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ABSTRACT 

 

 

Given a set of workloads and a performance target, there is a greater difficulty in predicting 

the exact resource requirement prior to the execution of tasks. While over-provisioning of 

resources is widely used, it causes a waste due to unused resources. Under provisioning is 

risky with the possibility of poor performance, user frustration, and SLA violations. While 

several models are proposed to determine the load, a system could handle for the given set of 

resources and workloads, determining the required resources to satisfy the expected workload 

and performance is a long-standing problem. The “Pay as You Go” model in Cloud computing 

addresses this issue from a different angle. Even then, users do not have a clear idea about the 

upper bound of their resource requirement, which is essential for financial planning. Moreover, 

such knowledge is essential in private clouds as the pool of hardware resources needs to be 

determined a priority based on resource requirement of each application. Such knowledge is 

also essential in self-hosting. 

 

We propose a model to predict the resource requirement given a workload mix and a 

performance target. We especially focus on 3-tier web applications hosted on cloud 

environments. First, a selected 3-tier web application is executed with different mixes of 

workloads on virtual machines of different capacities. Then the resulting latency is measured. 

This dataset is then used to build a model using machine learning to predict the resource 

requirement given a different workload mix and a performance target. The same model is also 

used to predict resource requirements of other 3-tier web applications. We tested several 

machine-learning models for their ability to predict the capacity requirement, and random 

forest gave the highest accuracy. The results showed an accuracy of 97.1% for the same 

application and 77% for the other application we used as the sample. These results show that 

the capacity can be reasonably estimated based on the proposed model. 
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Chapter 1   

INTRODUCTION 
 

Every system or an application needs sufficient resources for the proper execution. 

Most commonly used approach towards the capacity planning was adding required 

resources as and when there was a need or a demand. Adding an additional processor, 

memory, or storage, splitting the processing into multiple processing units, or tuning 

up applications to handle an additional load were the common approaches [1]. 

 

There exist several models and approaches to determine the performance when the 

workload and capacity are given. Yet, determining the capacity of the system when 

the performance and workload are given is a long-standing problem. It is extremely 

difficult to calculate the resource need for a given workload and performance target 

due to many complexities. Applications are of different nature catering to different 

needs of the users. The pieces of these applications must be placed in a single container 

or multiple containers. Applications are required to have the availability need, which 

adds more pressure to the Dev Ops teams as a demand to the applications will get 

varied. Applications are required to maintain Service Level Agreements (SLAs) to 

make sure users will not get dissatisfied while using the applications. Determining the 

exact need of the resources required to execute applications is the long-standing 

problem.  

 

Researchers have suggested many alternatives to overcome this issue. The solution 

provided by Cloud vendors is not an exact solution to the original problem, but a 

different approach. The “Pay as you go” is a solution to provide resources when 

required rather than the upfront focusing on the resources required. Most vendors do 

not have the luxury of keeping resource pools and hence providing the resources 

whenever requested. Therefore, it is imperative to be able to determine/estimate the 

required resources. Finding an approach to determine the required capacity in early 

phases of application development enables better financial planning, reduce project 

risks, save developer time, and enables developers to focus more on tuning the 

application to optimize more on the capacity. 
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1.1 Problem Statement 

The proposed research plans to address this problem where required resources/capacity 

could be planned based on the expected workload and performance needs. Our focus 

is mainly on 3-tier web applications, as they are very common and would have a wider 

impact if the problem is addressed. However, making such estimates is nontrivial given 

that there are vastly different web-applications with different performance targets, 

workloads, resource requirements (computational, storage, and bandwidth), and built 

using a variety of platforms, tools, and libraries.  

 

Figure 1.1(a) shows the typical model for performance estimation of a system for 

known capacity and workload. For example, in [2] researchers came up with a 

technique to forecast the performance of co-hosted applications via measuring the 

application’s response to different levels of pressure on the shared memory subsystem 

and measuring the pressure on the memory subsystem [2].  

 

 

    (a)            (b)                       

Figure 1.1 Relationship among the workload, capacity and performance 

 

Figure 1.1(b) shows the estimation of the capacity of a system based on the known 

performance target and known workload. This is required in several cases. For 

example, identifying the resources need in Public Cloud is still an important aspect to 

have an initial idea of the needs of the application and to perform proper budgeting, 

even though Pay as you go model does not affect the performance. Private Clouds and 

hosted applications too need to know the capacity needs and the resource requirements 

for proper planning to make sure required resources will be available when there is a 

need. Therefore, the problem this research plan to address can be formulated as 

follows: 

How to estimate capacity requirement of a three-tier web application given the 

workload and performance targets? 
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1.2 Objectives 

This research addresses the above problem based on the following set of objectives: 

• To understand the behavioral pattern of 3-tier web applications under different 

load and resource capacities. Raw data to be classified under varying 

workloads and performance. The latency will be considered as the 

performance, while the load to the Application server of the 3-tier web 

application will be considered as the workload. 

• To develop a model to capture the relationship between workload, 

performance, and capacity, System’s behavior is to be modelled using Machine 

Learning. The initial model needs to be incrementally modified to reach to an 

accurate model, which will provide results closer to the actual results. 

• To validate and demonstrate the utility of the proposed model using appropriate 

simulation and experimental techniques.  

 

1.3 Outline 

The rest of the thesis is structured as follows. Chapter 2 focuses on performance and 

workload in general, capacity planning and meeting SLAs for performance and then 

to a detailed discussion on traditional process-based approaches to the model based 

and rule based models. Chapter 3 presents the research methodology for achieving the 

objective of capacity planning with the focus on workload and performance. Chapter 

4 presents the evaluation of the proposed approach using a load test results of a 3-tier 

web application. We discuss the process of selecting training and test data to obtain a 

model and then the verification of the model against a set of test data from a different 

application. Chapter 5 summarizes the findings, the limitations associated with the 

proposed technique, and the suggestions for the future work. 
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Chapter 2  

LITERATURE REVIEW 

 

 
This chapter focuses on the ideas on workload, performance and various parameters 

to measure workload and performance. Capacity planning, its impact to the business 

and consequences of not meeting QoS will be discussed later. The traditional process-

based approach towards the capacity planning is discussed in Section 2.3.1. Model-

based (Section 2.3.3) and rule-based approaches (Section 2.3.4), two major branches 

of capacity planning are discussed. Latest ideas on focusing the capacity during the 

application design rather than during the process of deployment is another key area 

discussed under capacity calculation. In Section 2.4 we discuss the policies associated 

with allocating VMs. The ways in which capacity is planned against the performance 

using log-based analysis is covered in Section 2.5.1. How benefits could be obtained 

via adaptive provisioning is discussed in Section 2.5.2. 

 

 

2.1 Workload and Workload Measurements 

The workload is the amount of work an application, host, or a Virtual Machine (VM) 

has to do. Workload can also be classified as quantitative (the amount of work to be 

done) or qualitatively (the difficulty of the work). The parameters listed in Table 2.1 

should be evaluated to measure the load against the system. When the workload 

measurements parameters are concerned, processing oriented transaction represents 

the load given to the processor for processing, Input and output oriented transactions 

represent the load associated with handling input and output during the processing to 

capture and send data. The size of the disk and the space available in the disk. The 

requirement associated with responding back to user, backing up, printing and network 

connections are needed to be considered. The number of concurrent users for the 

application and their think time have also played a major role as think time can vary 

from user to user. Understanding of the time duration in which shows an intensity level 

for the workload, what makes those intensity levels, monitoring the systems to detect 

unusual patterns and the judgement of whether system has exposed to security 

vulnerabilities also known as Denial of Service (DOS) attack should also be 

considered. 3-tier web application architecture, which consists of presentation, 
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application, and data tiers have different workloads, such as number of page views per 

second, HTTP requests made per second, and the number of bytes transferred per 

second.   

Table 2.1 Workload measurements parameters. 

Parameter 

Processing Oriented Transactions 

Input/output Oriented Transactions  

Disk space Requirement 

Response Time 

Backup Requirement 

Print Requirement 

Network Requirement 

Concurrent Users 

Think Time 

 

 

2.2 Performance and Performance Measurements 

Computer performance is characterized by the amount of useful work accomplished by a 

computer system or computer network compared to the time and resources used. Performance 

is measured based on both the internal and external factors [3]. Internal factors that help in 

diagnosis of performance failures are bottleneck detection (utilization of processors, storage 

devices, and networks) and number of requests waiting in the various software and hardware 

queues. Table 2.2 lists a set of factors to identify the performance. Measurement of user-

perceived satisfaction and statistics are considered as the external performance metrics. Table 

2.3 lists metrics affecting the external performance. 

 

2.3 Capacity Planning 

Capacity planning is a process to predict the types, quantities, and timing of critical 

resource capacities that are needed within an infrastructure to meet accurately 

forecasted workloads [1]. The main ingredients leading towards the capacity planning 

are: 

1. Type of resources required (processing power, storage, memory, power 

associated with accessing input and out, etc.),  
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2. Quantities available of the resources in need,  

3. The availability of the resources at the right time and  

4. The upfront thinking and the decisions taken on the capacity based on the 

workload predictions.  

 

The success of the capacity planning is the allocation of the right resources at the right 

quantities at the right time, avoiding both over allocation and under allocation. Upfront 

planning and allocation of resources have considered as an art for a long time. The 

experience and expertise of the experts on the computer systems, extensive knowledge 

of the domain, empathically understanding of the user personas, and the behavior of 

the users was considered as the dominant factors of the capacity predictions [4].  

 

Table 2.2 Different performance metrics. 

Metric Description 

Throughput Total number of messages processed in each time interval. 

Transactions per second 

(TPS) 

The number of atomic Transactions processed in a unit time. This is 

an average value and it does not necessarily to be the distributed 

throughout the processing. 

Work done per transaction Any request to perform a transaction will trigger few more 

dependent sub tasks. Requesting service calls with external systems, 

DB accesses, complex processing associated with schema, etc. 

Think time The delays from users when responding to the questions generated 

by the applications. Throughput does have a direct relation to the 

think time, based on the transaction whether it is machine to machine 

or machine to human 

Concurrent users Any system has a user base using the system. A subset of all the 

users is considered as active users, who is connected to the system. 

The Concurrent users use the resources of the system at a given 

time. The number of concurrent users a system supports is the key 

to any system. 

Message size The larger the message size will lower the performance 

Latency Additional delays associated when a transaction triggers external 

system calls 

Non-functional 

Requirements 

Support towards additional non-functional parameters makes the 

system complex such as Impact with secure delivery, Impact with 

availability and up time 
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Table 2.3 External performance metrics. 

Metric 

User’s Geographical Location 

Bandwidth of the Internet connection 

Time of the Day 

Performance Characteristics of the User’s local machine 

Probability that requests are rejected 

 

Organizations will lose valuable income, and its public image could be put at a great 

risk, in situations where users of the systems experience a great difficulty in using 

those systems. The Quality of Service (QoS) parameters are often set at the deployment 

stage, rather than at designing phases, which makes System designers and analysts not 

to worry too much about taking QoS requirements into account when designing and/or 

analyzing computer systems. Lack of awareness about the issues that affect 

performance and the lack of a framework to reason about performance are other key 

reasons for the less focus on QoS parameters, which often neglects sizing a database 

service, analysis of a datacenter cost and availability, sizing of an e-business based on 

SOA, and improper allocation of resources to a web service. The QoS attributes of an 

IT system that are very much important to set the expectations of its users. Not all the 

systems can be measured against the same set of QoS attributes, even though response 

time, throughput, availability, reliability, security, scalability, and extensibility are 

most common.  

 

The discussion starts with a closer look at a process based capacity planning, in which 

a manual process is used with the delegation of the process to a team in which team 

will be responsible for monitoring and collecting data and then to make the necessary 

forecasting. The focus towards the on the fly capacity planning will be the analysis on 

the relationship between the concurrent demand and the availability of the resources. 

Model based capacity planning is mostly towards the modelling the given system 

based on analytic and simulation models, which heavily requires the knowledge about 

the domain.  Rule based capacity-planning focuses on the usage of Machine Language 

and the Fuzzy logic in determining the capacity.  
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2.3.1 Process-Based Capacity Planning 

Most of the IT infrastructures do not undergo proper capacity planning. Application 

development does not have a much of a focus on the environment in which the system 

should be deployed and the load on the system, until users complaining against it. A 

reactive approach for this is a manual process involves with a set of activities by 

delegating the process of capacity planning with a dedicated team and formulate a 

process as shown below, which has multiple steps, focusing more towards the very 

close monitoring and measuring of the performance of the system [4]: 

1. Nominating the process owner for the capacity planning. 

2. Identifying the key resources required to be measured. 

3. Measuring the utilizations or performance of the resources. 

4. Comparing the utilizations to maximum capacities. 

5. Collecting the workload forecasts from developers and users. 

6. Transforming the workload forecasts into IT resource requirements. 

7. Mapping the requirements onto the existing utilizations. 

8. Predicting the time when the environment will be out of capacity. 

9. Updating the forecasts and utilizations. 

 

Nominating a process owner and empowering that role to coordinate with all the other 

stakeholders is very critical. End users of the system are unable to predict the future 

needs and even if the end users are capable of predicting, lack of experience, skills and 

tool prevent doing so. Reluctance from the capacity planners to use the proper tools, 

rapid changes in the overall IT direction of the companies, messing up with the 

planning with managing, and always focusing on important but not urgent activities 

like budget planning, without the focus on the important-urgent activity of technical 

planning. Process owner needs to bridge a relation with stakeholders to get everything 

required to make a better judgment on capacity planning. 

