

Automated Multi-Plant Scheduling of Ready-Mixed Concrete Trucks

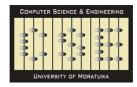
Biman D. Hettiarachchi, H.M.N. Dilum Bandara, and Nishal A. Samarasekera

biman.16@cse.mrt.ac.lk

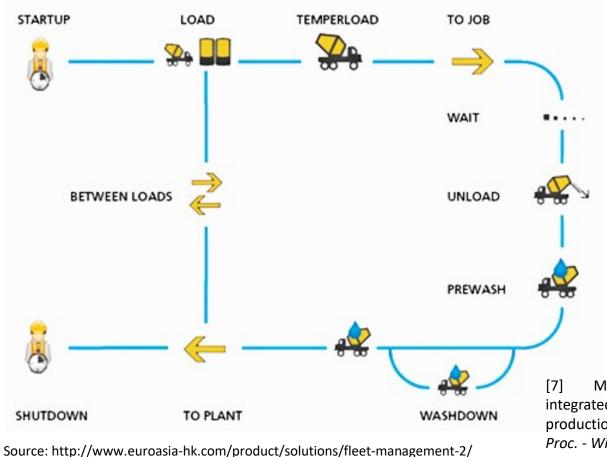
Department of Computer Science and Engineering | University of Moratuwa, Sri Lanka

Research Contribution

- Ready-Mixed Concrete (RMC) truck scheduling is mainly handled manually by experienced batching plant staff.
- Significant cost savings can be achieved by automating the scheduling process of RMC trucks.
- Developed a model to optimize scheduling of RMC trucks using a Rule Checker and Simulated Annealing.
- Proposed solution could assign jobs to plants and trucks while maximizing both the job coverage and profit up to 21% and 13%

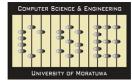

Background

About 5% of all concrete transported via RMC trucks is returned to plant [8]


- Some returned as concrete doesn't meet specifications [8]
- Others are returned, as they are not delivered within 1.5 hours as per ASTM C-94 specification for RMC [8]
- Scheduling practices, route selection, and driver behavior lead to delayed delivery and operational inefficiencies.

Vehicular data analytics can be used to reduce wastages and develop an optimized schedule and route plan for fleet

[8] F.-P. Corporation, "Savings & Applications Guide for Ready-Mixed Concrete : How to Use Fritz-Pak Products to Maximize Profits," p. 16, 2009.


RMC Delivery Process

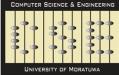
ASTM C94 (ASTM 2000) specification allows a maximum of 1.5 hours, or before drum has made 300 revolutions, whichever comes first. [7]

[7] M. Lu and H. C. Lam, "Simulation-optimization integrated approach to planning ready mixed concrete production and delivery: Validation and applications," *Proc. - Winter Simul. Conf.*, no. 1, pp. 2593–2604, 2009.

Related Work

 RMC scheduling is mostly handled by experts.

Summary of affective parameters in RMC


Specification of each order	Travel of truck(s)	Batch plant
Distance to batches	Travel time	Number of available trucks
Required amount of concrete	Unloading time	Capacity of available trucks
Spacing time between trucks	Return time	Available raw materials
Properties of required concrete	Location of project	Maximum production capacity
Time of first unload	Drivers' break times	Total number of assigned jobs

- Genetic Algorithm is proposed to solve the model.
 - Chromosomes consist of sequences of construction sites and vehicle orders and IDs.
- Considered only Single Plant and Mixer.
- Future work could focus on more complex problem of multiple plants, mixers, construction sites.

[1] M. Maghrebi, T. Waller, and C. Sammut, "Automation in Construction Matching experts decisions in concrete delivery dispatching centers by ensemble learning algorithms : Tactical level," *Autom. Constr.*, vol. 68, pp. 146–155, 2016.

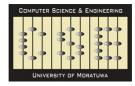
[2] Maghrebi Mojtaba, Claude Sammut, and S. Travis Waller, "Feasibility Study of Automatically Performing the Concrete Delivery Dispatching Through Machine Learning Techniques," *Eng. Constr. Archit. Manag.*, vol. 22, no. 5, pp. 573–590, 2015.

