to the

system
4.vmT2.Large 3.264 40.685

116.14

4

Edit

configuration
4.vmT2.Large 6.484 56.405 54.841

Save

Configuration

s

4.vmT2.Large 0.754 11.012 4.674

Perform

Advanced

Search

4.vmT2.Large 0.556 4.514 2.397

Select an

Entity
4.vmT2.Large 18.795 50.473 65.884

Create an

Entity
4.vmT2.Large 6.713 12.686 4.546

Generate an

Entity
4.vmT2.Large

366.95

8

258.55

1

181.29

2

Navigate

among the

Pages

4.vmT2.Large 36.194 9.228 14.085

Logout 4.vmT2.Large 48.518 36.32 40.717

53

Steps Hardware

Average latency in seconds

5

User

s

20

User

s

50

User

s

75

Users

100

Users

200

Users

400

Users

Access Home

Page
5.vmT2.XLarge 11.989 6.481 21.66 48.636

Login to the

system
5.vmT2.XLarge 20.361 8.427 50.496 13.335

Edit

configuration
5.vmT2.XLarge 11.568 12.688 47.5 17.511

Save

Configuration

s

5.vmT2.XLarge 0.595 4.154 10.604 2.659

Perform

Advanced

Search

5.vmT2.XLarge 0.253 1.92 2.857 1.318

Select an

Entity
5.vmT2.XLarge 3.696 45.471 47.489 20.378

Create an

Entity
5.vmT2.XLarge 1.657 5.055 15.043 4.784

Generate an

Entity
5.vmT2.XLarge

347.43

9

115.35

8

128.68

4

413.91

8

Navigate

among the

Pages

5.vmT2.XLarge 9.731 19.73 10.832 36.276

Logout 5.vmT2.XLarge 26.787 61.339 46.61 86.05

54

Appendix B: Experimental data – Load Test Results from Rubis

Steps Hardware
Average latency in milliseconds

50 Users 100 Users 200 Users 400 Users

Access Home Page 1.vmT2.Micro 16

Query About me 1.vmT2.Micro 4

Register User 1.vmT2.Micro 5

View Item details 1.vmT2.Micro 19

Sell Item 1.vmT2.Micro 13

Bidding 1.vmT2.Micro 28

Access Home Page 2.vmT2.Small 5

Query About me 2.vmT2.Small 5

Register User 2.vmT2.Small 5 19

View Item details 2.vmT2.Small 21

Query About me 3.vmT2.Medium 10

Register User 3.vmT2.Medium 11 10

View Item details 3.vmT2.Medium 28

Sell Item 3.vmT2.Medium 26

Bidding 3.vmT2.Medium 40

Access Home Page 4.vmT2.Large 1

Query About me 4.vmT2.Large 5

Register User 4.vmT2.Large 14 8

View Item details 4.vmT2.Large 22

Sell Item 4.vmT2.Large 14

Bidding 4.vmT2.Large 31

Access Home Page 5.vmT2.XLarge 1

Query About me 5.vmT2.XLarge

Register User 5.vmT2.XLarge 14 13

View Item details 5.vmT2.XLarge 35

Sell Item 5.vmT2.XLarge 25

Bidding 5.vmT2.XLarge 74

55

Appendix C: Arranged data – Load Test Results from Sample

Application

 Steps Users Latency Hardware

1 Access Home Page 5 12.032 1.vmT2.Micro

2 Access Home Page 20 0.887 1.vmT2.Micro

3 Access Home Page 50 1.4037 1.vmT2.Micro

4 Access Home Page 75 3.083 1.vmT2.Micro

5 Login to the system 5 24.896 1.vmT2.Micro

6 Login to the system 20 1.284 1.vmT2.Micro

7 Login to the system 50 26.199 1.vmT2.Micro

8 Login to the system 75 3.321 1.vmT2.Micro

9 Edit configurations 5 5.075 1.vmT2.Micro

10 Edit configurations 20 3.404 1.vmT2.Micro

