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Abstract 

With the exponential growth of sensitive data stored in computer systems, data breaches are 

becoming inevitable. Exposure of such data breaches has also become a major problem where 

information on a data breach is published on the Internet with the motive of damaging the 

reputation of data owners. Such data breaches are mostly exposed on online text sharing sites 

like Pastebin.com and social media sites like Twitter and Facebook. Therefore, early detection 

of data leakages and evidence of hacking attacks is of prime importance to mitigate potential 

damages. We address the problem of automated identification of data leakages, as well as 

classifying and ranking such incidents while maximizing recall and minimizing false 

positives. We developed an automated, scalable monitoring platform for early detection of 

data leakages and evidence of hacking attacks. The platform preprocess, filter, classify, and 

rank the suspected message feeds collected from various sources using machine learning and 

text classification techniques. Utility of the proposed platform is demonstrated by connecting 

live Pastebin and Twitter posts, while focusing on data breaches related to Sri Lankan 

financial and government institutes. The proposed platform is scalable where it can process 

three pastes per second and 2,500 tweets per second with modest hardware and has an average 

precision of 90.44% and recall of 97.62%. 

 

Keywords: data breaches; machine learning; real-time; social media; text classification 
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1 Introduction  

1.1 Background 

With the digitalization, organizations are keeping all their data in digital form as sensitive 

data like military secrets, trade secrets enabling easy access, management, and simplified 

storage. Securing these sensitive data while allowing convenient access to authorized users is 

a crucial task for any organization. However, various design, implementation, and human 

errors/omissions enable unauthorized parties to access and expose sensitive data. Such an 

exposure of data is considered as a data breach. Unsecured data will lead to data breaches 

and can be harmful to the data owner in many ways. When valuable information is taken by 

wrong people the damages are unpredictable which will be both short and long term. 

Data breaches are inevitable today world due to several aspects like data breaches on 

government information,  targeting business parties in avocation of competitive advantage in 

business, targeting personals through phishing attacks to leverage benefits in case of personal 

contention. Data Leakage Prevention (DLP) systems are used to prevent unwanted accidental 

or malicious leakage of sensitive data into hands of unauthorized parties which would help 

organizations to self-defend their sensitive information.  

Many harmful consequences occur when a data breach is exposed, as it can reach to anyone 

who is treacherous more or less. Such data breach exposures may contain dumps with login 

credentials, database dumps, configuration files, Personally Identifiable Information (PII), 

etc. Apart from data leakages hackers leave evidence of hacking attacks. The motives behind 

full or partial data exposure includes damaging the reputation of the data owner, improving 

the reputation of the hacker among hacker communities, and as a way of proving that the 

attackers has access to data to potential buyers. 

1.2 Motivation 

Commercial Bank of Sri Lanka was hacked and its data were published online on May 12, 

2016 by the Bozkurtlar hacking group. Same group has also posted seven other data dumps 

from banks in the Middle East and Asia since April 26 [1]. Twitter was the first to reveal the 

news and only through that Commercial bank got to know about their own data exposure. By 
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that time the exposed data has been reached to everyone around the Globe. This caused a 

major damage to the reputation of Commercial Bank [1]. 

These data breach exposures mostly happen via text sharing websites like Pastebin 

applications and social media sites such as Facebook, Twitter, Google+, and LinkedIn. 

Among Pastebin applications Pastebin.com [2] is the widely used text sharing site by hacker 

communities to expose data breaches. The targeted entities are clueless about the data 

breaches and exposure until stolen data or the evidence of hacking attack is exposed in some 

media like Twitter. Data leaks and evidence of attacks of more than hundred Sri Lankan 

organizations including financial companies and educational institutes were publicized via 

Pastebin and Twitter in the recent past [3], [4], [5].  

In effective data breach incident response, early detection of data leakages is of higher 

priority. An automated, effective, and scalable monitoring platform for early detection of data 

leakages and evidence of hacking attacks in Pastebin applications and social media sites could 

speed up the aforementioned incident response. That platform should effectively automate 

identification of data leakages and evidence of hacking attacks, as well as classification of 

retrieved data. This platform should be customizable to identify data leakages and evidence 

of hacking attacks related to a given domain, from an individual to a mass scale data breach 

in real time. Real-time identification is stressed here to minimize further damages happened 

to the organization through the data breach exposure. Classification of retrieved data is of 

higher priority because a data leakage or an evidence of hacking attack need to be identified 

precisely. 

Following are some scenarios that depicts the significance of an early detection platform for 

data leakages and evidence of hacking attacks. 

Scenario one: A dump file of user emails and passwords posted as a tweet 

In such a case the platform should identify the affected parties and should notify them 

promptly so that they can take actions to change user credentials and reduce the further 

damages. This is very significant as putting user credentials in some other person’s hand 

would cause a severe damage. Once this happened to Commercial bank of Sri Lanka [5]. If 

such a system was in place, news would not go far and could have reduce the damage caused 

to the reputation of the bank. 

Scenario two: A credit card dump posted in Pastebin with CVV2 and other sensitive data 



3 

Credit card fraud is a major source of financial losses in today’s world which is an 

unrecoverable loss for the individuals. Hackers used to publish the credit card dumps on 

internet mostly through Pastebin. The Bank Identification Number (BIN) of the credit card 

numbers are matched to identify the issuing banks of the breached accounts. Also the bank 

can remove the related content with credit card numbers from Pastebin by reporting the 

incident to the website administrators. 

Early detection of data leakages and evidence of hacking attacks, and immediate response by 

the data owner reduces escalation of damages. Most of the organizations currently have 

various manual methodologies to detect data breach exposures through Pastebin sources and 

social media which causes to spend significant amount of time and effort. Therefore, it is 

imperative to have an automated early detection platform for the above addressed problem. 

LeakHawk 1.0 is such a solution proposed by Nalinda Herath [6]. A working model of the 

proposed platform was implemented as a proof of concept. The PoC monitors 

www.pastebin.com, the mostly used Pastebin application, for sensitive information leakages 

and evidence of hacking attacks related to Sri Lanka. LeakHawk 1.0 is more focused on the 

depth of the problem rather than the breadth. It considers all the Pastebin feeds as textual 

content and use text-engineering techniques to categorize the content. To cover the breath, it 

is required to integrate social media feeds. Apart from that the sub-modules in LeakHawk 1.0 

needs to be improved to gain higher recall value and minimize false positives, while being 

scalable enough to handle large number of messages. 

1.3 Problem Statement 

The problem addressed by this project as be formulated as follows:  

In the event of a data leakage how to classify/rank such incidents while maximizing recall 

and minimizing false positives? 

In a situation where sensitive information belongs to a particular party is exposed through 

Internet, there should be a monitoring platform or some mechanism to identify them promptly. 

The system should not eliminate any sensitive data leakage or evidence of hacking attack as 

false negatives and should minimize the number of false positives to reduce the management 

overhead. The accurately identified content should be analyzed and classified/ranked based 

on the severity of the data breach. The severity ranking should be based on classifying the 
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content of the post as critical, high, or low. In a scenarios where the leaked content is not 

available, but an evidence of a data breach or a hacking incident is available, the system should 

able to identify them as well to improve the accuracy.  

The development of a solution for data leakage incident detection can be depicted as a text 

classification research problem of non-structured and semi-structured data, as contents of the 

posts in Pastebin and Twitter are textual inputs. Therefore, for the text classification problem 

could be addressed using machine learning techniques and rule-based methods. The textual 

input needs to be preprocessed only to seek the significant textual content by removing 

unwanted text like stop words in a language. The semantics in preprocessed textual input is 

extracted and the severity of the content is ranked and predicted from the extracted semantics. 

To improve the accuracy and reduce false alarms all the posts from a given source should be 

taken into account. This requires scalable stream processing techniques. Although stream 

handling is done properly some posts can still be missed out due to variable delays in the 

system and network. To handle this incorporation of message queuing tools and techniques 

are required. Because textual inputs from different data sources are in different formats and 

lengths, filtering and classification may need to be customized for each data source. Some of 

the posts may contain one or more URL(s) which may be an evidence of hacking attack which 

needs to be explored further to find whether the content of that post contains a data leakage 

or an evidence of hacking attack. This leads to improve accuracy and reduce false alarms as 

most of the aspects that a textual input in post can be checked are considered. Therefore, it is 

important to process both a single post and a chain of linked posts. 

1.4 Research Contributions 

We make the following research contributions:  

● Designed and developed a real-time, automated, scalable platform for early detection 

of data leakages and evidence of hacking attacks related to a user defined domain. The 

proposed platform is named LeakHawk 2.0. 

● The proposed platform is scalable where it can process 3 pastes per second and 2,500 

tweets per second with modest hardware and has an average precision of 90.44% and 

recall of 97.62%. 
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● The proposed platform is customizable where several data sources like Facebook and 

Google+ could be integrated and direct for further processing. 

● An open source implementation for pastebin.com and Twitter for real-time 

identification of data leakages and evidence of hacking attacks. 

● We further developed a text corpus of Pastebin and twitter posts that can be used for 

further researches in the information security domain. 

1.5 Outline 

Rest of the report is organized as follows. Chapter 2 discusses existing literature relevant to 

the project. Design of the system and its architecture are presented in Chapter 3. Chapter 4 

presents the implementation details of the project including the tools and technologies, system 

components and dashboard. Performance analysis of LeakHawk 2.0 and comparison with 

earlier system is presented in Chapter 5. Chapter 6 concludes the report with problems 

encountered, challenges, and future work. 
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2 Literature Review  

In this chapter we formulates the background information and existing literature related to the 

research problem. We first present an introduction to data breaches and evidence of attacks in 

Section 2.1. Furthermore, it presents the criticality of exposing the evidences of hacking 

attacks and sensitive data leakages on the Internet. Section 2.2 provides a brief history of 

security incident exposures related to Sri Lanka and other countries. Section 2.3 analyze 

Pastebin and Twitter in terms of architecture, features and limitations with respect to security 

incident monitoring. A discussion on the existing monitoring systems and their capabilities 

are presented in Section 2.4. Section 2.5 discusses real-time stream handling techniques that 

can be applied to handle large data feeds. Section 2.6 analyzes the text classification 

methodologies and how they can be incorporated to the design of LeakHawk.  

2.1 Data Breaches and Evidence of Hacking Attacks    

A data breach can be defined as an incident that involves the unauthorized or illegal viewing, 

access or retrieval of data by an individual, organization or a country. It is a type of security 

breach specifically designed to steal and/or publish data to an unsecured or illegal location. A 

data breach occurs when an unauthorized person accesses a secure database or a repository. 

A data breach may result in data loss, including financial, personal and health information. A 

hacker also may use stolen data to impersonate himself to gain access to a more secure 

location. For example, a hacker's data breach of a network administrator’s login credentials 

can result in access of an entire network [7]. 

A data breach can be carried out unintentionally or intentionally. An unintentional data breach 

occurs when a legitimate custodian of information such as an employee loses or negligently 

uses corporate tools. An employee who accesses unsecured websites, downloads a 

compromised software program on a work laptop, connects to an unsecured Wi-Fi network, 

loses a laptop or smartphone in a public location, etc. runs the risk of having his company’s 

data breached. In 2015, Nutmeg, an online investment management firm, had its data 

compromised when a flawed code in the system resulted in emailing the personally 

identifiable information (PII) of 32 accounts to the wrong recipients. The information that 

was sent out included names, addresses, and investment details and put the account holders at 

risk of identity theft [8].  
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An intentional data breach occurs when a cyber attacker hacks into an individual’s or 

company’s system for the purpose of accessing proprietary and personal information. Cyber 

hackers use a variety of ways to get into a system. Some embed malicious software in websites 

or email attachments that make the computer system vulnerable to easily enter and access data 

by hackers. Some hackers use botnets, which are infected computers, to access other 

computers’ files [8].   

A data breach can be harmful in many ways. Once the sensitive information is put in wrong 

hands, the consequences are unpredictable. For example, it could put an entire nation at risk 

of a terrorist attack or an organization may have to pay a huge penalty or lose its reputation, 

damaging its competitive advantages. An individual who is subjected to a credit card breach 

may lose a significant amount of money via unauthorized transactions [9]. 

Owners and users of a breached system or network don’t always know immediately when the 

breach occurred. In 2016, Yahoo announced what could be the biggest cybersecurity breach 

yet when it claimed that an estimated 500 million accounts were breached. Further 

investigation revealed that the data breach had actually occurred two years prior in 2014. 

While some cyber criminals use stolen information to harass or extort money from companies 

and individuals, others sell the breached information in underground web marketplaces that 

trade in illegal assets. Examples of information that are bought and sold in these dark webs 

include stolen credit card information, business intellectual property, SSN, and trade secrets 

[8].  

2.1.1 Evidence of attacks 

Apart from sensitive information, hackers publish evidence of attacks via social media and 

text sharing sites. In most cases, results of politically motivated attacks and Hacktivist 

movements are posted online to embarrass the targeted entities [6].  

 

Figure 2-1: Data Breach exposure via Twitter 
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Notably, attacks such as web site defacements, DDoS attacks, SQL Injection attacks, and DNS 

related attacks (zone transfers and cache poisoning) are exposed. Some examples of evidence 

of hacking attacks are illustrated in Figure 2.1, Figure 2.2 and Figure 2.3. 

 

 

Figure 2-2: Commercial Bank attack exposed via Twitter 

 

 

Figure 2-3: Commercial Bank attack exposed via Pastebin 
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2.1.2 Making Data Breaches and Hacking Incidents Public 

The majority of successful companies of today are well aware of common data security issues 

and they put a great deal of trust into their own efforts towards preventing a data security 

breach. However, as demonstrated by recent security breaches of several large, tech-savvy 

companies no set of security measures is completely infallible to a breach. 

For organizations that own critical information assets such as customer data, intellectual 

property and proprietary corporate data, the risk of a data breach is much higher. When it 

comes to government and military-related entities, risk of a data breach becomes more and 

more critical. Even the organizations that do not have very sensitive information under their 

repositories, but maintains a good online presence, will be under great dissatisfaction with 

respect to their reputation. For example, the primary website of a renounced non-profit 

organization can be defaced by a Hacktivist group which eventually poses a severe damage 

to their reputation [6].  