Related Work (Cont...)

Table 14

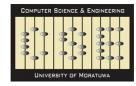
starting time departing time arriving time leaving time waiting and mixing duration unloading duration travelling [4] Z. Liu, Y. Zhang, and M. Li, duration Construction **RMC** plant "Integrated scheduling of ready-mixed site concrete production and delivery," Autom. Constr., vol. 48, pp. 31-43, 2014. cleaning returning duration duration

Fig. 4. Time flow of a truck.

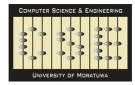

- Approach is evaluated by simulation of real cases.
- Sensitivity analysis reveals effects of fleet size of available vehicle, cost rates, and time windows of construction sites.

Results of simulations with different beginning times for construction sites.										
	CS1	CS2	CS3	CS4	CS5	CS6	CS7	TT (min)	PT (min)	Total cost
Original time window New time window	8:30 8:30	8:40 8:45	9:30 9:25	10:40 10:40	11:20 11:20	10:00 10:05	15:10 15:10	1138 1138	46.5 45.5	1151.95 1151.65
Change	0	+5	+5	0	0	+5	0	0	-1	-0.3

Motivation


- Distribute RMC from plants to sites.
- When an order is placed, assign plant and truck to deliver order while considering:
 - Order: Location, Time of unload.
 - Vehicle: Availability, Fuel Consumption, Operating hours.
 - External factors: Fuel unit price, Maintenance factor, traffic.
- Need to optimize the process → Maximize the Profit while reducing costs and Increase Job Coverage.

Problem Statement


Cover set of all jobs **J** with plants **P** and trucks **T**, such that profit is maximized across all the jobs.

Characteristics of Problem

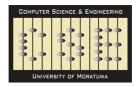
Attribute	Characteristic of the Problem
Number of Plants	Multiple
Size of Available Fleet	Multiple
Type of Available Fleet	Homogeneous
Capacity of Available Fleet	Homogeneous
Nature of Demand	Pre-defined Delivery Time
Location of Demand	Known (Geographically Dispersed)
Costs	Vehicle Operating Cost, Waiting Cost

Objective

To cover set of all jobs **J** with plants **P** and trucks **T**, such that profit is maximized across all the jobs.

$$\forall j_{id} \in \mathbf{J}, \forall p_{id} \in \mathbf{P}, \text{Max} (|j \text{ with assigned } p|)$$
$$Max \sum_{\substack{j \in \mathbf{J} \\ p \in \mathbf{P}}} (f_j - c_j)$$

Where;


$$c_{j} = (c_{travel} + c_{waiting}) \times c_{liter}$$

$$\circ c_{travel} = (((_{j_{distance}}^{haul} / t_{fuel_cons}^{load}) \times e_{peak} / e_{off_peak}) + ((_{j_{distance}}^{return} / t_{fuel_cons}^{no_load}) \times e_{peak} / e_{off_peak})) \times t_{maintenance}$$

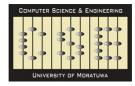
•
$$C_{waiting} = \left(\left(t_{wait_{time}}^{unload} + t_{wash_{down}} \right) / t_{fuel_{cons}}^{idling} \right) \times t_{maintenance}$$

$$\begin{aligned} f_{j} &= j_{total_distance} \times C_{unit_distance} \\ &\circ \quad j_{total_distance} = j_{num_truckloads} \times \left(\int_{j_{distance}}^{haul} + \int_{j_{distance}}^{return} \right) \\ &\circ \quad |j_{num_truckloads|} = \frac{j_{volume}}{t_{volume}} \end{aligned}$$

Constraints

Time restriction on delivery (r_{time}) as per ASTM C94 specification depends on properties of concrete.

 Varies according to special properties added to concrete during mixing stage.


Time Constraint for a truck t

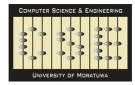
 $\forall t_{id}, p_{load_time} + t_{haul_time} + t_{unload_time} \leq r_{time}$

Range Constraint for a plant *p* can be defined as follows:

 $p_{range} = e_{speed_max} \times r_{time}$

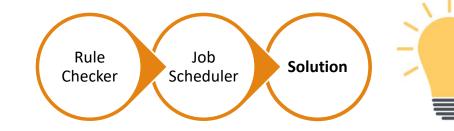
Constraints (Cont...)