11 Edit configurations 50 10.677 1.vmT2.Micro

12 Edit configurations 75 7.58 1.vmT2.Micro

13 Save Configurations 5 0.3 1.vmT2.Micro

14 Save Configurations 20 1.914 1.vmT2.Micro

15 Save Configurations 50 0.569 1.vmT2.Micro

16 Save Configurations 75 0.997 1.vmT2.Micro

17 Perform Advanced Search 5 0.462 1.vmT2.Micro

18 Perform Advanced Search 20 0.582 1.vmT2.Micro

19 Perform Advanced Search 50 0.221 1.vmT2.Micro

20 Perform Advanced Search 75 0.327 1.vmT2.Micro

21 Select an Entity 5 1.45 1.vmT2.Micro

22 Select an Entity 20 7.469 1.vmT2.Micro

23 Select an Entity 50 2.579 1.vmT2.Micro

24 Select an Entity 75 4.851 1.vmT2.Micro

25 Create an Entity 5 0.088 1.vmT2.Micro

26 Create an Entity 20 2.764 1.vmT2.Micro

27 Create an Entity 50 0.894 1.vmT2.Micro

28 Create an Entity 75 8.448 1.vmT2.Micro

29 Generate an Entity 5 44.366 1.vmT2.Micro

30 Generate an Entity 20 77.345 1.vmT2.Micro

31 Generate an Entity 50 131.843 1.vmT2.Micro

32 Generate an Entity 75 286.385 1.vmT2.Micro

33 Navigate among the Pages 5 0.288 1.vmT2.Micro

34 Navigate among the Pages 20 2.565 1.vmT2.Micro

35 Navigate among the Pages 50 8.231 1.vmT2.Micro

36 Navigate among the Pages 75 26.686 1.vmT2.Micro

37 Logout 5 0.461 1.vmT2.Micro

38 Logout 20 6.218 1.vmT2.Micro

39 Logout 50 6.358 1.vmT2.Micro

56

 Steps Users Latency Hardware

40 Logout 75 41.672 1.vmT2.Micro

41 Access Home Page 50 1.468 2.vmT2.Small

42 Access Home Page 75 2.357 2.vmT2.Small

43 Access Home Page 100 18.198 2.vmT2.Small

44 Access Home Page 200 10.003 2.vmT2.Small

45 Login to the system 50 2.688 2.vmT2.Small

46 Login to the system 75 4.202 2.vmT2.Small

47 Login to the system 100 27.222 2.vmT2.Small

48 Login to the system 200 7.377 2.vmT2.Small

49 Edit configurations 50 9.982 2.vmT2.Small

50 Edit configurations 75 13.528 2.vmT2.Small

51 Edit configurations 100 20.151 2.vmT2.Small

52 Edit configurations 200 17.417 2.vmT2.Small

53 Save Configurations 50 10.243 2.vmT2.Small

54 Save Configurations 75 12.719 2.vmT2.Small

55 Save Configurations 100 0.84 2.vmT2.Small

56 Save Configurations 200 1.159 2.vmT2.Small

57 Perform Advanced Search 50 2.094 2.vmT2.Small

58 Perform Advanced Search 75 13.737 2.vmT2.Small

59 Perform Advanced Search 100 0.425 2.vmT2.Small

60 Perform Advanced Search 200 0.644 2.vmT2.Small

61 Select an Entity 50 30.84 2.vmT2.Small

62 Select an Entity 75 39.236 2.vmT2.Small

63 Select an Entity 100 4.639 2.vmT2.Small

64 Select an Entity 200 13.442 2.vmT2.Small

65 Create an Entity 50 5.329 2.vmT2.Small

66 Create an Entity 75 12.607 2.vmT2.Small

67 Create an Entity 100 2.088 2.vmT2.Small

68 Create an Entity 200 10.537 2.vmT2.Small

69 Generate an Entity 50 141.877 2.vmT2.Small

70 Generate an Entity 75 244.871 2.vmT2.Small

