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Abstract

As Big Data scenarios increasingly become common, a large number of distributed data

processing systems require timely processing of high volumes of real-time data streams.

Detecting complex correlations between incoming data streams in near real-time is at

the heart of these data processing systems. Complex Event Processing (CEP) have

been dominating in this domain since inception a decade back. But, growth of Big

Data volumes demands for more performance and faster processing. CEP operators

like stream join and event patterns require considerable processing power and have huge

impact on the overall query processing performance. In some use cases these operators

have to operate on lots of events simultaneously. Making parallel algorithms for these

operators is a common approach for improving the individual operator performance.

A Graphics Processing Unit (GPU) provides a vast number of parallel computing cores

and leverage new parallel algorithms which enables novel problem solving approaches

for existing problems. But the challenge is combining complex event processing and

GPUs in the right way to get the maximum performance out of the this parallel

hardware. There had been attempts to use parallel hardware in improving CEP

performance in both commercial and academic implementations, and most of them

uses multi-core approach. Only a very few researches had used GPUs for CEP. We

believe the lack of GPU related CEP researches is that they are not designed to benefit

from parallel processing in GPUs.

In this research we investigate how and when GPUs can be used to improve the query

processing performance of a popular open source CEP implementation, Siddhi CEP.

Siddhi, by design, supports for parallel query processing in multi-core CPUs. This work

propose a novel approach for parallel event processing in GPUs with several GPU event

processing algorithms. Performance evaluation on our implemented algorithms shows,

for a mix of complex queries, parallel event processing on GPUs achieve more than ten

times event processing throughput than the sequential processing in CPUs. Moreover,

our approach helped to reduce event queuing at the incoming event queue when there

are high frequent input event stream and several complex queries.

Keywords. Complex Event Processing, Parallel Hardware, GPGPU, Siddhi CEP.
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Chapter 1

Introduction

Complex Event Processing (CEP) is a technology designed to infer complex patterns in

streams of events. CEP is a widely used computing paradigm in today’s IT enterprise

systems. Most of the CEP use cases demands for faster and efficient processing of

incoming events as soon as they are available. This is the major challenge that most

of the CEP implementers are facing today. This chapter gives an introduction to the

project while describing the problem domain and the problems associated with that

domain, which this research is going to tackle. The Section 1.1 gives an overview

of the limitations we face in today’s enterprise IT systems with the high volumes of

data. Section 1.2 and 1.3 describe in brief the complex event processing and emerging

parallel hardware technologies and in Section 1.4 we describe how those two concepts

used in synergy to improve the CEP performance. Brief overview of the project and

problem statements follows in Section 1.5. The contribution of this work is described

in Section 1.6.

1.1 Big Data and Data at Move

Today, there are so many data sources available around us generating unimaginable

volumes of data per second [1]. These include social media inspired web activities like

Twitter and Facebook data streams, sensor data from different sensor networks, stock

market activity data, weather data, among others. These are so called Big Data and

often called data at move since there are large volume of real-time data generating

and flowing from various data sources to various data sinks. So it is very important

to process these data streams as and when they are generated and derive interested

information from these data streams in order to exploit the opportunities and maximize

profits.

For example, consider the capital markets, where market activities happen very fast.
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Market players who react fast to the changing market activities win the game in capital

markets. The ability to react instantly to market movements is a competitive advantage

and way to maximize profit and minimize risk [2]. Whether it is a sophisticated

algorithmic trading application or decision support system for risk managers, it all boils

down to the ability to intercept fast moving data from multiple sources and process

them in real-time.

This is often the case for many other industries and use cases where distributed

systems are involved. For example, consider following use cases; a fraud detection

tools observing stream of credit card transactions to detect fraudulent usage patterns

of credit cards in real-time [3]; RFID based inventory management systems, analyzing

real-time sensor data to track RFID objects and detect irregularities [4]; a monitoring

and controlling systems for a power grid that analyze sensor data from millions of

distributed sensors and detect complex patterns in all the sensor data streams combined

to optimize the power usage [5]. All of these use cases are challenged by the real-time

process of fast moving, large volume of data.

In fact, a study done on digital data [1] says that, in 2012, 23% of the total data

generated in the digital universe, or 643 Exabytes of digital data, would be useful for

Big Data, if it were duly processed and analyzed. However, technology is far from

where it needs to be, and in reality, it is only 3% of the potentially useful data that is

processed and tagged. This shows how hard it is to analyze the Big Data and deliver

useful information in real-time.

1.2 Complex Event Processing

The Complex Event Processing (CEP) technology emerged as a solution for analyzing

fast moving Big Data and continue to grow its usage in event processing domain. Most

of the complex systems are event driven. Most of the above mentioned data streams

are comprised of continuous stream of primitive events. Event driven systems operate

by observing one or many streams of these primitive events from external data sources,

detect interesting combination of primitive events, and react for them once detected.

These systems are build around a core event processing component called Complex

Event Processing Engine [6].

CEP engines detect meaningful patterns in the input event streams (event sources),

according to the user provided pattern definition (event query definition) and alert

user about the detected patterns (event sink). There can be several event sources for

a particular event query and these event streams can be differ from each other. The

detected events are also output as a stream of events.

2



The CEP domain has been evolving throughout the last decade and it has gain attention

from both academia and industry alike, because of its practical usage in solving real-

world problems [7], [8]. There are many approaches and implementations of CEP

engines proposed by both academia [9]–[12] and industry [13]–[15].

Current implementations of CEP engines in general features several characteristics

like support for unrelated event streams, support for parametrized combination of

event rules, processing events in temporal window, joining event streams, basic query

language for defining complex event patterns and optimization of event queries. But

above all, the most crucial characteristic of CEP is the low latency of event processing in

the face of high volume of incoming events and emit output notifications as soon as an

interesting pattern is detected. To this end, there had been lot of research work done to

improve the event processing performance of CEP engines [16]–[19]. Some approaches

took the path of changing the event processing core of existing CEP engines and some

took the path of proposing completely novel architecture to event processing.

The Siddhi CEP engine [20], [21] is one of the CEP engines that took the novel

approach of using stream processing techniques like multi-threading and pipeline

architecture to make the event processing faster. Further, the architecture of Siddhi

CEP closely follows the stream processing systems so it utilizes the current multi-

core processors through multi-threading and producer-consumer architecture. Event

processing performance of the Siddhi is one of its major advantages. The authors of

Siddhi have shown that the engine has considerable higher performance than other

existing CEP implementations.

1.3 Parallel Hardware

While the world is moving to the data avalanche, the computational processing power

has also increased to help solving problem arised by this huge volume of data. This

increased computational power is available through computational grids, clouds, multi

and many core processors. The recently addition to the many-core processors are

Graphic Processing Units (GPU).

GPUs are originally developed as a fixed function processor built around graphics

pipeline to process 3D graphics. But over the past few years increasing number of

communities have identified that GPUs can be used in other applications which need

high computation requirements [22]. GPUs are designed to increase the throughput

rather decrease the latency. Now the General Purpose Computing on the Graphics

Processing Unit (GPGPU) has become a mainstream technology and used in growing

number of use-cases which need High Performance Computing (HPC).

3



Compute Unified Device Architecture (CUDA) is a wide spread architecture for

GPGPUs, invented by Nvidia [23]. CUDA provides a C-like programming

infrastructure for GPUs with two levels of parallelism; data parallelism and multi-

threading.

The GPGPU is closely bound to the underlying GPU hardware architecture.

Programming to a particular GPU needs proper understanding about the key

characteristics provide by the implementations of that GPU. The data structures and

algorithms should be carefully designed to gain the right performance from the GPU

computations [24].

1.4 CEP on Parallel Hardware

Performance of event processing is one of the core features and a major selling point

of any CEP implementation. Because most of the CEP implementations are used

in diverse mission-critical and time-critical scenarios with demanding performance

requirements. This is why most of the commercial CEP implementations are trying to

constantly improve their performance.

The definition of term performance vary widely in different CEP implementations.

Some say its the number of incoming events per second handled by the CEP engine,

while others say it is the number of concurrent quires handled by the CEP engine.

Both metrics are important but none of them are complete as an individual metric

for performance. Besides there are lot of other metrics to consider when measuring

performance of a CEP engine [25].

The basic common operations supported by many CEP implementations are; pattern

detection, filtering, transformation, windowing, aggregation, sorting, correlation

(stream join) and merging (stream union). These operations will be described further

in Section 2.2.2. The performance of a CEP engine directly depends on:

• the internal data structures and algorithms used for basic operations;

• basic operation parameters such as window type and size, and number of filtering

events;

• speed and size of incoming data;

• number and type of queries, the complexity of the queries;

• external parameters such as available resources.

Performance is one of the key aspects in any CEP engine and parallel hardware are

increasingly become available and common, but there had been only a few attempts
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to harness the performance advantages offered by parallel hardware to increase the

performance of CEP engines [26]–[28]. As we will describe in the Chapter 2, this

is mainly because of the architecture and implementation of most of the current

CEP engines are unable to take advantage of parallel hardware. Some CEP engine

implementations are inherently single threaded and some uses data structures that are

hard to parallelize. There are some CEP operations, such as “joining two streams with

time window events”, which require sequential processing and parallelizing them may

require locking and waiting which negatively affect their performance.

1.5 Problem Statement

In this research our main goal is to investigate how and when GPGPUs can be used to

improve the query processing performance of Siddhi CEP engine. As we have described

above, using GPGPUs for accelerating event processing performance in CEP systems

is a novel approach in event processing domain.

Current Siddhi architecture supports parallelism and it already uses the multi-core

CPUs to improve query processing performance using multiple threads. But current

implementation of parallel algorithms needs to be improved to gain high performance

in processing complex rules with high volumes of incoming data. For example, some

query operators currently require locking and processing of stored events one-by-one

sequentially, which can negatively effect performance, if there are lot of stored events

(time windows size is long) or there are high frequent incoming data. GPUs provides

performance advantages over this kind of scenarios by processing individual events

in parallel in multiple threads. GPUs may not provide low-latency processing for

individual events, but collectively it yields high throughput, which is more beneficial

to high frequent data processing scenarios.

We chose Siddhi as the CEP engine for this research, because it is an openly available,

actively developed, emerging CEP engine that has used in many production systems

and its architecture closely resembles stream processing systems and supports multi-

threading. So we suppose the impact of this research will be higher on both research

community and the industry.

1.6 Contributions

To achieve the main goals of this research, we have introduced a novel approach of

off-loading event processing tasks to GPUs. Our main contributions are as follows:
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• Through profiling existing Siddhi implementation using a real-time data load

we have identified the most frequently used complex event processor operators

that have high impact on event processing performance. We have designed

and implemented several GPGPU-based parallel event processing algorithms for

these highly used CEP event processors like filter event processor, window event

processor and event stream join processor.

• In designing GPGPU-based event processing mechanism for Siddhi CEP, we

identified the requirement of having a general purpose event processing framework

for parallel hardware technologies. Thus, we have present the design and

implementation of a general purpose event processing library for GPGPUs.

• We also present the implementation of a new Siddhi Query Processing Runtime for

GPGPUs which follows the same interface as existing Siddhi Query Processing

Runtimes and internally uses our general purpose event processing library for

communicate with GPGPUs. Using this new Query Processing Runtime, we have

implemented GPU event processors for filter operator, event window operator and

event stream operator.

• Finally, in evaluating CEP systems, we propose the use of publicly available,

real-world dataset and a set of standard queries to evaluate and compare CEP

system’s query processing performance. Using this data set we have evaluated

our proposed GPU event processing algorithms and we have achieved, compared

to sequential event processing, more than ten times event processing throughput

for a mix of complex event queries.

Our experimental evaluation shows with the use of GPGPUs for event processing we

can gain two times speedup of event processing throughput for complex operators like

stream join operators. Moreover, our approach helped to reduce event queuing at the

incoming event queue when there are high frequent input event stream and several

complex queries.

1.7 Challenges

As we have mentioned earlier, there had not been much research work done in CEP

domain to use GPGPUs for parallelization. According to our knowledge, this work is

the first to use Java based CEP engine with GPGPU hardware. So we had to overcome

lot of technical and design challenges during this research. Some of these challenges

are listed below.

• CUDA-C is extension to C programming language. Siddhi is implemented using

Java. So we had to design a Java to CUDA-C/C++ communication mechanism
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that does not negatively impact on data transfer performance.

• Siddhi internally represent Event attribute data as a flat generic data structure

(i.e. array of Java Objects). It does not use data structure that represent event

schema to represent actual events. Hence event serialization and de-serialization

takes considerable processing power.

• CUDA is generally used to solve data parallel computations problems, and it is not

generally recommended for event-based parallelism. So stream-based processing

are generally not suitable for CUDA. It was challenging to identify which part of

the processing should off-load to GPUs and which part of the processing should

be done in CPUs.

1.8 Organization of the Thesis

The reminder of this thesis is organize as follows. Chapter 2 presents the background of

this research, which covers CEP systems, parallel hardware systems (multi-core, GPU

and cell processors) and GPU Programming Environments. In Section 2.2, we presents

the current architecture and main implementation concerns of the Siddhi CEP engine.

In Chapter 3 and Chapter 4, we present our proposed approach to the improving

performance of Siddhi CEP engine with use of parallel hardware. Chapter 3 describes

the changes we done in Siddhi to accommodate GPU event processing while Chapter 4

describes the implementation of general purpose GPU event processing library that

we have implemented. Chapter 5 presents evaluation of our proposed approach using

real-world workload and Chapter 6 summarizes our work and suggest future works.
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Chapter 2

Literature Review

Complex event processing demands for high performance event processing while parallel

hardware providing a platform for developing high performance application systems.