Hackers expose the stolen data with several intentions. Sometimes cyber criminals are paid 

by some parties to compromise the infrastructure and data owned by their opponents. While 

the breached data is being used for various misconducts, once the utilization of those data is 

done or the value of the data is expired, attackers tend to publish the content on the Internet 

to carry out further damage to the reputation of the data owner or the organization. For 

instance in the recent data breach of one of the major private banks in Sri Lanka, the published 

content did not affect a direct financial loss, but greatly impaired the reputation of the bank 

[1]. Alternatively, a successful penetration of security parameters of a renowned organization 

could significantly improve the status of a hacker who conducted the attack. Revealing the 

stolen content will prove the hacking attack and the attackers will be endorsed among the 

hacking communities. 

Some attackers target the vulnerabilities of popular websites to let them know about the lack 

of controls and the security holes of their external security system. The motive behind such 

attacks is not malicious, but exposing the vulnerabilities into public channels will violate the 

white-hat security principles. Some hacking incidents are done and made public by the 

attackers just for their own pleasure.  
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2.2 Data Leaks Related to Sri Lanka  

Organizations that store and process sensitive and valuable trade and market information, 

client information and transaction history data, continues to be at the top of potential targets 

for cyber criminals who probe, scan and penetrate the IT infrastructure of these organizations 

to carry out massive cyber-attacks.    

For years, cyber warfare has been used to conduct destruction against governments, officials, 

public and private corporations. Cyber warfare has targeted missile guidance systems, power 

grids, nuclear reactors and more [10]. Although not being an iconic character in the cyber 

warfare, Sri Lanka has suffered numerous hacking incidents which have been exposed via 

online channels. In 2011, a series of attacks were carried out by a hacker group called 

AnonymousSriLanka targeting a set of government institutes, educational institutes, and 

Internet Service Providers [3]. These attacks were politically motivated and identified as an 

outcome of anger towards Sri Lanka after the eradication of LTTE terrorists. In 2013, another 

set of attacks were conducted against a set of online targets belong to Sri Lankan organizations 

[4]. Apart from these major incidents, some ad-hoc sensitive information dumps and evidence 

of hacking incidents have been posted in online channels time to time. In general, around 80% 

of the reported events are exposed via Pastebin applications. Most out of the remaining 

incidents are exposed via social media feeds. Recent incident targeting one of the major 

commercial banks in Sri Lanka was exposed via Twitter Feed [1] and Pastebin. The dump 

contains 158,276 files in 22,901 folders and is about 6.97 GB uncompressed. The 

compromised data contains annual reports, application forms, bank financial statements, .PHP 

files, web development backups and other files needed for the functioning of the bank's 

corporate front-end web infrastructure. The attackers appear to have compromised the bank's 

systems using a SQL injection attack and uploading a web shell - a script that enables remote 

administration - onto the bank's PHP server. 

2.3 Pastebin and Twitter  

A paste is defined as a textual content posted onto a website where it receives its unique URL 

so that it can then be shared to access the paste. The contents of a paste could be a game chat, 

a programming code chunk, configuration file, a recipe, a dump of leaked information. Text 

sharing sites allow users to post pastes and allow for public viewing. These simple websites 

provide the users an easy interface for creating, managing and sharing textual content via 
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multiple channels. These web applications were originated to assist Internet Relay Chat (IRC) 

to share a large amount of texts between users using the unique URL provided by the website 

[6]. 

2.3.1 Pastebin  

Pastebin is a popular website for storing and sharing text. Though it’s mostly used for 

distributing legitimate data, it seems to be frequently used as a public repository of stolen 

information, such as network configuration details and authentication records. Various hacker 

groups and individuals also use Pastebin to distribute their loot the highest—a trend perhaps 

initially set in motion by LulzSec [11]. 

www.pastebin.com was the first Pastebin application which was developed in 2002 [2]. It is 

the most popular Pastebin among the programmers as well as hacking communities. First 

security information breach on Pastebin was reported in 2009 when roughly 20,000 

compromised Hotmail accounts were disclosed in a public post. Being simple, reliable and 

easy-to-use, text sharing websites such as Pastebin allows their users to even anonymously 

publish documents online and keep them valid for a longer time span. These are ideal 

conditions required by hacker groups to publish sensitive information on the Internet. The 

properties of Pastebin that causes it to become popular among hacker community are ease of 

use, non-authentication to post anything and allows sharing long text messages without 

limiting content [6]. 

2.3.1.1 Pastebin Structure 

This section describes the attributes and functionalities of www.pastebin.com regarding the 

importance of monitoring for sensitive information leakages and evidence of hacking attacks. 

Figure 2-4 illustrates the homepage of Pastebin and Table 1 describes the each attribute of the 

main interface in detail. Trending Pastes page allows the users to view the pastes with most 

hits [12]. It can be customized to display popular pastes at different times such as right now, 

last seven days, last 30 days; last 365 days and all time. Figure 2-5 shows the trending pastes 

in the last month. As seen in the figure, almost all the pastes are apparently related to a data 

leak or hacking incident. Public Archive or the Paste Archive page lists all the newly added 

pastes on a single page [13] as shown in Figure 2-6. If anyone is interested in scrapping 

Pastebin for data leaks or hacking notifications, he/she will need to monitor this page. 

However, the application does not allow the users to make too many requests. Such IP will 
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be blacklisted for few hours. Most of the Pastebin applications follow the same behavior and 

that is one of the hurdles in building Pastebin monitoring tools [6].  

 

Figure 2-4: Pastebin Main Interface 

Table 1: Attributes of Pastebin main interface 

Section Description/Importance 

Trending pastes Trending pastes lists the most frequently accessed pastes by all the users. Mostly this 

section lists leaked data from popular targets as such data will attract a lot of attention. 

Pastebin API Pastebin provides an API for the users to publish their posts conveniently. It also 

provides a scraping API (paid service) for searching and downloading pastes. 

Pastebin alerts Pastebin allows the users to provide a set of keywords and be notified via e-mail when a 

post is made containing any of those keywords. 

Text insert area This area will contain the text dumps. Normal users can post data up to a maximum size 

of 512 kilobytes; PRO users can paste up to 10MB. A single paste can accommodate 

considerably a larger text dump which is one of the reasons paste sites are used by 

hacking communities to dump their data. 

Pastes by the user Lists the pastes made by the logged-in user. 

Public pastes This section is called the Pastebin Archive. It is frequently being updated with all the 

public pastes made by all users. If someone is interested in monitoring the Pastebin real 

time for leaked data, he will be required to focus on the content of this page. 
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Figure 2-5: Trending posts page - Pastebin [Snapshot was taken on 8 Nov 2017] 

 

 

Figure 2-6: Site structure of Pastebin public archive page [pastebin.com] 
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Figure 2-7 is a paste/post that was published on Pastebin by user ANONYMOUSSRILANKA 

regarding a data breach of University of Moratuwa Sri Lanka.  

 

Figure 2-7: Data dump posted on Pastebin 

Although the Pastebin is frequently being misused for posting breached data, hacking 

notifications, login credentials, pornographic content, website does maintain an Acceptable 

Use Policy. Pastebin makes it clear that posting personal data, email lists, login credentials 

are against the AUP and will result in its removal. However, with the amount of posts being 

made per day, the site administrators depend on the abuse reports submitted by the users for 

content removal, rather evaluating each paste. However, the other Pastebin applications may 

be less accommodating, which require commercial or legal motivation for content removal 

and to retrieve origin information to support forensic investigations [6]. 

2.3.2 Twitter     

A tweet is a short text message posted by users on Twitter which is limited by 140 characters 

and allows user’s followers to view the tweet. If a user likes to have other’s posts on their 

timeline, he is called a follower. Twitter has been used as a medium for real-time information 

dissemination and it has been used in various brand campaigns, elections, and as a news 

media. Since 2006 when its launch, Twitter has an increasing popularity and as of August 

2013 about 500 million tweets are being generated every day and 200 billion tweets annually 
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[3]. When a new topic becomes popular on Twitter, it is listed as a trending topic which is a 

short phrase or a hash tag. The following are some identified reasons why hackers prefer 

social media for data leakage: 

● Easy login to social media sites – Anyone can create an account and use the credentials 

to login to the site and no validation on provided information.  

● Access to social media available on limitless devices - Apps have been created for 

easy login which makes the environment for hackers to leak data.    

● Large  number of users - Since there’s a large number of users all around the world it 

is easy to publish a message so that a large social group can view it when the post is 

made public. 

● Upload photos/videos and files - Unrestricted photo albums and videos allow everyone 

to view the photos and videos that are potentially sensitive to organizations which 

makes a preferable chance for hackers.  

● No limit on number of posts - Any user can post anything anytime in any  number of 

times a day. No mediator to validate a post unless it is reported by a user. Hackers can 

not only leak data but can express bad things about an organization with the motive of 

harming the reputation of the organization. Although there’s a character limit in 

Twitter, there’s no limit in Facebook where any long post can be posted.   

 

These facts create ideal conditions for hackers to leak data through social media like Twitter. 

2.3.2.1 Twitter Structure 

This section describes the attributes and functionalities of www.twitter.com regarding the 

importance of monitoring for sensitive information leakages and evidence of hacking attacks. 

Figure 2-8 illustrates the homepage of twitter and Table 2 describes each attribute in detail.  
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Figure 2-8: Twitter Homepage 

 

Table 2: Features of a Tweet 

Section Description/ Importance 

Trends 

   

Trends  section contain the top ten current trending topics of tweets. Hackers could use 

one of this trending topics to tweet some hacked data and it’ll reach an enormous 

number of users.  

Tweet  This button can be used to post a new tweet in Twitter which allows to add photos and 

videos to the tweet.   

Twitter API Twitter REST API and Streaming API can be used to public tweets that are posted with 

all the metadata related to the tweet.   

Twitter news feed The news feed contain the tweets of followers of the logged in user.  

Suggestions  The suggestions shown in top right corner can be used to follow any interested parties 

and get their tweets to our timelines. 

Notifications Notifications are shown when some user started following the logged user. 

Messages This tab can be used to send direct message to some authenticated user. 

Following This shows how many users that we are following  

Followers This shows how many users follow us   
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Figure 2-9 illustrates tweets that were on Twitter by regarding hacking attacks on a private 

bank and NIBM Sri Lanka.  

 

Figure 2-9: Tweets regarding hacking attack in Sri Lanka 

2.4 Existing Monitoring Systems  

2.4.1 Facebook Monitors Pastebin for Leaked Credentials 

Facebook has started monitoring Pastebin and other text sharing sites after the incident of 

leakage of 700,000 Dropbox credentials with emails and passwords [14]. This process was 

initiated to monitor leakage of credentials of Facebook users [15]. 

This monitoring is not only on Facebook credentials of those users, since the same password 

is used across several websites this system monitors all of them. When an email password 

pair dump is found on a text sharing site this system automatically check them with the user 

database of Facebook. Since this only monitors email password credential leaks this is not 

extendable or customizable to monitor other sensitive content. The underlying architecture is 

not made open source here. 

2.4.2 Haveibeenpwned.com [HIBP] 

Haveibeenpwned is a monitoring platform that allows users to check whether their personal 

data has been exposed. HIBP also allows users to sign up and get notified if their personal 

data is compromised in future through data breaches. This system keep track of data breaches 

happened in Internet and stores them in the database so that users can query later and check 

whether their data has been compromised. This too only allows users to check against 

credentials no other things like credit card dumps, configuration file dumps etc. which are 

frequently been pasted in Internet. HIBP highly depends on DumpMon, a twitter bot that 
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monitors Pastebin for possible data leakages [16]. A scalable architecture is not found here in 

HIBP. 

2.4.3 Pastefind 

Pastefind monitors Pastebin for new pastes which is a python script and source code is 

available in [17] which is not currently maintained or managed by the developer. Due some 

recent changes in Pastebin pastebinfind.py is not functioning as expected. Pastefind allows 

users to set a time parameter for the time period between two requests made to Pastebin since 

Pastebin black lists IPs which make frequent requests through the APIs. 

2.4.4 Google Alerts and Google Custom Search 

Google alerts can be used to monitor pastebin.com [18] which is not that efficient because it 

depends on the indexing of Google search engine. Google search in addition can be used to 

monitor Pastebin by using the accurate queries.   

2.4.5 PasteMon 

PasteMon [19] was initially developed in python which was later rewritten in Perl. 

Pastemon.pl runs as a daemon in the background and monitors Pastebin for a sensitive content. 

PasteMon utilizes keyword based rules and regular expressions to identify possible data 

leakages in Pastebin sites. PasteMon itself has a decent recall and it introduces a large number 

of false positives as the output from the system.  

2.4.6 LeakedIn 

LeakedIn [20] monitors Pastebin based on PasteMon script which was initially developed to 

give a look and feel to users on data breaches. This wholly covers a better breadth by 

considering a larger scope of data breaches while introducing a considerable number of false 

positives to the system. LeakedIn utilizes regular expressions for the processing. 

2.4.7 DumpMon 

DumpMon is a Twitter bot that monitors Pastebin sites [16] to identify sensitive information 

leakage. DumpMon uses regular expressions to process the textual input where it monitors 

sensitive content related to account/database dumps, Google API Keys, SSH private keys, 

Cisco Configuration Files, and Honeypot Log Dumps. 
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Figure 2-10: DumpMon Twitter account 

DumpMon monitors Pastebin sites for sensitive data and maintain a multithreaded 

environment by enforcing a thread for each site to monitor new pastes. Once a possible data 

leakage is found it posts a tweet in Twitter about the possible data breach. 

DumpMon introduces a large number of false alarms to the system which brings the need of 

a multilayered architecture with several filtering layers to improve accuracy, precision and 

recall. 

A set of tweets on possible information leak is illustrated in Figure 2-11.  

 

Figure 2-11: DumpMon tweets on possible information leaks 



20 

The DumpMon architecture can be illustrated as in Figure 2-12 which is a multithreaded 

environment. 

 

Figure 2-12: DumpMon architecture  

2.4.8 LeakHawk 1.0 

LeakHawk 1.0, the first version LeakHawk 2.0 is a Proof of Concept that leverages pattern 

based and machine learning based methodologies to detect data leakages and evidence of 

hacking attacks by monitoring Pastebin [2]. It has addressed the same as the problem that is 

addressed in this research which is “In the event of a data leakage, how to identify and 

classify/rank such incidents while maximizing recall and minimizing false positives”. 