  

Preparing the resource matrix as in Table 2.4 with the combination of the resources 

categorized into types, configuration details quantity the base requirement, utilization 

of the resources at the maximum capacity and the availability of the excess capacity to 

get a good understanding of the resources is required [4]. The forecasted workload 

need will be taken from the developers and the end users, which needs to be 

transformed to the IT resource requirements. Resource requirement is mapped to 
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utilizations, which helps to predict out of capacity and to forecast the utilization need 

for the future [1]. 

Table 2.4 A sample resources matrix. 

Resource 

Type 

Configurations Quantity Base 

Requirement 

Utilization to 

Maximum 

Capacity 

Excess 

Capacity 

Processor      

Memory      

Disk space      

Network 

bandwidth 

     

 

Performance and throughput expectations from the different systems are calculated 

based on different measurements and metrics.  As per the Table 2.5, which shows 

different measurements considered in different systems and components, it is obvious 

that determining performance involve careful consideration of multiple metrics. 

Table 2.5 QoS attributes of different systems. 

System Throughput Metric 

OLTP System Transactions per Second (tps) 

Web Site HTTP requests/sec 

Page Views per Second 

Bytes/sec 

E-commerce Site Web Interactions Per Second (WIPS)  

Sessions per Second 

Searches per Second 

Router Packets per Second (PPS) 

MB transferred per Second 

CPU Millions of Instructions per Second (MIPS) 

Floating Point Operations per Second (FLOPS) 

Disk I/Os per Second 

KB transferred per Second 

E-mail Server Messages Sent Per Second 
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Performance is the major consideration in capacity planning, which spans across many 

concerns, factors, and methodologies. Determining the performance involves with 

careful consideration of many concerns, related to latency, throughput, capacity and 

modes having a very high dependability with the expectations from the system in the 

given scenario. The demand for the application and the system in which the application 

has been deployed are two major factors affecting the performance. Even though, the 

resources allocated are lower, the application would meet the expected performance 

when the demand for the application is also lower. The analysis methods have been 

very widely used to find the performance of the systems. Figure 2.1 shows these 

concerns, factors, and methods associated with determining the performance [5].  

 

 

Figure 2.1 Concerns, factors, and methods of performance 
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2.3.2 On the Fly Capacity Planning 

Capacity planning is the art in which based on the relationship between concurrent 

demand and resource availability. Performance issues cannot be easily solved in an 

environment when deployment topology of applications is complex. When the code 

base is considered as a black box and performance is getting narrow down to its 

simplest form, adding additional resources may solve performance issues, yet it is not 

the best approach. An approach that closely monitors the code execution to take 

decisions on the call stack sampling (contains execution state, information about 

monitors in running applications) and the resource utilization feeds from the operating 

system of an already running system gives a better understanding about the system. A 

simulation of tuning actions (change to the code or the environment in which the 

application runs) based on the changes in the resource demand spanning over resource 

and code changes gives a reasonable figure for the on-the-fly capacity planning. 

 

Latent bottleneck causing from shifting the resource demand, zero-sum games where 

additional demand, causing the existing processes to run slowly and head fakes in 

which the inability to determine which process causing the performance issues are few 

daemons associated with performance tuning.  

 

Analysis of the stats collected from different resources and the way systems has 

performed when the resource demand is getting shifted is the core process associated 

with on-the-fly capacity planning, with the differentiation of focusing on tuning 

actions rather than the arrival of work [1].  

 

The effectiveness of modelling tuning plans (an unsorted set of tuning actions with the 

implication that their impact on performance be considered as a unit) is higher when 

the concurrent demand and concurrent capacity is observed over the arrival rate and 

the service time of the resources. There is a continuous set of work requests to the 

server, which makes the demand for the resources required as a function of the rate at 

which requests are made and the time the request happened. As per the Little’s Law, 

the demand is a product of arrival rate and the service time, which is a very important 

point in determining the demand [1].  
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There is a possibility that concurrent demand to exceed the concurrent capacity of a 

resource. This will create a backlog to be served which multiplexed resources or gating 

(e.g., locks) in such a way to tolerate concurrent demands. 

 

2.3.3 Model-Based Capacity Planning 

System modelling is carried out based on measured control inputs and control outputs. 

Model-based approaches extensively require the domain knowledge [4]. Even though, 

it is difficult to model a complex system. Model-based approaches provide more 

internal details, which makes it easier to understand the functioning of systems. Model-

based approaches have following advantages: 

• Analytic models are less expensive to construct and tend to be computationally 

more efficient to run than simulation models. 

• Because of their higher level of abstraction, obtaining the values of the input 

parameters in analytic models is simpler than in simulation models. 

• Simulation models can be made as detailed as needed and can be more accurate 

than analytic models. 

• There are some system behaviors that analytic models cannot (or very poorly) 

capture, thus necessitating the need for simulation. 

 

Linear regression is also used to model the system as a black box under the control 

theory based approaches. Control theory and queueing model are the major subclasses 

of this family. Careful monitoring on demand and the responses from the application 

to the demand variations plays a key role in finding the requirement for the resources. 

Controlling the admission involves careful study of queueing theory and the domain 

in which the applications are running. The component VM scaling has the 

responsibility of dynamically allocating the resources. Table 2.6 discusses components 

of the model and the responsibilities associated with the major components [3]. This 

is a good measure to show the major steps to come up with capacity planning based 

on a model, which starts from the identification of the relation between the control 

input and output to the controlling and scaling based on the computing resources. 

 

Model-based capacity planning has several more issues, which makes them a solution 

in an academic world rather than providing benefits to an actual Business scenario. 
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The open issues from model-based approached on capability planning could be 

categorized as follows in Table 2.7. 

Table 2.6 Components used for resource allocation. 

Monitor Admission Control VM Scaling 

Identifies the relation 

between control 

input and control 

output 

Applies both queueing theory and 

linear regression.  

 

Queueing theory requires more of a 

domain knowledge. 

 

Linear regression is having the 

challenge of defining the relationship 

among control variables. 

Allocates resources dynamically 

for computing resources. 

 

Vertical scaling involves 

changing the size of a VM 

instance 

 

Horizontal scaling involves 

adding or removing VM instances 

 

Table 2.7 Open issues in model-based planning. 

Open Issues in Current Model Based 

Approaches 

Open Issues in New Trends for Model Based 

Approaches 

There exists a different type of models and it is 

not very much clear on which model type to be 

used as there does not exist much of details on 

the advantages and limitations on each model. 

Even though most of the new studies have been 

carried out using linear methods, settings of QoS 

targets heavily depends upon the non-linear. 

It is difficult to set an appropriate controls inputs 

to determine the out controls as the relationships 

between controls for input and output varies 

significantly when workload regions get 

changed. 

Even though nonlinear controls need simpler 

implementations, quick response and less cost 

involves, it requires a rigorous mathematical 

analysis, which is a as a big disadvantage. 

Inability to determine the feasibility of control 

inputs since for certain output controls, there 

exists negative values for input controls. 

Resource allocation for distributed web 

applications is not simply due to the complexity of 

systems and the nature of resource sharing in a 

cloud environment. 

It is difficult to ensure the robustness to the 

changing of the workload due to the 

contribution of errors. When the error 

contribution is getting larger, it has a bigger 

impact to the performance. 

The dawn on newer web applications and 

introductions of powerful client side technologies 

has shifted the load in to client browsers from the 

servers.  

 
 

2.3.4 Rule-Based Capacity Planning 

Rule-based approaches help to take decisions where uncertainty plays a major role. 

Machine Learning (ML) and Fuzzy control are the two major categories in rule-based 

capacity allocation [4]. ML needs to go through a vast array of historical data related 

to resource utilization and performance metrics for an efficient resource management. 

The RL offers the ability to enhance the allocation policies without the model 

knowledge by learning. The learning process of RL is such that the learning agent 
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learns to make accurate decisions with the interactions of the external systems, as RL 

learns policies in dynamic environments based on finite MDP. SVM is widely used in 

areas such as pattern recognition, classification, and data mining, yet are not suitable 

for resource management of on-line applications due to the time complexity. ANN is 

used to predict the resource demand for VM scaling. ML algorithms are not a good 

candidate for resource management due to the performance issues, even though they 

do not need much of a domain knowledge [4].  

 

Fuzzy control approaches, on the other hand, are easy to implement and manage, as 

those are governed by a set of predefined rules, which makes themselves a good 

candidate for resource management in multi-tier systems. Falsification, inference 

engine, and defuzzification are the main stages of its decision-making process. Unlike 

ML algorithms, Fuzzy control approaches ensure performance guarantees as well. 

However, it is required to conduct sufficient simulations to design a fuzzy control 

system to achieve optimum performance [4].  

 

The neediest of less domain knowledge and ability to learn from historical data are the 

major advantages of rule-based approaches, which further requires a many number of 

configuration parameters after running many simulations on different scenarios. Lack 

of governing QoS parameters causes another challenge when using the rule-based 

approaches to solve issues in resource allocations. Rule-based approach is the 

appropriate and most suitable way to move forward as it has a more practical valid 

reason. Table 2.8 summarizes the advantages and disadvantages of the rule and model 

based planning.  

 

2.3.5 Capacity Calculation 

Another approach towards the capacity planning focuses on measuring the 

performance values for a set of defined parameters, which are not perceptually based 

and focuses on designating applications to perform better in the given environment. 

Rather than focusing on tuning the application at the deployment stage, a much more 

focus is given during the application design phase. All the possible optimization steps 

are taken into the consideration. Usage of a caching strategy, usage of lower memory 

and processor consumption, effective use of shared resources, proper usage of 
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configuration values, thorough testing and profiling are major aspects to focus before 

the application goes to the production [6]. 

 

Table 2.8 Advantages/disadvantages of rule and model based planning. 

 
Rule Based Model Based 

Advantages Less Domain knowledge Depends heavily on Domain 

knowledge 

Based on Mathematical Based on Mathematical 

Rules are derived from historical data Provides more insights 

Keep QoS guarantees Issues with resource allocations could 

be overcome by using control theory 

Disadvantages Requires lots of simulations and 

training 

Difficult to model a complex system 

using a mathematical model. 

 

Load balancing and routing, clustering, state replication, auto-scaling systems, and 

auto healing systems are some architectural concerns considered which will can scale 

(both scale up and scale out). Disaster recovery, backup and recovery are other aspects, 

which draws the attention to make the application available in any mode such as cold 

standby, warm standby, hot-standby, and active-active. 

 

Usage of monitoring tools and the type of hardware (physical, VM, and Cloud based) 

to be used in the production environment are the other considerations. Additional 

allocation of resources required to support the peak demand has also to be forecasted 

for a period, while downtime is to be agreed. 

 

Once the high-level solution architecture is defined with performance in mind, 

collecting capacity planning data, finding the requirement of the capability planning, 

identifying non-functional requirements, and setting the benchmark for the 

performance makes demands to identify the instance counts are required. These require 

long-running performance test to conclude the architecture for the deployment, so that 

capacity data could be gathered for the capacity calculation. 
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2.4 Policy-Based VM Allocation in IaaS 

A special attention must be taken when the resources are allocated in the Cloud, where 

resources in a pool must be managed. The need to have proper policies in place is very 

vital for allocation of resources and during the process of placing the VMs, once the 

computing need has been identified. Immediate, best effort, advanced reservation and 

deadline sensitive are the most commonly used policies among the Cloud Providers 

[7]. 

  

Cloud providers maintain different types of VMs, providing different QoS and 

charging schemes to support the different needs of the customers. This has given Cloud 

providers the flexibility in managing resources and utilize their resources at an 

optimum level [8]. Table 2.10 lists most commonly used pricing models in Cloud 

Computing. For example, AWS Elastic Compute Cloud (EC2 [9]) provides spot, 

reserved and on demand pricing models for their customers. 

 

Cloud Federation [10] has been yet another booming idea on allocating resources in a 

Cloud environment, which helps to overcome during the high demand for the VMs, by 

outsourcing the requests to other members of the same federation. Usage pattern, types 

of requests and infrastructure costs are considered as the three major factors affecting 

the resource allocation, which helps to focus more on pricing, profit utilization and 

QoS.  Policies as shown in the Table 2.10 are required not only to focus on the profit 

aspects, but also to make sure service is based on the agreed QoS and SLA so that user 

satisfaction has also been met [11]. 

 

Table 2.9 Pricing models in cloud offerings. 