But the challenge is combining these two domains to work together in order to improve

event processing performance. Understanding both domains and their internals helps

the challenge solving process.

This chapter first gives a overview of problem domain and then expands a thorough

literature of current state of the art; while differentiating each related work with this

research work. Since this research resolves around two major domains – Complex Event

Processing and Parallel Hardware, this chapter has two parts describing each domain.

Section 2.1 presents overview of Complex Event Processing while Section 2.2 describe

Siddhi CEP and its internal implementation details in higher level. In Section 2.3

we describe current parallel hardware technologies including GPGPUs. Finally, in

Section 2.4 we present related researches.

2.1 Event Processing

In computing, an event is defined as an occurrence which happened in past, currently

happening or considered as happened within a particular system or domain (event

occurrence) [29]. In the programming context, the word event is also used to denote

the computational representation of the particular occurrence (event entity). The

computational representation usually in the form of a state change of one or more

attributes related to that particular occurrence. These state changes are encoded in

programming entity called event object or event tuple for ease of computer processing.

For example, following is a set of interesting event occurrences and their event entities;

• a weather sensor outputs its readings as message,

8



• a stock is traded and reported as a stock tick message,

• a monitoring system detects an application server crash and send a alert message,

• a tsunami wave is detected by a detection buoy and sends an alert signal,

• a twitter post is published to twitter feed,

It is usual that a single event occurrence represented by many event entities, and a

single event entity may not represent the all attributes of particular event occurrence.

As stated in the event definition the event entity can represent an occurrence that has

already happened or currently happening. It is also possible to represent an occurrence

that considered as happened but did not actually happened. For example a network

intrusion detection system can output a false positive detection event of intrusion,

where the detection system contemplated an intrusion has happened, when it was not.

There are systems which generate and disseminate events, such as applications, data

feeds and data stores. These are called event sources. There are two methods of

disseminating data; by pushing as in data feeds and by pulling as in data stores.

An event stream is a collection of associated, temporally ordered events. The events are

ordered based on a timestamp in each and every event in the stream. Usually in an event

stream we encounter events with same semantic meaning and structure. For example an

event stream from a stock exchange trading engine consist of events describing trading

activities (i.e. trade report messages). These events with same semantic meaning are

said to have same Event Type. Although an event stream can contain events in same

type, which it called homogeneous event stream, it is also possible to contain events of

different types, which it called heterogeneous event stream.

Each of the example events described above have one or more attributes that change

when the event occur. These attributes often called data items and as already described

an event contains one or may data items. For example, the weather sensor output may

contain wind speed, wind direction and humidity level as its attributes. The stock

trade has the trading price, trading quantity and trade time as its attributes.

Data is not much useful in its original nature; they are nothing but unorganized facts.

The wind speed is not a much useful data by its own, but if we combine and analyze

series of wind speed readings with humidity level readings and how they correlate, we

can derive useful information about future weather conditions. So the data needs to be

converted, analyzed, stored, aggregated or summarized to yield useful information out

of them. Data processing is one of the main computing task which interprets input data

and generate useful information as output. Data processing systems are responsible for

data processing and comprised of either hardware, software or liveware (i.e. people).

While the Data Processing Systems operate on data, the Event Driven Systems or

Event Driven Architecture (EDA) operate on streams of events. Event driven systems
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Figure 2.1: Event Processing Architecture.
Event processing systems architecture consist of event sources, event processing engine
and event sinks.

process event streams to convert data inside events into usable information stream.

Event driven architecture is increasingly become useful in mission critical domains

where high performance data processing is the utmost important requirement. EDA has

four main sub-systems (see Figure 2.1); i) event sources, who generate and disseminate

events as streams, ii) an event processing engine, who convert and process incoming

events and derive useful information and output them as a stream, iii) event sinks, who

consume output event streams from event processing engine, and iv) event processing

rules, which define how the event processing engine should operate on incoming data.

Apart from this, an EDA is also associated with a messaging infrastructure which helps

to deliver events from its sources to the center of the EDA. Messaging infrastructure

should be capable of doing one-to-one, one-to-many, many-to-one, and many-to-many

communications, whichever is used by event processing engine. Event processing engine

is the main focus of this research, this can be either a complex event processing engine,

high-speed rules engines, neural networks, Bayesian networks, or other analytical

models.

The event processing rules are added and removed from the event processing engine

by users of the system. Users define how to filter, aggregate, combine and summarize

incoming event streams according to what information they need to be output from

the system. Usually the implementation of event processing engine defines a query

language to express event processing rules to the system. Query languages can be

categorized into broadly two categories; rule-oriented languages and stream-oriented

languages [29]. Most of the current implementations of stream-oriented languages are

extensions of SQL [30]. Event sinks can be another data processing system, a data

store or sometimes can be feedback to the same event processing engine.
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There are several reasons why event processing approach is used in systems and

applications, such as:

• When the application is mainly dealing with events, like the example scenarios

we explained in above sections, and the main objective of the application is to

analyze those events and react to them as soon as possible.

• When the main objective of the application is to detect certain situations in

incoming event streams as they occur and react to them in timely fashion. This

is the opposite of batch processing method.

• When the application has to process high volumes of incoming events and output

derived information to another system or user. This high volumes of data can be

send to distributed event processing applications and process them parallelly.

• When the decoupling is necessary between information sources, information

processors and information users.

Event processing use cases have two unique requirements that are not catered by any

other existing systems: stream processing and timeliness. These new requirements

paved the way for creating new class of systems. Researchers from different background

and domains came up with different solutions for this problem of event processing and

most of these solutions are evolution or adaptation of these existing systems or domains.

Currently there are two major models designed for event processing use cases: the data

stream processing model [31] and complex event processing model [32].

2.1.1 Data Stream Processing

The data stream processing model is an evolution of traditional data processing

systems supported by Database Management Systems (DBMS). Traditional DBMSs

are designed for use cases where data is first stored and indexed before they are

used for processing. The actual data processing is happened when a particular user

explicitly query for data which is already stored. In contrast, event processing use cases

have complete opposite requirements of these. For example, take a network intrusion

detection system which dose processing of network events to detect possible intrusions

to the network system. There the main requirement is to analyze network events

like traffic flow, network device connection and disconnection, in real-time to detect

predefined patterns of possible malicious activities in the network and alert required

parties as soon as an intrusion is detected. There is no real requirement of storing all

the network events in a data store before they are processed. If all the network events

are stored in a database at the rate of event occur, it will require huge storage capacity

and high performance storage system. So storing of incoming events are not required

unless they are related to detection of particular incident; the malicious activity in
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intrusion detection use case. All stored events can be discarded once the particular

incident is detected where the output event (intrusion alert in this case) includes all

the necessary attributes to identify the incident.

The Data Stream Management System (DSMS) was designed following the DBMS

principles and adopting to event processing requirements. The DBMS and DSMS

systems have similarities and substantial differences. Both DBMSs and DSMSs have

common way of processing incoming data using processing logics defined by SQL

operators like selecting, aggregating and joins. DBMSs are designed to work with less

updating persistent data while DSMSs are designed to work with frequently updating

transient data. In DBMSs, queries are executed on persistent data set only when the

query is invoked by a user. In contrast, DSMSs process the data as a flow as opposed

to a dataset and execute standing queries over flowing data stream. In summary,

DBMSs have static data and dynamic queries, where as DSMSs have dynamic data

and static queries. DSMSs are incomplete in terms of covering the requirements of

event processing. They are only capable of answering to the user defined queries, but

cannot do most primitive operators in event stream processing like sequencing and

ordering of events.

2.1.2 Complex Event Processing

The DSMSs are limited in their capabilities since they are generic in terms of incoming

data processing and clients are expected to associate the semantics to incoming data

with queries. The CEP model gives the incoming data streams correct semantics

by treating them as event occurrences happened outside the system. These event

occurrences are detected or produced by event sources and fed into CEP system.

The CEP engine do sequencing, combining and filtering of incoming events to derive

composite, higher-level events out of incoming events.

2.1.2.1 Primitive Events and Complex Events

Before defining the Complex Event Processing, it is important to understand the

difference between primitive event and Complex Event. Complex event describes an

incident which was derived with complex correlations from set of other primitive or

complex events. Complex event encompasses attributes of that set of other related

events as a summary. Moreover, it can contain additional attributes that did not

present in events which it summarized [6]. Even though all derived events are complex

events, not all complex events are derived events as they can be generated from event

sources. Usually the definition of complex event is tightly coupled with the context
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of processing. A complex event for one processing context may be a simple event for

another context. Set of complex events are listed below.

• A Stock trade - Summarizes the events happened during the purchase of a Stock,

such as matched bid and offer prices, time of the purchase, how much quantity

was traded, etc.

• A credit card fraud detected - Summarizes the events happened during the

detection process and their correlation that lead to detection of the fraud, such

as a credit card with historically low transactions rate suddenly did series of high

value transactions within few hours.

• Detection of fire - Summarizes a series of smoke and heat sensor readings and

their relations, such as smoke sensor detected a smoke in a particular area and

the temperature of that location was above 60 degrees for more than 15 minutes.

2.1.2.2 Event Stream Processing

The complex event processing provides a software infrastructure to detect patterns

in event streams from multiple live data sources by filtering, combining, correlating,

contextualizing and analyzing, and respond to its environment as defined by the

processing rules. CEP combines events from multiple sources to derive event patterns

that describe more complex situations, more meaningful events or situational knowledge

and respond in timely manner. The input to complex event processing can also include

simple/raw event streams.

Complex event processing concept is different from event processing paradigms in terms

of its support for temporal queries. With temporal queries event subscribers are able

to exploit time based relationship between events in event streams like “time windows”

and “before and after relationship”. Usually in CEP terminology event processing is

the preprocessing phase of the CEP engine, where input events are normalized and

prepared for processing in higher level CEP processors. These concepts are further

explained in Section 2.2.2.

The best way to convey the idea of complex event processing and its relation to the

EDA is to compare it with human body and its functionalities [33] (see table 2.1).

Complex event processing systems has its roots in message oriented middleware systems

like publisher-subscriber systems [34], [35]. In publisher-subscriber systems, users (i.e.

subscribers) are subscribed for channels of their interest. These channels are equal

to event streams with homogeneous events (events with same type or class). The

publishers publish data to channels without directly addressing subscribers. The event

dispatcher in between do the hard work of filtering events based on their content
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Table 2.1: Similarities between Event Driven Architecture, Complex Event Processing
and Human Body.

Human Body Complex Event Processing Functionality

Senses Transactions, log files, edge
processing, edge detection
algorithms, sensors

Direct interaction with
environment, provides
information about environment

Nervous System Enterprise service bus (ESB),
information bus, digital
nervous system

Transmits information between
sensors and processors

Brain Rules engines, neural networks,
Bayesian networks, analytics,
data and semantic rules

Processes sensory information,
“makes sense” of environment,
formulates situational context,
relates current situation to
historical information and
past experiences, formulates
responses and actions

or topic and forward them to relevant subscribed users. There are two types of

publisher-subscriber systems: topic-based and content-based. Topic-based publisher-

subscriber system allows subscribers to subscribe for a particular topic, which is equal

to a channel. In content-based publisher-subscriber system users are subscribed to

messages with particular attribute value. The publisher-subscriber engine do the

filtering of incoming channel messages based on the received subscriptions and do the

dispatching of data. The subscriptions are described using specialized languages varying

from simple attribute-value pairs to XML-based filter languages. Publisher-subscriber

systems only support subscriptions for events with same type and do not consider

complex relations between events and their history [36]. This basic idea of filtering

data based on subscription has evolved into Complex Event Processing engines which

added facilities to extract complex relationships between events in one or more event

streams.

Similar to the event driven architecture, complex event processing system has four main

components: event sources, event processing engine, event sinks and event processing

rules. The event processing engine, called Complex Event Processing Engine, dose the

detecting of patterns of complex and primitive events, generate new composite events

by aggregating and combining matched incoming events. The CEP engine interprets

the detection rules defined by rule language and configure its processing logics according

to those rules. The expressiveness of the rule language is utmost important in a CEP

system, because it decides the capabilities of the event processing engine exposed to

users.
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2.1.2.3 CEP Use Cases

Early days use of CEP was limited to set of use cases that require quick response to

changes around it environment like algorithmic trading, pattern recognition in sensor

data. But today, CEP has extended its use in vast number of use cases covering different

domains. This is due to the fact that in today’s IT enterprises events are more frequent

and enterprises architectures increasingly follow event driven architecture. Majority of

CEP use cases can be broadly categorized in to following categories.

• Situation Detection

Analyzing incoming events to detect event occurrence patterns that would show

existence of new opportunities or problems in the event context. In this use

cases incoming events are filtered using specific event attribute or complex event

correlations while checking existence or absence of event attributes. Once the

existence or absence of interested situation is detected, a high-level event is

emitted as a result.

• Data Aggregation and Analysis

In this continuous computation use cases, incoming data is correlated, grouped,

aggregated and combined, and then computations such as averages are applied

to aggregated data to generate novel information. Most of the time these use

cases output summarized and higher level statistics information of incoming data.

Example real-world use cases are;

– continuously updated key performance indicators (KPIs)

– continuous aggregation of data from multiple sources to show the big picture

– continuous price adjustment based on market movement

• Data Collection

While CEP analyze events in real-time, in some use cases, incoming raw events

and CEP resulting higher level summary data are stored in separate data store

for offline analysis or for recording purpose. Sometimes these stored events are

used as the context of processing newly arriving data.