71 Generate an Entity 100 326.429 2.vmT2.Small

72 Generate an Entity 200 443.219 2.vmT2.Small

73 Navigate among the Pages 50 8.104 2.vmT2.Small

74 Navigate among the Pages 75 3.838 2.vmT2.Small

75 Navigate among the Pages 100 40.912 2.vmT2.Small

76 Navigate among the Pages 200 50.946 2.vmT2.Small

77 Logout 50 28.276 2.vmT2.Small

78 Logout 75 20.772 2.vmT2.Small

79 Logout 100 45.506 2.vmT2.Small

80 Logout 200 82.27 2.vmT2.Small

81 Access Home Page 75 13.59 3.vmT2.Medium

82 Access Home Page 100 50.754 3.vmT2.Medium

57

 Steps Users Latency Hardware

83 Access Home Page 200 40.251 3.vmT2.Medium

84 Access Home Page 400 41.027 3.vmT2.Medium

85 Login to the system 75 27.781 3.vmT2.Medium

 86 Login to the system 100 12.34 3.vmT2.Medium

87 Login to the system 200 57.24 3.vmT2.Medium

88 Login to the system 400 46.093 3.vmT2.Medium

89 Edit configurations 75 23.484 3.vmT2.Medium

90 Edit configurations 100 8.802 3.vmT2.Medium

91 Edit configurations 200 39.302 3.vmT2.Medium

92 Edit configurations 400 41.962 3.vmT2.Medium

93 Save Configurations 75 0.768 3.vmT2.Medium

94 Save Configurations 100 1.864 3.vmT2.Medium

95 Save Configurations 200 11.518 3.vmT2.Medium

96 Save Configurations 400 6.378 3.vmT2.Medium

97 Perform Advanced Search 75 0.301 3.vmT2.Medium

98 Perform Advanced Search 100 1.171 3.vmT2.Medium

99 Perform Advanced Search 200 5.033 3.vmT2.Medium

100 Perform Advanced Search 400 3.273 3.vmT2.Medium

101 Select an Entity 75 3.961 3.vmT2.Medium

102 Select an Entity 100 10.826 3.vmT2.Medium

103 Select an Entity 200 46.888 3.vmT2.Medium

104 Select an Entity 400 43.123 3.vmT2.Medium

105 Create an Entity 75 1.79 3.vmT2.Medium

106 Create an Entity 100 1.914 3.vmT2.Medium

107 Create an Entity 200 21.173 3.vmT2.Medium

108 Create an Entity 400 55.264 3.vmT2.Medium

109 Generate an Entity 75 327.593 3.vmT2.Medium

110 Generate an Entity 100 114.853 3.vmT2.Medium

111 Generate an Entity 200 193.354 3.vmT2.Medium

112 Generate an Entity 400 552.577 3.vmT2.Medium

113 Navigate among the Pages 75 8.622 3.vmT2.Medium

114 Navigate among the Pages 100 0.024 3.vmT2.Medium

115 Navigate among the Pages 200 16.617 3.vmT2.Medium

116 Navigate among the Pages 400 25.01 3.vmT2.Medium

117 Logout 75 19.554 3.vmT2.Medium

118 Logout 100 0.251 3.vmT2.Medium

119 Logout 200 47.682 3.vmT2.Medium

120 Logout 400 34.464 3.vmT2.Medium

121 Access Home Page 100 3.489 4.vmT2.Large

122 Access Home Page 200 18.044 4.vmT2.Large

123 Access Home Page 400 68.131 4.vmT2.Large

124 Login to the system 100 3.264 4.vmT2.Large

125 Login to the system 200 40.685 4.vmT2.Large

58

 Steps Users Latency Hardware

126 Login to the system 400 116.144 4.vmT2.Large

127 Edit configurations 100 6.484 4.vmT2.Large

128 Edit configurations 200 56.405 4.vmT2.Large