Pricing Model Characteristics 

Reserved There exists a long-term commitment 

On-demand Long-term commitment is not required 

Hourly payment 

Spot Lower charges compared to reserved and on-demand 

Cloud provider can terminate this type and allocate to a higher bid 
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Table 2.10 Policies for VM allocation. 

Policy Policy Description 

Non-Federated Totally In-

House 

Termination of Spot VMS with lower bids are considered 

Federation-Aware 

Outsourcing Oriented 

Request a VM from a member in the Federated group and if not 

available, Spot VM will be terminated 

Federation Aware Profit 

Oriented 

Profit is compared against terminating a VM and outsourcing a VM 

 

The number of requests for the Spot VMs, the impact on the load and the number of 

members in the federation group are some other facts affecting the results when a 

policy has been applied. It is also important to have Business focused policies to 

prevent over-provisioning of IT resources, which optimizes the usage of IT resources. 

So, that, consumption of physical, energy, and human resources will be very low while 

increasing efficiency and minimizing IT budgets.  

 

2.5 Performance and Capacity Planning 

2.5.1 Log-Based Performance Analysis 

Logging is a universal common approach used by the application developers, as an 

easier way to track the execution flow of functionality in computer systems. The data 

that get logged varies from system to system and can externally configure on what is 

being registered. The most common types of log data are the details about the process 

or the routine, timing details, the people or other sub-systems performed those routines 

and much more, including the history of routines. An approach called “Process 

Mining” techniques were used to explore, track and enhance the actual processes using 

the knowledge from the logs [12]. 

 

An approach towards the performance measurement of SOA through log-based 

analysis requires a wide variety of metrics, including the areas of business, IT 

pervasiveness, financial, quality management, management, project, corporate, quality 

and timelines together with technical aspects. When the metrics are accurate and 

realistic, this will provide the facility to effectively diagnose the root causes associated 

with the performance problems. 
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Once the metrics are defined, results should be mapped with the identified 

performance metrics from the measurement tools. For further analysis, the adaptability 

of SOA and enhance the performance, performance metrics must be combined with 

advanced evaluation tools based on the logging capability [12]. Table 2.11 shows the 

metrics categorized into 3 major areas. 

 

Table 2.11 Different modes of metrics. 

Process Metrics Place Metrics Activity Metrics 

Average Throughput time Waiting time Waiting time 

Minimum Throughput time Synchronization time Execution time 

Maximum Throughput time Sojourn time Sojourn time 

 

 

Log files were given to the system for the processing and mining together with the 

mined-model. The plug-ins have the capability to provide the details to the supporting 

key decision areas as per the following: 

• Routing possibilities 

• Average service time for a task 

• Average throughput 

• Minimum throughput 

• Maximum throughput 

• The bottleneck in the model 

• Time spent in between two processes 

 

2.5.2 Adaptive Provisioning 

Cloud Provisioning is the process of deployment and management of applications on 

Cloud infrastructures, such as VM, resource, and application provisioning (ensuring 

an efficient utilization of virtualized IT resources). Creating and allocating VMs as 

resources in Cloud environments for the applications has to overcome the issues 

related with modeling workload and performance, deployment, monitoring and 

virtualization techniques as it has to deal with uncertain behaviors and lack of 

understanding of IT resources and network elements, errors in estimations (arrival 

pattern, I/O behavior, service time distribution, and network usage) and highly 

dynamic nature due to the usage by a larger number of users, as well as due to the 
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variations among different application types (high performance, web hosting, and 

social networking) [13]. 

 

Provisioning techniques having the capability to automatically adopt to the demand by 

facilitating dynamic resource allocation and satisfying SLAs requirement must be the 

bare minimum need. Because Cloud vendors do not expose the details on underline 

hardware, an approach taken from analytical performance and workload (arrival 

pattern, resource demands) information must provide the necessary information about 

the requirement to the provisioned, which is a very complex activity as provisioned 

needs to make sure it calculates the best, optimum and efficient resources which ensure 

reaching the QoS targets. Adaptive provisioning should also focus on automating 

routine management tasks, flexibility of assigning virtualized IT resources when it is 

needed while not over-provisioning and not impacting QoS limits. Several QoS 

metrics to be considered are as follows: 

 

• Monitored average request execution time  

• Application instance queue size  

• Expected arrival rate of requests  

• Maximum number of VMs allowed 

 

Adaptive provisioning needs collaboration of 3 major components. Performance 

should be modelled to predict the load, which will be handled by the load predictor, 

work load should be analyzed for a period by the workload Analyzer and the 

understanding about the applications by the application provisioner. Table 2.12 shows 

the components and a detailed description of their main functionality, which performs 

the adaptive provisioning.  

 

2.6 Supervised Machine Learning 

Supervised Machine Learning is achieved via a set of data and making predictions 

based on that set of data. Features (also called as the observations) are things that might 

have an impact towards the target we want to predict. What we need to predict is called 

as the Label, which the resource needs in our research. Supervised machine learning 

is used to find the correlation between features and the label, based on algorithms. 

Regression algorithms used to predict the value on the continuum over the series of 



 

20 
 

values. The model will be created so that the predictions will be able to make on future 

features. 

Table 2.12 Components of adaptive provisioning. 

Component Functionality 

Application 

provisioner 

Main points of contact in the system that receives accepted requests and 

provisions virtual machines and application instances based on the input from 

workload Analyzer and from load predictor and performance modeller. 

 

VM and application provisioning is performed by the application Provisioner 

component based on the estimated number of application instances calculated 

by the load predictor and performance modeller: if utilization of data center 

resources is low, application Provisioner is directed to destroy some 

application instances. 

Workload 

analyzer 

Generates estimation of future demands for the application. This information 

is passed to the load predictor and performance modeller component. 

Load predictor 

and 

performance 

modeler 

Solves an analytical model based on the observed system performance and 

predicted load to decide the number of VM instances that should be allocated 

to an application 

Responsible for deciding the number of virtualized application instances 

required to meet the QoS targets 

 

Model parameters are obtained via system monitoring and load prediction 

models. 

 

Efficient mapping of requests, while the goal of VM Provisioning is to provide 

applications with sufficient computational power, memory, storage, and I/O 

performance to meet the level of QoS expected by end-users. 

 

Responsible for generating estimation (prediction) 

 

As shown in Figure 2.2, supervised learning, it starts from the Dataset in which we 

need to give it to the Machine Learning. A cleaning of data is the next step in which 

incomplete data will be removed, missing data will be replaced with default values and 

formatting the data to suit the need so that the ML algorithm will be able to process 

the data. A portion of the data (the majority of data) will be selected as the training 

data and used to train the model. The rest of the data could be used to test the accuracy 

of the model as we have the data from the system itself to make sure our predictions 

are accurate by comparing the output from the model with the known dataset we have 

reserved with the labelled dataset. An algorithm is used to train the model, mainly the 

correlation between features and label. Linear regression, Neural network regression, 

boosted decision tree regression are possible algorithms to be considered in regression 

mode [14]. The score model takes the response came from train model into the 



 

21 
 

consideration and label dataset is used to determine the values of the train model to 

compare the values each other. 

 

Figure 2.2 Supervised machine learning. 

 

2.7 Summary 

In this chapter, we discussed the related work on capacity planning. The process-based 

approach has little to offer as far as the accuracy of the capacity planning is considered, 

since it only focuses on a set of steps to allocate resources without any measurements. 

On-the-fly capacity planning focuses on dynamically allocating resources based on the 

demand, in which this is not a good approach. Model-based capacity planning needs 

extensive knowledge about the domain and it is mainly based on simulation models. 

The capacity calculation is the calculation of the capacity for a set of defined 

parameters and emphasis more about the capacity needs during the application design 

phase. Policy-based VM allocation is the most preferred approach in Amazon EC2 to 

provision VMs based on the availability and the need, in which the exact logic and the 

allocation on VMs is only known to the Cloud vendors. Log-based performance 

analysis helps to figure identify areas in which application showed the bottlenecks as 

far as the performance is considered. Adaptive provision is another approach used by 

cloud vendors, yet again fully visible only to the cloud vendors. An approach based on 

the supervised Machine Learning will be chosen as the preferred approach, as there 

exists a correlation between workload and the capacity towards the system 

performance. 
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Chapter 3  

METHODOLOGY 
 

 

This chapter presents the approach and the methodology for building a model to 

determine the capacity requirement when the workload and the required performance 

SLAs are given. Section 3.1 discusses how we come up with a model that determines 

the capacity for the given workload and performance need. We discuss the main steps 

in the process including the data collection from sample application in Section 3.2, 

preprocessing data to build the model under Section 3.3, and details of generating the 

model under Section 3.4. Algorithms we used for the machine-learning approach, 

selecting the score model, and evaluating the model against another application under 

Section 3.5. 

  

3.1 Methodology 

Machine learning lets us find meaningful, predictive patterns in existing data, then 

create and use a model that recognizes those patterns in new data [14]. A proper model 

must be obtained as per Figure 3.1, which shows the steps in reaching a suitable model 

to capture the relationship between workload, performance, and capacity. Machine 

learning suits better, as it is based on creating experiments hoping to improve a 

predictor, whereas traditional process focuses on incrementally building solutions by 

completing discrete features. Either supervised learning, in which the value to predict 

will be in the training data itself or unsupervised learning, in which the value to predict 

will not be in the training data may be used depending on the availability of data and 

accuracy of the model. Multiple iterations may be required to reach towards an 

accurate model. 

 

Let w will be the workload mix, p will be performance target, and c be the capacity 

needed to handle workload w with performance p. w, p, and c are vectors as each 

capture multiple attributes. Given a set of observations of (wi, pi, ci) our objective is to 

build a model i f (wi, pi, ci) that captures the relationship between workload, 

performance target, and capacity requirement. Deriving the function f, such that it will 

fit the observations is the process of learning. Once the model is derived, it is to be 
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used to predict the required capacity cj to handle a given certain workload wj with 

performance target pj. 

 

 
 

Figure 3.1 Research methodology on finding a suitable model. 

 

Identifying a suitable raw dataset is the starting point, which can be achieved through 

data collection from a set of sample applications. Then the data need to be pre-

processed to make it suitable as an input to the machine learning algorithms to be 

considered. Parameters of the selected algorithms need to be tuned to get a better model 

with higher accuracy. Then the selected and optimized models need to be tested for 

other applications to identify the most suitable model. Once we can predict the capacity 

for the performance and workload at a higher accuracy, we select it as the evaluated 

model. Then the finally chosen model should be able to predict the capacity for a given 

workload and performance requirement for other applications with reasonable 

accuracy.  

 

3.2 Data Collection from Sample Application 

The test data need to be collected from a load test against a 3-tier web application that 

is representative of typical web applications. The database of the 3-tier web 

application, application server, and the web server were deployed as cloud instances. 

Application server processes a complex logic to generate the entire web page based on 
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the configuration settings persisted in the Database. It processes the form controls, 

handles workflows, and use user security permissions to hide or show user controls on 

the web page in the form of a JSON file. The Web server sends the generated JSON 

file to the clients. Application server handles workflows within the same web page 

and/or with other web pages based on the rules as the core of this selected application. 

Therefore, as per our observations, the typical resource requirement of the Application 

server is higher compared to both the Web and Database servers. 

 

Another cloud instance was used to generate the load against the 3-tier application. A 

dataset that covers a broad spectrum of user scenarios have to be selected to make sure 

all the components of the application will be covered and a load will be applied not 

only to the one component but to all the components. This step consumes a lot of time, 

as we have to execute the same user scenarios (i.e., workloads) against the 3-tier web 

application deployed on servers/instances of varying capacities. It was easier to 

simulate varying capacities in a cloud computing environment, as the CPU and 

memory can be fined tuned while keeping the same application deployment. For 

example, Amazon EC2 allows keeping the same deployment in a VM and configuring 

it to be a different type of VM with a different number of virtual CPU cores and 

memory. Therefore, the application does not need to be re-deployed when the VM 

instance type got changed. 

 

The collected data is usually in a format, which is easier to run the load test. The easiest 

and quicker way to run the load test was to have the environment ready for a hardware 

setup and apply the load for the number of users we wanted to run against. We repeated 

the same load for the next hardware setup, until we complete the load test across the 

planned array of hardware configurations and users. For example, we can have the 

application deployed in one VM and then apply workload while varying the number 

of concurrent users. 

 

A typical workload of a user consists of different scenarios, where scenario consists 

of different actions/steps such as login to the web application, searching for an entry, 

modifying and saving that entry, and logout. The latency will be obtained for each user 

step to make the analysis easier. Hence, it is important to understanding different user 

steps of the chosen web application using code walk-throughs. Then to have a good 
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coverage of the application’s functionality steps related to database reads, updates, 

insertion, and joins need to be selected. For example, Table 3.1 shows the relationship 

between scenarios and individual steps, where the same granular steps will be touched 

by multiple scenarios. These granular steps give a better indication on the number of 

database tables and database operations each step is associated with, so that we will 

have a better gauge on the complexity of each scenarios of our experiment. Then 

scenarios need to be picked to have a good mix of application steps. 