• Application Integration and Intelligent Event Handling

In an event driven architecture, integrating different application systems by

facilitating communication between those systems is a common practice. CEP

can provide intelligence within an event driven architecture to analyze events in

the context of other events and a knowledge of the state of various integrating

systems to determine the routing of events between systems and determine the

action to be taken based on an event.
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2.2 Siddhi CEP Engine

As we described in the introduction chapter, in this research our main focus is on to

improve the performance of CEP implementation called Siddhi CEP [20]. Siddhi CEP

engine is an open source CEP implementation available for free to general public for

commercial and non-commercial use under Apache Software License v2.0. Similar to

most of other CEP implementations, Siddhi was started as an undergraduate project

at University of Moratuwa, Sri Lanka, and soon became an internal project at WSO2,

where it is now being improved∗. Siddhi is implemented using Java as a “jar library”,

which enables the easy use of CEP functionalities in any Java application. It is currently

being used in many production systems covering many real-time use cases. Siddhi’s

architecture closely resembles stream processing systems and supports multi-threading.

2.2.1 Siddhi Architecture

The designers of Siddhi has mainly differentiate it from other CEP implementations

by its performance. Siddhi’s architectural design and implementation is done with

performance in mind. The high-level architecture of Siddhi CEP engine as shown in

Figure 2.2 is consist of four main components: i) input adapters, ii) Siddhi-Core, iii)

output adapters, and iv) query compiler. Each of the modules are described below.

Figure 2.2: Siddhi High Level Architecture.
Siddhi architecture is consist of four main components: input adapters, Siddhi-Core,
output adapters, and a query compiler.

• Input Adapters

Input event streams to the Sidhhi engine are handled by input handlers. Usually

in practical scenarios, there can be several input event streams to the event

processing engine from different event sources. These different event streams can

∗http://wso2.com/products/complex-event-processor
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be in different forms or wrappers like XML messages, JSON messages, POJOs,

emails, or proprietary binary messages. The input adapters provide an interface

to these different event streams and convert them into a common easy to process

representation, which is currently a tuple data structure. There are several input

handler implementations to handle different event forms.

• Siddhi-Core

The most important part of the Siddhi is its rule processing engine called Siddhi

Core. Input events are processed according to the constructs defined by the input

queries and emit detected event pattern as an output event. Siddhi core is consist

of several sub components such as executors, event queues, processors and callback

handlers. Normalized input events from input adapters are appended into input

queues where processors fetch them from there and append resulting events to

output queues. Each sub component of Siddhi-core will be described later.

• Output Adapters

Output adapter dose the reverse operation of input adapter. Once a complex

event pattern is detected by the event processing engine, the resulting event is

converted to a representation suitable format and notified to event subscriber (i.e.

event sink) by the output adapter. There can be several event sinks who accept

resulting event stream in different formats like XML messages, JSON messages,

emails, SMS, Database update, etc. There are separate output adapters for each

of these different formats.

• Query Compiler

Siddhi supports a SQL like query language called SiddhiQL† to provide user

queries to processing engine. The query compiler dose the validation and

interpretation of SiddhiQL using ANTLR language recognizer. Validated queries

are compiled into query object model, which is used by the Siddhi-core to drive

its processing. Siddhi’s internal data object model will be explained in next few

sections.

Apart form the above main modules, Siddhi has a pluggable user interface module

which can be used to display useful statistics and monitoring tasks.

2.2.2 Siddhi Internal Data Model

Siddhi’s internal data model is one of its critical design component. Since our main goal

of this research is to improve the performance of Siddhi engine, it is very important

that we study these internal data model and how they are used. In this chapter we

will explain in higher-level the current data model and in a separate chapter we will

†http://docs.wso2.org/display/CEP300/Introduction+to+Siddhi+Query+Language
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critically evaluate the design choices and use of data model in Siddhi architecture. We

will further explain in implementation chapter the internals of each event processing

constructs we have improved preformance using parallel hardware.

Users of Siddhi do not need to manually create any of the internal data structures. It

is all automatically created once a user provided Query is compiled. In other words

this means the internal data model of Siddhi is tightly coupled with the SiddhiQL. So

when we are describing each data model and its components we will associate it with

the relevant SiddhiQL definition.

2.2.2.1 Event and Event Streams

As explained earlier Siddhi uses Tuple data structure to internally represent an Event

and its attributes (see Figure 2.3). Since this event representation is used almost every

other part of the Siddhi-core, and tuple is a simple data structure which allow basic

operations like creation, copying and retrial of attribute data very effectively, it suites

the event representation perfectly. Tuples can associate a schema where it can represent

the class of events and event structure, but this is not mandatory in every use case.

Figure 2.3: Siddhi Event and Event Stream representation.
Event object is represented using a Tuple data structure. Event streams representation
has few data structures like input handler, stream junction and stream callback.

An Event Stream is represented with unique Stream Id and a set of data structures:

input handler, stream junction and stream callback. All the incoming events from

outside the CEP engine received through input handler. Event received through input

handler are sent to its associated steam junction. Stream junction act as a hub for
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events going out and coming into stream. Other components (i.e. Query handlers)

who wants to get events from this event stream need to first register with the event

junction of that event stream. Once they do, all the events received to stream junction

is published to all the subscribers. Each subscriber gets a copy of the events. Apart

from the event received via input handler, stream junction can receive events feedback

from event subscribers, once they have processed events and emit a resulting composite

event to their output stream. These feedback composite events are published to all

the subscribers similar to incoming events. The stream callback is a special kind of

stream subscriber which is used to notify about an event occurrences on the event

stream. Usually the applications who are interested in getting notifications on event

occurrences subscribe to Siddhi stream callbacks, while internal components like query

handlers directly subscribe to event junction to get events from stream.

A stream is defined using SiddhiQL by specifying its unique id and set of attributes

(see Listing 2.1). Each attribute is a pair of attribute id and its type.

1 define stream StockStream (symbol string , price float , volume

int);

Listing 2.1: SiddhiQL for define a stream.

2.2.2.2 Query Data Model

Once a stream is defined, a query can be defined to get required information out of that

stream. Queries can be vary from its complexity by the type and number of processing

stages used. The following processor are supported in Siddhi.

1. Filter processor

2. Window processor

3. Join processor

4. Sequence processor

5. Patterns processor

A typical SiddhiQL query will contain one or many of above query types and a

projection (see Figure 2.4). Projection defines the output event stream and selects

which attributes should include in the output stream. A user can select all attributes

from incoming events to include in output events or she can select set of specific

attributes from incoming events to include in output events. Additionally, she can

define summary attributes which are calculated using aggregated incoming event

attribute values like average, summation and count.
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Figure 2.4: High level Siddhi query architecture.
At high level, Sidhhi query consist of several processing stages in between incoming
event stream and output event stream.

Filters

Filters are the basic processing method and the first one to execute on the incoming

events in the stream. In filters events are filtered out based on specific values for

specific attributes. Only the successfully matched events are forward to next stage of

processing, others are dropped out. Following condition operators are supported in

Siddhi for attribute filtering.

1. >, <, ==, >=, <=, !=

2. contains, instanceof

There can be several attribute value filters combined with binary operators like and,

or and not. It is also possible to not have any filters on incoming event stream and

just output only selected attributes to output stream. These type of queries are called

Pass-through queries.

Figure 2.5: Siddhi filter condition data model.
Inside filters, the conditions are hierarchically structured as a tree of operands and
operators.
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In a filter there can be one or more condition parameters. For ease of processing, inside

the filter processor, these conditions are hierarchically stored as a tree of operands and

operators (see Figure 2.5). The evaluation of set of filters structures as this tree is

started at the root of the tree and follows the depth first search algorithm. This way

it is possible to achieve high performance of filter processing as the tree is evaluated to

false when there are sufficient conditions are evaluated to false. So processing can stop

as soon as possible. But this logic is totally depend on the order of condition definition

in SiddhiQL, which is done by the users. So users are advised to order conditions with

decreasing order of least success probability.

Windows

After the filter stage, events are processed in window stage if it is defined. In this stage

some of the filtered events are sustained for a certain period of time for the purpose

of temporal processing, like aggregation data calculations. The windowing policy can

be defined in amount of time to wait or number of events in the window. Following

windowing policies are supported in Siddhi.

1. Length window - a sliding window that keeps last N events.

2. Time window - a sliding window that keeps events arrived within the last T

time period.

3. Time batch window - a time window that processes events in batches. A loop

collects the incoming events arrived within last T time period, and outputs them

as a batch.

4. Length batch window - a length window that outputs events as a batch only

at the nth event arrival.

5. Unique window - keeps only the latest events that are unique according to the

given unique attribute.

6. First unique window - keeps the first events that are unique according to the

given unique attribute.

7. External Time Window - a sliding window that processes according to

timestamps defined externally (Defined as an attribute in the incoming stream)

There are two types of event outputs from a window: in-events and expired-events.

When a new event arrives to the window processor, it creates a new expired-event and

append it to the event window, and at the same time forward the original event to

the next processing stage, which is “Query Projector” (see Figure 2.6). At the event

window, when an event arrives an expired-event is created with the event timestamp

value set to the original event time plus event window expiry time. This expired-event

is stored in event window, which is a queue of events, and window processor schedule

the expiry of event. Window processor continuously monitor events in event window for

expiry using their timestamp. This is easy to implement since events are stored in the
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event window in FIFO order. When an actual event expiry occur, that expired-event

is removed from the event window and forward to query projector.

Figure 2.6: Siddhi time window architecture.
Temporal event processing using a time window.

Two things happens in aggregation processor at the query projector when events arrive.

If the incoming event is an in-event, it is used to increase the aggregation and if the

incoming event is an expired-event it is used to decrease the aggregation. For an

example, if the aggregation function is to calculate the count of events for past five

minutes, the time window is defined to 5 minutes. In-events to aggregate processor

increase the count value, while expired-events to aggregate processor decrease the count

value. Following aggregate functions are supported in Siddhi.

• Sum - Summation of event attribute values

• Avg - Average of event attribute values

• Max - Maximum value of event attribute values

• Min - Minimum value of event attribute values

• Count - Number of events in windows

The following query definition (see Listing 2.2) filters out events from stream

StockStream, whose attribute symbol is having value “GOOG” or “FB” and creates a

output event stream called TopStockStream with event attributes price, volume and

number of events matching to above filter in past one minute period as stockCount.

Output stream event attributes are filled from matching events from input stream.
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1 from StockStream[price > 100.5 AND symbol == "GOOG"

2 OR symbol == "FB"]# window.time(5 min)

3 insert into TopStockStream

4 price , volume , count(price) stockCount;

Listing 2.2: SiddhiQL for define a simple query.

Stream Joining

Joining two streams using a set of join conditions and output event attributes from

each input streams is a common form of query. For each input event stream there is a

handler process created internally in Siddhi. To perform joining of two streams , each

stream must have an associated time window defined. At the stream join processor

event streams are considered pair wise and there are two join stream processors, called

“In-Stream Join Processor” and “Remove-Stream Join Processor”, before and after

window processors. When an event arrives to the in-stream join processor, the event

join condition is evaluated against all the stored events in other stream’s Window

Processor. If a match is found that event is forward to the Query Projector as in-

event, and at the same time a expired-event is created and added to streams Window

Processor. When an event is expired and removed from a window processor, it is sent

to the remove-stream join processor where the expired-event is again matched with

all the available events in other streams window processor. If a match is found, the

expired-event is sent to Query Projector as expired-event.

A sample join query is shown in the Listing 2.3 and the internal data model is shown

in Figure 2.7.

1 from StockQuotesStream#window.time(5 min) as sqs

2 join HighFrequentTweetStream#window.time (15 min) as hfts

3 on sqs.symbol == hfts.company

4 insert into InterestingStockQuotesStream

5 sqs.symbol as company ,

6 sqs.price as lastTreadedPrice ,

7 hfts.words as wordsTweeted

Listing 2.3: SiddhiQL for define a simple Join query.

Aggregate and Join queries are most expensive in terms of performance. This is due

to the fact that in joining a window is locked during the matching process for each

event from other stream. This locking is necessary to ensure accuracy and avoid race

conditions in the matching process. With the high volumes of incoming events and

with every event arrival in either stream triggers the joining process and effectively

locking the time window of other stream, this can be huge overhead to event processing

performance. Thing get worse when the time window size is getting long and there are
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Figure 2.7: Siddhi Join query data model.
Data model of a join query with two data streams.

lots of events stored in time window, which is very common scenario. In this research

we are more concerned about aggregate and join queries as we think there are rooms

for further optimizations using parallel hardware.

2.2.3 Processor Architecture

Siddhi processing architecture follows producer-consumer design pattern. There are

event generators and event consumers. Siddhi has Processors as the basic building

block and chaining processors forms the processing architecture. Processors have an

input event queue, an output event queue, an event generator and set of Executors.

Executors are the internal processing element of processors (see Figure 2.8). Generating

and chaining of executors are done by the Query parser using the query object model

which was generated using user defined query in SiddhiQL.

Figure 2.8: Siddhi Processor Architecture.
Siddhi processor architecture follows the producer-consumer design pattern.

In the perspective of single processor, input events are placed into the input event queue,

where they are fetched one at a time by the processor and fed into internal executors.

Executors process each event and return boolean result saying whether the processed
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event has matched or not. If the event is matched, it is forward to next executor or

event generator, otherwise event is discarded. This processing method increases the

efficiency of processing and gradually decreases the number of events to process as the

event flow through the processing engine, if queries are optimized to have the least

success filters in the front.