LeakHawk 1.0 follows a layered architecture as shown in Figure 2-13. 

Connectors are used to monitor and access new pastes made in Pastebin and feed them to 

aggregation layer. At the aggregation layer the entered data are preprocessed and aligned to 

feed to classification layer of the system. Classification layer is the core of the platform and 

all text processing and analysis is done here. Database layer stores the retrieved data along 

with the metadata which is fed into the classification layer for processing. It stores domain 

information which LeakHawk is configured to monitor. Also it maintains administrative 

contacts of data owners to notify about identified data leakages and evidence of hacking 

attacks. When a security incident is predicted, Notifier alerts the respective data owners via 

the configured methods (e.g. email and SMS). 
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Figure 2-13: Layered architecture of LeakHawk 1.0 

The high level architecture design of LeakHawk 1.0 is shown in Figure 2-14. 

 

Figure 2-14: High level architecture design of LeakHawk 1.0 
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Connectors incorporates multiple feeds from different data sources (e.g., Pastebin 

applications, Twitter feeds, etc.) by keeping an uninterrupted connection with the particular 

data source and aggregator aggregates them into the primary classification engine, the 

LeakHawk Core. There are different connectors for different data sources while one 

aggregator is used to aggregate all inputs from different data sources. The combination of a 

connector and an aggregator is known as a sensor. So the relevant sensor will be notified when 

a post is made in the particular data source and download and feed it into the internal core. 

The sensor used to retrieve posts from Pastebin is the Pastebin sensor which is a java based 

application that is used to retrieve all the new posts promptly from pastebin.com site. New 

pastes are downloaded and stored in LeakHawk database along with metadata of the post. The 

implementation of Pastebin sensor satisfies non-functional requirements like timeliness, 

comprehensiveness, non-violation of Acceptable Use Policy (AUP) of Pastebin. In order to 

query new posts from Pastebin scraping Application Programming Interface (API) can be 

used with java. A normal user cannot access all the posts with a given efficiency since 

Pastebin doesn’t allow that and blacklist the user. So to have a particular efficiency in retrieval 

need to be a PRO member of Pastebin. 

The generic classification engine is made to work independently to ensure loose coupling 

between the modules of the platform which increases reusability and modularization of the 

system. There are sub-modules within the LeakHawk Core as shown in below figure. They 

will classify each textual input into one or more predefined classes and classify them 

according to a rule-based mechanism designed for each class. 

The component architecture of LeakHawk 1.0 is shown in Figure 2-15 

LeakHawk Core is the primary processing engine of the monitoring platform. The submodules 

of LeakHawk core are Pre Filter, Context Filter, Evidence Classifier, Content Classifier and 

Synthesis. After aggregators aggregating the textual input into classification engine it is fed 

into the Pre filter. The primary objective of Pre filter is to filter-out non-sensitive data inputs 

like code snippets, game chat sessions, pornographic content, torrent information, non-textual 

pastes and trial and empty pastes. Here Pre filter, Context filter and Evidence classifier uses 

keyword based and regular expression based approach while Content filter uses both pattern 

based and machine learning based approach. Pre filter screens out non-related input posts 

which reduces processing overhead in next filters and classifiers. The post types that needs to 

be screen out were identified by analyzing the training corpus retrieved from Pastebin. Some 
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preprocessing techniques were used in the Pre Filter which reduces further overhead of 

processing. The usage of Pre Filter is made optional since it brings a lot of false positives is 

of less usage in this context. 

 

Figure 2-15: Component architecture of LeakHawk 1.0 

The context filter is used to screen out non context related information and extracts only the 

input documents related to the context the system is focused on. The context defines the 

information regarding a particular organization, nation or an individual that is unique for each 

entity. If LeakHawk is utilized by an individual, he/she can configure a template for the 

context containing his/her unique information domain. The filtered data from Pre filter is sent 

to Context Filter to check whether it contains data related to defined domain or context. The 

information domain is defined by a user or an administrator with their preferred domain 

information which defines which needs to be filtered into the system for further processing.  

The Evidence Classifier is used to identify whether the input document indicates an evidence 

of an attack or a sensitive information leakage. In Evidence classifier several heuristic 

checkpoints were considered which can be used later to define feature vector when applying 

machine learning techniques. From this the feature vector can be inferred and apply machine 

learning techniques to evidence classifier. 

Pre filter, Context Filter and Evidence Classifier uses regular expression based matching to 

extract relevant input documents that contains evidence of attack. Content Classifier classifies 

each textual input into a set of predefined classes. Each input document is classified into one 
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or more of the nine defined classes. For each classifier from nine classifiers in Content 

classifier, a set of heuristics can be defined which later helps to infer the feature vector that is 

used in machine learning. Here unigrams, bigrams and trigrams were considered to minimize 

false positives resulting from the classifier. 

After the class assignment done in the content classifier, LeakHawk core performs a set of 

rule-based checks to identify the sensitive content with respect to the each class. For instance, 

the Content Classifier labels a particular input document as a Credit Card Information Dump 

based on the content and metadata of the document. The system labels the sensitivity of a 

document as CRITICAL, HIGH, or LOW according to semantics and magnitudinal facts 

found in the post.  

In the performance analysis done on each component Pastebin sensor was find to work 100% 

well. Author has submitted 40 posts to Pastebin within a period of 1 minute and verify whether 

LeakHawk can fetch all the posts and the result was LeakHawk downloaded all the 40 posts 

altogether 58 (18 usual posts by others) posts pasted within a one-minute cycle. This was done 

10 times in 8 days in 2 weeks’ time period to get the results and no false negatives found. The 

limitation in Pre filter is it adds a large number of false negatives to the system. So the utility 

of this filter was made optional in LeakHawk 1.0. 

The performance of the Context Filter exclusively depends on the values of the information 

template. A corpus of 2300 data with 220 positive data samples and 2080 negative data 

samples were used to evaluate the accuracy of Context Filter. For instance in LeakHawk Sri 

Lankan domain was used in Context Filter the words like “Sri Lanka”, “Lanka” contributed 

in a larger portion for the accuracy of the Context Filter. The word “LK” has led to a higher 

number of false positives. But without “LK” it led to a very high number of false positives 

increasing the false positive rate by 50%. Pattern matching mechanisms gives the same result 

by adding more and more false positives although it gave certain results.  

The extracted content related to Sri Lankan domain are fed into the Evidence Classifier and 

Content Classifier for further text classification process. 940 positive samples were fed into 

Evidence Classifier and is fed with 10 different samples of test data with the number of entries 

per seed ranging from 100 to 1,000. 1193 positive samples were fed into Content Classifier 

and is fed with 20 different sample test sets with the number of entries per seed ranging from 

30 to 850. 
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2.5 Real-Time Character Based Stream Handling   

In context of the information, real-time processing means transforming the latest available 

information, handling the numerous data as it is generated. It can also take as when talking 

about real-time processing, it means processing the data with very low latency. 

2.5.1 Stream Processing - Apache Storm 

Stream processing [21] enables us to analyze the stream to extract mathematical or statistical 

information analytics on the runtime within the stream. Stream processing solutions are 

designed to handle Big Data in real time with a highly scalable, available, and fault tolerant 

architecture. 

Apache Storm is a real-time fault-tolerant computation system for processing large volumes 

of high-velocity data. Storm is currently being used to run various critical computations in 

various places in real-time and it is a free and open source distributed real-time computation 

system. 

Characteristics of Storm are, 

● Fast – Benchmarked as processing one million 100 byte messages per second per 

node 

● Scalable – With parallel calculations that run across a cluster of machines. And it is 

designed to add or remove nodes from the cluster without disturbing existing data 

flows through storm topology.   

● Fault-tolerant (Resilient) – When workers die, Storm will automatically restart them. 

If a node dies, the worker will be restarted on another node. Since storm is normally 

deployed in a large cluster, the storm topology can continue processing existing 

topology with minimum performance impact when one machine is failed due to any 

reason.    

● Reliable – Storm guarantees that each unit of data (tuple) will be processed at least 

once or exactly once. Messages are only replayed  when there are failures 

● Easy to operate – Standard configurations are suitable for production on day one. Once 

deployed, Storm is easy to operate. 
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2.5.2 Overview of Storm 

Storm runs on a distributed cluster. Clients submit topologies to a master node, which is called 

the Nimbus. Nimbus is responsible for distributing and coordinating the execution of the 

topology. The actual work is done on worker nodes. Each worker node runs one or more 

worker processes. At any point in time a single machine may have more than one worker 

processes, but each worker process is mapped to a single topology. Note more than one worker 

process on the same machine may be executing different part of the same topology.  

Nimbus node is the master node of the apache storm and is the touchpoint between the user 

and the storm. To submit a job to the Storm cluster, the user describes the topology as a Thrift 

object and sends that object to Nimbus. Thereafter nimbus coordinates all the computations 

of submitted job in the cluster by distributing codes and launching workers across the cluster. 

And also nimbus monitors computation and reallocates workers as needed. 

Initially user submitted code is stored in the local disk of the nimbus. And then nimbus uses 

a combination of the local disk(s) and Zookeeper to store state about the topology. All 

coordination between Nimbus and the Supervisors is done using Zookeeper. Since Nimbus 

and the Supervisor daemons are fail-fast and stateless, all their state is kept in Zookeeper. 

Each worker node runs a Supervisor that communicates with Nimbus. Supervisor nodes 

communicates with Nimbus through Zookeeper, starts and stops workers according to signals 

from Nimbus. It also monitors the health of the workers and respawns them if necessary. 

Each worker process runs a JVM, in which it runs one or more executors. Executors are made 

of one or more tasks. The actual work for a bolt or a spout is done in the task. Tasks provide 

intra-bolt/intra-spout parallelism, and the executors provide intra-topology parallelism. 

Basic storm data processing architecture consists of tuples, streams, spouts and bolts. Logical 

collection of all of these is called a topology and it is a directed graph. Vertices in this graph 

represents the bolts/spouts and edges represents the flow of data. Each components is 

described below: 

● Tuples – An ordered list of elements. Tuples can contain any kind of data. 

● Streams – An unbounded sequence of tuples is processed and created in parallel. 

● Spouts – Sources of streams in a computation. Generally spouts will read tuples from 

an external source and emit them into the topology (e.g., from a Kafka consumer). 
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● Bolts – Process input streams and produce output streams. They can run functions, 

filter and aggregate, join data or talk to databases. Both spout and bolt can emit more 

than one stream.   

● Topologies – The logic for a real-time application is packaged into a Storm 

topology. Logic needs to be represented using network of spouts and bolts. 

The Storm system relies upon the notion of stream grouping to specify how tuples are sent 

between processing components. In other words, it defines how that stream should be 

partitioned among the bolt’s tasks. In particular, Storm supports different types of stream 

groupings such as: 

● Shuffle grouping – Tuples are randomly distributed across the bolt's tasks in a way 

such that each bolt is guaranteed to get an equal number of tuples. 

● Fields  grouping – The stream is partitioned by the fields specified in the  grouping 

(hashes on a subset of the tuple attributes/fields). 

● All grouping – Replicates the entire stream to all the consumer tasks.  

● Global grouping – Sends the entire stream to a single bolt. 

● Local  grouping – Sends tuples to the consumer bolts in the same executor. If the 

target bolt has one or more tasks in the same worker process, tuples will be shuffled 

to just those in-process tasks. Otherwise, this acts like a normal shuffle grouping. 

Apart from Apache Storm, there are other open source big data analysis tools. Some of them 

are Apache HBase, Hadoop, Apache Spark and Yahoo S4. Iqbal and Soomro compared 

among those four tools and Apache Storm’s perspective for big data analysis as follows: 

Apache HBase – Apache HBase [22] is a Java based, open-source software, which enables 

to store Big Data. It is highly non-relational in nature and provides Google’s Bigtable like 

functionality to store sparse data. HBase is widely used when random and real-time access to 

Big Data is required and is operates on the top of HDFS. 

Hadoop – Hadoop [23] is an open source, Java-based programming framework that supports 

the processing and storage of extremely large data sets in a distributed computing 

environment. The key features of Apache Hadoop are its reliability, scalability and its 

processing model. It allows processing the large sets of data across clusters of machines using 

distributed programming paradigm. It operates the information in small batches and uses 
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MapReduce framework to process the data and is called batch processing software. 

MapReduce is a programming model and an associated implementation for processing and 

generating big data sets with a parallel, distributed algorithm on a cluster. MapReduce serves 

two essential functions: It parcels out work to various nodes within the cluster or map, and it 

organizes and reduces the results from each node into a cohesive answer to a query. 

Apache Spark – Apache Spark [24] project is open source based for processing fast and 

large-scale data, which relies on cluster computing system. Like Apache Hadoop it is also 

designed to operate on batches, but the batch window size is very small. Spark runs on 

Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including 

HDFS, Cassandra, HBase, and S3. 

Yahoo S4 – Yahoo S4 [25] empowers developer to easily design applications, which can 

process real-time streams of data in a distributed cluster system with scalability and fault-

tolerant. It is inspired by MapReduce model and process the data in distributed fashion. 

Table 3 compares Storm with other big data analysis tools. 

Table 3: Comparison of Storm with other big data analysis tools 

Other Tool Developer Type Differences 

HBase Apache Batch 

Processing 

Storm  provides real time data processing, while HBase (over 

HDFS) does not process rather offers low-latency reads of 

processed data for querying later.  

Hadoop Apache  Batch 

Processing 

The main difference is that Storm can do real-time processing of 

streams of Tuple’s (incoming data) while Hadoop do batch 

processing with MapReduce jobs.  

Spark UC Berkeley 

AMPLab 

Batch 

Processing 

A batch processing framework that is capable of doing micro-

batching also called Spark Streaming, while Apache Storm is 

real-time stream processing frameworks that also perform micro-

batching also called Storm-Trident. So architecturally they are 

very different, but have some similarity on the functional side.  

With micro-batching, one can achieve higher throughput at the 

cost of increased latency. With Spark, this is unavoidable and 

with Storm, one can use the core API (spouts and bolts) to do 

one-at-a- time processing to avoid the inherent latency overhead 

imposed by micro-batching.  

Many enterprises use Storm as a mature tool while Spark 

Streaming is still new. 