129 Edit configurations 400 54.841 4.vmT2.Large

130 Save Configurations 100 0.754 4.vmT2.Large

131 Save Configurations 200 11.012 4.vmT2.Large

132 Save Configurations 400 4.674 4.vmT2.Large

133 Perform Advanced Search 100 0.556 4.vmT2.Large

134 Perform Advanced Search 200 4.514 4.vmT2.Large

135 Perform Advanced Search 400 2.397 4.vmT2.Large

136 Select an Entity 100 18.795 4.vmT2.Large

137 Select an Entity 200 50.473 4.vmT2.Large

138 Select an Entity 400 65.884 4.vmT2.Large

139 Create an Entity 100 6.713 4.vmT2.Large

140 Create an Entity 200 12.686 4.vmT2.Large

141 Create an Entity 400 4.546 4.vmT2.Large

142 Generate an Entity 100 366.958 4.vmT2.Large

143 Generate an Entity 200 258.551 4.vmT2.Large

144 Generate an Entity 400 181.292 4.vmT2.Large

145 Navigate among the Pages 100 36.194 4.vmT2.Large

146 Navigate among the Pages 200 9.228 4.vmT2.Large

147 Navigate among the Pages 400 14.085 4.vmT2.Large

148 Logout 100 48.518 4.vmT2.Large

149 Logout 200 36.32 4.vmT2.Large

150 Logout 400 40.717 4.vmT2.Large

151 Access Home Page 75 11.989 5.vmT2.XLarge

152 Access Home Page 100 6.481 5.vmT2.XLarge

153 Access Home Page 200 21.66 5.vmT2.XLarge

154 Access Home Page 400 48.636 5.vmT2.XLarge

155 Login to the system 75 20.361 5.vmT2.XLarge

156 Login to the system 100 8.427 5.vmT2.XLarge

157 Login to the system 200 50.496 5.vmT2.XLarge

158 Login to the system 400 13.335 5.vmT2.XLarge

159 Edit configurations 75 11.568 5.vmT2.XLarge

160 Edit configurations 100 12.688 5.vmT2.XLarge

161 Edit configurations 200 47.5 5.vmT2.XLarge

162 Edit configurations 400 17.511 5.vmT2.XLarge

163 Save Configurations 75 0.595 5.vmT2.XLarge

164 Save Configurations 100 4.154 5.vmT2.XLarge

165 Save Configurations 200 10.604 5.vmT2.XLarge

166 Save Configurations 400 2.659 5.vmT2.XLarge

167 Perform Advanced Search 75 0.253 5.vmT2.XLarge

168 Perform Advanced Search 100 1.92 5.vmT2.XLarge

59

 Steps Users Latency Hardware

169 Perform Advanced Search 200 2.857 5.vmT2.XLarge

170 Perform Advanced Search 400 1.318 5.vmT2.XLarge

171 Select an Entity 75 3.696 5.vmT2.XLarge

172 Select an Entity 100 45.471 5.vmT2.XLarge

173 Select an Entity 200 47.489 5.vmT2.XLarge

174 Select an Entity 400 20.378 5.vmT2.XLarge

175 Create an Entity 75 1.657 5.vmT2.XLarge

176 Create an Entity 100 5.055 5.vmT2.XLarge

177 Create an Entity 200 15.043 5.vmT2.XLarge

178 Create an Entity 400 4.784 5.vmT2.XLarge

179 Generate an Entity 75 347.439 5.vmT2.XLarge

180 Generate an Entity 100 115.358 5.vmT2.XLarge

181 Generate an Entity 200 128.684 5.vmT2.XLarge

182 Generate an Entity 400 413.918 5.vmT2.XLarge

183 Navigate among the Pages 75 9.731 5.vmT2.XLarge

184 Navigate among the Pages 100 19.73 5.vmT2.XLarge

185 Navigate among the Pages 200 10.832 5.vmT2.XLarge