 

Latency and resource utilization were selected as metrics to measure performance, and 

each term is defined in Table 3.2. 

 

Once we finalized the scenarios, we collected the data in the format similar to that of 

Table 3.3. We measured the load by the number of users and the scenarios, capacity 

by the hardware, and performance as the latency. We collected the data for different 

capacities and different number of concurrent users. We got a diverse dataset as we 

used different combination of scenarios, across different capacities against a range of 

concurrent users. 

Table 3.1 Scenarios and steps. 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Step A X X X X X 

Step B X X X X X 

Step C X       X 

Step D X       X 

Step E   X X   X 

Step F X X X X X 

Step G X X X X X 

Step H       X   

Step I       X   

Step J X         

Step K   X       

Step L     X     

Step M       X   

Step N       X   

Step O         X 

Step P         X 

Step Q X X X X X 
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Table 3.2 Selected performance metrics. 

Metric Description 

Latency Difference in the time between request and response 

Resource Utilization Amount of CPU and Memory required to process 

 

Table 3.3 Data recorded from load testing for 3-tier application. 

Scenario  Hardware 

Average response time in seconds 

N1 

Users 

N2 

Users 

N3 

Users 

N4 

Users 

N5  

Users 

N6  

Users 

N7  

Users 

Scenario_1 Hardware_1 x x x X X x x 

Scenario_2 Hardware_2 x x x X X x x 

 … … … … … … … … 

Scenario_n Hardware_n x x x x X x x 

 

3.3 Data Preprocessing 

Our test data was in a form similar to Table 3.1. However, the dataset needs to be 

transformed to a table format to determine the relationship between the performance, 

workload, and capacity. Therefore, first, we arrange the data to a suitable format by 

assigning numerical weights for the steps.  

 

First, we need to map the type of operation, number of users, and latency it takes to 

perform the operation against the capacity as seen in Table 3.4. We will read the values 

in this table as the U1 number of users will take T1 latency to perform the Scenario1 

against the Capacity1, U2 number of users will take T2 latency to perform the Scenario2 

against the Capacity2, and so on. 

 

Table 3.4 Data arranged for user scenarios for users 

Type of Operation Users Latency Hardware 

Scenario1 U1 T1 Capacity1 

Scenario2 U2 T2 Capacity2 

… … … … 

Scenarion Un Tn Capacityn 

 

We need to find the actual impact to the system from each step associated with a 

scenario, as these operations represent the workload of our model. We need to convert 

the complexity of each step/action to a set of numerical values as shown in Table 3.5. 

As the focus is on 3-tier web applications, we consider the number of database tables 

touched by a particular step to be representative of the workload, as selected step 
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retrieve, insert, or update records stored in multiple database tables. We know the 

number of database tables touched by each step, as we walked through the code of the 

application. We can also identify the type of database operations for each step.  

 

Once this is known we have two options. The first option is to assign equal values to 

query, create, and update database operations. We assigned a weight of one for 

database query, database create, and database update. A weight of two was assigned 

to varying values through query, create, and update database operations based on their 

complexity. We assigned the weight of one for the database query, weight higher than 

one for database create and weight much higher than database create to database update 

in the second option. Database query operation is the lowest in terms of complexity 

and performs faster than database create and database update. Database update 

operation is with the highest complexity in RDMS compared to the database create, as 

database updates will have to query the records and then to change the values [15].  

Table 3.5 shows numerical values for each scenario, which is the sum of complexity 

of all the steps associated with the scenario. Numerical values are the ideal 

representation for the scenarios to build the model rather than having text labels. We 

build Table 3.5 for both the options described above to cover equal weight and varying 

weight.  

Table 3.5 Weight for sub scenarios. 

 Sub Scenario Database 

Tables 

Query Create Update Weight for User 

Scenario 

Sub Scenario 1 X x X x X 

Sub Scenario 2 X x X x X 

… … … … … … 

Sub Scenario n X x X x X 

 

Table 3.6 shows the prepared data having all numerical values for the user scenario, 

latency and users, while hardware remains as the instance type. Such a dataset is useful 

while applying a machine-learning model.  

 

Table 3.6 Data prepared for the machine-learning model. 

Sub Scenario Hardware Latency Users 

x x x x 

x x x x 

… … … … 

x x x x 
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3.4 Model Generation 

We extracted 80% of the preprocessed dataset to train the machine learning models 

while remaining 20% of the dataset was used as the test data. We model the dataset 

such that capacity as the dependent variable while performance and workload as 

independent variables. Once the model is created, we used the test data to check the 

prediction accuracy of the chosen model. We randomly selected the training dataset 

from the preprocessed dataset to make sure that the training dataset is well distributed. 

 

To build a model we choose machine-learning models due to the following advantages 

[16]: 

• Comparatively more accurate than rules generated by humans 

• No need to have the human involvement 

• Flexibility in certain models support feature generation for any features 

• Ability to explain the data from the automatically generated hypothesis 

 

As our main goal is to automatically produce near accurate predictions based on the 

data we collected, we choose following machine-learning models: 

1. K-Nearest Neighbor (KNN) [17] – Given a workload and a performance 

target, we can get a reasonable estimate of capacity requirement by analyzing 

the capacity requirements of similar workloads and performance targets. For 

this KNN is a suitable model where capacity recommended by k (≥ 1) nearest 

neighbors based on their workloads and performance can give a reasonable 

indication of capacity required to handle the given workload and achieve given 

performance target. In this case, we model our problem as a classification 

problem where data points are classified as based on their workload and 

performance, and labeled based on the capacity.  

2. Random forest [18] – In random forests, we can model the problem again as a 

classification problem based on a set of decision trees. Random forests are a 

combination of tree predictors such that each tree depends on the values of a 

random vector sampled independently and with the same distribution for all 

trees in the forest. 

This makes random forests a good option for this experiment, as we want to 

have a good classification model.  



 

29 
 

3. Support Vector Machine (SVM) [19] – SVM is also a supervised classification 

algorithm that identifies the right hyperactive plane by careful classification 

of data considering the distances to the planes. SVM easily handles feature 

interactions and non-parametric; hence we do not have to worry about outliers 

or whether the data is linearly separable. SVM has strong theoretical 

foundations and excellent empirical successes on classification problems [19]. 

 

Each of the above algorithms has a different set of parameters to tune. For example, in 

KNN value k needs to be set. In random forests, we need to set the number of trees. 

Similarly, in SVM cost value needs to be set. 

 

The key here is to have a model that could accurately determine the capacity for the 

given performance and workload. We use the test dataset collected from the 

application to verify the accuracy of the proposed model. As seen in Table 3.7 we used 

it to cross check the predicted capacity for the given performance and workload values. 

When the predicted value is same as the actual value, we considered the prediction to 

be successful, which means that the capacity predicted from the model is same as the 

value used in real data. We define accuracy as the number of capacity predictions that 

are same as in original data. High accuracy indicates the chosen model is suitable in 

predicting the capacity requirements, as well as scenario to number mapping is 

effective in capturing the workload complexity. 

 

Table 3.7 Actual and model predicted values for capacity. 

Performance Workload Actual Capacity Value Model Predicted Capacity Value 

P1 W1 AV1 MPV1 

P2 W2 AV2 MPV2 

… … … … 

Pn Wn AVn MPVn 

 

A model with the highest accuracy is then picked as the score model as shown in Figure 

3.1, which is also considered as the candidate model. In addition, this model will be 

used to predict the capacity for the given workload and performance requirement for 

the applications of the same nature.  
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3.5 Evaluating Prediction Ability of Model for Different Applications 

To be generally useful, the most accurate model for the chosen application should also 

be able to predict the capacity requirements of similar 3-tier web applications. As the 

model captures the relationship among workload, latency, and resources, we use the 

model to predict the resource requirement given the workload and performance of 

chosen application(s). Then the prediction accuracy is checked for the predicted 

resource requirement against the actual capacity. The model that performs well on the 

original application and new application is then chosen as the most preferred model 

for capacity planning. 

 

3.6 Summary 

We proposed a methodology to predict the capacity requirement of a 3-tire web 

application given a workload and a performance target. We set up a modular 

environment using virtual machines. We then ran a set of load tests and collected the 

performance of a given combination of workload and resources. Then the dataset is 

preprocessed to map the workload complexity based on the number of database tables 

involved and the type of database operations to be performed. Three machine-learning 

models are then chosen to model and predict the capacity requirement given a 

workload and a performance target. We then evaluate the prediction accuracy of a 

given test dataset. The same models are also evaluated based on their ability to predict 

the resource requirement for another 3-tier web application. Finally, we chose the 

model that could predict the resource requirement of the other application with the 

highest accuracy as the chosen model. 
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Chapter 4  

PERFORMANCE EVALUATION 
 

  

This chapter focuses on performance evaluation of the proposed technique. Section 4.1 

focuses on setting up the test environment in the Cloud, while Section 4.2 focuses on 

evaluating the performance of different machine learning models. Section 4.3 focuses 

on the accuracy of each algorithm and shows the reason behind selecting the model to 

find the capacity need for the given performance and workload. 

 

4.1 Experimental Setup 

The collect the data and evaluate the model we setup two 3-tier web applications, in 

which one was from the Health Care domain and other was from E-Commerce where 

we used the popular Rubis [20] website. Next, we describe the high-level architecture 

of the deployment topology. Setting up both the web application environments in AWS 

was the key, as we could emulate a production environment in AWS VMs with 

appropriate configurations. 

 

4.1.1 Computing Infrastructure Setup 

It is critical to have a near-production environment setup to perform the 

performance/load testing as we are planning to achieve high accuracy (e.g., 80% of the 

capacity needed to have a performance benchmark against an expected user load). 

Ideally, performance testing must be performed in the same setup that will be used by 

the end users when they have the production environment to be used. However, having 

the same setup in a cloud is not an easy step as performance testing cannot be isolated 

from the security concerns associated with this deployment topology.  

 

We setup a Virtual Private Cloud (VPC) [21] with four subnets within the VPC as 

shown in Figure 4.1. We deployed the application using an application server, web 

server and a database server in their respective subnets to perform the load testing. We 

also setup a workload generator based on JMeter [22] version 3.2 on a separate VM. 

Depending on the application used for testing, we changed the workload generated by 

JMeter.  
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Figure 4.1 Test application deployed in AWS. 

     

4.1.2 3-Tier Web Application 

A highly data intensive web application from the Health Care domain was selected. 

The selected application is associated with providing health care services and is 

currently installed at different health care providers.  These health care providers are 

scattered all over Australia having different numbers of end users. End users are 

themselves considered as elderly, in which they do not have much of a computer 

literacy. Hence, agents deployed from the health care service providers reach the end 

users and interact with this application. Due to the privacy issues associated with the 

health care records, the application must be installed on an intranet while scaling based 

on the varying user load and performance needs, which makes this an ideal application 

for this research. Depending on the deployment and health care service provider, 

number of concurrent users vary from one to 500. Hence, the capacity allocation needs 

to be based on the expected workload and performance. 

 

4.1.3 Resource and Workload Combinations 

Table 4.1 presents the combinations of hardware we used to carry out the experiment. 

The combinations are a mix from CPU cores, memory, and the number of concurrent 

users. CPU Cores were varied from 1, 2, 4 and 8, while the memory was varied from 

2, 4, 6, and 8 for each combination of CPU Cores. This creates 16 (4 × 4) parameter 

combinations. We executed the user scenario for each combination that for the 
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concurrent users from one to 500 in different batches. Number of sessions were equal 

to the number of concurrent users we used to generate the load. 

 

Table 4.1 Possible combinations for hardware and users. 

 

 

 

 

Having the AWS VMs from the t2 class, which is configured to ideally match with the 

general-purpose web applications helped us to narrow down the hardware 

combinations to the classes available in AWS. Table 4.2 presents the possible 

combination of resources we could derive based on required CPU and memory. We 

used the standard VMs as shown in Table 4.2. For example, T2.Micro instance type 

represents an instance with 1 CPU Core and 1 GB of RAM. The entire experiment was 

carried out using five different VM instances, namely T2.Micro, T2.Small, 

T2.Medium, T2.Large, and T2.ExtraLarge. Separating out JMeter load generator to a 

different VM made sure that it produced the same load to the application VMs in all 

the scenarios. Table 4.3 lists the configurations of AWS VMs and Table 4.4 shows the 

Amazon EC2 instance types we used for this experiment. 

 

Table 4.2 Hardware configuration for the 3-tier sample application. 