S4 Yahoo  Streaming 

Processing 

The main difference is that, storm gives guaranteed processing 

with high performance and thread programming support.  
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There are five key attributes of Apache Storm which make it the first choice for real-time 

unbounded data processing. Those attributes are Easy to use, Fast, Fault-tolerance, Reliability 

and Scalability. Those attributes were described earlier in this section. Following criteria can 

be used to decide whether to use Apache storm or not for our application: 

● Fault tolerance: High fault tolerance  

● Latency: Sub Seconds 

● Processing Model: Real-time stream processing model 

● Programming  language dependency: Any programming language 

● Reliable: Each tuple of data should be processed at least once. 

● Scalability: High scalability. 

Later they have done three different experiments using twitter big data taking from twitter 

streaming API [12]. The experiments will execute three different scenarios with live data and 

will collect statics. The three experiments are, top ten words collected during a particular 

period of time, top ten languages collected during a particular period of time and number of 

times a particular “word” being used in twits, twitted in a particular period of time. 

 All the three experiments performed successfully. So it proves that Apache Storm can 

process real-time data with very low latency. Modelling the programming logic using the bolts 

and spouts is also easy. Because required parallelism can be configured for each bolt, we can 

easily configure it per each bolt according to workload in each bolt/spout. 

When deciding which tool to be used for our job, choosing one over another should be done 

carefully. We have to consider about processing guarantees, programming models, and APIs. 

Also, results of a research done by Codova shows that Storm was around 40% faster than 

Spark, processing tuples of small size. However, as the tuple’s size increased, Spark had better 

performance maintaining the processing times. Generally tweets are also works as small size 

tuples. Therefore, it can be concluded that Apache Storm to process twitter real time data 

would be the best choice for our purpose. 
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2.6 Text Analysis for Sensitive Document Classification 

2.6.1 Text classification of social media and crowdsourced data 

Sparks et al [26] identified and located facility types like restaurants, airports and stadiums 

and identify methods to determine in which time periods they become popular among people 

using social media like Twitter and Facebook. Locating these facility types helps in places 

where land use data is needed. Population distribution, biodiversity monitoring, urban 

dynamics and energy consumption are some tasks where land use data is significant. 

Identifying when these facility types mentioned above become popular helps determining in 

which time of the day, in which days of the week, in which festive occasions etc. the facility 

types are popular and helps in population dynamics. These data are beneficial for urban 

planners and general geographic research. In current context social media is a widely using 

source of information around the world. The posts have the ability to tag spatial and temporal 

data along with it by making social media a near real time source to get information for land 

use classification. They have showed travel records and trip surveys, call detail records (CDR) 

are not near real time and available sources of information to get land use data. The benefit of 

social media other than traditional methods is, it not only allow to tag spatial and temporal 

data but to describe why they are there and what they are doing as textual descriptions. This 

research has basically focused on the textual description of the post not the check-in data 

(tagged data) associated with social media. 

Authors mainly used Twitter for their study and used a data set of 1 year consisting of English 

tweets. Preprocessing of textual input is done by removing emoticons, non-ASCII characters, 

hashtags and URLs from the content.  

[A]. Now that's what I call a #beer. #FamilyDayOut2 @ Cargo Restaurant Bar 

[B]. Now that's what I call a beer. FamilyDayOut2 at Cargo Restaurant Bar 

Here [A] shows the text before preprocessing and [B] shows the preprocessed text as 

mentioned above. After preprocessing the data set, they have created the training data set 

using NLP tools like Stanford university’s CoreNLP. The URL and hashtag removed text [A] 

is sent to perform NLP processing. The result is a set of words as in [B] which is easily can 

be used to apply TF-IDF. 

[A] Just waiting on my food (at Tracks End Restaurant in Chicago, IL) 
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[B] (Just, wait, food, at, tracks, end, restaurant, chicago, il) 

They have created TF-IDF vectors using preprocessed text in [B], which are to be feed into 

ML classifiers. Naive Bayes and Support Vector Machine classification algorithms has been 

used for the classifying whether a person is at the location of interest or not when the tweet 

was sent. They had trained the classifiers using 10 fold cross validation (90% of data for 

training and 10% for testing) and had done it 100 times. They have taken accuracy and 

precision as their evaluation metrics. Accuracy was defined as depicted below.  

The results were obtained for all three facility types mentioned above and airports have shown 

unique results for both NB and SVM classifiers in accuracy and precision whereas restaurants 

and stadiums had a bias for SVM in both accuracy and precision. For restaurants it has shown 

a maximum accuracy of 0.932 and a precision of 0.987. 

In our research TF-IDF weighting is used to represent the text as vectors that are used to feed 

into ML classifiers since it has become successful in this research. 

2.6.2 Text Categorization with Support Vector Machines  

Joachim et al [27] considered the results obtained in to show that SVMs are appropriate for 

text categorization process. According to the study the properties of SVM which make it 

appropriate for text categorization are, 

● high dimensional input space - SVM handles overfitting protection, so no 

consideration of number of features used  

● few irrelevant features in text categorization 

● sparse document vectors - For each document vector it contains very few features 

where feature values are not zero 

● most text categorization problems are linearly separable - SVM finds linear 

separators in its classification 

They have used two training datasets for training the classifiers. To get an unbiased result 

they have used different number of selected best feature sets (500 best, 1000 best, etc., all 

features) to train all the classifiers they have considered. Here SVM has used to learn a 

polynomial classifier and a Radial Basic Function (RBF). The results of SVM classifier was 

compared with four other classifiers namely Naive Bayes, Rocchio, C4.5 and K-NN. From 

the results it can be concluded that SVM performs better independent of parameters where in 
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polynomial classifier it has shown an average of 86.0 and in RBF classifier it has shown an 

average of 86.4.  

By considering the results of the comparison of SVM classifier with other classifiers on text 

categorization we concluded that SVM classifier can be used in classification process of our 

research since mainly we are also doing text based classification process throughout all 

classifiers. 

2.6.3 Twitter trending topic classification 

Lee et al [28] mentioned that the trending topics generated by twitter are hard to understand 

and identify, so there’s a need to have a more meaningful trending topic classification of 

tweets. The researchers have identified 18 general categories such as sports, politics, 

technology etc. that can be used as trending topics. Mainly they had taken two approaches for 

the topic classification as Bag-of-words concept for text classification and network based 

classification. A variation of NB classifier which Naive Bayes Multi-nominal classifier which 

consider word frequency is used for text classification. The procedure that they have carried 

out during preprocessing of text in text classification is removed tokens that contain 

hyperlinks, tokenized the document which removes delimited characters and stop words and 

then converted the tokens into tf-idf vectors. For each category top 500 and 1000 frequent 

words were used. As the next step network based data modelling was done in order to find 

similar topics for a given category. That was done using Page-Rank Algorithm and Twitter 

social network information such as tweet time, number of tweets made on a topic and friend-

follower relationship. This model assumes that if the users sending tweets on two topics have 

a similarity, then the two topics should have a similarity.  

Text based classification was done using NB, SVM-L, NBM classifiers and results have 

shown that NB showed lower accuracy than NBM and SVM-L also had a slightly lower 

accuracy than NBM. In network based classification five classifiers were trained using 

manually labeled similar topic data set. The classifiers were C5.0, K-NN, SVM, Logistic 

Regression and ZeroR where C5.0 classifier has shown the maximum accuracy of 70.96%. 

By considering the approach taken in this research it has shown that NBM has the highest 

accuracy in text classification which has a slightly higher accuracy than SVM. By considering 

the above two researches we concluded that for our research we would use SVM, NBM 

mainly for comparison since they had shown the best results in text classification. 
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2.6.4 Ontology-based Supervised Text Classification 

Risch, Petit, and Rousseaux [29] proposed a text classification method linking the three 

domains; natural language processing, machine learning and big data. A method of supervised 

classification of documents based on a domain ontology developed in a real time and big data 

environment is presented here.  

Automatic text classification or categorization (ATC) is a multidisciplinary research field 

composed of machine learning, natural language processing (NLP), Big Data, real time 

analysis and so on. There are three approaches of ATC: supervised, unsupervised and semi-

supervised classification of documents. They have used supervised approach since their goal 

was to create a statistical classification model from a corpus of previously annotated 

documents. A supervised classification method contains two main parts: learning the model 

with the labeled data and predicting labels on new data. In this method they have created the 

learning model by giving each concept of the ontology a probability of class belonging.  

The documents are received in real time and then each document is pre-processed to extract 

a list of lexical units. Relying on a pre-built ontology, they propose a classification method 

based on the similarities between the ontology, the analyzed document and the associated 

probabilities.  

Authors have chosen the Tika API maintained by the Apache Foundation for extracting raw 

text. This API allows the extraction of raw text from over 1,000 file types. To detect the 

language of a text, they have chosen the LangDetect API that can recognize a multitude of 

languages including European, Japanese, Russian, etc. and Yandex Translator to translate the 

text to English. Once the text is translated into English or analyzed as written in English, pre-

processing is done using mainly Stanford API. They have used standard natural language 

processing operations like changing the text data to lowercase, sentences detection, 

tokenization, part of speech tagging, lemmatization and parsing. At the end of the feature 

extraction task, each text document is described by a set of noun phrases from which the 

classification model is built.  

In training the model class probabilities are assigned for each concept of the ontology. They 

have used a technique similar to overlapping techniques as a concept can belong to several 

classes. The probabilities are determined by computing the frequency of each concept in the 

documents. 
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Authors used two methods in the prediction phase as direct prediction and extended 

prediction. In order to avoid having documents classified in irrelevant classes, they have used 

a threshold value between 0 and 1. In the extended prediction they find new features that were 

not mentioned by using noun phrases and selected neighbor concepts. 

In the real-time analysis phase to address the speed and volume issues they have used two 

APIs: Apache Kafka and Spark Streaming. They have chosen Apache Kafka because it is a 

distributed message broker which can handle a big amount of messages per second. Its 

objective is to manage the flow of messages between producers and consumers. In this case a 

producer is a source of documents. It can be an RSS feed, a social media feed, etc. A consumer 

is an application that will receive and process the message (document). In order to handle the 

messages in real time they have used Spark Streaming which possesses a connector with 

Kafka. 

They have also implemented graph analysis using Apache Spark GraphX and have used 

Apache Cassandra API for database management because it is easy to use, especially with 

Spark because of its connector.  

In our project to handle the feed we use Kafka and for text classification we are using 

supervised classification method. In this research they have translated the content in other 

languages to English. But we decided to keep that for future enhancements to be handled after 

completing the main tasks. We hope to use Stanford API for pre-processing; the   changing 

the text data to lowercase, sentences detection, tokenization, part of speech tagging, 

lemmatization and parsing.  

2.6.5 Early Detection of Spam Mobile Apps 

Seneviratne et al [30] have done a research about automatically identifying the Spam mobile 

applications. Authors proposed an adaptive boost classifier for early identification of spam 

apps at the time of app submission. This app classifier utilizes only those features that can be 

derived from an app’s metadata available during the publication approval process. It does not 

require any human intervention such as manual inspection of the Meta data or manual app 

testing. They have validated this app classifier, by applying it to a large dataset of apps 

collected between December 2013 and May 2014, by crawling and identifying apps that were 

removed from Google Play Store. This research shows that it is possible to automate the 

process of detecting spam apps solely based on apps’ metadata available at the time of 
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publication and achieve both high precision and recall. Their classifier achieves an accuracy 

over 95% with precision varying between 85%-95% and recall varying between 38%-98%. 

In their classifier they used heuristics checkpoints to identify whether app is spam or not spam. 

They mainly focus on nine heuristics checkpoints and app will be classified as spam or not 

according to the results from those checkpoints. First checkpoint is “Does the app description 

describe the app function clearly and concisely?” this checkpoint is measured by using “bi-

grams” and “tri-grams” in the description of the application. Second one is “Does the app 

description contain too much details, incoherent text, or unrelated text?” this checkpoint is 

measured using another sixteen feature list and a decision tree classifier with maximum depth 

10. Third one is “Does the app description contain a noticeable repetition of words or 

keywords?” this checkpoint is measured by considering the number of unique words in the 

description relative to the all the word count in the description. Fourth one is “Does the app 

description contain unrelated keywords or references?” this checkpoint is measured using if-

idf weights. Fifth one is “Does the developer have multiple apps with approximately the same 

description?” in this checkpoint, they have checked three points. The total number of other 

apps the developer has,  The total number of apps with an English language description which 

can be used to measure descriptions similarity and the number of other apps from the same 

developer having a description cosine similarity(s), of over 60%, 70%, 80% and 90%. Next 

checkpoint is “Does the app identifier (appid) make sense and have some relevance to the 

functionality of the application or does it appear to be auto generated?” in this checkpoint they 

are considering about the app id’s and considered 13 points to check the appid  is suspicious 

or not. Also other than these checkpoints they have considered metadata like the category of 

the application. 

3 Design   

This chapter describes the design of the project which include activity diagram, class 

diagrams, topology and a brief description of each component of the system. High-level 

architecture of LeakHawk 2.0 is shown in Figure 3-1 compared to LeakHawk 1.0 architecture 

illustrated in Figure 2-14. LeakHawk 2.0 uses a modularized architecture, as it is customizable 

and scalable where new features can be added to the system.  
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3.1 High-Level Design 

 

Figure 3-1: High level architecture of LeakHawk 2.0 

Figure 3.1 High-Level architecture of the LeakHawk. 

The system has the ability to incorporate data feeds from several data sources like Twitter, 

Facebook, and Google+. Those message producers use Apache Kafka [31] as a message 

broker to hold the incoming textual input in the respective queue and provide to the message 

consumers in LeakHawk core. Because posts from all data sources come as plain text, the 

LeakHawk core is a generalized module that can be used for text classification process 

independent of the data origin. Sub-modules inside the LeakHawk engine will check whether 

the incoming text belongs to the configured information domain. If so, then the text is 

classified to find whether it has an evidence of a data breach exposure. If the post contains an 

evidence and contains URLs, content pointed by those URLs are also pulled for further 

classification. Regardless of whether the post contains an evidence or not, the post is 

categorized into one of predefined classes and LeakHawk predicts the sensitivity of the input 

based on results of class categorization. If there is evidence of a data breach exposure related 

to the entity who wants to check whether their data is exposed, the system notifies through 

the dashboard. In summary, LeakHawk engine monitors online channels like pastebin.com 

and Twitter and classifies the input text and predicts a sensitivity label of that text, and notifies 

data owners via a notification module.   
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3.2 Classification of Posts  

Figure 3-2 outlines the flow of a post classification process, where it follows the following 

steps. 