186 Navigate among the Pages 400 36.276 5.vmT2.XLarge

187 Logout 75 26.787 5.vmT2.XLarge

188 Logout 100 61.339 5.vmT2.XLarge

189 Logout 200 46.61 5.vmT2.XLarge

190 Logout 400 86.05 5.vmT2.XLarge

60

Appendix D: Arranged data – Load Test Results from Rubis

 Steps Users Latency Hardware

1 Register User 400 16 1.vmT2.Micro

2 Access Home Page 400 16 1.vmT2.Micro

3 Query About me 200 4 1.vmT2.Micro

4 Register User 100 5 1.vmT2.Micro

5 View Item details 100 19 1.vmT2.Micro

6 Sell Item 400 13 1.vmT2.Micro

7 Bidding 200 28 1.vmT2.Micro

8 Register User 400 19 2.vmT2.Small

9 Access Home Page 200 5 2.vmT2.Small

10 Query About me 400 5 2.vmT2.Small

11 Register User 100 5 2.vmT2.Small

12 View Item details 50 21 2.vmT2.Small

13 Register User 400 10 3.vmT2.Medium

14 Query About me 50 10 3.vmT2.Medium

15 Register User 200 11 3.vmT2.Medium

16 View Item details 200 28 3.vmT2.Medium

17 Sell Item 50 26 3.vmT2.Medium

18 Bidding 100 40 3.vmT2.Medium

19 Register User 400 8 4.vmT2.Large

20 Access Home Page 400 1 4.vmT2.Large

21 Query About me 200 5 4.vmT2.Large

22 Register User 50 14 4.vmT2.Large

23 View Item details 100 22 4.vmT2.Large

24 Sell Item 200 14 4.vmT2.Large

25 Bidding 400 31 4.vmT2.Large

26 Register User 400 13 5.vmT2.XLarge

27 Access Home Page 50 1 5.vmT2.XLarge

28 Register User 100 14 5.vmT2.XLarge

29 View Item details 400 35 5.vmT2.XLarge

30 Sell Item 200 25 5.vmT2.XLarge

31 Bidding 50 74 5.vmT2.XLarge

61

Appendix E: Processed data – Load Test Results from Sample

Application

 Steps Users Latency Hardware

1 0 5 12.032 1.vmT2.Micro

2 0 20 0.887 1.vmT2.Micro

3 0 50 1.4037 1.vmT2.Micro

4 0 75 3.083 1.vmT2.Micro

5 8 5 24.896 1.vmT2.Micro

6 8 20 1.284 1.vmT2.Micro

7 8 50 26.199 1.vmT2.Micro

8 8 75 3.321 1.vmT2.Micro

9 4 5 5.075 1.vmT2.Micro

10 4 20 3.404 1.vmT2.Micro

11 4 50 10.677 1.vmT2.Micro

12 4 75 7.58 1.vmT2.Micro

13 18 5 0.3 1.vmT2.Micro

14 18 20 1.914 1.vmT2.Micro

15 18 50 0.569 1.vmT2.Micro

16 18 75 0.997 1.vmT2.Micro

17 8 5 0.462 1.vmT2.Micro

18 8 20 0.582 1.vmT2.Micro

19 8 50 0.221 1.vmT2.Micro

20 8 75 0.327 1.vmT2.Micro

21 4 5 1.45 1.vmT2.Micro

22 4 20 7.469 1.vmT2.Micro

23 4 50 2.579 1.vmT2.Micro

24 4 75 4.851 1.vmT2.Micro

25 8 5 0.088 1.vmT2.Micro

26 8 20 2.764 1.vmT2.Micro

27 8 50 0.894 1.vmT2.Micro

28 8 75 8.448 1.vmT2.Micro

29 18 5 44.366 1.vmT2.Micro

30 18 20 77.345 1.vmT2.Micro

31 18 50 131.843 1.vmT2.Micro

32 18 75 286.385 1.vmT2.Micro

33 0 5 0.288 1.vmT2.Micro

34 0 20 2.565 1.vmT2.Micro

35 0 50 8.231 1.vmT2.Micro

36 0 75 26.686 1.vmT2.Micro

37 6 5 0.461 1.vmT2.Micro

38 6 20 6.218 1.vmT2.Micro

39 6 50 6.358 1.vmT2.Micro

62

 Steps Users Latency Hardware

40 6 75 41.672 1.vmT2.Micro

41 0 50 1.468 2.vmT2.Small

42 0 75 2.357 2.vmT2.Small