Instance Type CPU Cores Memory (GB) Ramp Up Think Time Ramped Down 

1.vmT2.Micro 1 1 10 mins 2 mins 10 mins 

2.vmT2.Small 1 2 10 mins 2 mins 10 mins 

3.vmT2.Medium 2 4 10 mins 2 mins 10 mins 

4.vmT2.Large 2 8 10 mins 2 mins 10 mins 

5.vmT2.XLarge 4 16 10 mins 2 mins 10 mins 

 

We used the same intranet deployment topology for the selected commercial 

application, which gave us a setup similar to the production environment. Table 4.3 

shows the configurations of the AWS VMs used for the instance type t2.large. The 

instance type t2 is the classification from AWS for the general-purpose web 

Applications. We managed to have the application deployed on different capacities by 

changing the instance type of the VM from t2.micro, t2.small, t2.medium, t2, large and 

t2.extralarge as shown in Table 4.4. 

 

CPU Cores 1, 2, 4, 8 

Memory (GB) 2, 4, 6, 8 

Concurrent Users  1 to 500 
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Table 4.3 Configuration of AWS VMs. 

AWS VM Instance Instance 

Type 

Processing 

Power (GHz) 

Memory 

(GB) 

Disk Space 

(GB) 

Database Server Instance t2.large 2.4 8 70 

Web Server t2.large 2.4 8 30 

Application Server t2.large 2.4 8 30 

Firewall and Proxy Server t2.medium 2.4  3.75 100 

JMeter Console + Load Generator t2.large 2.4 8 30 

JMeter Load Generator t2.large 2.4 8 30 

 

Table 4.4 EC2 Instances used with CPU and memory. 

Instance Type CPU Cores Memory (GB) 

1.vmT2.Micro 1 1 

2.vmT2.Small 1 2 

3.vmT2.Medium 2 4 

4.vmT2.Large 2 8 

5.vmT2.XLarge 4 16 

 

The sample application was deployed in AWS VMs. Microsoft SQL instance was used 

as the database, while the application was deployed as a combination of the web server 

and application server.  

 

Rubis application was also deployed in AWS. The sample commercial application and 

the Rubis were deployed to the Windows environment. Rubis used MySQL as the 

database instance. The application was deployed to the web server and application 

server as shown in Figure 4.2. We configured a firewall and a proxy to maintain the 

same deployment topology in the cloud as well. JMeter was used to generate the 

workload for the varying number of concurrent users for the chosen scenarios. 

 

We selected a set of scenarios to get a wider coverage of the application functionality, 

as well as to hit the database as in its typical use. See Appendix A and Appendix B for 

the scenarios chosen for the evaluation.  

 

Ramp Up and Ramp down time was set to 10 minutes as JMeter should get all the 

threads sent for the execution. Ramp up should be enough to avoid unnecessary and 

large workload from the beginning of the test execution. Think time was set 2 minutes 
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in the range of 0 to 4 with an average of 2 minutes, at the load generator to have a 

better variation in a random fashion. The results were collected during the steady state.  

 

 

Figure 4.2 Rubis application deployed in AWS. 

 

Both applications have a thin web front end deployed as the web server. Web server 

forwards the requests to the application server for further processing while handling 

the necessary business logic. Due to this design, application server handles a relatively 

higher workload, e.g., for the user scenarios and the load we applied application server 

introduced the highest latency to a response. This is the typical case in most 3-tier web 

applications where the web server mostly act as a reverse proxy, while application 

server does the real work. The minimum capacity requirement of commercial database 

servers is well known and vendors usually provide further guidelines on number of 

queries per second and type of queries. Therefore, the most difficulty in estimating 

capacity requirement lies with the application servers, which is expected to run the 

custom developed web application. Therefore, we consider the capacity estimation as 

the capacity of the application server. 

 

Based on the nature of the chosen application, novice users must use the search feature 

to navigate from the point after the log in. Based on the deployment at client end, 

different deployments will have a different set of data volumes. In certain 

deployments, application caters only to a few end users with low data volume to be 

searched for. However, the search will take a considerable amount of time when the 
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deployment is for a larger user base due to large data volume. Search time will also 

vary based on the parameters provided and the number of database tables touched 

based on the parameters given to the search. 

 

Selecting and adding a basic entity is considered as a most common step in most of the 

user scenarios. Selecting, editing, and saving special entities is the next major step. 

There are special entities with very simple structures, in which structure could be 

obtained from a single table, while certain special entities having complex structures 

in which multiple tables are required with complex joins and associations. 

 

Logging out from the application is not only closing the application, but also involves 

adding logs and putting a load on the database. This is another key scenario we need 

focus in our experiment to have our load widely spread. Therefore, JMeter generated 

the load from log in to the application then executed different set of loads under 

different scenarios and finally the logging out from the app.  

Following list shows the user scenarios selected from the 3-tier web application. 

• Launching the App 

• Login to the App 

• Select Advanced Search 

• Enter n Fields to the Search 

• Select Advanced Search Enter Fields N Search 

• Select a Basic Entity 

• Add a Basic Entity 

• Select a Special Entity A 

• Edit & Save and Entity 

• Save a generated Entity 

• Save a Special Entity B 

• Save a Special Entity C 

• Navigate different sections in Special Entity D 

• Edit & Save and Entity 

• Select Entity & enter fields 

• Save a Special Entity E 

• Logout 
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4.1.4 Data Collection 

We collected and recorded the test results from the load test for the commercial 

application and Rubis for the user scenarios from the system we set up with JMeter. 

Appendix A and Appendix B shows the initial collection of test data, which shows the 

latency for each step against the hardware and the number of user load. We took 80% 

from the data collected as a subset of the train data to build the model. The remaining 

20% was used to evaluate the model. The load test data was collected against the 

application server, as required the highest among of resources. The Figure 4.3 shows 

the memory and CPU utilization of the Application server and the Figure 4.4 shows 

the memory and CPU utilization of the Web server during the peak time from the 

production deployment. It clearly shows that Application server is busy processing the 

rendering logic to generate the JSON files, while the Web server delegates the tasks to 

the Application server. 

 

 

Figure 4.3 Memory and CPU utilization of Application server. 
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Figure 4.4 Memory and CPU utilization of Web server. 

 

4.2 Model Evaluation  

There were few decisions made during the process of carrying out the experiment. 

Determining the proper algorithm for the evaluation model was the major decision as 

it affects the overall result of the experiment. In determining the ideal algorithm, 

selecting the right weight for the database operations was the other key to accuracy. 

Mapping of each applications user scenarios in a way that we have a universal 

approach to determine the user load is an important aspect of this whole exercise. 

 

4.2.1 Numerical Values for Workloads 

Steps fall under different categories where some involve only the Web server, some 

involve Web and Application servers, while others involve all three servers. When a 

database is involved the data touches one or more tables. Therefore, the number of 

tables that each step touches can be considered as a workload parameter. The nature 

of database operation (e.g., search vs. insert) is the other parameter. 
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The first experiment was carried out by assigning equal weights to the different types 

of operations using the multiplication of the number of database tables with the type 

of database operation. The numerical values calculated for each step are shown in 

Table 4.5 when all the database operations were treated equally. The values collected 

from the sample values as mentioned in Appendix C was combined with the numerical 

values obtained from the equal weight.  

 

Table 4.5 Sub Scenarios with equal weight for database operations in sample application. 

Steps Database 

Tables 

Query Create Update Weight for Operation 

Read=1, Create=1, 

Update=1 

Access Home Page 0 0 0 0 0 

Login to the system 2 1 0 1 4 

Edit configurations 4 1 0 0 4 

Save Configurations 6 0 0 1 6 

Perform Advanced 

Search 
8 1 0 0 8 

Select an Entity 4 1 0 0 4 

Create an Entity 4 0 1 0 4 

Generate an Entity 6 0 0 1 6 

Navigate among the 

Pages 
0 0 0 0 0 

Logout 2 0 0 1 2 

 

We first tried to predict the capacity using the K-Nearest Neighbour (KNN) algorithm. 

RStudio [23] version 1.0.143 was used to generate the evaluation model using the 

KNN. Different models were generated using different values for k starting from 1 to 

10. The comparison of model predicted against the test data are shown in Figure 4.3 

as follows. This prediction resulted in lots of deviation with the test data. Hence, 

assigning numerical values to the step based on the equal weights from database 

operations does not give a good evaluation model to proceed further. Even the 

distribution of numerical values does not show a much variation as it expands into a 

limited set only from 0 to 8. 

 

As complexities of each database operation are different, we then introduced a weight 

or cost based on the complexity of executing a query. For example, a read database 

operation costs less compared to an update operation. Therefore, we set different 

weights such that Read = 1, Create = 2, and Update=3. Table 4.6 shows the 

corresponding numerical values for step when the varying weights are used. 
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Figure 4.5 KNN algorithm on sample data with equal weights. 

Table 4.6 Varying weight for database operations in sample app. 

Steps Database 

Tables 

Query Create Update Weight for Operation 

Read=1, Create=2, 

Update=3 

Access Home Page 0 0 0 0 0 

Login to the system 2 1 0 1 8 

Edit configurations 4 1 0 0 4 

Save Configurations 6 0 0 1 18 

Perform Advanced 

Search 
8 1 0 0 8 

Select an Entity 4 1 0 0 4 

Create an Entity 4 0 1 0 8 

Generate an Entity 6 0 0 1 18 

Navigate among the 

Pages 
0 0 0 0 0 

Logout 2 0 0 1 6 

 

 

The values collected from the sample values in Appendix C was combined with the 

numerical values obtained from the varying weight and the model was predicted using 
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the KNN algorithm again. Different models were generated using different values for 

K starting from 1 to 10. The comparison of model predicted against the test data are 

shown in Figure 4.4. In this case, the predictions had less deviation with the test data. 

Hence, assigning numerical values to the step based on the complexity of database 

operations gives a better evaluation model to proceed further. Even the distribution of 

numerical values shows a much variation as it expands in a set only from 0 to 18. 

 

 

Figure 4.6 KNN algorithm on sample data with different weights. 

 

The decision was the varying values to the Database operations to determine the 

numerical value for the steps. 
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4.2.2 Applying More Machine Learning Models 

K-Nearest neighbour is not the best model, as it does not give an evaluation model 

with a higher accuracy. This could be due to none linear increase in number of CPU 

cores and memory, which leads to an unbalanced distribution of data. Then we tried 

Support Vector Machine (SVM) algorithm. The values collected from the sample 

values (as in Appendix C) was combined with the numerical values obtained from the 

varying weight and the model was predicted using SVM implemented using RStudio. 

Different models were generated using different values for cost varying across 0.1, 1, 

10, and 100. The comparison of model predicted against the test data are shown in 

Figure 4.5. However, this resulted in even less accuracy compared to KNN, where the 

overall accuracy was less than 40%. Accuracy did not improve much with varying cost 

values. This is probably due to a lower number of dimensions in our dataset where 

KNN tend to work better. 

 

 

Figure 4.7 SVM algorithm on sample data with different weights. 

 

Then we also tried the Random Forest algorithm with weighted data. The model was 

implemented using RStudio and different models were generated using different 

values for trees varying from 1 to 1,000.  The comparison of model predicted against 

the test data are shown in Figure 4.6, where we can see good accuracy compared to 

test data. The best accuracy of this model was obtained when the number of trees is 

100. The exact data used for this model is shown in Appendix E. 
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Figure 4.8 Random Forest algorithm on sample data with different weights. 

 

4.3 Resource Forecasting 

We looked at different machine learning algorithms to have the best possible model to 

predict the capacity requirement for the performance and the workload. The model 

with the highest accuracy was picked to move forward with this experiment. We got 

different models representing the relationships between capacity, performance, and 

resources from the training data. Table 4.7 shows the accuracy of each algorithm we 

used. It is clear that the model we got from the Random Forest is by far the better 

model to go ahead with.  

 

As per the objective of this experiment, we used Rubis as the new application to predict 

the resource requirement given workload and performance target. The scenarios and 

steps in Rubis are different to the scenarios and steps used in our sample application. 

We use the same approach to calculate the numerical values for steps under each 
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scenarios. Table 4.8 shows the numerical values for the steps taken by assigning the 

varying values for different database operations.  

 

Table 4.7 Accuracy from algorithms. 

Algorithm Accuracy 

KNN (equal weight) 20.00% 

KNN (varying weight) 50.00% 

SVM 36.84% 

Random Forest 97.14% 

 

Table 4.8 Varying weight for Database operations in Rubis. 

Steps Database 

Tables 

Query Create Update Weight for Operation 

Read=1, Create=2, Update=3 

Access Home Page 0 0 0 0 0 

Query About me 1 1 0 0 1 

Register User 1 0 1 0 2 

View Item details 1 4  0  0 4 

Sell Item 3 2 1 0 8 

Bidding  4 3  0 2 18 

 

The values collected from the sample values (as in Appendix A) was combined with 

the numerical values obtained from the varying weight and the model was predicted 

using the Random Forest algorithm. The exact training data given to the algorithm is 

in Appendix E. The difference in this evaluation is the use of Rubis data as the test 

data. The values collected from the Rubis application (as mentioned in Appendix B) 

was treated as the test data. The exact test data given to the algorithm is listed in 

Appendix F.  