Event generators generate output events based on the query definition and place them

into output event queue. Each output events from the processors are put into output

event queue as soon as they are available. Output event queue of one processor can be

an input event queue of another processor. A processor can have more than one input

event queues and more than one output event queues.

Executors inside the processor are arranged in tree like structure (see Figure 2.5) and

there can be more than one tree of executors in a processor. But only one tree of

executors get processed at a given time. As explained earlier, executor tree is processed

starting from its root and follows the depth first search order. At the each executor

the event is evaluated and return a boolean value. If the returned value is false, the

further execution stopped and return false recursively and the tree returns false. This

way the unnecessary processing can be avoided as soon as the one executor evaluated

to false. We believe the executor processing model can be parallelize and make it more

efficient using parallel hardware. There are several types of executors defined in Siddhi

implementation.

• AndExecutor,

• OrExecutor

• NotExecutor

• ExpressionExecutor

• PatternExecutor

• FollowedByExecutor

2.3 Parallel Hardware Architectures

Since 2002, the performance scaling curve for single CPUs has slowed to a great degree,

where by ruling out the Moore’s law for uniprocessors. The Moore’s law says computer

power doubles every 18 months [37]. With the number of transistors increases in a

single die, soon the hardware will reach the limits of silicon. Due to the power and

thermal considerations, increasing transistor count in single chip no longer will offer

performance improvements for single threaded applications. For this reasons research
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community has look into other ways to achieve the performance through parallelizing

the processing and use of heterogeneous computing architectures.

There exist several architectures to enable parallel processing of data, which are

classified using Flynn’s taxonomy [38]. The classification is based on the concurrency

of instruction and data streams available in the architecture. An instruction stream is

the set of instructions that makes up a process, and a data stream is the set of data to

be processed.

1. Single Instruction, Single Data stream (SISD): a sequential computer

which dose not exploit any parallelism, like uniprocessor system.

2. Single Instruction, Multiple Data streams (SIMD): a single instruction

is broadcast to array of compute units and each unit execute the instruction on

different data item. Vector/array processors (i.e. GPUs) and Broadband Engines

are the most common examples of this category.

3. Multiple Instruction, Single Data stream (MISD): usually used in fault

tolerant computing systems like Space Shuttle flight control systems.

4. Multiple Instruction, Multiple Data streams (MIMD): multiple

processing units like computing cores process multiple data streams using multiple

instruction streams.

Today’s most common parallel hardware architectures, with the decreasing scale, are;

• Grid computing systems - a combination of computer resources from multiple

administrative domains applied to a common task.

• Massively Parallel Processor (MPP) systems - also known as

“Supercomputer architecture”, where large number of processors (or separate

computers) to perform a set of coordinated computations in parallel.

• Cluster computing systems - use of network of general-purpose computing

nodes to perform a set of coordinated computations in parallel.

• Symmetric Multiprocessing (SMP) systems - multiple, identical

CPUs/cores (in power of 2) is connected together to work as one unit.

• Multi-core processor systems - a single chip with numerous computing cores,

also known as “Chip Multi-processors (CMP)”.

Most of the above parallel hardware systems, such as SMP and cluster computing

systems, fall under MIMD category in Flynn’s taxonomy. So they are further

categorized using the type of memory they use: shared memory and distributed

memory. In shared memory type systems, each CPU that makes up the system

is allowed access to the same memory space, where as in distributed memory type
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systems, each CPU that makes up the system uses a unique memory space. MPP and

cluster computing systems are the most common distributed memory type systems.

SMP is a shared memory type system. In SMP, the multiple CPUs/cores have

access to a single shared main memory, which makes parallelization of serial code

relatively straightforward. The main programming method for parallelization on

SMP architectures are using POSIX threads (pthreads) and OpenMP. The POSIX

threads standard defines an application programming interface (API) for explicit

creation, management and synchronization of multiple threads, whereas OpenMP

mainly consists of a set of compiler directives (and a supporting API) that allows

for implicit parallelization.

Efficient memory access is an important design consideration in multiprocessor systems

with many cores where increasing the number of processors naturally increases the

number of accesses to the memory. So maintaining an efficient cache coherency on

a single-shared-bus becomes less practical when bandwidth between the processors

and shared memory staring to become the bottleneck as the number of processors

increases. Non-Uniform Memory Access (NUMA) architecture, another shared memory

architecture, divides memory into multiple banks; each assigned to one processor. As

the name suggest, physical distance between the processor and the memory changes

the access speeds of memory. Processors have faster access to their local bank than

remote banks attached to other processors.

Usually every hardware architecture requires modification to existing sequential

algorithms, programming model and memory access pattern in order to gain maximum

out of the processing power offered by the underlying hardware. Most often mapping

sequential program into multiple threads will not gain much as expected. The

programming model and style used by the each of these parallel hardware architectures

provides a great significance as they provide the interface to utilize the processing power

offered by the underlying hardware. So we will discuss the programming models along

with each of these architectures.

Heterogeneous computing refers to the use of multiple processor architectures by a single

application. By executing “compute kernels”, whose computational characteristics fit

the characteristics of different architectures than where it is hosted, applications can see

large improvements in performance and energy efficiency. Most common heterogeneous

platforms include multi-core CPUs, many-core GPUs, FPGAs, or other application-

specific hardware platforms.

2.3.1 Multi-Core Processor Systems

As the frequency of uniprocessors is reaching its limits due to hardware manufacture

limitations, the researchers and hardware vendors started producing commodity CPUs
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that again reflect Moore’s law-style scaling, which support multiple and concurrent

processing with multi-core/multi-thread architectures. Today, dual-core, quad-core

and 8-core CPUs are common in consumer PCs. And the scaling continued with

new hardware designs; for example, there are already specialized 64-core processors

and ×86-based many-core architectures that contain 64 discrete ×86 cores with

vector extensions [39]. These CPUs implement several parallelization techniques to

increase performances while giving the impression that they work sequentially: branch

prediction, out-of-order execution, superscalar. All these techniques increase the

complexity of the CPU, limiting the number of CPUs that can be included on a single

chip.

2.3.2 Field-Programmable Gate Arrays

Field-Programmable Gate Array (FPGA) is a semiconductor device with programmable

lookup-tables (LUTs) that are used to implement truth tables for logic circuits with

a small number of inputs (on the order of 4 to 6 typically). FPGAs may also contain

memory in the form of flip-flops and block RAMs (BRAMs), which are small memories

(on the order of a few kilobits), that together provide a small storage capacity but

a large bandwidth for circuits in the FPGA. Thousands of these building blocks are

connected with a programmable interconnect to implement larger-scale circuits.

Because of the ability to customize the hardware through programming to the use case

it is used, FPGAs are most used in special use cases where high performance is the

major requirement. But the high cost of devices prohibit them from using in general

purpose computing use cases.

2.3.3 Accelerator Co-processors

Creating parallel computer systems connecting generic CPUs is the common approach

of achieving parallelism. Another approach is to use of special purpose hardware which

are suitable for special purpose, as a co-processor. Often these co-processors are called

Accelerators. GPUs and Cell Broadband Engines are most common of this type. A

single core of a co-processor is optimized for a particular task, such as GPUs are

optimized for graphics processing, hence is simple in design. So they do not take much

area on the chip, where by it enables to put thousands of processing core in a single

chip. These cores collectively offer raw processing power that exceeds the thousands of

CPUs combined.
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2.3.3.1 Cell Broadband Engine

Cell Broadband Engine [40], [41] contains a PowerPC Processor Element (PPE) which

is suited for processes requiring frequent thread switching, and 8 Synergistic Processor

Elements (SPE) which are cores optimized for floating point arithmetic. These 9 cores

are connected using a high-speed bus called the Element Interconnect Bus (EIB), and

placed on a single chip.

Using the conventional programming models in multi-core hardware architectures is

challenging to effectively exploit the maximum performance of parallelism offered by

those architectures. As a solution alternative programming models are developed,

like Stream programming model [42], which allows programmers to write programs

in sequential style and framework take care of automatic parallelization. Stream

programs use data-flow programming style, which is a different programming style from

traditional Von Neumann programming model. The performance benefits of stream

programming comes through its characteristics of bulk loading of data into a “local

memory”, operating on the data in parallel, and bulk storing of the data back into

memory. Stream programming model is the preferred programming model for Cell

Broadband Engine.

2.3.3.2 Graphics Processing Units (GPUs)

One of the key problem in modern processor design is to overcome the slowness of

memory. Even though there are off-chip, low latency and high speed random access

memory, these memory technologies are not keeping up with the pace of progress made

in the throughput of processors cores. Moreover, as the high volume data streams

scenarios becoming common, this limitation between processor and memory has become

a huge bottleneck. The time between the issuing of a memory request by a core and the

subsequent response from off-chip memory can be very long, up to hundreds or even

thousands of processor cycles, and the gap is widening. Increasing bandwidth between

memory and the processing cores is a one possible solution, but this dose not reduce the

latency of memory fetch. System designers have came up with several solutions to this

problem, such as use of fast on-chip cache memory to avoid the unnecessary memory

round trips, use of compile-time and run-time prediction and speculation to make sure

that required data is already present on-chip when it is needed, and finally, reorder

the instruction stream to lessen the impact of memory-related stalls. Implementing

above solutions in processing cores to reduce memory latency make the processing

cores complex and thus reduces the number of cores in a single die.

The use of Graphics Processing Unit (GPU) as a accelerating co-processor to multi-core

CPUs have become arguably the most popular heterogeneous platform configuration
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today. There are several reasons behind this, but the most influential reason being

GPUs today provide some of the highest performance per dollar and the lowest power

consumption per FLOPS of any computing platform. Even GPU initially designed as

a specialized hardware platform for graphics and video processing, soon the research

community identified its usefulness in other parallel processing problems. So the years

of evolution converted the special purpose GPU architecture to a fully programmable

general purpose hardware platform. The use of GPUs for general purpose computing

(GPGPU) is increased with emerge of GPU programming environments like Nvidia

CUDA [43]. Since then, GPUs are used in vast number of places ranging from home

personal computers (PC), laptops, gaming consoles to high-end computing clusters,

solving many parallel problems in image processing, computer vision, signal processing,

linear algebra and graphics algorithms.

Figure 2.9: CPU and GPU Architecture.
CPU dedicates more transistors to a program control while more transistors are
dedicated to the data processing in GPU.

GPU falls under SIMD category in Flynn’s taxonomy, where they are applying

uniform, moderately complex operations to large volumes of data parallely. This

constitutes a special subset of parallel computation, often called data-parallel or

“stream” computing [44]. The target workloads for a GPU are much less vulnerable to

memory-related stalls as in CPUs. The main target of the design of GPUs is to apply

similar operations to large amounts of data, the exact ordering of data is less important.

Relaxing the restrictions like this has made the design of GPU processing cores simple

and inexpensive, which allows to pack thousands of them in a single chip [24]. CPU

dedicates more transistors to a program control than to a data processing. On the

other hand, GPU is the opposite, where more transistors are dedicated to the data

processing (see Figure 2.9). GPU overcome the memory slowness issues faced by

CPUs by introducing much faster main and cache memory hierarchy, which we will

explain in next section. But the concept of simple design that governs the architecture

of GPUs made this memory capacity per processing core very small compared to

what we currently have in CPU systems. But this limitation is alleviated by using
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high throughput and massively parallel processing power offered by the GPUs with

combining specially designed parallel algorithms.

GPUs first appeared in the 1980s as hardware specially designed to graphics processing

tasks. The technology evolve over the next few decades improving its capabilities like

floating point arithmetic operations, graphics-related operations and massively parallel

operations in the same domain. Over the past few years, a growing community has

identified that the GPUs can be successfully used in solving other problems in other

domains where they exhibit similar characteristics as graphics processing [22]. General

workload characteristics mapped to GPU computing are;

• Computational requirements are large - GPUs can deliver an enormous

amount of compute performance to satisfy the demand of complex real-time

applications.

• Parallelism is substantial - The graphics pipeline is well suited for parallelism.

The fine-grained closely coupled programmable parallel compute units supports

data-parallel problems.

• Throughput is more important than latency - GPUs give priority to the

high throughput execution of parallel tasks rather giving priority to low-latency

execution of single task.

GPUs was initially developed as a fixed-function special-purpose processor with efficient

graphics processing as its main goal. The “Graphics Pipeline” is a series of processing

steps that create a final picture from set of geometric primitive shapes in a 3-D world

coordinate system. Each processing step is fixed in the sense of programability but had

the ability to configure. Graphics pipeline has following steps [22].

• Vertex Operations - The input primitives are formed from individual vertices.

Each vertex must be transformed into screen space and shaded, typically through

computing their interaction with the lights in the scene. Because typical scenes

have tens to hundreds of thousands of vertices, and each vertex can be computed

independently, this stage is well suited for parallel hardware.

• Primitive Assembly - The vertices are assembled into triangles, the fundamental

hardware-supported primitive in today’s GPUs.

• Rasterization - Rasterization is the process of determining which screen-space

pixel locations are covered by each triangle. Each triangle generates a primitive

called a “fragment” at each screen-space pixel location that it covers. Because

many triangles may overlap at any pixel location, each pixel’s color value may be

computed from several fragments.

• Fragment Operations - Using color information from the vertices and possibly

fetching additional data from global memory in the form of textures (images that
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are mapped onto surfaces), each fragment is shaded to determine its final color.

Just as in the vertex stage, each fragment can be computed in parallel. This stage

is typically the most computationally demanding stage in the graphics pipeline.

• Composition - Fragments are assembled into a final image with one color per pixel,

usually by keeping the closest fragment to the camera for each pixel location.