1. When a new paste or a tweet is published, it is retrieved and aggregated into the 

LeakHawk Core for further processing. 

2. Check whether the post is empty or belongs to any of the predefined categories such 

as gaming chats, pornographic content etc. If the post identified as irrelevant it is 

discarded, else it is sent to the next level. 

3. Next, check whether the post belongs to the defined domain (e.g., financial institutes 

and country). If the post belongs to the given domain, the post is passed to the next 

level, else the post is dropped. 

4. Then check whether the post has any evidence of data breach exposure, and if so the 

post is sent for processing URLs. Else the post is sent to analyses the content.  

5. If URL(s) is found in the post, download the content from the given URL(s) and send 

them to analyses the content for further processing. 

6. The content in the post is checked against all predefined classes such as credit card, 

email only, private keys etc. If any class gives the output as true, post is considered as 

belonging to that class. One or more classes may give the output as true. This level 

defines criteria in each class to rank the post according to the sensitivity level. 

7. Then predict the sensitivity label of the post using the statistics from the content 

classes. 

8. Metadata of all the fetched post and textual content of each document are stored in the 

database. 

9. Finally, the respective data owner will be notified about the data breach exposure with 

the predicted sensitivity label. 



38 

 

Figure 3-2: Process used to classify a post 
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3.3 Component-Level Architecture 

 

Figure 3-3: Component architecture of LeakHawk 2.0 

LeakHawk 2.0 consists of several components which are presented next. 

3.3.1 Sensors 

LeakHawk 2.0 may contain any number of sensors that are used to pull data/posts from data 

breach exposure sites. To demonstrate the idea, we initially developed two sensors, namely 

Pastebin and Twitter sensors, which are used to fetch posts from Pastebin and Twitter. Task 

of the sensors is to retrieve the relevant feeds and forward them to the Kafka broker using 

Kafka producer as shown in Figure 3-3. 

Bandwidth is a major requirement that has to be considered in each sensor. This section gives 

a brief explanation about the bandwidth requirement of each sensor according to calculated 

results.  

3.3.1.1 Pastebin Sensor 

Average Pastebin feed 

Average size of a post  

Bandwidth requirement 

 

Average bandwidth requirement  

= 24 posts per min 

= 12 KB 

= 12×24 KB per min  

= 288 KB per min 

= 288/60  = 5 KBps 
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3.3.1.2 Twitter Sensor 

Average twitter feed  

Average size of a tweet  

Bandwidth requirement 

= 6,000 tweets per second 

= 6 KB 

= 6×6000 KB per second 

= 36000 KB/s = 35.5 MBps 

While the bandwidth for Pastebin is not high, it can be high for Twitter. This can be reduced 

by relying on Twitter feeds filters that send only the requested type of contents based on 

users, hash tags, or content.  

3.3.2 Pre Filter 

The role of the Pre filter is to filter out irrelevant posts so that further processing of such posts 

is prevented which will save both time and processing power. The data feeds taken from the 

sensors are sent to respective Pre filters. There are two Pre filters for Pastebin and Twitter. 

The identified irrelevant posts for Pastebin and Twitter are trial and empty pastes, 

programming codes, game chats, sport commentaries, pornographic content and seasonal 

greetings content whereas trial and empty pastes and programming codes are excluded which 

are not frequent categories in Twitter. Since we need to infer a function from the training 

dataset of Pastebin posts labeled as relevant and irrelevant, pre filtering of Pastebin posts is 

identified as a supervised Machine-Learning problem, which can be used to predict the unseen 

posts. With a proper training corpus this is an achievable task. In Twitter due to the character 

limitation this cannot be identified as a text classification problem. 

3.3.3 Context Filter 

Context filter is used to filter the posts that are related to user defined information domains. 

For instance the information domain can be the banks in Sri Lanka. Thus, the Context filter 

screens out the non-related information and extracts only the posts related to the context, 

system is focused on, which will minimize the processing of non-related posts. Regular 

expressions and keyword matching is identified as a suitable technique to handle this task. 

Keyword list is maximized using WordNet API which provides connected words that will 

expand the scope.  

Only one Context Filter is used in LeakHawk 2.0 as the information domain is common for 

any data feed. After the Context filter the post is sent to the respective Evidence classifier.  
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3.3.4 Evidence Classifier 

Evidence classifier is used to detect whether an incoming post has an evidence of possible 

data breach exposure. There are two separate Evidence classifiers one for Pastebin and another 

for Twitter because they are two different supervised Machine-Learning problems. They are 

supervised Machine-Learning problems because we need to infer a function for the learning 

model from the training data labeled as having an evidence of data breach exposure or not. 

Two different Machine-Learning models needed to be created for both classifiers with two 

different datasets which can be used to classify any unseen post. Then the post is sent to URL 

processor or Content classifier depending on the presence of an evidence.  

3.3.5 URL Processor 

If the post has an evidence of a hacking attack or a data breach, it is sent to the URL processor 

which checks for URL(s), pull the contents from the URL(s), and then forwards the URL 

content to Content classifier. This component is common for any type of data feed. 

3.3.6 Content Classifier 

Content classifier is used to detect the content against predefined set of classes to find to which 

category the post belongs to. For instance the categories are credit card, database dumps, email 

conversations etc. and the post is categorized into one or more categories based on the content. 

There are two Content classifiers targeting Pastebin and Twitter. Each predefined class is 

considered as a classifier in Pastebin Content classifier and identified as a supervised 

Machine-Learning problem which needs to infer a function for learning model with labeled 

training data. Binary classification is performed in each classifier. The post is categorized into 

a class when the binary classification gives the result as true. However, as tweets does not 

contain much content in the tweet itself, this cannot be considered as a text classification 

problem.  

3.3.7 Synthesizer 

All the posts that have contents related to a possible data leakage or an evidence of hacking 

attack have a certain level of sensitivity. Synthesizer is used to rank the sensitivity of such 

posts according to the semantics and magnitude of numbers in the content. For instance, 

semantics in the case whether the post has information on a possible data breach exposure and 

magnitude in the case whether the post has information on one credit card related information 

or several hundreds of credit card related information have different levels of importance as 
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the magnitude of the breach or its impact could vary. Synthesizer predicts a label for the 

sensitivity of the post as CRITICAL, HIGH, or LOW as per the content of the post, its 

semantics and magnitude, which is illustrated in Table 7. This label is used to notify the users 

in case of a possible data leakage or an evidence of hacking attack. 

To illustrate the role played by each component let us consider an example of a post passing 

through each component. Suppose the post in Figure 3-4 is retrieved from Pastebin sensor. 

Then the flow of the post through each LeakHawk component is as follows: 

 

Figure 3-4: Example Pastebin post with data breach 

● Pre filter – Filter in 

○ The post does not contain any keyword identified as irrelevant (e.g., Code 

words, Gaming chats, Pornographic words, etc.). Hence, will be considered 

for further processing. 

● Context filter - Filter in 

○ The post contains keywords related to Sri Lankan domain, e.g., Bank of 

Ceylon 

● Evidence classifier - Pass 

○ The post contains evidence of a data breach as it contains the word “hacked” 

and include leaked credit card information. 
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● URL processor - Not processed as no URL(s) are found. Passed to Content classifier. 

● Content classifier - Passed 

○ The post belongs to Credit Card (CC) class as it contains both keywords and 

credit card content.  

● Synthesizer - The sensitivity level of the post is marked as CRITICAL 

○ Post belongs to Credit Card class and the credit card no count is 22 which is 

detected as CRITICAL as the threshold to be detected as CRITICAL is 20. 

3.4 LeakHawk Topology 

This section elaborates the topology of LeakHawk from the sensors to the Synthesizer.  

3.4.1 Apache Kafka 

Apache Kafka is a real-time message distribution platform which follows publish-subscribe 

messaging strategy. In publish-subscribe messaging strategy there are producers who pushes 

the messages to Kafka brokers as per a predefined topic. Kafka brokers queue and publish the 

messages so that Kafka consumers could pull them by subscribing. Zookeeper is used to save 

the states of Kafka brokers and share state between brokers. A set of Kafka brokers maintain 

a set of topics. In case of Kafka consumers, they pull the messages as per the corresponding 

topic. Kafka is fast, scalable, efficient, persistent and fault tolerant. Due to performance 

characteristics and ability of parallelizing consumption of messages Kafka is used in 

LeakHawk to queue messages coming from both Pastebin and Twitter in a Kafka broker in 

real-time and consume the messages parallely.  

3.4.2 Apache Storm  

Apache Storm is an open source real-time Big Data processing platform. Although Apache 

Spark and Apache Flink both has features similar to Apache Storm, they mainly support 

processing of micro batches where Storm uses event processing and has relatively low latency. 

Therefore, LeakHawk is developed on top of Apache Storm Big Data processing framework. 

Storm converts data streams from different data feeds into sequence of tuples known as 

stream. Tuples support all data items. There the aforementioned stream is considered as 

events, not as a batches. Apache Storm uses a master-slave architecture with Apache 

Zookeeper based coordination, where master is the Nimbus and slaves are supervisors. 

Zookeeper helps managing states of master and slaves. The basic components introduced in 
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Storm are spout and bolt which helps transforming streams. Storm typically processes real-

time data and inputs coming from external messaging queuing platform like Apache Kafka. 

A spout is a source of stream for instance which may retrieve data from Kafka broker or 

directly from Twitter API and emit a stream of tweets as tuples. Bolts are used to process any 

number of streams and emit new streams with the help of workers. A bolt may comprise 

several workers which perform several tasks. A topology in Storm is the user defined real-

time application logic helps in both design and implementation phases. 

According to the flow illustrated in Figure 3-5 the Storm topology distributes the Twitter and 

Pastebin feeds to the relevant components as shown in Figure 3-5.  

There are dedicated components for both Twitter and Pastebin such as Pre filter, Evidence 

classifier and Content classifier in which the processing method differs with the type of the 

feed. Some components are commonly used by both Pastebin and Twitter, e.g., Context filter, 

URL processor, and Synthesizer in which the processing method is similar regardless of the 

feed type. There are two separate sensors that work as Kafka producers to connect to Pastebin 

and Twitter and download the new posts and push them to Kafka broker.  Two separate Storm 

spouts for Pastebin and Twitter are used as Kafka consumers to emit the posts from queues as 

a stream into LeakHawk core. All the other components except sensors and Kafka consumers 

work as Storm bolts.  

Since in Pastebin a URL is sent as the content with API response, the content in the URL need 

to be fetched unlike in Twitter. So a separate post downloader bolt is added. There are two 

Pre filters and Content classifiers for both data sources since Pastebin Pre filter and Content 

classifier uses Machine Learning techniques and Twitter Pre filter and Content classifier uses 

keyword based and regular expression based processing styles. That is Machine Learning 

technique cannot be used in Twitter in both cases due to character limitation of the content. 

Context filter uses the same keyword based rules and regular expressions for both Pastebin 

and Twitter to check if an incoming post is in the defined domain. In Twitter mostly URLs 

for the content are posted as a tweet in case of a data breach exposure. There are two Evidence 

classifiers used for both data sources since both Evidence classifiers use Machine Learning 

techniques. That is because separate data models needs to be created for Pastebin and Twitter 

datasets. Since Synthesizer uses the results of class categorization of Content classifier, for 

both Pastebin and Twitter only one Synthesizer is used. The results of Synthesizer is used to 

notify the data owners. 
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Figure 3-5: Strom topology for the LeakHawk 
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4 Implementation 

This chapter gives a detailed description about implementation of LeakHawk. Section 4.1 

describes the real-time stream processing technologies used. Section 4.2 describes the 

implementation details of sensors. Sections 4.3 illustrate the implementation of filters, 

classifiers, and other components in the system. LeakHawk 2.0 is implemented an open source 

contributed software application and it is available in GitHub [32].  

4.1 Real-Time Stream Processing 

As LeakHawk needs to process posts pulled from various sources in real time, Apache Storm 

comes in handy as explained in Chapter 3.  LeakHawk is developed on top of a Storm topology 

as illustrated in Figure 3-5. Spouts and bolts of Storm makes it easy to process incoming 

streams in real time. Spout converts the data feed into a stream which is a set of tuples. Tuples 

flow in all bolts after the spout which are used for stream processing. 

4.2 Sensor Implementation 

Separate sensors are implemented for Pastebin and Twitter to get the data feeds into the 

system.  

 

Figure 4-1: Pastebin sensor implementation 
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As illustrated in Figure 4-1, in the Pastebin sensor implementation 100 pastes are taken at a 

time using the Pastebin scraping API [33]. Then the sensor waits 10 sec before pooling again 

for new pastes. These numbers are set based on typical rate that posts appear on Pastebin, and 

can be adjusted accordingly. Depending on the rate that messages are posted, some of the 

posts may appear in successive 100 pasts pulled from Pastebin. In such cases we remove the 

duplicates. In Pastebin a URL pointing to the content is sent with the response, so then the 

post is sent to Post Download bolt to get the content for further processing. 

Twitter sensor incorporates Twitter streaming API [34] to get Twitter feed in real time. 

Twitter 4J [35] is a third-party library used with Twitter API. The combination of Twitter 4J 

and Twitter API are used to get the Twitter feeds in real time. Because the text in the content 

is directly sent with the response unlike in Pastebin there’s no need of a Post Download bolt, 

so the text itself can be directly used for processing. 

4.3 Pre Filter Implementation 

Pre filter is able to remove the irrelevant posts at the beginning of the process. With this filter 

LeakHawk can reduce most irrelevant content without processing them further. Separate Pre 

filters are implemented in the LeakHawk for different data feeds (Twitter feed, Pastebin feed). 

To implement a new Pre filter, the Pre filter class should extends from the LeakHawkFilter 

abstract class with implementing its abstract methods as in Figure 4-2. 

 

Figure 4-2: Pre filter class diagram 

These two methods are used in every Pre Filter implementation helping to configure and check 

the irrelevancy of a poste. prepareFilter() method will run only once during the initialization 

of the bolt. This method can be used to initialize things that would be used in the 
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isFilterPasssed() method. isFilterPassed() method is used to identify the irrelevant posts. This 

method should return a Boolean value according to the irrelevancy of the post. If the post is 

irrelevant, the return value should be “false” and if the post is relevant the return value should 

be “true”.  