 

We use the model generated based on random forest and sample application training 

data to predict the capacity requirement for Rubis. The comparison of model prediction 

against the test data is shown in Figure 4.7. The accuracy of this model for the 

prediction against the test data is 77.42%. Therefore, the model build for one 

application can be used to reasonably estimate the capacity requirement of another 3-

tier application. 
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Figure 4.9 Random Forest algorithm on Rubis with different weights. 

 

4.4 Summary  

We collected a training dataset by varying number of CPU cores, memory, and the 

number of concurrent users. Then the steps in the dataset were mapped to a set of 

numerical values based on the number and type of database operations. It was realized 

that assigning equal weights of the database operations such as insert, update, and joins 

does not give an accurate model. Therefore, we assigned different weights based on 

the complexity of database operations. This resulted in better prediction. We tried 

KNN, SVM, and Random Forest algorithms to build the model, out of which Random 

Forest produced the most accuracy prediction of capacity. We predicted the capacity 

requirement for Rubis web application using the Random Forest based model and got 

an accuracy of 77.42% in our predictions. These results indicate that by mapping steps 

to a weighted numerical value a suitable machine-learning model can be used to predict 

the capacity requirement of a 3-tier web application given the workload and a 

performance target. 
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Chapter 5  

CONCLUSIONS 
 

Section 5.1 discuss the summary of the proposed technique and experimental results. 

Section 5.2 focuses on the limitations of this experiment as we scoped this work on 3-

tier web applications while Section 5.3 suggests future work to extend this work to 

improve accuracy as well as to support applications that are more complex. 

 

5.1 Summary 

Given a workload and a performance target, we proposed a technique to predict the 

hardware capacity requirement. We specifically focus on 3-tier web applications, 

where workload is given as a set of scenarios and a corresponding set of steps as well 

as number of concurrent users while latency is given as the performance target. 

Number of CPU cores and memory is predicted as the capacity requirement. 

 

We first collected a dataset from a sample application while varying resources (number 

of CPU cores and memory) and number of concurrent users against the same set of 

scenarios. This dataset was then used to train a set of machine learning models to 

capture the relationship among capacity, workload, and performance. Steps of a 

scenarios put different load on the servers based on the type of requests. For example, 

a database read is relatively simple to execute compared to an update. Therefore, we 

used different weights to capture the complexity of database operations. In fact, our 

tests results revealed that equal weights are not good at capturing the application 

behaviour. Among the three machine-learning algorithms we tried Random Forest was 

able to predict the capacity more accurately compared to K-Nearest Neighbor and 

Support Vector Machine algorithms. Moreover, it was able to predict the capacity for 

another web application with an accuracy of 77%. These results indicate that by 

mapping scenarios and their steps of a web application to a weighted set of numerical 

value a suitable machine-learning model can be used to predict the capacity 

requirement of a 3-tier web application given a mix of workloads and a performance 

target. 
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5.2 Limitation of Research 

We specifically focused on 3-tier web applications. Even though, we were able to find 

a suitable model for a typical 3-tier web application, there are some limitations 

associated with the proposed technique.  

 

While a 3-tier web application consists of one or more web servers, application servers, 

and database servers, we predict the capacity of only the application server.  Hence, it 

is important to extend the capacity prediction to all three types of servers as a one 

cohesive system. While there exists a large spectrum of applications like memory 

intensive, CPU intensive, and bandwidth intensive, we focus on typical web 

applications with a set of scenarios that interacts primarily with the database. However, 

there are many other applications that relay on various other libraries to execute 

complex business logic, generate bar codes, generates PDFs, etc. Hence, those cases 

need more complex allocation of resources and both hardware and software level 

optimizations. It is a constraint that the proposed approach cannot be used to build a 

model for such applications.  

 

We tested the proposed approach only against two web-based applications where one 

who a commercial application while Rubis was primarily used in research and training. 

It is important to evaluate the proposed technique across a collection of web 

applications. 

 

We define the resources as number of CPU cores and memory. However, storage, 

bandwidth, and I/O Operations Per Second (IOPS) are other important parameters. 

Moreover, throughput is also an essential performance metrics. However, a larger 

collection of resource and performance parameters makes the number of combinations 

much larger when it comes to building the test dataset. Furthermore, particular 

language and platform used to develop a web application also have a considerable 

impact on resource capacity. Therefore, such factors should also be considered to be 

more accurate and comprehensive. 
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5.3 Future work 

The focus of this research was to propose a new model to calculate the capacity given 

the performance and workload. It is interesting to extend the model to capture 

scenarios that are more complex. First is to predict the capacity requirement of web 

and database servers. Next, is to consider more complex resources such as bandwidth 

and IOPS. Another extension is to consider both latency and throughput as the 

performance metrics. Moreover, extending the proposed weights to capture none 

database operations such as generating a PDF file is of interest. 

  

Even though JMeter automates load testing in each environment, it is time-consuming. 

Therefore, it takes lots of time to carry out the load testing over a range of VMs to 

collect the test dataset. Using a tool similar to Puppet [24] we can automate this 

process.  It is suggested to test the proposed technique against other web applications 

and further fine-tune the model parameters.  

 

It would be useful to expose capacity-planning as a service where the user could 

provide a set of application scenarios and performance target or SLA to identify the 

type of computing resources. This can be specifically customized for a cloud-

computing environment as available types of resource configurations are known. 
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Appendix A: Experimental Data – Load Test Results from Sample 

Application  

Steps Hardware 

Average latency in seconds 

5 

Users 

20 

Users 

50 

Users 

75 

Users 

100 

Users 

200 

Users 

400 

Users 

Access 

Home Page 
1.vmT2.Micro 12.032 0.887 1.4037 3.083       

Login to the 

system 
1.vmT2.Micro 24.896 1.284 26.199 3.321       

Edit 

configuration 
1.vmT2.Micro 5.075 3.404 10.677 7.58       

Save 

Configuratio

ns 

1.vmT2.Micro 0.3 1.914 0.569 0.997       

Perform 

Advanced 

Search 

1.vmT2.Micro 0.462 0.582 0.221 0.327       

Select an 

Entity 
1.vmT2.Micro 1.45 7.469 2.579 4.851       

Create an 

Entity 
1.vmT2.Micro 0.088 2.764 0.894 8.448       

Generate an 

Entity 
1.vmT2.Micro 44.366 

77.34

5 

131.84

3 

286.38

5 
      

Navigate 

among the 

Pages 

1.vmT2.Micro 0.288 2.565 8.231 26.686       

Logout 1.vmT2.Micro 0.461 6.218 6.358 41.672       

Access 

Home Page 
2.vmT2.Small     1.468 2.357 18.198 10.003   

Login to the 

system 
2.vmT2.Small     2.688 4.202 27.222 7.377   

Edit 

configuration 
2.vmT2.Small     9.982 13.528 20.151 17.417   

Save 

Configuratio

ns 

2.vmT2.Small     10.243 12.719 0.84 1.159   

Perform 

Advanced 

Search 

2.vmT2.Small     2.094 13.737 0.425 0.644   

Select an 

Entity 
2.vmT2.Small     30.84 39.236 4.639 13.442   

Create an 

Entity 
2.vmT2.Small     5.329 12.607 2.088 10.537   

Generate an 

Entity 
2.vmT2.Small     

141.87

7 

244.87

1 

326.42

9 

443.21

9 
  

Navigate 

among the 

Pages 

2.vmT2.Small     8.104 3.838 40.912 50.946   

Logout 2.vmT2.Small     28.276 20.772 45.506 82.27   

Access 

Home Page 

3.vmT2.Mediu

m 
      13.59 50.754 40.251 

41.02

7 
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Steps Hardware 

Average response time in seconds 

5 

User

s 

20 

User

s 

50 

User

s 

75 

Users 

100 

Users 

200 

Users 

400 

Users 

Login to the 

system 

3.vmT2.Mediu

m 
      27.781 12.34 57.24 46.093 

Edit 

configuration 

3.vmT2.Mediu

m 
      23.484 8.802 39.302 41.962 

Save 

Configuration

s 

3.vmT2.Mediu

m 
      0.768 1.864 11.518 6.378 

Perform 

Advanced 

Search 

3.vmT2.Mediu

m 
      0.301 1.171 5.033 3.273 

Select an 

Entity 

3.vmT2.Mediu

m 
      3.961 10.826 46.888 43.123 

Create an 

Entity 

3.vmT2.Mediu

m 
      1.79 1.914 21.173 55.264 

Generate an 

Entity 

3.vmT2.Mediu

m 
      

327.59

3 

114.85

3 

193.35

4 

552.57

7 

Navigate 

among the 

Pages 

3.vmT2.Mediu

m 
      8.622 0.024 16.617 25.01 

Logout 
3.vmT2.Mediu

m 
      19.554 0.251 47.682 34.464 

Access Home 

Page 
4.vmT2.Large         3.489 18.044 68.131 

Login to the 

system 
4.vmT2.Large         3.264 40.685 

116.14

4 

Edit 

configuration 
4.vmT2.Large         6.484 56.405 54.841 

Save 

Configuration

s 

4.vmT2.Large         0.754 11.012 4.674 

Perform 

Advanced 

Search 

4.vmT2.Large         0.556 4.514 2.397 

Select an 

Entity 
4.vmT2.Large         18.795 50.473 65.884 

Create an 

Entity 
4.vmT2.Large         6.713 12.686 4.546 

Generate an 

Entity 
4.vmT2.Large         

366.95

8 

258.55

1 

181.29

2 

Navigate 

among the 

Pages 

4.vmT2.Large         36.194 9.228 14.085 

Logout 4.vmT2.Large         48.518 36.32 40.717 
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Steps Hardware 

Average latency in seconds 

5 

User

s 

20 

User

s 

50 

User

s 

75 

Users 

100 

Users 

200 

Users 

400 

Users 

Access Home 

Page 
5.vmT2.XLarge       11.989 6.481 21.66 48.636 

Login to the 

system 
5.vmT2.XLarge       20.361 8.427 50.496 13.335 

Edit 

configuration 
5.vmT2.XLarge       11.568 12.688 47.5 17.511 

Save 

Configuration

s 

5.vmT2.XLarge       0.595 4.154 10.604 2.659 

Perform 

Advanced 

Search 

5.vmT2.XLarge       0.253 1.92 2.857 1.318 

Select an 

Entity 
5.vmT2.XLarge       3.696 45.471 47.489 20.378 

Create an 

Entity 
5.vmT2.XLarge       1.657 5.055 15.043 4.784 

Generate an 

Entity 
5.vmT2.XLarge       

347.43

9 

115.35

8 

128.68

4 

413.91

8 

Navigate 

among the 

Pages 

5.vmT2.XLarge       9.731 19.73 10.832 36.276 

Logout 5.vmT2.XLarge       26.787 61.339 46.61 86.05 
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Appendix B: Experimental data – Load Test Results from Rubis 

Steps Hardware 
Average latency in milliseconds 

50 Users 100 Users 200 Users 400 Users 

Access Home Page 1.vmT2.Micro       16 

Query About me 1.vmT2.Micro     4   

Register User 1.vmT2.Micro   5     

View Item details 1.vmT2.Micro   19    

Sell Item 1.vmT2.Micro       13 

Bidding  1.vmT2.Micro     28   

Access Home Page 2.vmT2.Small      5  

Query About me 2.vmT2.Small      5  

Register User 2.vmT2.Small 5      19 

View Item details 2.vmT2.Small  21       

Query About me 3.vmT2.Medium 10       

Register User 3.vmT2.Medium     11 10  

View Item details 3.vmT2.Medium     28   

Sell Item 3.vmT2.Medium 26       

Bidding  3.vmT2.Medium   40     

Access Home Page 4.vmT2.Large       1 

Query About me 4.vmT2.Large     5   

Register User 4.vmT2.Large 14     8  

View Item details 4.vmT2.Large   22     

Sell Item 4.vmT2.Large     14   

Bidding  4.vmT2.Large       31 

Access Home Page 5.vmT2.XLarge 1       

Query About me 5.vmT2.XLarge         

Register User 5.vmT2.XLarge   14   13  

View Item details 5.vmT2.XLarge       35 

Sell Item 5.vmT2.XLarge     25   

Bidding  5.vmT2.XLarge 74       
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Appendix C: Arranged data – Load Test Results from Sample 