Figure 2.10: Basic modern GPU architecure.
A basic GPU architecture [22] with 16 streaming multiprocessors of 8 stream processors
each. One streaming multiprocessors contains shared instruction and data caches,
control logic, shared memory and eight stream processors.

The fixed-function processors lacked the customizability of efficiently express more

complicated shading and lighting operations that are essential for complex effects. The

solution was to introduce per-vertex and per-fragment operations with user-specified

programs which are able to run on each vertex and fragment. These user-defined

programability replaced the fixed-function processors in GPUs, which paved the way to

modern GPU architecture. Earlier GPUs was optimized for graphics pipeline, where it

can achieve task-level parallelism by executing different processing stages parallelly and

data-level parallelism by executing many threads within each processing stage. When

it comes to the modern GPUs (see Figure 2.10), the GPU architects have changed and

simplified the design by providing a collection of single fully-programmable hardware

unit known as Stream Processor and the programs load balance these programmable

units in their application in order to achieve either task-level parallelism or data-level

parallelism.

There are several GPU hardware vendors in the industry, but the market is most

dominated by the GPU products from Nvidia and ATI (acquired by AMD).
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2.3.4 GPU Programming Environments

GPU programming model falls under SIMD category. Each instruction is executed

on different data items in parallely and usually independent data element cannot

communicate with each other. Each processing element can read from shared memory

location (“gather” operation) and write back to shared memory location (“scatter”

operation). So the processing elements in GPU proceed in lockstep, running the exact

same code. Programmers are also possible to write code that dose not follow this

principle, where some processing elements follow different branch of the code. But

this flexibility come with a price. In GPUs, processing elements are grouped together

into blocks, and blocks are processed in parallel. If processing elements follow different

control flow within a block, the hardware computes both sides of the branch for all

elements in the block. The size of the block is known as the “branch granularity” and

has been decreasing with recent GPU generations. So in order to get the maximum

performance out of the GPUs, programs must structure to follow same control flow.

Mapping general-purpose computation into GPUs had to follow the same steps and

procedures that normal graphics application had followed. The program had to

structure in accordance with graphics pipeline even application had nothing to do with

graphics processing. The invention of general purpose programming environments on

GPUs alleviated these difficulties by providing natural, non-graphics interface to GPU

hardware. To exploit this new general purpose hardware architecture, a new breed

of application frameworks emerged wrapping the complexity of graphics processing

constructs and provide developers with a simplified API. The most commonly used such

programming models for GPUs are CUDA [43] and OpenCL [45]. These frameworks

provide not only a set of APIs but also collection of tools and libraries to debug GPU

applications and extend the capability of GPU processing environment. In this new

non-graphics programming model, developers define the computation as a structured

grid of parallel threads and the hardware executes the computation unit in load-

balanced parallel threads in SIMD fashion. Additionally these programming models

allow use of same memory buffer for both reading and writing, which was not allowed

in Graphics APIs. Using the same buffer for reading and writing enables new in-place

algorithms which has less memory footprint.

2.3.4.1 GPU Programming with CUDA

Compute Unified Device Architecture (CUDA) was first introduced by Nvidia in 2007

on its G80 GPU series. Although CUDA is a vendor specific technology which only

supports Nvidia produced GPU hardware, over the use of several years made it the

most popular programming model for GPUs with numerous extensions and libraries.
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CUDA Programming Model

GPU architecture is built around a scalable array of multi-threaded Streaming

Multiprocessors (SMs). Streaming Multiprocessors are used to execute multiple threads

in Single-Instruction-Multiple-Data (SIMD) fashion. A parallel task construct in GPU

programming model is termed as kernel and indicated by a flagged method in the

program (with the __global__ specifier in CUDA-C). In CUDA terminology CPU

is termed as Host and the GPU is termed as Device. The kernel is first distributed

to the available Streaming Multiprocessors according to the instructions given by the

developer. Developer has the control over how many threads to be run in parallel.

The Host and Device have separate memory spaces. So it is necessary to do memory

allocation on the device and copy data to the allocated memory. Then the CPU invokes

the kernel and once the task complete the result is copied back to CPU’s memory space.

So the programming in CUDA has following high level procedure.

1. Define compute “kernel”

2. Allocate necessary memory in GPU device.

3. Copy input data from CPU memory to GPU memory.

4. Load kernel code and execute it, caching data on chip for performance.

5. Copy results from GPU memory to CPU memory.

Figure 2.11: CUDA threading model.
CUDA kernel is executed by grid of thread blocks.

A parallel task is sub-divided into sub tasks where they can independently be solved

and each sub tasks are assigned to block of threads. Within these block of threads, the
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parallel threads are cooperatively solve the sub task. So there can be several thread

blocks one for each sub task. Each thread has a unique id and coordinates inside its

block. Similarly each block has a unique id and coordinates inside its grids (see Figure

2.11). Depend on the capability of GPU device there are maximum number of threads

per single block.

CUDA Thread Model

Usually only one kernel execute at a given time inside the GPU and there can

be thousands of threads formed in blocks to run the kernel code. CUDA threads

are extremely light-weight than CPU threads, so creating and switching CUDA

threads incur only very low additional overhead. Thread within a same block can

cooperating with each other when they need to coordinate their memory access through

synchronization. CUDA programming models provides “memory barriers” for this

purpose. Threads within different thread block cannot cooperate with each other.

This characteristic leads programs to transparently scale to any number of processors,

because GPU hardware is free to schedule thread blocks on any processor in any order

at any time.

CUDA framework provides atomic functions for use in solving some synchronization

problems. But these functions needs to be used carefully, because if atomic functions

are used badly, they would also have an impact on poor performance.

CUDA Memory Model

CUDA has sophisticated memory hierarchy in order to deliver high performance

memory access to parallel threads. Each thread have access to multiple level of memory

spaces (see Figure 2.12). A thread have access to its private local memory, shared

memory within the same thread block and finally all threads have access to a global

memory within the Device. Shared memory is much faster than global memory and

shared by threads in single thread block. The constant memory (constant memory

cache) and the texture memory are part of global memory. Texture memory actually is

a special hardware which is used to access the global memory. Fast memory caches are

preferred with small amount of memory requirements when programming in CUDA.

But it is important to understand these caches are not coherent. Summary of CUDA

memory is shown in table 2.2.
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Figure 2.12: CUDA memory model.
Simplified CUDA memory model. Different kinds of memories have different access
models.

Table 2.2: Summary of CUDA memory hierarchy.

Memory Location Cached Access Scope

Local Off-Chip No Read/Write One thread

Shared On-Chip N/A Read/Write All threads in a
block

Global Off-Chip No Read/Write All threads and
Host

Constant Off-Chip Yes Read All threads and
Host

Texture Off-Chip Yes Read All threads and
Host

2.3.5 Java in GPU Programming

There is growing interest in using Java for High Performance Computing (HPC)

applications, which is based on the its appealing characteristics: built-in multithreading

support, object orientation, platform independence, portability, type-safety, security,

wide community of developers, and finally, it is use of core training language for

computer science students. Apart form other HPC approaches using Java, there are

several ongoing research efforts to implement Java support for data parallelism using

hardware accelerators and co-processors. In this research our goal is to improve the

performance of a CEP engine, which developed using Java, by accelerating it through

GPU architecture. So it is important to understand the state-of-the-art in using Java

with GPGPUs or any other co-processors.

In this research, our target GPU programming environment is CUDA. So we will first
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describe researches that more focused on Java with CUDA. There are other researches

that used Java in GPU programming without using CUDA, which we will describe later

in this section.

There are three methods to use CUDA enable GPU device with Java language (1)

Use Java Native Interface (JNI) which is the most straightforward but also the most

complicated way; (2) Use tools which are capable of generating a CUDA code directly

from a Java byte-code; (3) Use a Java library which wraps the CUDA Driver API–the

lower level approach to use CUDA environment in other language than C/C++.

JNI technology allows calling any native function or library within Java program.

It supports implementation of any Java class method in the C/C++ programming

languages as well. JNI can be used to invoke CUDA kernels from Java application,

but doing so is very hard because of inherent complexity of JNI technology. Even

simple operation like copying value of class variable has to be done in about three

steps. Further more, using memory pointers is hard with JNI, because Java dose

not support direct memory access through pointers. Although it is hard, there is an

advantage using JNI for CUDA programming because it access lowest level of CUDA

environment bypassing CUDA Runtime Environment, JNI gives multi-platform high

performance integration with CUDA.

Automatic CUDA code generation methods allow programmers to develop

parallel programs for CUDA enabled devices without knowledge of CUDA

programming. CUDA code generation is done either extending Java compiler to

generate byte-code compatible to CUDA runtime or directly changing byte-code.

Rootbeer [46] is a higher-level Java API for writing parallel programs that can run on

GPUs. When developing applications that use Rootbeer API, a programmer creates

sections of Java code, which is much like CUDA kernel, that can run on a GPU.

Programmer needs not to worry about the serialization and deserialization of data,

memory transfers, or kernel creation or kernel launch that are required for a CUDA

program. Rootbeer API mimics the Java Runnable API, where programmers have

to implement the task of an application which run on a separate thread. Rootbeer

generates CUDA code dynamically at the compile time which do the exact same thing

written in Java code. Apart from that all the locally defined and used data types

including user defined data types are serialized and copied to CUDA device by the

Rootbeer at runtime. To improve the performance of serialization and deserialization,

Rootbeer generates necessary bytecode for data serialization/deserialization at compile

time. Other than dynamic method invocation, Rootbeer supports all the major Java

features.
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JCudaMP [47] is a research effort to implement OpenMP for Java language. JCudaMP

supports both CPUs and GPUs as the back-end for processing. Although it only

provides very basic set of features for CUDA back-end, the programing is relatively

easy than JNI. CUDA advanced features like shared-memory is not available through

JCudaMP, so performance is very poor relative to CUDA-C.

In java-gpu [48], they introduce a new annotation called @Parallel, where the loops

can be annotated as parallel. So these methods annotated as parallel can be offloaded

to Nvidia CUDA compatible graphics cards, without explicitly writing any CUDA

C codes. The PTX code is generated automatically for annotated method and data

transfers are handled automatically.

In [49], authors present a programmer-friendly API for accessing CUDA devices from

Java. The research is mainly for developers who may be familiar with Java and CUDA

but not with JNI. In order to use the work they have published, a developer needs to

write CUDA code and Java code himself with using provided API and the glue-code

will be generated using JNI for Java to CUDA communication. This research is not

practically usable since there are no any publically available code or library for this

work.

CUDA Driver API wrappers do not provide low level access to CUDA as in JNI

nor it provide high level API as in JCudaMP. These wrappers provide middle ground

of low level access and higher level API. Some implementation uses both CUDA Driver

API and part of CUDA Runtime API.

The most widely adopted CUDA Driver API wrapper for GPGPUs is JCuda, which

is available as free and open-source library [50]. JCuda, first developed in 2009 as a

simple java wrapper around CUDA SDK, to help Java developers to easily program

parallel applications for GPGPUs. After several years of progress, JCuda now translate

CUDA methods into Java methods and introduces Java objects that are CUDA specific.

For example JCuda has introduced device Pointer object, cudaMalloc method for

memory allocation or cudaFree for memory freeing. Call to such Java method invokes

corresponding CUDA method through the wrapper. Basically programming with

JCuda is similar to programming with CUDA Driver API. JCuda is not only a API

wrapper, but it also contains bindings for CUDA libraries like CUBLAS or CUSPARSE

as well. Although JCuda is not 100% feature complete as CUDA, it resembles almost

all required core CUDA constructs and method calls. The project contains proper

documentation through its official site [50].

jCUDA [51] (Java for CUDA) offers CUDA bindings for the Java language with double

precision operations and object oriented programming for CUDA. This project has

similar goals as JCuda, but its object oriented design enables programmers to write
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clean codes with exception handling. This is available for free for both commercial and

academic purposes but the project is not maintained now.

There are other research projects like JaCuda [52] and jacuzzi [53] which have the

similar goals, but not currently maintained.

The lack of publically available performance metrics for CUDA implementations on

Java language makes it harder to developers to use CUDA with Java in production

grade applications. The available performance metrics [49], [54] are few years old and

do not cover newer features introduced to CUDA enabled GPUs.

Open Computing Language (OpenCL) [45] was developed by Khronos Group

consortium (Intel, AMD, NVIDIA, and ARM) and released in 2009. It aims

at supporting more hardware and to provide a standard for general purpose

parallel programming across CPUs, GPUs and other processors, giving software

developers portable and efficient access to the power of these heterogeneous processing

platforms. The table 2.3 summarizes comparison of basic features between CUDA and

OpenCL [55].

Table 2.3: Comparison between CUDA and OpenCL.

Trade-offs CUDA OpenCL

Kernel code Simple Simple

Kernel setup Simple More complicated

Portability Low High

Library availability High Low

There are few research approaches [56], [57] who have used CUDA in Java based projects

to gain high performance through parallelism. Most of them being recently published

research shows that there a growing interest in research community to accelerate object

oriented languages using GPUs.

In OpenJDK Project Sumatra [58], they try to improve the performance of Java

applications by taking advantage of GPUs and Accelerated Processing Units (APUs).

Sumatra allow Java Virtual Machine’s JIT compiler to generate GPU ISA code directly.