4.3.1 Pastebin Pre Filter 

In the Pastebin Pre filter, text is preprocessed and binary classification method [36] is used to 

filter out non-related pastes from the LeakHawk core. During this stage Preprocessor filters 

out non English pastes and remove stopwords related to English language as illustrated in 

Figure 4-2. Stopword removal is carried out using the WEKA API [37]. Pastebin Pre Filter 

uses Apache Tika [38] for language detection. Because LeakHawk only considers posts in 

English, non-English posts need to be filtered out from the pre filter. Tika is useful in this case 

as metadata on language of the paste is not provided by Pastebin. Tika identifies the language 

of the incoming paste and helps to filter out that paste from the system. 

 

Figure 4-3: Pre filter process 

Following categories were identified as giving the highest contribution to most number of 

irrelevant posts coming for the Pastebin, which needs to be filtered out from the system: 

● Trial and empty pastes - Trial pasts are mostly used to check the whether Pastebin is 

working and empty pastes may accidently posted with empty content. 

● Programming codes - Most of the developers use Pastebin to share code snippets. 

● Game chats - Gaming community uses Pastebin to share secrets related to games and 

URL(s) to find gaming software. 
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● Sport commentaries - Sports related comments and greetings are mostly shared during 

matches. 

● Pornographic content - Links to pornographic videos and used to share pornographic 

content. 

● Seasonal greetings content - Mostly used to share seasonal greetings with friends in 

seasons like Christmas, Eid. 

Pastebin Pre filter classifies these kind of irrelevant data using Weka classification process. 

isFilterPassed() method from the super class is overridden here and isPassedPreFilter() 

method is invoked inside that method. isPassedPreFilter() method is used to check whether 

the incoming post passes pre filter and move forward. 

4.3.2 Twitter Pre Filter 

In the Twitter Pre filter implementation, irrelevant Tweets are filtered out from the system to 

reduce the processing overhead. Here attributes given by Twitter streaming API has been used 

to make the implementation simpler. Twitter API’s lang attribute is used to identify only the 

English posts and ignore posts in other language which are of less relevance. Retweeted 

attribute is used to avoid consideration of retweeted tweets which unnecessarily increases the 

workload. Basically this integrates keyword-based rules for the implementation. The 

keywords were identified from a set of categories such as Game chats, Sport commentaries, 

pornographic content, and Seasonal greetings content. These seemed to be the most common 

Twitter categories. As code snippets are not shared in Twitter due to character limitation it 

was not considered. In Twitter pre filter isFilterPassed() method is overridden to check 

whether the incoming tweet move forward the system or not. There isContainKeyword() 

method is used to match the incoming tweet against the predefined set of keywords and 

remove irrelevant tweets. 

4.4 Context Filter Implementation 

The filtered output from the Pre filter is passed through the Context filter. The Context filter 

is used to filter-in only the posts relevant to the defined domain. The context defines the 

information regarding a particular country, nation, organization or an individual that is unique 

for each entity. For an instance, the context may be the security incidents related to a particular 
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bank in Sri Lanka. This filter can be optionally used according to user preference. If the user 

needs to keep track of all the security related posts he/she can ignore the Context filter. 

For every data feed, there is only one implementation of Context Filter, because the relevant 

context does not depend on the data feed. In the Context filter regular expressions and a set 

of keywords is used to describe the context and the system expands the word list using the 

NLP tool WordNet [39], which is an English lexical database of synonyms. Domain related 

keywords are identified using the created WordNet of interrelated words.  

Defining the Information Domain 

Defining the information domain related to a particular organization must be done considering 

multiple facts related to security and sensitivity. It requires the domain knowledge of a 

business domain expert, as well as an information security expert. Formulation of precise the 

keyword domain will improve the precision of the monitoring platform. To improve the 

accuracy of the detection rate, it is required to expand the set of keywords, to cover a domain 

of the target entity. This will introduce further false positives that will reduce the precision, 

but will maximize the recall. Expanding scope also provides the space for attack forecast and 

identify trending movements related to a particular target. 

 

Figure 4-4: Tweet related to Sri Lankan domain 

Named Entity Recognition (NER) technologies use keywords to identify the entities. 

Therefore, if the document does not contain the specific keywords defining the target object, 

monitoring platform will not consider that post as relevant. For instance, a post with an 

evidence of an attack may contain the phrase “series of defacement attacks against the 
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government websites of southeast Asia”. Such a post will not be detected as relevant to Sri 

Lankan domain as the scope is larger than the defined domain. Figure 4-4 shows a post that 

will be detected as relevant to Sri Lankan domain as it contains words “Sri Lanka’s 

Commercial Bank” and will be passed to next classifier. 

In LeakHawk 2.0 we focus on the sensitive information leakages and evidence of hacking 

attacks related to Sri Lankan domain. An Information Template defined for Sri Lanka, with 

respective examples is illustrated in Table 4. Having an information template allows to cover 

all the words related to a particular domain and that will minimize the probability to miss any 

related words.  

Table 4: Information template defined for Sri Lanka 

Identifier Description Example 

Country 

Identification 

names 

A particular country can be identified using 

different terms. Names of the major cities 

can be mentioned instead of the country 

name. In some cases, the country is referred 

with indirect terms. 

Sri Lanka 

Lanka 

Ceylon 

LK     

Colombo    

South Asia    

Nation and 

communities 

   

Sometimes without mentioning the country 

name, distinct communities are targeted. This 

should not include the domains, which could 

add a lot of false positives. 

Sinhala 

Sinhalese 

Buddhist 

Muslim  

Unique identifier 

formats of the 

citizens 

When  a large community is targeted, 

unique identifiers could be exposed. Regular 

expressions to identify using such identifiers 

should be used.  

National Identity Card number 

Driving  License Number 

Passport Number 

Domain names Use of regular expressions to identify the 

domains names related to Sri Lanka. e.g. 

government websites (domain name ending 

with gov.lk) 

LK domains in general (domain names 

ending with .lk). 

Domain names containing Identification 

names related to Sri Lanka. 

www.president.gov.lk 

example.lk 

example.lk.com 

srilanka.com 

lanka.org  

IP addresses related 

to Sri Lanka  

In certain cases, the IP addresses within the 

Sri Lanka could be involved in a particular 

attack. WHOIS database [40] can be utilized 

to identify the location of a particular IP 

address. 

112.134.100.10 

222.165.128.4 
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Credit / Debit Card 

ranges  

Bank Identification Number (BIN) ranges are 

defined uniquely to identify each issuing 

bank in the world. 

This list should also cover any BIN ranges of 

the local payment brands  (e.g., LankaPay)  

 

Popular characters 

in domain 

This list may contain some popular 

characters who could be subjected to an 

online attack. 

President of Sri Lanka 

Prime minister of Sri Lanka 

Popular businessmen 

Major 

organizations 

and corporations 

Certain posts may directly mention the 

organization names without mentioning the 

country name. So it is safe to search for those 

names separately. 

Mobile and Internet service provider 

names (SLT, Dialog, Etisalat, etc.)  

Sri Lankan organizations (Banks, 

Telecommunication companies, 

Insurance, Finance, Textile, etc.) 

Corporations (Cargills Ceylon, Keels, 

Aitken Spence, Hemas, etc.)  

Famous TV channels 

 

The defined attributes for a particular domain of Context Filter are implemented using 

keyword lists and regular expressions. Wordnet API [39] is used to expand the keyword list 

using connected words. For each received feed from Pre filter, Context filter will execute 

these logics, and only the positive matches are forwarded to Evidence Classifier. The models 

developed by the Evidence Classifier and the Content Classifier will only execute, if the 

Context filter is passed. 

4.5 Evidence Classifier Implementation 

LeakHawk use an Evidence classifier to identify whether the post is a sensitive one or not. 

Each data feed has its own Evidence classifier. This classifier should be implemented by 

extending LeakHawkClassifier abstract class as shown in Figure 4-5.  

These two methods are used in every Evidence classifier implementation helping to configure 

and identify the post sensitivity. prepareClassifier() method will run only once and that would 

be in the initialization of the bolt. This method can be used to initialize the things that would 

be used in the classifyPost() method. classifyPost() method is used to classify the post into 

sensitivity category or non-sensitivity category.  
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Figure 4-5: Evidence classifier class diagram 

4.5.1 Pastebin 

Pastebin Evidence classifier is used to classify an incoming Pastebin post using binary 

classification technique [36]. Classification is done to check whether the post has an evidence 

of hacking attack or not. Unigrams, bigrams, and trigrams related to most commonly used 

hacking attacks related keywords, hackers’ names, hackers’ slogans, etc., are checked against 

the incoming post content and titles to identify whether there is evidence of hacking attack or 

not. classifyPost() method is overridden here to predict whether the incoming Pastebin post 

has an evidence of data breach exposure. Java WEKA API [37] was used for the classification 

process.  

All the posts that come into Evidence classifier are sent to the Content classifier and if that 

post contains a set of URLs the post is sent to URL Processor to check the content against any 

possible data breach exposure. 

4.5.2 Twitter 

In Twitter Evidence classifier implementation, binary classification method has been used to 

identify whether the incoming tweet has an evidence of data breach exposure or not. This 

classification is also done using Java WEKA API [37]. Most commonly used unigrams, 

bigrams, and trigrams related to hacking attacks, hacker group names, etc., are identified and 

used in the classification process. Once classified, all the posts that come into Twitter 

Evidence classifier are sent to the Twitter Content classifier.  
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4.6 Content Classifier Implementation 

LeakHawk use content classifier to divide the post into the correct sensitivity category. For 

instance, if the post contains data about a credit card dump that should be categorized under 

credit card related data breach exposure. Each data feed has its own content classifier. These 

classifiers should be implemented by extending from LeakHawkClassifier abstract class.  

The following two methods are used in every Content Classifier implementation helping to 

configure and identify the post sensitivity. prepareClassifier() method will  be run only once 

and that would be in the initialization of the bolt. This method can be used to initialize the 

things that would use in the classifyPost() method. classifyPost() method is used to classify 

the post into different categories define by the user. 

4.6.1 Pastebin  

The Pastebin Content Classifier categorizes the incoming post into one or more from nine 

categories (see Table 5). 

Table 5: Categories for Pastebin content classifiers 

Classifier  Abbreviated Name 

Credit Card CC 

Configuration Files CF 

DNS Attack DA 

Database Dump DB 

Email Conversation EC 

Email Only EO 

Private keys PK 

User Credentials UC 

Website Defacement WD 

Each of the above mentioned classifiers classifies post using binary classification, which is a 

supervised Machine Learning solution. These classifiers are written as a sub-class which 

needs to be extended from the ContentClassifier abstract class.  
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Figure 4-6: Example content classifier class diagram 

As shown in the example implementation in the Figure 4-6, every classifier class should 

override the classify() and getSensitivityLevel() methods. classify() method will process the 

post and will play a binary classification on the post. This classification result will be return 

in the classify method. The classification methods in the inbuilt classify classes can be easily 

customized by overriding the classify() method. getSensitivityLevel() method should return 

the sensitivity level (LOW, HIGH, or CRITICAL) of the post. Through a customized 

implementation of this method by overriding the method will make it easy to change the way 

of declaration of sensitivity level criteria.  

Users can add new classification categories easily to the system by adding a new subclass 

extending ContentClassifier class into Content folder by overriding the two methods classify() 

and getSensitivityLevel(). Custom annotations are used to identify the classification classes, 

so user has to use ContentPattern custom annotations to the newly added classification class. 

With this annotation user has to provide pattern name and classification model file path. As 

implemented in the PastebinContentClassifier, posts go through all the nine classification 

classes mentioned above, and if it is classified as true then the post will be categorized under 

that class. Classification may give result as true for several classification classes, so one post 

may be categorized into one or more of the nine defined classes. All the posts that come into 

Pastebin Content classifier are sent to the Synthesizer. 

4.6.2 Twitter 

Twitter Content classifier uses keyword based and regular-expression based rules for the 

categorization. Most commonly used keywords in identified categories are used to get a 
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match. This classifier enforces seven categories of possible data breach exposures as shown 

in Table 4.x. 

Table 6: Categories for the twitter content classifiers 

Classifier  Abbreviated Name 

Credit Card CC 

DNS Attack DA 

Database Dump DB 

Email Only EO 

Private keys PK 

User Credentials UC 

Website Defacement WD 

 

Inside classifyPost method keywords are matched and if a match is found to a particular 

category, the tweet is categorized into that category. If the post matches to several categories, 

it is categorized under several categories. Finally, all the posts that come into Twitter Content 

classifier are sent to the Synthesizer. 

4.7 Synthesizer 

Synthesizer is used to predict the sensitivity level of the incoming post as CRITICAL, HIGH, 

or LOW. To synthesize Pastebin posts synthesizePastebinPosts() method is used and to 

synthesize tweets synthesizeTweets() method is used. 

synthesizePastebinPosts() method is implemented to predict the sensitivity level of the post 

by comparing the sensitivity levels predicted from each one of nine classifiers in Content 

classifier. Sensitivity prediction is mainly done by considering the results of Pastebin Content 

classifier. The highest level predicted from the classifiers is taken as the sensitivity level of 

the post. As illustrated in Table 7 Synthesizer predicts a label for the sensitivity of the post as 

CRITICAL, HIGH, or LOW as per the content of the post, its semantics, and number of items 

got compromised. 
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Table 7: Sensitivity levels for the Synthesizer 

 CRITICAL HIGH LOW 

Credit card 

dumps 

Credit card numbers > 20 5 < Credit card numbers < 20 Credit card numbers < 

5 

Configuratio

n files 

The post contains passwords   

Defacement 

attack 

Matched keywords related to 

domain > 10  

Matched keywords related to 

domain < 10  

 

Email 

conversation 

Matched keywords related to 

email conversations > 0 

  

Private keys Presence of private keys   

Email only 

list 

 Email count > 50 Email count < 50 

User 

credentials 

Hash count > 20 5 <  Hash count < 20  Hash count < 5 

Web 

Defacement 

URL count >20 5 < URL count < 20 URL count < 5 

DB dumps  Presence of DB dumps  

 

4.8 LeakHawk Class Diagram 

Main class diagram of LeakHawk 2.0 is show in the figure 4-7. 