Application  

  Steps Users Latency Hardware 

1 Access Home Page 5 12.032 1.vmT2.Micro 

2 Access Home Page 20 0.887 1.vmT2.Micro 

3 Access Home Page 50 1.4037 1.vmT2.Micro 

4 Access Home Page 75 3.083 1.vmT2.Micro 

5 Login to the system 5 24.896 1.vmT2.Micro 

6 Login to the system 20 1.284 1.vmT2.Micro 

7 Login to the system 50 26.199 1.vmT2.Micro 

8 Login to the system 75 3.321 1.vmT2.Micro 

9 Edit configurations 5 5.075 1.vmT2.Micro 

10 Edit configurations 20 3.404 1.vmT2.Micro 

11 Edit configurations 50 10.677 1.vmT2.Micro 

12 Edit configurations 75 7.58 1.vmT2.Micro 

13 Save Configurations 5 0.3 1.vmT2.Micro 

14 Save Configurations 20 1.914 1.vmT2.Micro 

15 Save Configurations 50 0.569 1.vmT2.Micro 

16 Save Configurations 75 0.997 1.vmT2.Micro 

17 Perform Advanced Search 5 0.462 1.vmT2.Micro 

18 Perform Advanced Search 20 0.582 1.vmT2.Micro 

19 Perform Advanced Search 50 0.221 1.vmT2.Micro 

20 Perform Advanced Search 75 0.327 1.vmT2.Micro 

21 Select an Entity 5 1.45 1.vmT2.Micro 

22 Select an Entity 20 7.469 1.vmT2.Micro 

23 Select an Entity 50 2.579 1.vmT2.Micro 

24 Select an Entity 75 4.851 1.vmT2.Micro 

25 Create an Entity 5 0.088 1.vmT2.Micro 

26 Create an Entity 20 2.764 1.vmT2.Micro 

27 Create an Entity 50 0.894 1.vmT2.Micro 

28 Create an Entity 75 8.448 1.vmT2.Micro 

29 Generate an Entity 5 44.366 1.vmT2.Micro 

30 Generate an Entity 20 77.345 1.vmT2.Micro 

31 Generate an Entity 50 131.843 1.vmT2.Micro 

32 Generate an Entity 75 286.385 1.vmT2.Micro 

33 Navigate among the Pages 5 0.288 1.vmT2.Micro 

34 Navigate among the Pages 20 2.565 1.vmT2.Micro 

35 Navigate among the Pages 50 8.231 1.vmT2.Micro 

36 Navigate among the Pages 75 26.686 1.vmT2.Micro 

37 Logout 5 0.461 1.vmT2.Micro 

38 Logout 20 6.218 1.vmT2.Micro 

39 Logout 50 6.358 1.vmT2.Micro 
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  Steps Users Latency Hardware 

40 Logout 75 41.672 1.vmT2.Micro 

41 Access Home Page 50 1.468 2.vmT2.Small 

42 Access Home Page 75 2.357 2.vmT2.Small 

43 Access Home Page 100 18.198 2.vmT2.Small 

44 Access Home Page 200 10.003 2.vmT2.Small 

45 Login to the system 50 2.688 2.vmT2.Small 

46 Login to the system 75 4.202 2.vmT2.Small 

47 Login to the system 100 27.222 2.vmT2.Small 

48 Login to the system 200 7.377 2.vmT2.Small 

49 Edit configurations 50 9.982 2.vmT2.Small 

50 Edit configurations 75 13.528 2.vmT2.Small 

51 Edit configurations 100 20.151 2.vmT2.Small 

52 Edit configurations 200 17.417 2.vmT2.Small 

53 Save Configurations 50 10.243 2.vmT2.Small 

54 Save Configurations 75 12.719 2.vmT2.Small 

55 Save Configurations 100 0.84 2.vmT2.Small 

56 Save Configurations 200 1.159 2.vmT2.Small 

57 Perform Advanced Search 50 2.094 2.vmT2.Small 

58 Perform Advanced Search 75 13.737 2.vmT2.Small 

59 Perform Advanced Search 100 0.425 2.vmT2.Small 

60 Perform Advanced Search 200 0.644 2.vmT2.Small 

61 Select an Entity 50 30.84 2.vmT2.Small 

62 Select an Entity 75 39.236 2.vmT2.Small 

63 Select an Entity 100 4.639 2.vmT2.Small 

64 Select an Entity 200 13.442 2.vmT2.Small 

65 Create an Entity 50 5.329 2.vmT2.Small 

66 Create an Entity 75 12.607 2.vmT2.Small 

67 Create an Entity 100 2.088 2.vmT2.Small 

68 Create an Entity 200 10.537 2.vmT2.Small 

69 Generate an Entity 50 141.877 2.vmT2.Small 

70 Generate an Entity 75 244.871 2.vmT2.Small 

71 Generate an Entity 100 326.429 2.vmT2.Small 

72 Generate an Entity 200 443.219 2.vmT2.Small 

73 Navigate among the Pages 50 8.104 2.vmT2.Small 

74 Navigate among the Pages 75 3.838 2.vmT2.Small 

75 Navigate among the Pages 100 40.912 2.vmT2.Small 

76 Navigate among the Pages 200 50.946 2.vmT2.Small 

77 Logout 50 28.276 2.vmT2.Small 

78 Logout 75 20.772 2.vmT2.Small 

79 Logout 100 45.506 2.vmT2.Small 

80 Logout 200 82.27 2.vmT2.Small 

81 Access Home Page 75 13.59 3.vmT2.Medium 

82 Access Home Page 100 50.754 3.vmT2.Medium 
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  Steps Users Latency Hardware 

83 Access Home Page 200 40.251 3.vmT2.Medium 

84 Access Home Page 400 41.027 3.vmT2.Medium 

85 Login to the system 75 27.781 3.vmT2.Medium 

  86 Login to the system 100 12.34 3.vmT2.Medium 

87 Login to the system 200 57.24 3.vmT2.Medium 

88 Login to the system 400 46.093 3.vmT2.Medium 

89 Edit configurations 75 23.484 3.vmT2.Medium 

90 Edit configurations 100 8.802 3.vmT2.Medium 

91 Edit configurations 200 39.302 3.vmT2.Medium 

92 Edit configurations 400 41.962 3.vmT2.Medium 

93 Save Configurations 75 0.768 3.vmT2.Medium 

94 Save Configurations 100 1.864 3.vmT2.Medium 

95 Save Configurations 200 11.518 3.vmT2.Medium 

96 Save Configurations 400 6.378 3.vmT2.Medium 

97 Perform Advanced Search 75 0.301 3.vmT2.Medium 

98 Perform Advanced Search 100 1.171 3.vmT2.Medium 

99 Perform Advanced Search 200 5.033 3.vmT2.Medium 

100 Perform Advanced Search 400 3.273 3.vmT2.Medium 

101 Select an Entity 75 3.961 3.vmT2.Medium 

102 Select an Entity 100 10.826 3.vmT2.Medium 

103 Select an Entity 200 46.888 3.vmT2.Medium 

104 Select an Entity 400 43.123 3.vmT2.Medium 

105 Create an Entity 75 1.79 3.vmT2.Medium 

106 Create an Entity 100 1.914 3.vmT2.Medium 

107 Create an Entity 200 21.173 3.vmT2.Medium 

108 Create an Entity 400 55.264 3.vmT2.Medium 

109 Generate an Entity 75 327.593 3.vmT2.Medium 

110 Generate an Entity 100 114.853 3.vmT2.Medium 

111 Generate an Entity 200 193.354 3.vmT2.Medium 

112 Generate an Entity 400 552.577 3.vmT2.Medium 

113 Navigate among the Pages 75 8.622 3.vmT2.Medium 

114 Navigate among the Pages 100 0.024 3.vmT2.Medium 

115 Navigate among the Pages 200 16.617 3.vmT2.Medium 

116 Navigate among the Pages 400 25.01 3.vmT2.Medium 

117 Logout 75 19.554 3.vmT2.Medium 

118 Logout 100 0.251 3.vmT2.Medium 

119 Logout 200 47.682 3.vmT2.Medium 

120 Logout 400 34.464 3.vmT2.Medium 

121 Access Home Page 100 3.489 4.vmT2.Large 

122 Access Home Page 200 18.044 4.vmT2.Large 

123 Access Home Page 400 68.131 4.vmT2.Large 

124 Login to the system 100 3.264 4.vmT2.Large 

125 Login to the system 200 40.685 4.vmT2.Large 
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  Steps Users Latency Hardware 

126 Login to the system 400 116.144 4.vmT2.Large 

127 Edit configurations 100 6.484 4.vmT2.Large 

128 Edit configurations 200 56.405 4.vmT2.Large 

129 Edit configurations 400 54.841 4.vmT2.Large 

130 Save Configurations 100 0.754 4.vmT2.Large 

131 Save Configurations 200 11.012 4.vmT2.Large 

132 Save Configurations 400 4.674 4.vmT2.Large 

133 Perform Advanced Search 100 0.556 4.vmT2.Large 

134 Perform Advanced Search 200 4.514 4.vmT2.Large 

135 Perform Advanced Search 400 2.397 4.vmT2.Large 

136 Select an Entity 100 18.795 4.vmT2.Large 

137 Select an Entity 200 50.473 4.vmT2.Large 

138 Select an Entity 400 65.884 4.vmT2.Large 

139 Create an Entity 100 6.713 4.vmT2.Large 

140 Create an Entity 200 12.686 4.vmT2.Large 

141 Create an Entity 400 4.546 4.vmT2.Large 

142 Generate an Entity 100 366.958 4.vmT2.Large 

143 Generate an Entity 200 258.551 4.vmT2.Large 

144 Generate an Entity 400 181.292 4.vmT2.Large 

145 Navigate among the Pages 100 36.194 4.vmT2.Large 

146 Navigate among the Pages 200 9.228 4.vmT2.Large 

147 Navigate among the Pages 400 14.085 4.vmT2.Large 

148 Logout 100 48.518 4.vmT2.Large 

149 Logout 200 36.32 4.vmT2.Large 

150 Logout 400 40.717 4.vmT2.Large 

151 Access Home Page 75 11.989 5.vmT2.XLarge 

152 Access Home Page 100 6.481 5.vmT2.XLarge 

153 Access Home Page 200 21.66 5.vmT2.XLarge 

154 Access Home Page 400 48.636 5.vmT2.XLarge 

155 Login to the system 75 20.361 5.vmT2.XLarge 

156 Login to the system 100 8.427 5.vmT2.XLarge 

157 Login to the system 200 50.496 5.vmT2.XLarge 

158 Login to the system 400 13.335 5.vmT2.XLarge 

159 Edit configurations 75 11.568 5.vmT2.XLarge 

160 Edit configurations 100 12.688 5.vmT2.XLarge 

161 Edit configurations 200 47.5 5.vmT2.XLarge 

162 Edit configurations 400 17.511 5.vmT2.XLarge 

163 Save Configurations 75 0.595 5.vmT2.XLarge 

164 Save Configurations 100 4.154 5.vmT2.XLarge 

165 Save Configurations 200 10.604 5.vmT2.XLarge 

166 Save Configurations 400 2.659 5.vmT2.XLarge 

167 Perform Advanced Search 75 0.253 5.vmT2.XLarge 

168 Perform Advanced Search 100 1.92 5.vmT2.XLarge 
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  Steps Users Latency Hardware 

169 Perform Advanced Search 200 2.857 5.vmT2.XLarge 

170 Perform Advanced Search 400 1.318 5.vmT2.XLarge 

171 Select an Entity 75 3.696 5.vmT2.XLarge 

172 Select an Entity 100 45.471 5.vmT2.XLarge 

173 Select an Entity 200 47.489 5.vmT2.XLarge 

174 Select an Entity 400 20.378 5.vmT2.XLarge 

175 Create an Entity 75 1.657 5.vmT2.XLarge 

176 Create an Entity 100 5.055 5.vmT2.XLarge 

177 Create an Entity 200 15.043 5.vmT2.XLarge 

178 Create an Entity 400 4.784 5.vmT2.XLarge 

179 Generate an Entity 75 347.439 5.vmT2.XLarge 

180 Generate an Entity 100 115.358 5.vmT2.XLarge 

181 Generate an Entity 200 128.684 5.vmT2.XLarge 

182 Generate an Entity 400 413.918 5.vmT2.XLarge 

183 Navigate among the Pages 75 9.731 5.vmT2.XLarge 

184 Navigate among the Pages 100 19.73 5.vmT2.XLarge 

185 Navigate among the Pages 200 10.832 5.vmT2.XLarge 

186 Navigate among the Pages 400 36.276 5.vmT2.XLarge 

187 Logout 75 26.787 5.vmT2.XLarge 

188 Logout 100 61.339 5.vmT2.XLarge 

189 Logout 200 46.61 5.vmT2.XLarge 

190 Logout 400 86.05 5.vmT2.XLarge 
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Appendix D: Arranged data – Load Test Results from Rubis 