This would allow the JVM to target code which seems suited to GPU offload. The initial

research focus is to improve the performance of JVM itself by enabling code generation,

runtime support and garbage collection on GPUs. Using GPUs for Java applications

will be done once JVM has the capability to use GPUs. Moreover there is ongoing

research announced by IBM [59] which will enable existing IBM Java runtimes for

server-based GPU accelerators and explore acceleration in ordinary workloads under

existing APIs. If implemented in other popular Java runtimes like Oracle JDK for

commodity GPU products, this approach will allow millions of Java developers to
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accelerate a broad range of applications using GPU accelerators, and achieve speedups

that will dramatically improve the capabilities of the Java applications.

In [60], authors describe a Java Byte-code Execution Environment called JaBEE, which

supports common object-oriented constructs such as dynamic dispatch, encapsulation

and object creation directly on GPUs. JCuda, JavaCL and OpenCL do not allow object

oriented processing on device side, which is a necessary requirement if object oriented

languages are used with GPUs. The main goal of that research is to evaluate the

challenges, limitations and opportunities associated with running byte-code languages

directly on the GPGPUs.

There are other several implementations of Java bindings for OpenCL like JoCL [61]

and JavaCL [62]. On the other hand, the open-source project Aparapi [63], developed

at AMD, facilitates execution of Java programs on OpenCL devices. Aparapi is not a

binding for OpenCL, instead it provides JIT compilation of Java byte-code to OpenCL

kernels at runtime.

2.4 Related Work

As we reiterated throughout the literature review, combining CEP and parallel

hardware is a challenging task. Successful use of parallel hardware with right design

and algorithms will increase the performance of CEP implementations. There are a

few researchers who have tried this approach in the past. In this section we describe

the research work of those related researches.

There are three approaches researchers have tried to improve the performance of CEP

implementations.

1. Distributed processing with CEP agent network

2. Parallelizing processing construct to multiple threads on multi-core CPUs

3. Parallelizing data parallel operations in many-core systems (GPUs)

Although our primary interest in this research is to explore the possibility of using

many-core parallel hardware architectures in improving CEP performance, we will

also list related researches done in other two approaches. Because concepts in those

researches can be borrowed to our research.

Related research in using parallel hardware technologies to improve the CEP processing

performance can be categorize into two broad sections; parallel hardware used in

complex event processing and general event processing implementations and parallel

hardware used in pub-sub systems. Apart from that we will also refer to other

parallelization and optimization techniques used in CEP to improve performance.
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2.4.1 Event Processing on Parallel Hardware

Research work by Cugola and Margara [26] is the first publicly available work done

in exploring the use of parallel hardware in event processing domain. Although some

commercial CEP vendors [15] claim they have implemented some part of their CEP

engines on top of CUDA environment, but there are no any published work on these

implementations.

Cugola and Margara has investigated on use of parallel hardware, specially GPUs, to

improve the performance of CEP implementations. They have proposed and developed

few parallel algorithms which speedup event processing in their CEP implementation

called T-REX [17]. They have developed algorithms for both the multi-core CPUs

using OpenMP and GPGPUs using CUDA. The main objective of their research was

to increase the performance of common CEP operators, like filter operator, sequence

operator, and aggregate operator, that are supported by most of the Query Languages.

First, they have defined the meaning of these operators unambiguously using a query

language call “TESLA [30]” which they have developed as part of their T-REX CEP

engine. Since most of current CEP implementations follow similar meaning to common

operators as defined by TESLA, they believe their research would benefit by other

CEP implementations too. Since SiddhiQL and TESLA have similar meaning in their

common CEP operators, we believe we also can adapt some of their research work in

our design.

Most CEP implementations use automata for model sequencing rules. Even Siddhi has

adopted this approach. In automata model, intermediate results are stored until final

composite event pattern is detected. But in paralel hardware like GPUs, it is hard to

implement automata efficiently, because each automata is different from one another

and require different processing.This characteristic poses a great overhead to CPU-GPU

communication and quite inefficient to implement in GPUs. So authors have developed

a novel algorithm called Column-based Delayed Processing (CDP), where events are just

stored in a column based data structure with in the CPU memory until the terminating

event ’ for the processing query is received. By the term terminating event they meant

the possible last event of a sequence pattern to finalize the detection. The processing

of events started only after a terminating event is received.

When processing according to CDP algorithm, there are separate column data

structures for each event type with specific condition and timing constrains, and

incoming events are processed to check for condition attributes and stored in relevant

column. Once a terminating event is received (event C in this example), the CPU starts

processing and copy each columns one by one to GPU for processing.

For example see the following query for sequence for three primitive events; A -> B ->

C.
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1 define ComplexEvent ()

2 from C(p=$x) and each B(p=$x and v>10) within 8 min. from C and

3 last A(p=$x) within 3 min. from B

Listing 2.4: TESLA languange query for sequence pattern.

Figure 2.13: CDP algorithm data structures and processing for listing 2.4.
CDP algorithm has separate columns for each primitive events with parameter
constrains. Events are stored in columns and processing is delayed until terminating
event is arrived.

CDP creates three columns for storing events in three primitive event types (see

Figure 2.13). One column for primitive event A with no parameter constrain, one

column for B with parameter constrain v>10 and last column for C without any

parameter constrain. All three event types have relationship constrain where parameter

p of every event should have same value in the sequence pattern. Moreover, the timing

constrains enforces event type B should happen within 8 minutes of event type C has

occurred and event type A should happen within 3 minutes of event type B has occurred.

The last column has space for only one record, as it represents the terminating event

and the processing starts on the arrival of first terminating event.

Processing is done column by column starting from last to first (C to B to A). At each

column, first they are deleting events which do not adhere to timing constrains, there

by decreasing number of events to process. Then they process each remaining events to

get valid sequences who match parameter constrains. Each matching event is used to

create partial sequences, which is a list of matched events so far. This partially matched

sequences are used to do the matching process of next columns. This process continues

until the first columns or there are no matching events in next column. Finally, the set

of partial sequences are used to create new resulting composite events.
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Implementing CDP algorithm for GPUs is done using CUDA. Authors have divide the

computation into two parts where operations that do not gain much performance form

GPUs are done directly on CPUs, like deleting expired events in each columns. Those

operation executed on CPUs also need to follow strict sequencing of operations, hence

doing them in GPUs may require synchronization between threads, which is quite

inefficient. Operations which is possible to do in parallel, like matching individual

events in each column with current partial sequences, are done in GPUs.

In their approach, authors have selected several queries with different complexities and

developed two algorithms for each selected queries, one for multi-core CPUs (Automata-

based Incremental Processing (AIP) algorithm) and other one for both multi-core

CPUs and GPUs (CDP algorithm). Then they have analyzed the performance

of three implementations under different workloads to compare each other. Their

result shows that under various workloads, GPUs have performed well than other

two implementations, when there are complex rules associated. The CDP algorithm

implementation on GPU has shown a speedup of 25 compared to CPD implementation

on multi-core CPUs. As they have mentioned in the paper the GPU implementation

leads to an average speedup of 40 with their hardware configuration. On the other

hand, multi-core CPUs have performed well in simple rule scenarios. Authors have

concluded that GPUs should use in cases where complex queries are associated with

high volumes of data and multi-core CPUs should use when queries are simple and data

load is moderate.

Streaming aggregation is one of the performance-critical core operation in distributed

stream computing domain. It is also largely related to event processing where

stream aggregation dose the summarization of incoming data in a stream, for

example calculation of averages in high frequency trading applications. Complex

event processing engines have a separate event aggregation phase and in our research

aggregation is one of the aspect we are trying to improve the performance. Streaming

aggregation is a data parallel use case and largely affected by the data transfer overhead

than the actual computation, hence improving the performance (both data transfer and

computation) of this has a positive effect on overall performance of the CEP engine.

In [27], they research on how the streaming aggregation can be effectively implemented

on different parallel hardware architectures. In their research, they investigate how this

data parallel task is behaving in three different parallel hardware architectures; multi-

core CPUs, GPUs and Cell Broadband Engine architecture. They have implemented

three algorithms in three architectures for a case study involving streaming aggregation

and compared the performance metrics. The three parallel architectures that used in

this research covers the two extreme ends and the middle ground of multi/many core

architectures, where Intel Core 2 Quad system which its in one end of the spectrum and

Nvidia GeForce GTX 285 GPU in the other end of the spectrum and Cell Broadband
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Engine which covers the middle ground of above two ends.

The case study they used is a live stock market data analysis system to discover

“bargain” purchases where the current asking price for a stock is less than the volume-

weighted average price. The simulated data feed contains a set of stock trades and

quotes for over 2000 symbols from about a months data feed. The aggregation occur

when calculating the volume-weighted average prices for each symbols in the simulated

feed. The interesting fact about the results of this research is what they have discovered

in their GPU based implementation. They have implemented three variations of same

algorithm using CUDA for GPUs. Both algorithms transfer data to GPU memory

before starting GPU computations and only the result data is transferred back to main

memory. The first variation of CUDA algorithm uses synchronous bulk communication

between the host and the GPU memory. The second algorithm uses asynchronous

bulk communication while the third algorithm dose many small transfers of data to

GPU memory. The first two synchronous and asynchronous algorithms transfer the

whole data set in one copy to the GPU, where the asynchronous algorithm uses

GPU hardware provided independent memory controller. The independent memory

controller supports copying of data without intervention of computation hardware in

GPU, so the data transfer time can be overlapped with the actual computation time by

sending data set for future calculations while GPU performs calculation for current data

set. In last algorithm, they have copied the data set in small batches with maximum

transfer count limitation. Overall performance comparison shows the Cell Broadband

Engine architecture out performs the other implementations even though GPU has

more computation capability than Cell architecture. This is because Cell has direct

access to main memory like multi-core CPUs have, so no need of data transfer as in

GPUs. Within the three implementations of GPU algorithms, the synchronous and

asynchronous algorithms performed equally when the size of the data transfer is small

and has increased the overall aggregation time when the data set size increasing. The

fine grained memory transfer algorithm has more overall aggregation time than other

two algorithms when data set size is small but it out performs the other two algorithms

when data set size increases.

In [64], authors have discussed possible use of GPGPU technology for parallel event

processing with CUDA or OpenCL. They have mentioned that it is possible to outsource

highly computation intensive tasks like pattern matching in string data to libraries

which use GPUs for processing [65].

2.4.2 Pub-Sub Middleware on Parallel Hardware

As we have explained in Section 2.1.2, complex event processing has its roots in

publish/subscribe systems, where pub-sub systems do relatively simple content based
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matching of incoming data. Hence any improvement done to increase the performance

of pub-sub systems are very important in this research because there is a possibility

these improvements can be applied to the CEP systems.

In [28], they are trying to improve the performance of content based matching in event

dispatching component of pub-sub network. In pub-sub style middleware systems, there

are are set of event brokers inter connected with each other and each event broker

subscribe to upstream event brokers for receive events with interested event attribute

patterns (see Figure 2.14). These interested event attribute patterns are based on

the subscriptions it receives from its downstream clients. In a practical scenario the

number of subscriptions received by an event broker can be as high as over thousand

subscriptions. So this event matching over incoming high speed event stream can easily

become the bottleneck of the whole pub-sub system. They have proposed a CUDA

based parallel algorithm for GPUs to increase the throughput of event matching over set

of subscribed filters. The proposed algorithm, called “CUDA Content-based Matcher

(CCM)”, is then evaluated against the currently existing most efficient solution for

content based matching called “SFF [66]”.

Figure 2.14: Publish-Subscribe network.
Publish-subscribe network consist of event brokers who do the event routing based on
the registered subscriptions.

In the event matching component of the event broker, whenever an event is entered

to the component, usually it is matched against the available filters sequentially.

In this research the algorithm they have purposed do the matching of single event

over all available filters in single pass parallely using larger number of threads in

GPUs. The CCM algorithm consist of two phases: a constraint selection phase and

a constraint evaluation and counting phase. The available subscriptions are relatively

static over the period of time, so in their algorithm they have encoded the available

subscriptions in special data structures and stored permanently in GPU memory (see

Figure 2.15). Each incoming event is encoded as set of attributes and the filters are

encoded as conjunction of attribute constrains. For example an event with weather

sensor data is encoded as e = [ area, ‘‘area1’’ , temp, 25 , wind, 15 ], while
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Figure 2.15: CUDA Content-based Matcher (CCM) algorithm data structures.
CCM algorithm uses data structures in GPU memory to encode the available filters
and their individual attribute constrains.

a filter for weather data is encoded as f = (area = ‘‘area1’’ AND temp > 30).

When two filters are joined with disjunction (p = [(area = ‘‘area1’’ AND temp >

30) OR (area = ‘‘area2’’ AND temp < 60)]) they are called predicates and treated

as two filters where at least one filter should be matched to satisfy the predicate. Each

attribute constrain in the filters are grouped by the attribute id and stored in constrain

table. Each cell in constrain table consist of the operator, value and the filter id of the

particular constrain. The operator can be any of ==, >, <, <=, >=, !=. The filter

table consist of the size of total constrains that should be matched in order to satisfy

the filter, the number of constrains matched in current event processing cycle and the

interface id which the matching event should be forwarded.

When an event come to the broker, it first encode its attributes as a set of key value

pairs in CPU level for ease of processing. Then this event representation is transferred

to GPU memory. In GPU, before start processing an event, the count values in filter

table is reset to zero. There are as much as thread invoked in GPU to process all cells

in constrain table at once. Each thread reads the relevant attribute from the event,

if it is there, and check if that attribute value match the constrain represent by that

thread. If so increment the count value of filter pointed by the filter id in the constrain.

This increment is done in synchronous manner. Once all the threads are done, the filter

table is processed by pre-assigned set of threads to check if the count value is equal to

size value, which means the filter has matched. The matched filter ids are sent to CPU,

where the relevant event is forward through respective interfaces.