Job Area Constraint

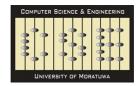

 $j_{distance}^{haul} \leq p_{range}$

Job Duration Constraint

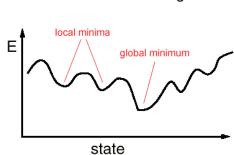
$$j_{job\ duration}^{i} \neq j_{job\ duration}^{j}, \forall^{i} \neq j$$


Travel Time Constraint per truck

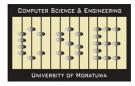
$$\left(\sum_{i=1}^{n-1} \left(t_{haul_time}^{i} + t_{return_time}^{i}\right)\right) + \left(t_{haul_time}^{j} + t_{return_time}^{j}\right) \le t_{time}^{\max_day}$$


Proposed Solution

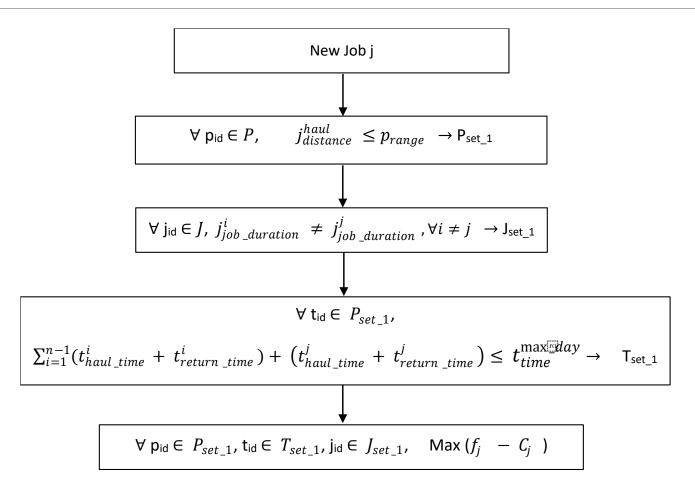
 Next day's schedule determined based on the already confirmed jobs and available plants and trucks.

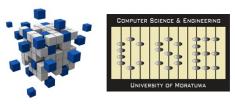

- Solution consists of a rule checker that enforces constraints.
 - Reduces the search space for the job scheduler.
- Job Scheduler uses Simulated Annealing algorithm to find the optimal solution.
 - Optimization phase attempts maximize the job coverage as well as the overall profit.
- Analysis based on a workload derived from a real RMC company.
- Eliminates error-prone and labor-intensive resource allocation.

Simulated Annealing (SA)


- Probabilistic technique for approximating global optimum of given function.
 - Powerful in solving complex combinatorial proble
 - Ability to customize algorithm.
 - Not depend on model constraints.
 - Very short computational time.
- SA had the highest accuracy [3].

[3] M. Maghrebi and S. Travis Waller, "Exploring Experts Decisions in Concrete Delivery Dispatching Systems Using Bayesian Network Learning Techniques," *Proc. - 2nd Int. Conf. Artif. Intell. Model. Simulation, AIMS* 2014, pp. 103–108, 2014.

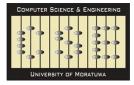



Simulated Annealing

Search Algorithm of Bayesian Network	Accuracy
Simulated Annealing (SA)	80.73
Genetic Algorithm (GA)	77.04
Hill Climbing(HC)	77.65
K2	80.24
Look Ahead Hill Climbing (LAGD)	76.97
Repeated Hill Climbing (RHC)	78.33
Tabu Search (TS)	79.46

Rule Checker

Initial Configuration

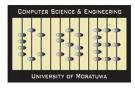

Job Scheduler

- Initial temperature : 10000
- Cooling rate: 0.003
- Terminating condition temperature <1
- Buffer Time: ±5 Minutes
 - Buffer Time is the adjustment for
 - the unload time