 Steps Users Latency Hardware 

1 Register User 400 16 1.vmT2.Micro 

2 Access Home Page 400 16 1.vmT2.Micro 

3 Query About me 200 4 1.vmT2.Micro 

4 Register User 100 5 1.vmT2.Micro 

5 View Item details 100 19 1.vmT2.Micro 

6 Sell Item 400 13 1.vmT2.Micro 

7 Bidding  200 28 1.vmT2.Micro 

8 Register User 400 19 2.vmT2.Small 

9 Access Home Page 200 5 2.vmT2.Small 

10 Query About me 400 5 2.vmT2.Small 

11 Register User 100 5 2.vmT2.Small 

12 View Item details 50 21 2.vmT2.Small 

13 Register User 400 10 3.vmT2.Medium 

14 Query About me 50 10 3.vmT2.Medium 

15 Register User 200 11 3.vmT2.Medium 

16 View Item details 200 28 3.vmT2.Medium 

17 Sell Item 50 26 3.vmT2.Medium 

18 Bidding  100 40 3.vmT2.Medium 

19 Register User 400 8 4.vmT2.Large 

20 Access Home Page 400 1 4.vmT2.Large 

21 Query About me 200 5 4.vmT2.Large 

22 Register User 50 14 4.vmT2.Large 

23 View Item details 100 22 4.vmT2.Large 

24 Sell Item 200 14 4.vmT2.Large 

25 Bidding  400 31 4.vmT2.Large 

26 Register User 400 13 5.vmT2.XLarge 

27 Access Home Page 50 1 5.vmT2.XLarge 

28 Register User 100 14 5.vmT2.XLarge 

29 View Item details 400 35 5.vmT2.XLarge 

30 Sell Item 200 25 5.vmT2.XLarge 

31 Bidding  50 74 5.vmT2.XLarge 
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Appendix E: Processed data – Load Test Results from Sample 

Application 

 Steps Users Latency Hardware 

1 0 5 12.032 1.vmT2.Micro 

2 0 20 0.887 1.vmT2.Micro 

3 0 50 1.4037 1.vmT2.Micro 

4 0 75 3.083 1.vmT2.Micro 

5 8 5 24.896 1.vmT2.Micro 

6 8 20 1.284 1.vmT2.Micro 

7 8 50 26.199 1.vmT2.Micro 

8 8 75 3.321 1.vmT2.Micro 

9 4 5 5.075 1.vmT2.Micro 

10 4 20 3.404 1.vmT2.Micro 

11 4 50 10.677 1.vmT2.Micro 

12 4 75 7.58 1.vmT2.Micro 

13 18 5 0.3 1.vmT2.Micro 

14 18 20 1.914 1.vmT2.Micro 

15 18 50 0.569 1.vmT2.Micro 

16 18 75 0.997 1.vmT2.Micro 

17 8 5 0.462 1.vmT2.Micro 

18 8 20 0.582 1.vmT2.Micro 

19 8 50 0.221 1.vmT2.Micro 

20 8 75 0.327 1.vmT2.Micro 

21 4 5 1.45 1.vmT2.Micro 

22 4 20 7.469 1.vmT2.Micro 

23 4 50 2.579 1.vmT2.Micro 

24 4 75 4.851 1.vmT2.Micro 

25 8 5 0.088 1.vmT2.Micro 

26 8 20 2.764 1.vmT2.Micro 

27 8 50 0.894 1.vmT2.Micro 

28 8 75 8.448 1.vmT2.Micro 

29 18 5 44.366 1.vmT2.Micro 

30 18 20 77.345 1.vmT2.Micro 

31 18 50 131.843 1.vmT2.Micro 

32 18 75 286.385 1.vmT2.Micro 

33 0 5 0.288 1.vmT2.Micro 

34 0 20 2.565 1.vmT2.Micro 

35 0 50 8.231 1.vmT2.Micro 

36 0 75 26.686 1.vmT2.Micro 

37 6 5 0.461 1.vmT2.Micro 

38 6 20 6.218 1.vmT2.Micro 

39 6 50 6.358 1.vmT2.Micro 
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 Steps Users Latency Hardware 

40 6 75 41.672 1.vmT2.Micro 

41 0 50 1.468 2.vmT2.Small 

42 0 75 2.357 2.vmT2.Small 

43 0 100 18.198 2.vmT2.Small 

44 0 200 10.003 2.vmT2.Small 

45 8 50 2.688 2.vmT2.Small 

46 8 75 4.202 2.vmT2.Small 

47 8 100 27.222 2.vmT2.Small 

48 8 200 7.377 2.vmT2.Small 

49 4 50 9.982 2.vmT2.Small 

50 4 75 13.528 2.vmT2.Small 

51 4 100 20.151 2.vmT2.Small 

52 4 200 17.417 2.vmT2.Small 

53 18 50 10.243 2.vmT2.Small 

54 18 75 12.719 2.vmT2.Small 

55 18 100 0.84 2.vmT2.Small 

56 18 200 1.159 2.vmT2.Small 

57 8 50 2.094 2.vmT2.Small 

58 8 75 13.737 2.vmT2.Small 

59 8 100 0.425 2.vmT2.Small 

60 8 200 0.644 2.vmT2.Small 

61 4 50 30.84 2.vmT2.Small 

62 4 75 39.236 2.vmT2.Small 

63 4 100 4.639 2.vmT2.Small 

64 4 200 13.442 2.vmT2.Small 

65 8 50 5.329 2.vmT2.Small 

66 8 75 12.607 2.vmT2.Small 

67 8 100 2.088 2.vmT2.Small 

68 8 200 10.537 2.vmT2.Small 

69 18 50 141.877 2.vmT2.Small 

70 18 75 244.871 2.vmT2.Small 

71 18 100 326.429 2.vmT2.Small 

72 18 200 443.219 2.vmT2.Small 

73 0 50 8.104 2.vmT2.Small 

74 0 75 3.838 2.vmT2.Small 

75 0 100 40.912 2.vmT2.Small 

76 0 200 50.946 2.vmT2.Small 

77 6 50 28.276 2.vmT2.Small 

78 6 75 20.772 2.vmT2.Small 

79 6 100 45.506 2.vmT2.Small 

80 6 200 82.27 2.vmT2.Small 

81 0 75 13.59 3.vmT2.Medium 

82 0 100 50.754 3.vmT2.Medium 
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 Steps Users Latency Hardware 

83 0 200 40.251 3.vmT2.Medium 

84 0 400 41.027 3.vmT2.Medium 

85 8 75 27.781 3.vmT2.Medium 

86 8 100 12.34 3.vmT2.Medium 

87 8 200 57.24 3.vmT2.Medium 

88 8 400 46.093 3.vmT2.Medium 

89 4 75 23.484 3.vmT2.Medium 

90 4 100 8.802 3.vmT2.Medium 

91 4 200 39.302 3.vmT2.Medium 

92 4 400 41.962 3.vmT2.Medium 

93 18 75 0.768 3.vmT2.Medium 

94 18 100 1.864 3.vmT2.Medium 

95 18 200 11.518 3.vmT2.Medium 

96 18 400 6.378 3.vmT2.Medium 

97 8 75 0.301 3.vmT2.Medium 

98 8 100 1.171 3.vmT2.Medium 

99 8 200 5.033 3.vmT2.Medium 

100 8 400 3.273 3.vmT2.Medium 

101 4 75 3.961 3.vmT2.Medium 

102 4 100 10.826 3.vmT2.Medium 

103 4 200 46.888 3.vmT2.Medium 

104 4 400 43.123 3.vmT2.Medium 

105 8 75 1.79 3.vmT2.Medium 

106 8 100 1.914 3.vmT2.Medium 

107 8 200 21.173 3.vmT2.Medium 

108 8 400 55.264 3.vmT2.Medium 

109 18 75 327.593 3.vmT2.Medium 

110 18 100 114.853 3.vmT2.Medium 

111 18 200 193.354 3.vmT2.Medium 

112 18 400 552.577 3.vmT2.Medium 

113 0 75 8.622 3.vmT2.Medium 

114 0 100 0.024 3.vmT2.Medium 

115 0 200 16.617 3.vmT2.Medium 

116 0 400 25.01 3.vmT2.Medium 

117 6 75 19.554 3.vmT2.Medium 

118 6 100 0.251 3.vmT2.Medium 

119 6 200 47.682 3.vmT2.Medium 

120 6 400 34.464 3.vmT2.Medium 

121 0 100 3.489 4.vmT2.Large 

122 0 200 18.044 4.vmT2.Large 

123 0 400 68.131 4.vmT2.Large 

124 8 100 3.264 4.vmT2.Large 

125 8 200 40.685 4.vmT2.Large 
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126 8 400 116.144 4.vmT2.Large 

127 4 100 6.484 4.vmT2.Large 

128 4 200 56.405 4.vmT2.Large 

129 4 400 54.841 4.vmT2.Large 

130 18 100 0.754 4.vmT2.Large 

131 18 200 11.012 4.vmT2.Large 

132 18 400 4.674 4.vmT2.Large 

133 8 100 0.556 4.vmT2.Large 

134 8 200 4.514 4.vmT2.Large 

135 8 400 2.397 4.vmT2.Large 

136 4 100 18.795 4.vmT2.Large 

137 4 200 50.473 4.vmT2.Large 

138 4 400 65.884 4.vmT2.Large 

139 8 100 6.713 4.vmT2.Large 

140 8 200 12.686 4.vmT2.Large 

141 8 400 4.546 4.vmT2.Large 

142 18 100 366.958 4.vmT2.Large 

143 18 200 258.551 4.vmT2.Large 

144 18 400 181.292 4.vmT2.Large 

145 0 100 36.194 4.vmT2.Large 

146 0 200 9.228 4.vmT2.Large 

147 0 400 14.085 4.vmT2.Large 

148 6 100 48.518 4.vmT2.Large 

149 6 200 36.32 4.vmT2.Large 

150 6 400 40.717 4.vmT2.Large 

151 0 75 11.989 5.vmT2.XLarge 

152 0 100 6.481 5.vmT2.XLarge 

153 0 200 21.66 5.vmT2.XLarge 

154 0 400 48.636 5.vmT2.XLarge 

155 8 75 20.361 5.vmT2.XLarge 

156 8 100 8.427 5.vmT2.XLarge 

157 8 200 50.496 5.vmT2.XLarge 

158 8 400 13.335 5.vmT2.XLarge 

159 4 75 11.568 5.vmT2.XLarge 

160 4 100 12.688 5.vmT2.XLarge 

161 4 200 47.5 5.vmT2.XLarge 

162 4 400 17.511 5.vmT2.XLarge 

163 18 75 0.595 5.vmT2.XLarge 

164 18 100 4.154 5.vmT2.XLarge 

165 18 200 10.604 5.vmT2.XLarge 

166 18 400 2.659 5.vmT2.XLarge 

167 8 75 0.253 5.vmT2.XLarge 

168 8 100 1.92 5.vmT2.XLarge 
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169 8 200 2.857 5.vmT2.XLarge 

170 8 400 1.318 5.vmT2.XLarge 

171 4 75 3.696 5.vmT2.XLarge 

172 4 100 45.471 5.vmT2.XLarge 

173 4 200 47.489 5.vmT2.XLarge 

174 4 400 20.378 5.vmT2.XLarge 

175 8 75 1.657 5.vmT2.XLarge 

176 8 100 5.055 5.vmT2.XLarge 

177 8 200 15.043 5.vmT2.XLarge 

178 8 400 4.784 5.vmT2.XLarge 

179 18 75 347.439 5.vmT2.XLarge 

180 18 100 115.358 5.vmT2.XLarge 

181 18 200 128.684 5.vmT2.XLarge 

182 18 400 413.918 5.vmT2.XLarge 

183 0 75 9.731 5.vmT2.XLarge 

184 0 100 19.73 5.vmT2.XLarge 

185 0 200 10.832 5.vmT2.XLarge 

186 0 400 36.276 5.vmT2.XLarge 

187 6 75 26.787 5.vmT2.XLarge 

188 6 100 61.339 5.vmT2.XLarge 

189 6 200 46.61 5.vmT2.XLarge 

190 6 400 86.05 5.vmT2.XLarge 
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Appendix F: Processed data – Load Test Results from Sample 

Application 

  Steps Users Latency Hardware 

1 2 400 16 1.vmT2.Micro 

2 0 400 16 1.vmT2.Micro 

3 1 200 4 1.vmT2.Micro 

4 2 100 5 1.vmT2.Micro 

5 4 100 19 1.vmT2.Micro 

6 8 400 13 1.vmT2.Micro 

7 18 200 28 1.vmT2.Micro 

8 2 400 19 2.vmT2.Small 

9 0 200 5 2.vmT2.Small 

10 1 400 5 2.vmT2.Small 

11 2 100 5 2.vmT2.Small 

12 4 50 21 2.vmT2.Small 

13 2 400 10 3.vmT2.Medium 

14 1 50 10 3.vmT2.Medium 

15 2 200 11 3.vmT2.Medium 

16 4 200 28 3.vmT2.Medium 

17 8 50 26 3.vmT2.Medium 

18 18 100 40 3.vmT2.Medium 

19 2 400 8 4.vmT2.Large 

20 0 400 1 4.vmT2.Large 

21 1 200 5 4.vmT2.Large 

22 2 50 14 4.vmT2.Large 

23 4 100 22 4.vmT2.Large 

24 8 200 14 4.vmT2.Large 

25 18 400 31 4.vmT2.Large 

26 2 400 13 5.vmT2.XLarge 

27 0 50 1 5.vmT2.XLarge 

28 2 100 14 5.vmT2.XLarge 

29 4 400 35 5.vmT2.XLarge 

30 8 200 25 5.vmT2.XLarge 

31 18 50 74 5.vmT2.XLarge 

 