46



The implementation of algorithm has done several optimizations in CUDA to reduce the

memory transfers between CPU and GPU. The performance results from the research

shown that CCM algorithm can gain speedup from 7x to 13x when there are over one

million constrains. Further, results shows the speedup increases when the number of

attribute in the events increases and number of constrain per filter increases.

The first research on CMP to improve the Event processing performance [67]

2.4.3 CEP on Other Hardware Architectures

Apart from using the commodity parallel hardware architectures for improve the

performance of CEP implementations, there are several researches [68]–[71] which have

used re-configurable hardware technologies like FPGAs. The characteristics of FPGA

hardware enables implementation of CEP engines to specially optimized for the use

cases they are used in. So in FPGA-based solutions its more about choosing the trade-

off between the degree of parallelism versus the desired application requirement. The

drawback here is that although FPGA hardware offer very fast processing power, they

are expensive and not widely used in the industry, while the GPU based technologies

are cheap and more accessible for programmers.
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Chapter 3

Siddhi GPU Query Processors

Siddhi implementation has a high-level processing entity called “QueryRuntime”

which encloses all the processing constructs of particular event query. There

are separate QueryRuntime instances for each event query defined in Siddhi CEP

instance. Our proposed approach implements a new type of QueryRuntime called

“GpuQueryRuntime” which follows the same programming API as the QueryRuntime,

but internally it off-load event processing to configured GPU devices. The high level

architecture of the proposed solution is shown in Figure 3.1. Users can easily choose

which QueryRuntime to use just by changing event query definition.

Figure 3.1: Higher Level Architecture of Proposed Solution.
Proposed solution consist of a new QueryRuntime for GPU event processing and general
purpose event processing library.

To decouple low level implementation of GPU communication and kernel handling from

Siddhi code changes, we have developed a GPU event processing library that manages

all the low level GPU tasks. This library is accessed through a well-defined, simple

programming API.
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This chapter provides in depth details of new Siddhi GpuQueryRuntime and

how it interact with the event processing library. Next chapter will detail on

the implementation of the event processing library. In Section 3.1, we present

overview of the current architecture of Siddhi CEP and we describe in-depth the

internal implementation details of complex event processing operators that we are

trying to improve in this research. Section 3.2 describes our proposed changes to

Siddhi architecture to support GPU event processing while Section 3.3 explains on

implementation of proposed GPU query processing runtime.

3.1 Siddhi CEP Architecture

Before describing the details of the changes we proposed to existing Siddhi architecture,

it is important to understand the internal details of current architecture. As we have

described in Section 2.2, Siddhi has four main components: i) input adapters, ii) Siddhi-

Core, iii) output adapters, and iv) query compiler. We will detail on Siddhi-Core and

its internal implementation details in this section.

The latest release of Siddhi CEP engine (Version 3.0.0) have introduced some significant

changes to the Siddhi architecture that largely improve the overall performance of the

engine. Use of Disruptor Queue [72] as the main event data queuing mechanism is

one of these changes which contributed to increased parallelism and performance in

new version of Siddhi. Earlier version of Siddhi CEP (Version 2.0.0) used readily

available Java java.util.concurrent.BlockingQueue to decouple data adapters and

event processors. When the incoming event load is very high, the performance of

BlockingQueue degrades drastically.

Our work is based on Siddhi 3.0.0 version. Architectural changes introduced in Siddhi

3.0.0 make it easy to implement alternative query processing runtime as we have done

in our research.

3.1.1 Siddhi Architectural Components

As explained in the literature review chapter, Siddhi supports both single-threaded and

multi-threaded event processing. Which threading mode should be used in a particular

query can be configured at query definition level. It is very important to understand how

Siddhi CEP engine creates, allocates and utilizes Java threads in each of its processing

constructs, and how inter-thread communication happens within Siddhi CEP engine.

Because our suggestions to improve query processing performance in Siddhi is based

on the opportunities and limitations of this existing threading model.
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When describing Siddhi query processing elements we use symbolic representation for

each processing elements as shown in Figure 3.2.

Figure 3.2: Siddhi Query Processors.
Symbolic representation of Siddhi Query Processors we used in other figures.

Whenever a user wants to use Siddhi for an event processing task she has to define a

“Execution Plan” for that particular task. An execution plan contains a set of stream

definitions, a set of stream partition definition and a set of event queries. Inside Siddhi

CEP execution plan is represented by a runtime Object called ExecutionPlanRuntime

which wraps all the StreamDefinitions, QueryRuntimes, PartitionRuntimes and

StreamJunctions for that particular execution plan. StreamDefinitions contains all

the meta information about each an every input event streams, like their attributes and

their types. QueryRuntimes contain all the query processing runtime constructs created

by the SiddhiCompiler according to user defined event query. StreamJunctions

contain all the input and gateway points of each and every streams created for that

particular ExecutionPlan.

For example, consider the SiddhiQL query defined in Listing 3.1. It has a stream

definition for “StockStream” event stream and event query for filter out some events

matching to given criteria. The meta information of the execution plan and the query

are given using “Query Annotations”. Query annotations are a new feature introduced

in latest Siddhi version and has been a very useful feature for our proposed query

runtime implementation. More details on how we used query annotations will follow

in later sections. Here in this execution plan we have used Query annotation for define

execution plan name (@plan:name(’FilterQueryPlan’)), query name (@info(name =

’query1’)) and to inform ExecutionPlanRuntime to use muti-thread mode to process

this query (@plan:parallel).
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1 @plan:name(’FilterQueryPlan ’) @plan:parallel

2 define stream StockStream(symbol string , price float , volume

long);

3

4 @info(name = ’query1 ’)

5 from StockStream[symbol == "GOOG" AND price > 100.5]# window.

time(5 min)

6 select price , volume , count(price) stockCount

7 insert into GoogleTopStockStream;

Listing 3.1: Siddhi ExecutionPlan.

Each event query defined in the execution plan will create a processing

construct called QueryRuntime. QueryRuntime contains all the runtime

construct that needs to process incoming events from the defined input

event streams. The most notable runtime construct in the QueryRuntime

is called StreamRuntime which is an abstract implementation for different

types of StreamRuntimes like SingleStreamRuntime, JoinStreamRuntime and

PatternStreamRuntime. StreamRuntime has a StreamReceiver and a set of Event

Processors organized as a chain according to their processing order.

Each of the streams defined in the execution plan has an InputHandler and a

StreamJunction (see Figure 2.3). StreamJunction act as a hub for events going out

and coming into stream. It employees publisher-subscriber mechanism using Disruptor

queue to receive and send events to a particular stream. All the events coming from

outside world feed into CEP engine via InputHandler and publish into Disrupter queue.

StreamReceivers subscribe for events in Disruptor queue. Once an event or a set of

events received from Disruptor queue, StreamReceiver do necessary conversion and

forwards it to first event processor in event processor chain. As shown in Figure 3.3,

once an event or a set of events received to the first of event processor chain, they

flow through every event processor in the chain one by one until the end of the chain.

Some events may discarded by event processors like Filter Event Processor and some

events get enhanced by adding new attributes by event processors like Event Aggregate

Operator. Once the event reached the last event processor called QuerySelector, it will

convert according to the output event stream definition and published to output event

queue. Output event queue is also a StreamJunction with a disruptor event queue. All

the subscribers for output event stream should subscribe for this StreamJunction.

Depend on the threading model used (i.e., single-threaded or multi-threaded) and the

number of distinct input event streams, QueryRuntime organization can be differ. As

shown in Figure 3.4-(a), single event query configured to use single input event stream

is the simplest form of QueryRuntime organization.

If there are more than one query defined in a ExecutionPlan and each of these queries
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Figure 3.3: Siddhi Event Processing Constructs.
Siddhi event processing constructs and event flow through the system.

Figure 3.4: Siddhi QueryRuntime organization based on threading model and input
stream count.
Depend on the threading model (single-threaded or multi-threaded) used and the
number of distinct input event streams, QueryRuntime organization differs.

uses the same input event stream, then the QueryRuntime organization is as shown

in Figure 3.4-(b). If the threading model used is single-threaded processing, then

when an event received from the disruptor queue, it will be processed sequentially by

each event processor chain in same thread. If the threading model is multi-threaded

event processing, then the event is processed by each event processor chain in different

threads.
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If the ExecutionPlan defines multiple distinct input event streams and multiple event

queries for these input streams (see Figure 3.4-(c)), then in the single-threaded

processing, each event received form input stream is processed sequentially by each

event processor chain in same thread. If the threading model is multi-threaded event

processing, then the event is processed by each event processor chain in different

threads.

3.2 Siddhi GPU Query Runtime

Our proposed approach for improving Siddhi query processing performance is to

implement a new Siddhi query runtime that utilizes both the CPU and GPU devices

for query processing. We call this new query runtime GpuStreamRuntime and it follows

the same interface as the other implemented query runtimes like SingleStreamRuntime

and JoinStreamRuntime. In fact there are two implementation of GpuStreamRuntime

for single-streams and event-join-streams. More details on this follows.

Figure 3.5: Proposed solution for GPU event processing.
GpuStreamRuntime implements the same interface as other query runtimes but
internally uses both CPU and GPU devices for query processing. Existing query
runtimes can coexist with GpuStreamRuntime and they can interact with each other
within a ExecutionPlan.

As shown in the Figure 3.5, GpuStreamRuntime is only processing events for one

particular query. There can be as many number of GpuStreamRuntimes in a particular

execution plan and this number is highly depends on the available GPU device count

and their capabilities. User can configure to use GpuStreamRuntimes and other query

runtimes for different queries in same execution plan. These query runtimes can coexist

with each other and also they can interconnect to process output event stream of

each other (see Figure 3.6. So it is possible to use existing query runtimes which

entirely utilizes CPU for query processing and GpuStreamRuntimes which utilizes both

CPUs and GPUs for query processing, in one execution plan that has very complex

53



set of event processing queries. User can configure queries that need high performance

processing but less memory requirement for event storage to run on GPUs and rest

of the queries run on CPUs. With our proposed solution Siddhi will create necessary

runtime constructs to process events in harmony with CPU and GPU devices.

Figure 3.6: Interconnecting GpuStreamRuntime and SingleStreamRuntime with output
event queue.
GpuStreamRuntime can subscribe to output events from SingleStreamRuntime and
SingleStreamRuntime can subscribe to output events from GpuStreamRuntime.

1 @plan:name(’GoogleQueryPlan ’) @plan:parallel

2 define stream StockStream(symbol string , price float , volume

long);

3

4 @info(name = ’query1 ’)

5 from StockStream[symbol == "GOOG"]# window.time(5 min)

6 select price , volume , count(price) stockCount

7 insert into GoogleStockStream;

8

9 @info(name = ’query2 ’) @gpu(cuda.device=’0’, batch.max.size=’

2048’, batch.min.size=’1024’, block.size=’128’)

10 from GoogleStockStream[stockCount > 100 AND volume > 10000]

11 select price , volume

12 insert into GoogleTopStockStream;

13

14 @info(name = ’query3 ’)

15 from GoogleTopStockStream#window (5 min)

16 select "GOOG" as symbol , price , volume

17 insert into GoogleFiveMinuteTopStockStream;

Listing 3.2: Using Query Annotatinos to configure GpuStreamRuntime.

We use Siddhi Query Annotation feature to configure GpuStreamRuntime at the query

definition time. Example SiddhiQL query definition with query annotation to use

GpuStreamRuntime is shown in Listing 3.2. If a query is tagged with @gpu annotation,

Siddhi runtime will create GpuStreamRuntime instead of other query runtime. @gpu
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Table 3.1: Siddhi Query Annotations for GpuStreamRuntime.

Annotation Description

cuda.device Which CUDA device should be used by the GpuStreamRuntime

to process events for the assigned stream. In a environment
where multiple GPU devices are attached to the server, by using
this annotation users can select appropriate CUDA device. And
this can also be used to manually load balance queries which use
GpuStreamRuntime.

block.size Number of GPU threads allocated for one thread block (thread block
dimension). This annotation should be set depend on the CUDA
device and its capabilities. More details on how this value is used
will be described in Chapter 4. If not set this will be defaults to 128
threads.

batch.min.size and
batch.max.size

The input events for GpuStreamRuntime are grouped to form a batch
of events. Because it is very efficient to process batch of events
in GpuStreamRuntime than processing individual incoming events.
GpuStreamRuntime has to transfer all these events into GPU device
memory and if we do so for each and every incoming events by calling
CUDA memory copy API calls (cudaMemCpy), there will be lot of
CUDA API calls and overhead for API calls will be significant. To
reduce this we batch incoming events and copy them once to the GPU
memory. In GPU, these event batch is processed in parallel at once
and copy back resulting events to host memory. The minimum and
maximum number of events for a batch is configured via these two
configurations.

string.sizes When copying events to GPU we should know size of each event
beforehand to pre-allocate required memory in GPU device memory
space. If attributes of an event have primitive data types like integers
and floats we can easily calculate size of an event. But if there are
text attributes with varying lengths (like email body text or stock
symbol name) we have to define maximum possible size for that
particular attribute. This is done via this configuration. Users can
define maximum size for each attribute like string.sizes =′ symbol =
32, emailBody = 100′.

work.size When we process events in GPU we create optimum number of
threads suitable for the task. And we can configure how many
events should be processed by each created GPU thread to increase
parallelism. This is done via this configuration. If for example user
define work.size=’100’, then each GPU thread will process 100
events from its assigned event batch. More information about this
will be explained in Chapter 4.
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annotation can be more elaborated using annotation configurations.There are currently

six annotation configurations are defined for GpuStreamRuntime and what each of these

annotations mean is detailed in Table 3.1.