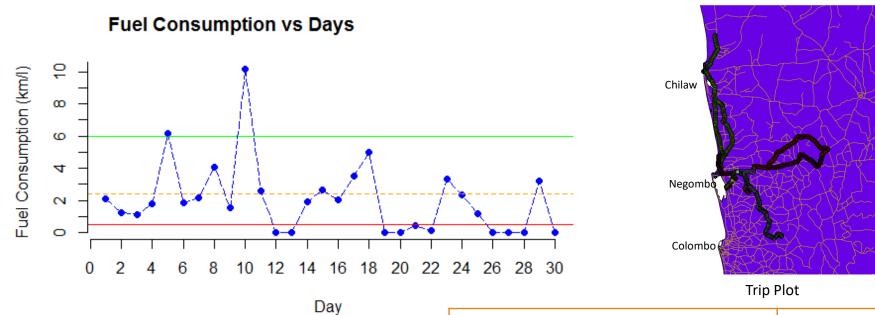
Cooling Rate and Initial Temperature was selected based on comparing the results of different initial temperatures and cooling rates by eliminating the sub optimal solutions

Objective Function

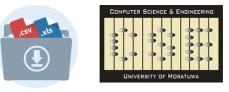
- *r*_{time} = 90 minutes
 - Assuming that no special property is added to the concrete
- $e_{speed_max} = 30 \text{ kmh}^{-1}$
 - As per the Government Regulations for Special Purpose Vehicles
- $t_{maintenance} = 1.1$


Four Solutions

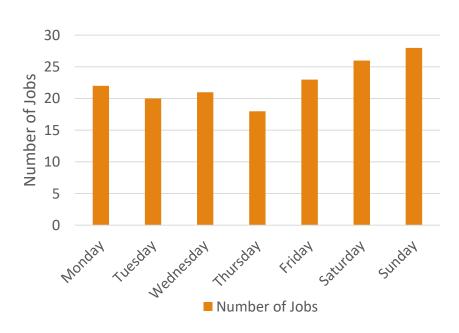
COMPARISON

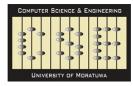

17

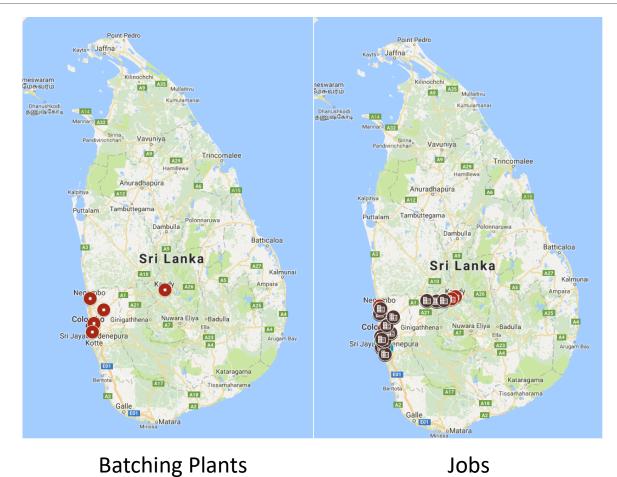
	Solution 1	Solution 2	Solution 3
Manual Solution	Fixed Plant	Fixed Plant with Time Window	Free to Move
Job to plant/truck allocation basis	Job to plant/truck allocation basis	Job to plant/truck allocation basis	Trip to truck allocation basis
Sort jobs according to First Unload Time in ascending order	Enforce constraints and conditions	"Time of first unload" is adjusted with time windows to eliminate the job duration clashes	Enforce constraints and conditions with enhanced search space
Select plant which makes maximum profit for given job and assign to the plant	Assign a job to plant/trucks randomly		Randomly assign a trip to truck
Eliminate the overlapping jobs	Job will be completely served by the assigned plant	Same conditions and steps followed as same as "Fixed Plant" solution	Truck is allowed to move freely to another plant after completing a job
Repeat the process for all jobs while eliminating overlapping jobs at each step	Assigned plant will be available for another job only after completing the assigned job		Single job is served by multiple plants


Truck Profile

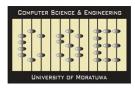
Some trucks with Capacitive Fuel sensors