LeakHawkBolt abstract class is extended from BasicRichBolt super class of Apache Storm in 

order to make the implementation simpler and let a person without expert knowledge on Storm 

could use the system without any issues. LeakHawkFilter and LeakHawkClassifier abstract 

classes and PostDownloader and URLProceesor concrete classes are extended from 

LeakHawkBolt class by overriding perpareBolt(), getBoltName(), execute(), and 

declareOutputStreams() methods.  

PastebinPreFilter, TwitterPreFilter, and ContextFilter classes extend the LeakHawlFilter 

abstract class. The level of abstraction in the design has made lower level classes to be 

implemented without directly knowing the behaviour of bolts in Storm. All the classifiers like 

Evidence classifier, Content classifier and Synthesizer are extended from LeakHawkClassifier 

abstract class by overriding necessary methods. 
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Figure 4-7: Main class diagram of LeakHawk 2.0 

 

Figure 4-8 shows how sensors are designed to be implemented. LeakHawkProducer class 

returns a KafkaProducer to LeakHawkSensor class which turns use it to queue messages from 

different data origins. LeakHawkSensor class is a thread itself and PastebinSensor and 

TweetsSensor are subclasses acting as threads while retrieving content from data origins. 
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Figure 4-8: Sensor class diagram of LeakHawk 2.0 

4.9 Dashboard Implementation 

LeakHawk 2.0 contain a user dashboard which enables the user to interact with the LeakHawk 

System as well as see the results. Dashboard is implemented with AngularJS front end and 

SpringBoot backend. User functionalities of Dashboard can be identified as follows: 

● View sensitive post list 

● View each sensitive post detail 

● View posts by sensitivity level 

● View post counts going through the classifiers 

● View analysis of filters and classifiers 

● Start/Stop LeakHawk system 

● Add/Stop data feed to leakhawk 

● Edit settings of LeakHawk 

LeakHawk system is built with two maven modules called “leakhawk-core” and “leakhawk-

monitor”. “leakhawk-core” module contains the leakhawk system core functionalities and 

“leakhawk-monitor” contains the dashboard REST API and the web application. Maven 

multiple modules concept is used in the system and “leakhawk-monitor” module contains the 

“leakhawk-core” module as a dependency. With a single build, leakhawk-core module will 

be compiled and it will be added to the leakhawk-monitor build as a dependency.   
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Figure 4-9: Main view of the Dashboard 

The administrators can view the sensitive incidents in the application main view. (See Figure 

4-9) This view will only provide brief details about the incident. Further admins will also be 

able to view the sensitive incident through the provided link. Admin can see more details 

about the incident on see “Incident Details” window (see Figure 4-10). Users can control 

LeakHawk system through user interface. Figure 4-11 shows the Control Panel, where users 

can start the LeakHawk system and add data feeds through this interface and set configuration 

parameters. 

 

Figure 4-10: Incident details window 

 

 



61 

 
Figure 4-11: Control panel in the Dashboard 

 

Admin can further analyze the overall statistics of data leakage detection of LeakHawk 

through graphs with the window shown in Figure 4-12. It shows the statistics about the filters 

and how much data are filtered by filters and how much data are classified by classifiers. 

 

 

 
Figure 4-12: Sample statics view in the Dashboard 
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5 Performance Analysis   

LeakHawk’s multi-layer architecture includes multiple components designed to enhance 

system performance, while minimizing the number of false-negatives and maximizing recall. 

This section analyses the performance with regard to accuracy and time of the components 

separately and throughput, memory usage, and network usage of the overall system. Section 

5.1 analyses the performance of the sensors used by LeakHawk 2.0. Section 5.2 analyses the 

accuracy of both Pastebin and Twitter filters and classifiers separately. Section 5.3 shows 

comparison between LeakHawk 1.0 and 2.0. Analysis the overall system performance of 

LeakHawk with regard to time, throughput, and memory usage is presented in Section 5.4.  

5.1 Analysis of filters and Classifiers 

We evaluate the performance on a single node with the following configuration: 

Model of the computer - HP ProBook 4540s Notebook 

CPU - Intel Core i5-3230M running at 2.6GHz (32KiB L1, 256KiB L2 and 3MiB L3 cache)  

Memory - 8GB DDR3 RAM running at 1600 MHz 

Operating System - Ubuntu 16.04.3 LTS x86_64 

LeakHawk 2.0 has mainly two filters, namely Pre filter and Context filter and two classifiers, 

namely Evidence and Content classifier. This section analyses the precision and recall of all 

the components by providing separate datasets for each filter and classifier. Unique datasets 

are used in the accuracy analysis of each component to match their requirements. For instance 

the dataset used for Pre filter will not match the features of Context filter or Evidence classifier 

and separate datasets should be used for each class in Content classifier to match the sensitive 

content.  

5.1.1 Pastebin Pre Filter 

The Pre filter screens out the posts, which are non-sensitive in nature, such as video game 

chat sessions, pornographic content, and torrent information. It also eliminates non-textual 

posts such as binary files. As the average number of posts made in Pastebin is less than 50, 

this filter was not useful in that scenario except for the exclusion of binary inputs. However, 

when the model is extended to support Twitter feeds, Pre filter effectively improves the 

performance of the subsequent filters and classifiers by removing unrelated posts beforehand. 
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5.1.1.1 Training Pre filter model 

The training corpus used to create Machine Learning model contained 2,011 positive posts 

and 714 negative posts, which were used both as the training and testing set during the 

validation process. Ten-fold cross validation was done on the dataset to get more precise 

results. 

The performance results obtained after cross validation on Random Forest, Support vector 

machine, and Naive Bayes multi-nominal algorithms are illustrated in Figure 5-1, Figure 5-2 

and Figure 5-3 respectively. Based on these results RandomForest algorithm gives the best 

results while classifying the irrelevant posts. 

 

 

Figure 5-1: Pre filter model using Random Forest algorithm 
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Figure 5-2: Pre filter model using Support vector machine algorithm 

 

 

Figure 5-3: Pre filter model using Naive Bayes Multinomial algorithm 

5.1.1.2 Performance testing of Pre filter 

Table 8 illustrates the results of seeding 2,725 samples of textual documents across the Pre 

filter. The seed contains 2,011 manually labeled posts that are pre validated as related posts. 

Ideally, the filter should identify 2,011 positive samples and 714 negative samples (total 

number of posts used for testing is 2,725). The table lists the positive matches selected by the 
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Pre filter. True positives denote the correct matches, while False Positives denote the number 

of documents selected by the filter which is not relevant. 

Table 8: Pastebin Pre filter analysis 

Positive Negative 

2011 714 

True Positive False Negative True Negative False Positive 

1997 14 571 143 

99.31% 0.69% 79.97% 20.03% 

 

As per the table, following key observations are made: 

Precision = 
1997

1997+143
 = 93.32% 

Recall = 
1997

1997+14
 = 99.31% 

 

It can be seen that false positives are a little bit higher as the Pre filter model accuracy was 

80.04%. This is because the positive posts sometimes contain the keywords used to filter out 

the unrelated posts. For instance a sensitive post might contains words such as “Greetings, 

Best of Luck, Happy new Year, etc.” 

5.1.2 Context Filter 

The Context filter is a common component for every feed retrieved by LeakHawk, which 

allows the user to define the information domain, which is used by the LeakHawk Core as the 

context for monitoring pre-defined targets. Table 9 illustrates the results of seeding 2,700 

samples of textual documents across the Context Filter. The seed contains 1,200 manually 

labeled posts that are pre validated as related to Sri Lanka. Ideally, the filter should identify 

1,200 positive samples and 1,500 negative samples (total number of posts used for testing is 

2,700). The table lists the positive matches selected by the Context Filter. True positives 

denote the correct matches related to Sri Lanka, while False Positives denote the number of 

documents selected by the filter which is not relevant to Sri Lanka. 
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Table 9: Context filter performance analysis 

Positive Negative 

1200 1500 

True Positive False Negative True Negative False Positive 

1200 0 1237 263 

100% 0% 82.47% 17.53% 

 

According to the labeled dataset, following key observations are made: 

Precision = 
1200

1200+263
 =82.02% 

Recall = 
1200

1200+0
 = 100% 

 

Keywords such as “Lanka”, “Sri Lanka” and “LK” are accountable for most of the results 

(irrespective of the accuracy).  However, the usage of “LK” introduces a considerable number 

of false positives. Pattern matching methods identify certain results, which are not captured 

by the above keywords but result in many false positives. Therefore, it is evident that the use 

of multiple identifiers is necessary for the successful identification of positive instances with 

minimal false-negatives.  

Identifying all the keywords and regular expressions is a tedious task, which involves a 

considerable amount of manual effort. There may be many other words that can be used to 

catch the domain related words.  

5.1.3 Pastebin Evidence Classifier 

Once the posts pass the Context filter they reach the Evidence classifier and it checks for 

evidence of hacking attacks and data breaches. A model with 94.16% accuracy is used in the 

Evidence classifier.  

5.1.3.1 Training Evidence classifier model 

A training corpus of 1,542 was used which contained 1,004 negative posts and 538 positive 

posts to train the classifier which became the test and training set used for cross validation. 

Here ten-fold cross validation was performed with the same training corpus used above as the 
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test dataset and training dataset. Validation results of the dataset for Random Forest, Naive 

Bayes Multi-nominal, and Support Vector Machine classifiers are shown in Figure 5-3, Figure 

5-4 and Figure 5-6 respectively. Based on the results Random Forest algorithm has better 

ability to classify the posts for evidence. 

 

 

Figure 5-4: Evidence classifier model using Random Forest algorithm 

 

 

Figure 5-5: Evidence classifier model using Naive Bayes Multinomial algorithm 
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Figure 5-6: Evidence classifier model using Support Vector Machine algorithm 

5.1.3.2 Performance testing of Evidence classifier 

Table 10 illustrates the results of seeding 1,818 samples of posts across the Evidence 

classifier. The seed contains 860 manually labeled posts that are pre validated as evidence 

containing (total number of posts used for testing is 1,818). Ideally, the filter should identify 

860 positive samples and 958 negative samples. The table lists the positive matches selected 

by the Evidence classifier. True positives denote the correct matches, while false positive 

denotes the number of posts selected by the classifier which do not contain evidence of 

hacking attack or data breach. 

Table 10: Evidence classifier performance analysis 

Positive Negative 

860 958 

True Positive False Negative True Negative False Positive 

814 46 916 42 

94.65% 5.35% 95.62% 4.38% 

 

As per the table, following key observations are made: 

Precision = 
814

814+42
 = 95.09% 



69 

Recall = 
814

814+46
 = 94.65% 

 

The set of attributes considered when creating the Evidence classifier model might contain 

some words that are not available in most of the posts. The model can be created using a well 

analyzed and optimized set of attributes.  

5.1.4 Pastebin Content Classifier 

Once the posts pass the Evidence classifier they reach the Content classifier and it checks 

whether the post contains sensitive data such as credit cards, emails, and passwords. Content 

classifier has nine classes with separate models, each which checks the posts for the 

availability of the class content. 

Table 11 illustrates the results of seeding samples of posts across each class of the Content 

classifier. Each class is analyzed with different data sets to match the requirements. Table 12 

presents the precision and recall values of each class in Content classifier. Figure 12 illustrates 

the distribution of precision and recall values of each content class. True positives denote the 

correct matches, while false positives denote the number of posts selected by the classes which 

do not contain sensitive content. 

Table 11: Pastebin Content classifier performance analysis 

Content Classes Positive Negative True 

Positive 

False 

Negative 

True 

Negative 

False  

Positive 

[CC] Credit Card 299 300 296 3 298 2 

[UC] User Credentials  350 347 302  48   305 42   

[DB] Database  159 166 154 5 130 36 

[DA] DNS Attack  100 100 98 2 89 11 

[EO] Email Only  166 166 166 0 165 1 

[PK] Private Key  100 100 97 3 100 0 

[EC] Email Conversation  60 60 59 1 59 1 

[CF] Configuration Files  164 164 164 0 133 31 

[WD] Website Defacement  274 274 256 18 218 56 
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Table 12: Content classifier accuracy analysis 

Class Precision Recall 

CC 98.99% 99.32% 

UC 86.29% 87.79% 

DB 96.86% 81.05% 

DA 98% 89.9% 

EO 100% 99.4% 

PK 97% 100% 

EC 98.33% 98.33% 

CF 100% 84.1% 

WD 93.43% 82.05% 

 

As per the graph, the Content classes Credit Card (CC), Database (DB), DNS Attack (DA), 

Email Only (EO), Private Key (PK), Email Conversation (EC), and Configuration Files (CF) 

has better performance in terms of precision. Email Only (EO) and Configuration Files (CF) 

have 100% precision that indicates when the classifier predicts a set of inputs as Email only 

or Configuration Files, that positive dataset will contain the majority of these classes in the 

dataset with significant sensitivity. The CC, EO, PK, and EC classes indicate better 

performance in terms of recall. Further analysis suggests that the majority of false negatives 

associated with the UC are the dumps with passwords (not containing attributes that can be 

extracted with patterns such as e-mails and hashes). Heuristics defined for the UC are not 

dominant enough to identify particular password dumps.  

5.1.5 Twitter Pre Filter 

Average Twitter feed is about 6,000 tweets per second and Twitter Pre filter comes in handy 

to improve the performance of the subsequent filters and classifiers by removing unrelated 

posts beforehand. Table 13 illustrates the results of seeding 1,803 samples of tweets across 

Twitter Pre filter. The seed contains 853 manually labeled posts that are pre validated as 

related posts. Total number of posts used for testing is 1,803. Ideally, the filter should identify 

853 positive samples and 950 negative samples. The table lists the positive matches selected 

by the Pre filter. True positives denote the correct matches, while false positives denote the 

number of documents selected by the filter which is not relevant. 
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Table 13: Twitter Pre filter performance analysis 

Positive Negative 

853 950 

True Positive False Negative True Negative False Positive 

640 213 747 203 

75.03% 24.97% 78.63% 21.37% 

According to the labeled dataset, following key observations are made: 

Precision = 
640

640+203
 = 75.92% 

Recall = 
640

640+213
 = 75.03% 

 

The precision has decreased because some posts in the selected negative dataset does not 

contain the identified irrelevant words. Recall has reduced as the positive dataset contains 

some words identified as irrelevant. To increase the precision and recall the keywords used in 

Twitter Pre filter should be optimized and the dataset should be selected more accurately.  