43 0 100 18.198 2.vmT2.Small

44 0 200 10.003 2.vmT2.Small

45 8 50 2.688 2.vmT2.Small

46 8 75 4.202 2.vmT2.Small

47 8 100 27.222 2.vmT2.Small

48 8 200 7.377 2.vmT2.Small

49 4 50 9.982 2.vmT2.Small

50 4 75 13.528 2.vmT2.Small

51 4 100 20.151 2.vmT2.Small

52 4 200 17.417 2.vmT2.Small

53 18 50 10.243 2.vmT2.Small

54 18 75 12.719 2.vmT2.Small

55 18 100 0.84 2.vmT2.Small

56 18 200 1.159 2.vmT2.Small

57 8 50 2.094 2.vmT2.Small

58 8 75 13.737 2.vmT2.Small

59 8 100 0.425 2.vmT2.Small

60 8 200 0.644 2.vmT2.Small

61 4 50 30.84 2.vmT2.Small

62 4 75 39.236 2.vmT2.Small

63 4 100 4.639 2.vmT2.Small

64 4 200 13.442 2.vmT2.Small

65 8 50 5.329 2.vmT2.Small

66 8 75 12.607 2.vmT2.Small

67 8 100 2.088 2.vmT2.Small

68 8 200 10.537 2.vmT2.Small

69 18 50 141.877 2.vmT2.Small

70 18 75 244.871 2.vmT2.Small

71 18 100 326.429 2.vmT2.Small

72 18 200 443.219 2.vmT2.Small

73 0 50 8.104 2.vmT2.Small

74 0 75 3.838 2.vmT2.Small

75 0 100 40.912 2.vmT2.Small

76 0 200 50.946 2.vmT2.Small

77 6 50 28.276 2.vmT2.Small

78 6 75 20.772 2.vmT2.Small

79 6 100 45.506 2.vmT2.Small

80 6 200 82.27 2.vmT2.Small

81 0 75 13.59 3.vmT2.Medium

82 0 100 50.754 3.vmT2.Medium

63

 Steps Users Latency Hardware

83 0 200 40.251 3.vmT2.Medium

84 0 400 41.027 3.vmT2.Medium

85 8 75 27.781 3.vmT2.Medium

86 8 100 12.34 3.vmT2.Medium

87 8 200 57.24 3.vmT2.Medium

88 8 400 46.093 3.vmT2.Medium

89 4 75 23.484 3.vmT2.Medium

90 4 100 8.802 3.vmT2.Medium

91 4 200 39.302 3.vmT2.Medium

92 4 400 41.962 3.vmT2.Medium

93 18 75 0.768 3.vmT2.Medium

94 18 100 1.864 3.vmT2.Medium

95 18 200 11.518 3.vmT2.Medium

96 18 400 6.378 3.vmT2.Medium

97 8 75 0.301 3.vmT2.Medium

98 8 100 1.171 3.vmT2.Medium

99 8 200 5.033 3.vmT2.Medium

100 8 400 3.273 3.vmT2.Medium

101 4 75 3.961 3.vmT2.Medium

102 4 100 10.826 3.vmT2.Medium

103 4 200 46.888 3.vmT2.Medium

104 4 400 43.123 3.vmT2.Medium

105 8 75 1.79 3.vmT2.Medium

106 8 100 1.914 3.vmT2.Medium

107 8 200 21.173 3.vmT2.Medium

108 8 400 55.264 3.vmT2.Medium

109 18 75 327.593 3.vmT2.Medium

110 18 100 114.853 3.vmT2.Medium

111 18 200 193.354 3.vmT2.Medium

112 18 400 552.577 3.vmT2.Medium

113 0 75 8.622 3.vmT2.Medium

114 0 100 0.024 3.vmT2.Medium

115 0 200 16.617 3.vmT2.Medium

116 0 400 25.01 3.vmT2.Medium

117 6 75 19.554 3.vmT2.Medium

118 6 100 0.251 3.vmT2.Medium

119 6 200 47.682 3.vmT2.Medium

120 6 400 34.464 3.vmT2.Medium

121 0 100 3.489 4.vmT2.Large

122 0 200 18.044 4.vmT2.Large

123 0 400 68.131 4.vmT2.Large

124 8 100 3.264 4.vmT2.Large

125 8 200 40.685 4.vmT2.Large

64

 Steps Users Latency Hardware

126 8 400 116.144 4.vmT2.Large

127 4 100 6.484 4.vmT2.Large

128 4 200 56.405 4.vmT2.Large

129 4 400 54.841 4.vmT2.Large

130 18 100 0.754 4.vmT2.Large

131 18 200 11.012 4.vmT2.Large