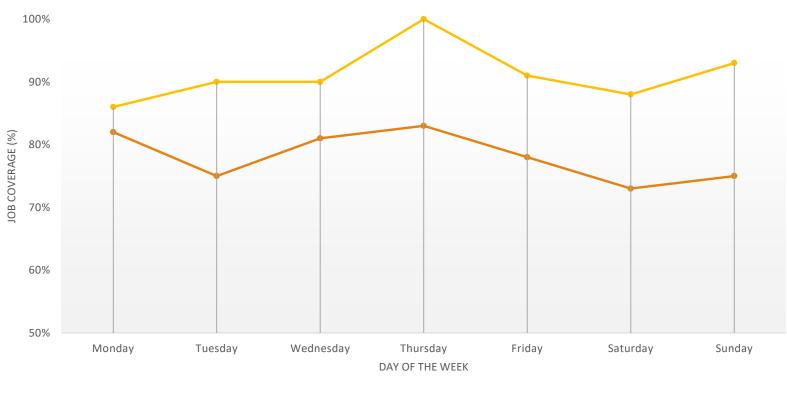

Fuel Consumption includes, Idling at plant (after loading) + Trip (One-way and Return) + Idling at site (before unloading)


Total Distance Travelled	3110 km
Total Fuel Usage	1573 liters
Average Fuel Consumption (Per Day)	2.42 km/l
# of Inactive Days	8 Days

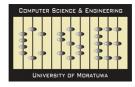

Dataset | Workload Creation

Day of the Week	Number of Jobs	Number of Available Trucks	Number of Trips
Monday	22	47	104
Tuesday	20	47	91
Wednesday	21	47	104
Thursday	18	47	90
Friday	23	47	105
Saturday	26	47	116
Sunday	28	47	125
Total	158		735



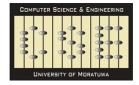


Distribution of Plant and Job Locations


Manual vs. Proposed Job Scheduling Performance (Fixed Plant Only)

----- Manual ----- SA (Fixed Plant)

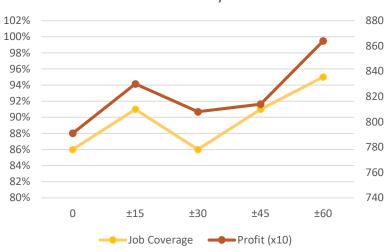
Manual vs. Proposed Job Scheduling Performance (Fixed Plant Only)

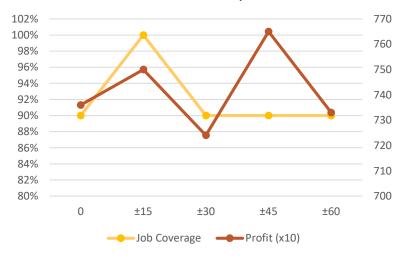

	Manual Joh	Scheduling	Proposed Job Scheduler		
		Scheduling	Fixed Plant		
Day of the Week	Profit (x10)	Job Coverage	Profit (x10)	Job Coverage	
Monday	721	82%	791	86%	
Tuesday	729	75%	754	90%	
Wednesday	736	81%	736	90%	
Thursday	567	83%	685	100%	
Friday	881	78%	885	91%	
Saturday	803	73%	924	88%	
Sunday	910	75%	1034	93%	

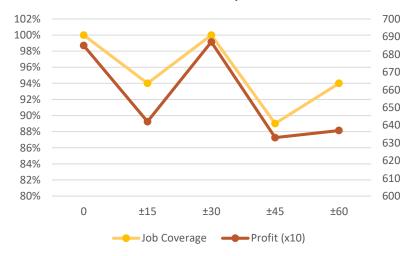
Results from Proposed Job allocation

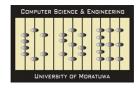
With a Varying Time Window

 As jobs have buffer time and flexibility in adjusting time of first unload

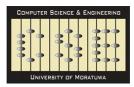

Time Window (Min)	0	±15	±30	±45	±60		
Monday							
Job Coverage	86%	91%	86%	91%	95%		
Profit (x10)	791	830	808	814	864		
	Tu	esday					
Job Coverage	90%	100%	95%	100%	100%		
Profit (x10)	754	721	744	717	865		
	Wed	nesday					
Job Coverage	90%	100%	90%	90%	90%		
Profit (x10)	736	750	724	765	733		
	Thu	ırsday					
Job Coverage	100%	94%	100%	89%	94%		
Profit (x10)	685	642	687	633	637		
	Fr	iday					
Job Coverage	91%	87%	87%	96%	91%		
Profit (x10)	885	852	873	852	858		
	Sat	urday					
Job Coverage	88%	88%	85%	92%	88%		
Profit (x10)	924	889	891	897	978		
	Sunday						
Job Coverage	93%	93%	93%	86%	93%		
Profit (x10)	1034	990	1027	970	1060		