5.1.6 Twitter Evidence Classifier 

Once the tweets pass the Context filter they reach the Evidence classifier and it checks for 

evidence of hacking attacks and data breaches. A model with 99.66% accuracy is used in the 

Twitter Evidence classifier.  

Validation results of the dataset for Random Forest algorithm is show in the Figure 5-7. 

Table 14 illustrates the results of seeding 971 samples of posts across the Evidence classifier. 

The seed contains 485 manually labeled posts that are pre validated as evidence containing. 

Total number of posts used for testing is 971. Ideally, the filter should identify 485 positive 

samples and 486 negative samples. The table lists the positive matches selected by the 

Evidence classifier. True positives denote the correct matches, while false positive denotes 

the number of posts selected by the classifier which do not contain evidence of hacking attack 

or data breach. 
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Figure 5-7: Evidence classifier model using Random Forest algorithm 

 

Table 14: Twitter Evidence classifier performance analysis 

Positive Negative 

485 486 

True Positive False Negative True Negative False Positive 

485 0 483 3 

100% 0% 99.38% 0.62% 

 

According to the labeled dataset, following key observations are made: 

Precision = 
485

485+3
 = 99.39% 

Recall = 
485

485
 = 100% 

The main reason for the high precision and recall can be identified as the higher accuracy in 

the evidence model and the selection of an optimized dataset.  
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5.2 Comparison between LeakHawk 1.0 and 2.0 

LeakHawk 1.0 only has Pastebin components, so each component is analyzed with same 

dataset used to test LeakHawk 2.0 and the results are compared in this section.  

5.2.1 Pre Filter of LeakHawk 1.0 

Table 7-8 illustrates the results of seeding 2,725 samples of posts across Pre filter of 

LeakHawk 1.0. The seed contains 853 manually labeled posts that are pre validated as related 

posts. Ideally, the filter should identify 853 positive samples and 950 negative samples.  

Table 15: LeakHawk 1.0 Pre filter performance analysis 

Positive Negative 

2011 714 

True Positive False Negative True Negative False Positive 

1498 513 259 455 

74.49% 25.51% 36.27% 63.73% 

 

Precision = 
1498

1498+455
 = 76.70% 

Recall = 
1498

1498+513
 = 74.49% 

Both the precision and recall is low since the set of irrelevant words is not optimized. For 

instance, some code words such as for, else, public, return etc. may be there in sensitive, 

relevant posts.  

Comparison of Pre Filter 

Table 16: Comparison of Pre filter 

 v1.0 v2.0 

Precision 76.70% 93.32% 

Recall 74.49% 99.31% 



74 

 

Figure 5-8: Comparison of Pre filter 

According to Table 16 it is evident that the precision and recall of Pastebin Pre filter in 

LeakHawk 2.0 is much better than LeakHawk 1.0. The main reason for the improvement can 

be recognized as the implementation of a model with the accuracy of 84.62% and selection of 

a proper dataset for training the model, as well as analyzing the performance. 

5.2.2 Context Filter of LeakHawk 1.0 

Table 7-10 illustrates the results of seeding 2,700 samples of posts across Context filter of 

LeakHawk 1.0. The seed contains 1,200 manually labeled posts that are pre validated as 

related posts. Ideally, the filter should identify 1,200 positive samples and 1,500 negative 

samples.  

Table 17: LeakHawk 1.0 Context filter performance analysis 

Positive Negative 

1200 1500 

True Positive False Negative True Negative False Positive 

955 245 1392 108 

79.58% 20.42% 92.81% 7.19% 

 

Precision = 
955

955+108
 = 89.84% 

Recall = 
955

955+245
 = 79.58% 



75 

Precision and recall is a little bit low as the domain related words are not well optimized and 

with time the word set would be changed slightly.  

Comparison of Context filter 

Table 18: Comparison of Context filter 

 v1.0 v2.0 

Precision 89.84% 82.02% 

Recall 79.58% 100% 

 

 

Figure 5-9: Comparison of Context filter 

According to Table 18 it is found that the precision of Context filter in LeakHawk 2.0 is a bit 

lower compared to LeakHawk 1.0, while the recall is greatly improved in LeakHawk 2.0. 

False negatives are almost not detected in LeakHawk 2.0 while in LeakHawk 1.0 there is 

20.42% probability of detecting false negatives. The main reason for the improvement can be 

recognized as the implementation of a model with the accuracy of 84.62% and selection of a 

proper dataset for training the model as well as analyzing the performance.  

5.2.3 Evidence Classifier of LeakHawk 1.0 

Table 19 illustrates the results of seeding 1,818 samples of posts across Evidence classifier of 

LeakHawk 1.0. The seed contains 860 manually labeled posts that are pre validated as related 

posts. Ideally, the filter should identify 860 positive samples and 958 negative samples.  
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Table 19: LeakHawk 1.0 Evidence classifier performance analysis 

Positive Negative 

860 958 

True Positive False Negative True Negative False Positive 

650 210 870 88 

75.55% 24.45% 90.83% 9.17% 

 

Precision = 
650

650+88
 = 88.08% 

Recall = 
650

650+210
 = 75.58% 

The recall is less because the words selected to identify the evidences does not contain all the 

possible evidence related words.  

Comparison of Evidence Classifier 

Table 20: Comparison of Evidence Classifier 

 v1.0 v2.0 

Precision 88.08% 95.09% 

Recall 75.58% 94.65% 

 

 

Figure 5-10: Comparison of Evidence Classifier 
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5.2.4 Content Classifier of LeakHawk 1.0 

Table 21 illustrates the results of seeding samples of posts across each class of the Content 

classifier in LeakHawk 1.0. Each class is analyzed with different data sets that were used in 

LeakHawk 2.0.  

Table 21: LeakHawk 1.0 Content Classifiers performance analysis 

Content Classes Positive Negative True 

Positive 

False 

Positive 

True 

Negative 

False  

Negative 

[CC] Credit Card 299 300 264 35 298 2 

[UC] User Credentials  350 347 329 21 304 43 

[DB] Database  159 166 150 9 153 13 

[DA] DNS Attack  100 100 85 15 89 11 

[EO] Email Only  166 166 163 3 139 27 

[PK] Private Key  100 100 90 10 100 0 

[EC] Email Conversation  60 60 48 12 53 7 

[CF] Configuration Files  164 164 163 1 159 5 

[WD] Website Defacement  274 274 239 35 237 37 

 

Comparison of Content Classifier 

Table 22: Comparison of Content Classifiers 

 

Class 

Precision Recall 

v1.0 v2.0 v1.0 v2.0 

CC 99.23% 99.32% 88.29% 98.99% 

UC 88.44% 87.79% 94% 86.29% 

DB 92.02% 81.05% 94.34% 96.86% 

DA 88.54% 89.91% 85% 98% 

EO 85.79% 99.40% 98.19% 100% 

PK 100% 100% 90% 97% 

EC 87.28% 98.33% 80% 98.33% 

CF 97.02% 84.10% 99.39% 100% 

WD 86.59% 82.05% 87.23% 93.3% 

Average 91.66% 91.32% 90.71 96.53% 
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Figure 5-11: Precision comparison of Content Classifiers 

 

Figure 5-12: Recall comparison of Content Classifiers 

According to Table 22 it is seen that the precision and recall of Pastebin Content classifier in 

LeakHawk 2.0 performs better than LeakHawk 1.0. There are some exception classes such as 
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DB, CF, and WD where precision is a little bit lower than LeakHawk 1.0, but the recall of 

that classes is improved than the earlier version. When considering the Content classifier as a 

whole it can be concluded that LeakHawk 2.0 analyses Pastebin posts better than LeakHawk 

1.0.   

5.3 Overall performance of the LeakHawk 

This section illustrates the overall performance of LeakHawk flow considering all the 

components as a whole. Sets of posts containing both sensitive and irrelevant posts with 

varying post count are fed to the system and the time is analyzed for both Pastebin and Twitter.  

5.3.1 End-to-End time to process Pastebin-Posts 

This section shows the time taken to process different number of Pastebin posts. According 

to the results it is evident that the system can process Pastebin posts efficiently. Average 

Pastebin feed is about 24 posts per minute as analyzed by LeakHawk 1.0 author [6], but 

LeakHawk 1.0 could not process that much of load. LeakHawk 2.0 can process 100 Pastebin 

posts within 34 seconds (according to the average time in the Table 23) which is a greater 

improvement. This speed up is due to the integration of Apache Kafka for queuing and Apache 

Storm for processing. Spouts and bolts of Storm makes it easy to process incoming streams 

in real time and parallel.  

 

Table 23: Time takes to process Pastebin posts 

Number of posts 100 500 1000 1500 2000 2500 3000 3500 4000 

Time to process (s) 34 138 269 399 531 672 796 935 1077 
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Figure 5-13: Number of Pastebin posts vs Time to process 

5.3.2 End-to-End time to process Tweets 

This section shows the time taken to process different number of tweets in the system. As 

seen in Figure 5-14 it can be concluded that the system can process tweets according to an 

average level. Average Twitter feed is about 6,000 posts per second and LeakHawk 2.0 can 

process 5,000 tweets within 2 sec. According to the results illustrated in Table 7-x, the system 

cannot process all tweets retrieved, using one machine. To improve the process capacity, at 

least two machines must be utilized.  

 

Table 24: Time takes to process tweets 

Number of tweets 5000 10000 20000 30000 40000 50000 60000 

Time to process(s) 2 3 6 8 11 13 16 
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Figure 5-14: Number of tweets vs Time to process 

5.3.3 Processor and Memory usage 

This section illustrates the CPU and memory usage by the overall system when running in the 

environment described in section 5.1 for Pastebin and Twitter. Figure 5-15 shows the 

processor and memory usage when processing Pastebin feed provided as 1 post per second 

(Pastebin average feed is 24 posts per minute). When running for Pastebin, there is maximum 

CPU utilization as shown in Figure 5-15 and memory usage is approximately 70%. The reason 

for the utilization can be identified as, although Pastebin post feed is nearly 24 posts per 

minute, the size of a post is considerably large, and need more processing as well as memory 

power.  

Figure 5-16 shows the processor and memory usage when processing Twitter feed provided 

as 6,000 tweets per second (Twitter average feed is 6000 posts per second). When running for 

Twitter, there is average CPU utilization as shown in Figure 5-16 and memory usage is 

approximately 70%. The reason for the utilization can be identified as, although Twitter post 

feed is nearly 6,000 tweets per second, as tweet size is 140 characters maximum, it needs only 

little amount of processing as well as memory power.  
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Figure 5-15: Process and Memory usage to process Pastebin posts 

 

 

Figure 5-16: Process and Memory usage to process Tweets 

In conclusion, LeakHawk 2.0 implementation provides a much better performance at the 

expense of accuracy, time, processing power and memory. It processes Pastebin posts faster 

and accurate than LeakHawk 1.0 implementation. The processor and memory utilization is 

satisfiable with regard to Pastebin feeds and with respect to Twitter feeds at least two 

machines should be used for better performance.  
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6 Summary  

LeakHawk 2.0 is an open source contributed software application which is an extension of 

LeakHawk 1.0 which was a PoC implementation. LeakHawk is a real time, scalable 

automated framework that can detect data leakages and evidence of hacking attacks related to 

Sri Lankan domain that happened through text sharing sites (Pastebin) and social media sites 

(Twitter).  

A main feature of LeakHawk 2.0 comparatively is the modularization of the system to make 

it easy for custom implementations. The level of abstraction of filters and classifiers has made 

this simpler. Moreover, LeakHawk 2.0 supports addition of multiple sensors where we 

connected Twitter apart from Pastebin. The custom implementations of filters and classifiers 

mainly uses Machine-Learning based and keyword-based methodologies for the 

implementation. This has reduced the occurrence of false negatives in the system by 

improving the recall and minimizes false positives. Automation of manual process of 

identifying data leakages and evidence of hacking attacks has made a challenging effort which 

is a very valuable approach for particular domains like financial domain, and data security 

domain. Moreover, the new platform itself is scalable which has made paths to integrate new 

data sources like Facebook, define new information domains and add new categories to 

categorize input data into relevant type. A valuable aspect to be considered is the system 

guarantees all the incoming posts to the system are processed without any data loss. Along 

with that the ability of the system to predict the sensitivity level of a given post is a significant 

feature that adds a value to the system. 

Defining the information domain is a sort of manual process on the platform that contains 

unique attributes of a particular party. The scope and the complexity that the information 

model covers will affect the precise detection of data breach exposures.  

LeakHawk 2.0 employs nine Machine Learning based classifiers to predict the sensitivity of 

the incoming posts where precision ranges from 81% to 100% with an average of 91% 

whereas recall ranges from 86% to 100% with an average of 96%. LeakHawk 1.0 incorporated 

a set of ten machine-learning based text classifiers for the severity classification with precision 

varying between 45%-95% with an average of 82% and recall ranging between 35%-98% 

with an average of 80%. According to the performance analysis results, it is evident that the 

system can process Pastebin posts efficiently. LeakHawk 2.0 can process 100 Pastebin posts 
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within 34 seconds which is a greater improvement. LeakHawk 2.0 implementation provides 

much better performance at the expense of accuracy, time, processing power and memory 

compared to LeakHawk 1.0.  

6.1 Future Work 

Functional and performance aspects of LeakHawk when dealing with social media feeds other 

than Twitter are not evaluated in this research. To generalize LeakHawk for other Pastebin 

applications, other than www.pastebin.com, several enhancements are necessary for the 

sensors. These changes are mostly needed due to the fact that Paste sites differ in the 

availability of an API, search functions, and access limitations. 

Furthermore, the current dashboard can be designed to enhance the management and usability 

along with multiple alerting mechanisms. Dashboard can be further improved to allow users 

who uses the system to register in the system which needs to be validated by an admin. Apart 

from that dashboard can be improved to provide notifications to the registered users in a data 

breach exposure related to them. Also, a process can be integrated to automatically generate 

notifying emails in case of a data breach exposure. The performance of the LeakHawk can be 

significantly improved by integrating canary traps [41]. 

While overall accuracy of LeakHawk 2.0 is significantly better, there are some components 

that can be improved further. Precision of the Context classifier of LeakHawk 2.0 is 82.02% 

and that can be improved with the utilization of an optimized information template. Also in 

the Content classifier, classes DB, CF, and WD shows lower precision which need to enhance.  
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