132 18 400 4.674 4.vmT2.Large

133 8 100 0.556 4.vmT2.Large

134 8 200 4.514 4.vmT2.Large

135 8 400 2.397 4.vmT2.Large

136 4 100 18.795 4.vmT2.Large

137 4 200 50.473 4.vmT2.Large

138 4 400 65.884 4.vmT2.Large

139 8 100 6.713 4.vmT2.Large

140 8 200 12.686 4.vmT2.Large

141 8 400 4.546 4.vmT2.Large

142 18 100 366.958 4.vmT2.Large

143 18 200 258.551 4.vmT2.Large

144 18 400 181.292 4.vmT2.Large

145 0 100 36.194 4.vmT2.Large

146 0 200 9.228 4.vmT2.Large

147 0 400 14.085 4.vmT2.Large

148 6 100 48.518 4.vmT2.Large

149 6 200 36.32 4.vmT2.Large

150 6 400 40.717 4.vmT2.Large

151 0 75 11.989 5.vmT2.XLarge

152 0 100 6.481 5.vmT2.XLarge

153 0 200 21.66 5.vmT2.XLarge

154 0 400 48.636 5.vmT2.XLarge

155 8 75 20.361 5.vmT2.XLarge

156 8 100 8.427 5.vmT2.XLarge

157 8 200 50.496 5.vmT2.XLarge

158 8 400 13.335 5.vmT2.XLarge

159 4 75 11.568 5.vmT2.XLarge

160 4 100 12.688 5.vmT2.XLarge

161 4 200 47.5 5.vmT2.XLarge

162 4 400 17.511 5.vmT2.XLarge

163 18 75 0.595 5.vmT2.XLarge

164 18 100 4.154 5.vmT2.XLarge

165 18 200 10.604 5.vmT2.XLarge

166 18 400 2.659 5.vmT2.XLarge

167 8 75 0.253 5.vmT2.XLarge

168 8 100 1.92 5.vmT2.XLarge

65

 Steps Users Latency Hardware

169 8 200 2.857 5.vmT2.XLarge

170 8 400 1.318 5.vmT2.XLarge

171 4 75 3.696 5.vmT2.XLarge

172 4 100 45.471 5.vmT2.XLarge

173 4 200 47.489 5.vmT2.XLarge

174 4 400 20.378 5.vmT2.XLarge

175 8 75 1.657 5.vmT2.XLarge

176 8 100 5.055 5.vmT2.XLarge

177 8 200 15.043 5.vmT2.XLarge

178 8 400 4.784 5.vmT2.XLarge

179 18 75 347.439 5.vmT2.XLarge

180 18 100 115.358 5.vmT2.XLarge

181 18 200 128.684 5.vmT2.XLarge

182 18 400 413.918 5.vmT2.XLarge

183 0 75 9.731 5.vmT2.XLarge

184 0 100 19.73 5.vmT2.XLarge

185 0 200 10.832 5.vmT2.XLarge

186 0 400 36.276 5.vmT2.XLarge

187 6 75 26.787 5.vmT2.XLarge

188 6 100 61.339 5.vmT2.XLarge

189 6 200 46.61 5.vmT2.XLarge

190 6 400 86.05 5.vmT2.XLarge

66

Appendix F: Processed data – Load Test Results from Sample

Application

 Steps Users Latency Hardware

1 2 400 16 1.vmT2.Micro

2 0 400 16 1.vmT2.Micro

3 1 200 4 1.vmT2.Micro

4 2 100 5 1.vmT2.Micro

5 4 100 19 1.vmT2.Micro

6 8 400 13 1.vmT2.Micro

7 18 200 28 1.vmT2.Micro

8 2 400 19 2.vmT2.Small

9 0 200 5 2.vmT2.Small

10 1 400 5 2.vmT2.Small

11 2 100 5 2.vmT2.Small

12 4 50 21 2.vmT2.Small

13 2 400 10 3.vmT2.Medium

14 1 50 10 3.vmT2.Medium

15 2 200 11 3.vmT2.Medium

16 4 200 28 3.vmT2.Medium

17 8 50 26 3.vmT2.Medium

18 18 100 40 3.vmT2.Medium

19 2 400 8 4.vmT2.Large

20 0 400 1 4.vmT2.Large

21 1 200 5 4.vmT2.Large

22 2 50 14 4.vmT2.Large

23 4 100 22 4.vmT2.Large

24 8 200 14 4.vmT2.Large

25 18 400 31 4.vmT2.Large

26 2 400 13 5.vmT2.XLarge

27 0 50 1 5.vmT2.XLarge

28 2 100 14 5.vmT2.XLarge

29 4 400 35 5.vmT2.XLarge

30 8 200 25 5.vmT2.XLarge

31 18 50 74 5.vmT2.XLarge