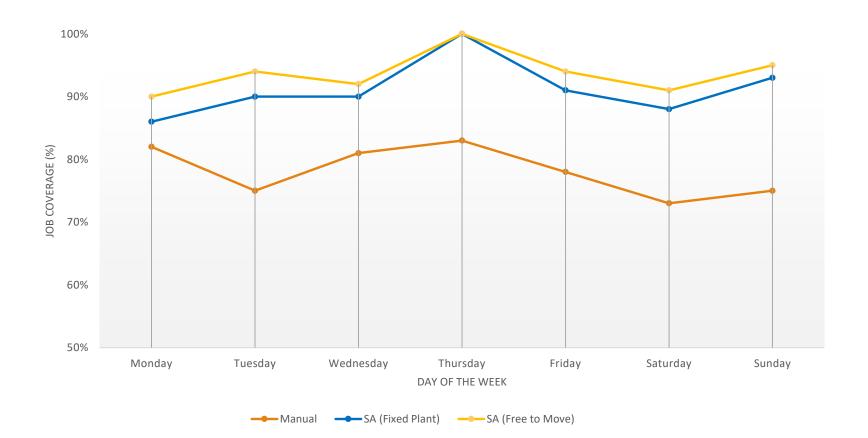



Monday


Wednesday

Thursday




Manual vs. Proposed Job Scheduling Performance (Fixed Plant and Free to Move)

	Manual Job		Proposed Job Scheduler			
Day of the	Scheduling		Fixed Plant		Free to Move	
Week	Profit (x10)	Job Coverage	Profit (x10)	Job Coverage	Profit (x10)	Job Coverage
Monday	721	82%	791	86%	812	90%
Tuesday	729	75%	754	90%	789	94%
Wednesday	736	81%	736	90%	785	92%
Thursday	567	83%	685	100%	710	100%
Friday	881	78%	885	91%	903	94%
Saturday	803	73%	924	88%	965	91%
Sunday	910	75%	1034	93%	1138	95%

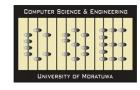
Manual vs. Proposed Job Scheduling Performance (Fixed Plant and Free to Move)

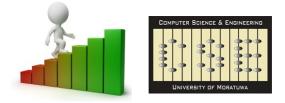
28

Summary of Results

- Compared to the Manual Job Allocation,
 - Proposed solution increases the average job coverage and profit.

	Fixed Plant	Fixed Plant (With Time Window)	Free to Move
Average Job Coverage	13%	21%	16%
Profit	9%	13%	14%

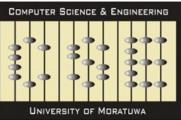

- After adjusting the first unload time by a few 10s of minutes to reduce job conflicts.
 - Enhances average job coverage and profit to 21% and 13%.


30

Summary

- Proposed a rule engine and Simulated Annealing based automated solution to schedule RMC trucks.
 - Performance analysis based on a workload derived from a real RMC delivery company.
- Proposed solution could assign jobs to plants and trucks whil maximizing both the job coverage and profit.
- Solution could further improve job coverage and profit by allowing a time window to time of first unload and by supporting delivery of same job from multiple plants.
- We plan to extend solution to tolerate unexpected delays, capture last minute delivery requests, and support prioritized customers.

Acknowledgement


- Authors are grateful to Nimbus Venture (Pvt) Ltd. for providing dataset.
- This research is supported in part by Senate Research Grant of University of Moratuwa under award number SRC/LT/2016/14

Thank You

BIMAN D. HETTIARACHCHI biman.16@cse.mrt.ac.lk

Department of Computer Science and Engineering | Faculty of Engineering | University of Moratuwa