3.3 Internals of GpuStreamRuntime

The GpuStreamRuntime has six major functionalities (see Figure 3.7).

1. Create and configure GPU event processing constructs

User defined SiddhiQL queries will be compiled and fed into Siddhi processing

engine by Siddhi Query Compiler. These compiled queries have all the necessary

meta information about each event streams, each defined partitions and each

defined event queries. These meta information can be programmaticaly accessed

using Siddhi Query API. Once GpuStreamRuntime received this compiled query

information, it will call necessary GPU event processing library API functions

to define and create processing constructs in GPU memory. If for some reason

GpuStreamRuntime could not initialize properly, then we will fall back to other

existing query runtimes.

2. Input event batching

As defined in the GPU query annotations, we use input event batching to reduce

CUDA API call overhead and improve event processing throughput. Batching

many small transfers to GPU memory into one larger transfer performs much

better because it eliminates most of the per-transfer overhead. Events received

through Disruptor queue are in the form of batch of events. But the size of these

event batches can vary drastically and some times it may contain very low number

of input events. So we have implemented minimum and maximum limits for

the number of input events in a batch (batch.min.size and batch.max.size).

Inside GpuStreamReceiver, a specialized implementation of StreamReceiver for

GPU, we buffer input events until we receive minimum number of input events

or maximum event receive timeout is reached, whichever happens first. Usually

when there are high frequent input events, minimum number of input events is

reached before maximum event receive timeout is reached. Once the required

number of events are received, they are pass to GPU Event Processing Library

to further processing. If we receive number of events that exceed the maximum

number of events, they are partitioned to match the maximum number of events

and fed into GPU Event processing library separately.

3. Serializing input events

The input events received via InputHandler are Java Objects that represent event

master data and event attributes. Our GPU Event processing library cannot
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process events in Java Object format, because it is implemented in C++ and

CUDA C/C++ languages. So the input events needs to be converted into a

format that is both understandable by the GPU Event processing library and

should be able to easily fed into GPU Event processing library and transfer to

GPU device memory. We have come up with a event data serialization mechanism

which can achieve both above requirements and it is described in Section 3.3.1.

4. Invoke GPU processing using GPU Event processing library

Once all the input events are fed into GPU Event processing library, we invoke

GPU event processing by calling relevant GPU Event processing library API

function.

5. De-serialization of output events

Once GPU event processing is done, GPU Event processing library will copy back

resulting events into host memory and return control to GpuStreamReceiver.

Received events are then forward to the last event processing construct

called GpuQuerySelector. GpuQuerySelector has the same functionality as

QuerySelector. GpuQuerySelector select only required attributes from the

processed input events and generate output events. In GpuQuerySelector we

have to de-serialize events received from GPU processing stage before they are

further processed. Finally, de-serialized and attribute selected events that are in

Java Object format are queued to output event queue.

Figure 3.7: Internals of GpuStreamRuntime.
GpuStreamRuntime internally do input event batching and serialization, invoke GPU
event processors and finally de-serialization of resulting events.

3.3.1 Event Serialization

When designing Event data communication library, the biggest challenge was to choose

a communication medium between Siddhi runtime and CUDA runtime. Since there will

be very high frequent data transfers happen back and forth between these two runtimes

the communication medium should support this high frequent data transfers without

showing significant performance overhead.
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The main requirements of event serialization was to:

• Convert Java representation of event data into a format that is understood by

Java, C++ and CUDA-C.

• Conversion should not add significant overhead to event processing at host side

(CPU).

• Serialized data should be easily processed using CUDA C/C++ in GPU runtimes.

• Serialized data should be easily copied to GPU device memory with or without

minor modifications.

• Same mechanism can be able to use for de-serialization phase.

Some of these requirements contradict with each other, so we have to manage the trade-

offs while finding a solution. Our first approach was to create and allocate memory for

all the GPU related data structures inside the library and call a JNI wrapped methods

from Java side to fill those data structures with received event data. This method

has significant performance overhead when there are lot for input events in an event

batch. For example if an event has 5 attributes, for each event we need to execute 5 JNI

method calls to fill those 5 event attributes. If there are 2000 events in an event batched

we need to execute 10000 JNI method calls. In our experiments, JNI method call took

average 25 nanoseconds to execute. Our performance results for this mechanism showed

that more than 90% of the GPU query processing time inside the GpuStreamRuntime

was spent on event serialization phase. That time measurement was even without the

event de-serialization phase implemented. This approach was not a viable option so

other alternatives were explored.

3.3.1.1 Java NIO ByteBuffer

We found the best way to serialize and transfer event data form Java side to

C++/CUDA-C is to convert them into their binary representation and store them

in a pre-allocated contiguous memory buffer. This way, even if there is a little bit of

overhead in Java side to convert data into binary form, it will be very easy to interpret

these data in C++ and CUDA-C side. Because C++ and CUDA-C supports direct

memory casting to data types with zero overhead. Even we can use our custom data

structures in this way to represent events as sequence of bytes.

The optimal data structure to represent contiguous, pre-allocated memory in Java

side is Java New I/O (NIO) ByteBuffer. This was part of Java NIO API which was

developed to allow Java to interact with features that are I/O intensive in J2SE 1.4.

NIO ByteBuffer and NIO API provides access to low-level memory buffers that are

also visible to non-Java code. Moreover, it is also possible to access low-level memory
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that was allocated using non-Java code through NIO ByteBuffer. NIO API handles

all Byte Ordering issues and provide convenient API to Java code to write and read

arbitrary bytes to arbitrary locations in the memory buffer.

Figure 3.8: Event serialization in to memory buffer.
In event serialization, each attribute of Java event representation is written in to
memory buffer in their binary data format.

In our proposed solution we have allocated necessary memory buffers inside the GPU

event processing library and accessed these memory buffers through NIO ByteBuffer

from GpuStreamReceiver, where the actual serialization part is implemented. When

serializing an event, first, metadata of the event is written into memory buffer followed

by its attributes in defined order (See Figure 3.8). All the events will take a fixed size

on the memory buffer and this size is pre-known.

3.3.1.2 JNI Wrapper for Event Processing Library

GPU event processing library is implemented using C++ and CUDA-C languages. So

in order to access API functions implemented in this library, Java code needs to use Java

Native Interface (JNI). We have created a JNI wrapper for our library API functions

that enables us to easily integrate Siddhi query runtime with this library.

Since the GPU event processing library can be enhanced by implementing new event

processing constructs, it will be necessary to update and maintain JNI wrapper with

every changes to the library API. Maintaining JNI classes is a tedious and time

consuming task. To alleviate this burden we have used a Java library [73] that helps

to automatically generate JNI wrapper classes for given C++ API. This way we could

easily integrate our GPU library into Siddhi code base. Siddhi development use Maven

as a build tool. Both our query runtime implementation and the GPU library are
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also integrated to the maven build system. So it is easy to any user to get our

implementation and use it in their projects. Currently it needs CUDA runtime SDK to

be installed in order to compile the GPU library. But if there is no CUDA SDK found,

the build will continue as normal without building GPU specific parts.

3.3.2 Increasing Performance in GpuStreamRuntime

While implementing these features, we have done performance test for each of the

implemented parts. Our initial performance tests showed that there is a significant

overhead in the serialization and de-serialization code when we are serializing/de-

serializing over 2000 events as a batch. In the serialization, first all the events

are accumulated in a buffer and once the batch limit was hit, serialization of the

accumulated events in the buffer started. For example if there are 4096 events in

the batch and each event has 10 attributes including metadata, then there will be

40960 iterations and same amount of NIO API calls to write all attributes into memory

buffer. This has created a sudden burst of CPU usage and has severely impact the

performance of the other parallel queries.

To address this issue, first, we have changed the design to serialize events as and when

they are arrived. Even this approach has the same number of iterations as the previous

method, it does not create a sudden burst of CUP usage. Next, we have created a thread

pool to make serialization parallel. Since we know the size of an event beforehand and it

is possible to write event data to any position in the memory buffer and multiple threads

can access same underlying memory buffer wrapped through different ByteBuffers, we

can distribute the task of serialization into multiple threads. Each thread is assigned

part of the events in event batch and given a starting position in the memory buffer

to write their assigned events. While this approach had improved the serialization

by roughly a factor of number of threads, it has negatively effected the performance

when there are several parallel streams. Because each parallel stream creates their own

thread pool and having lot of running threads in the JVM has reduced the expected

performance gain. So we can only use this approach when there are enough CPU

resources in the system or few parallel streams in Siddhi runtime.

Particular problem with the serialization and de-serialization of Siddhi events is that

the schema of the event is not directly represented in the Java Event representation.

Siddhi uses a class with array of Java Objects to represent an event. The Object

array can have any value. So at the serialization time we have to get the actual type

information of each event attribute from either Event metadata definition or by using

Java reflection. Bytecode level serialization are the fastest serialization methods, but

cannot be used in this problem because of the above reason.
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Chapter 4

GPU Event Processing Library

The major part of this research work was spend on designing and implementing event

processing constructs for GPU environment. Implementing low-level GPU device

handling inside Siddhi makes it hard to debug because of Java to CUDA C/C++

communication. Our approach is to decouple all the low-level GPU device handling

from the Siddhi and implement them in a separate library. We have implemented

a general purpose GPU event processing library to the very purpose. This chapter

describes the design and implementation details of this library and how it is optimized

to yield high performance event processing.

In Section 4.1, we describe existing researches on accessing CUDA enabled GPU devices

with in Java language and our experience on integrating those research approaches

with our solution. Section 4.2 elaborates on the implementation of our general purpose

GPU event processing library while Sections 4.3, 4.4 and 4.5 explain on the GPU

event processing algorithms for Filter Processor, Window Processor and Stream Join

Processor, respectively.

4.1 CUDA Access for Java Code

The main goal of this research is to find the possibility of using GPU hardware devices

provided computing power to increase the event processing performance in Siddhi CEP

engine. With the implementation of new Siddhi query runtime, which is described

in Chapter 3, baseline framework for Siddhi to communicate with GPU devices is

established. But within Siddhi it is hard to directly access GPU devices. As we have

explained in the literature review chapter, there are several other research work done in

the past to address this very problem. The two most notable research approaches are

evaluated that enable direct access to GPU devices within Java VM; namely JCuda [50]

and Rootbeer [46].
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JCuda is the most widely used Java Library to interact with the CUDA runtime and

driver APIs. A sample application is implemented for event processing using JCuda

which transfer synthetically generated events from Java to GPU. There are major

limitations with the implementation of JCuda that prohibits its use in our research

work. JCuda has two methods of interacting with CUDA runtime; JCuda Runtime

API and JCuda Driver API, which use CUDA Runtime API and CUDA Driver API

respectively. Using JCuda Runtime API is easy, since it is not required to write

any CUDA code, JCuda library auto generates CUDA code according to application

requirement. But JCuda Runtime API lacking some basic low-level control over CUDA

device that our approach require. On the other hand, JCuda Driver API enables user

to write custom CUDA kernel code and call them inside Java using JCuda library calls.

But user has to manually do all the low-level memory management of GPU memory

space inside Java code. This is not straight forward as it is with pure CUDA code.

JCuda could not provide the necessary control over our data structures in CUDA side

and the debugging of CUDA kernels with Java code was not straightforward as it was

with pure CUDA C/C++. Because of these reasons JCuda was not used in our solution

and hence performance measurements were not done with JCuda.

Rootbeer [46] provides novel approach to writing CUDA applications in Java. It

provides automatic CUDA code generation, data serialization/de-serialization and

automatic kernel launch. The most notable contribution by the Rootbeer is its

serialization mechanism. Rootbeer is able to serialize all the necessary data for the

kernel execution and transfer them to GPU memory very efficiently. It dose this

by static analysis of user written Java Kernel Code and generating bytecode for

serialization of required data. Because of the bytecode level serialization mechanism,

Rootbeer can achieve impressive performance.

Rootbeer was used to CUDA code generation for a sample application that does

event data serialization of Siddhi events. The performance results did not show any

improvements of event serialization for CUDA code generated by Rootbeer. This is

because for the particular use-case Rootbeer could not generate optimized CUDA

code. Rootbeer generates bytecode for serialization if it can find data type at the

compile time. But in our case, Siddhi dose not represent event attribute types in

event representation at compile time. It merely use a class with Java Object array to

represent event attributes. Object can have value of any type, and the actual type

information is depend on the event schema defined by the user at runtime. So CUDA

data serialization code generation provided by Rootbeer is not usable for Siddhi event

serialization.
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4.2 Event Processing Library for GPU

Since none of the previous researches could provide necessary features and control

over GPU devices, a custom event processing library called libGpuEventRuntime was

developed for GPU devices that support CUDA Runtime. The main functionality of

this library is to event processing on GPU rather than general purpose Java to GPU

communication. So we could limit the scope of interaction points and improve the

performance for event processing specific cases.

When designing the event processing library, it was considered the extensibility and

compatibility with other types of GPU computing runtimes like OpenCL. So the

communication with the library from Java code is done via a simple API, wrapped

through JNI, and Java ByteBuffer wrapped memory buffers was used to transfer event

data between Java code and the library.

Using a separate custom developed library and writing custom CUDA kernels provides

better control over the low-level hardware and convenience of optimizing for the task

at hand. As we explained in Chapter 3, the JNI wrapper is auto generated by using a

special library, so the overhead of coding for the library is very minimum for a user of

the library. Basic event processing API is stable and will not change, while the API for

specific event processing constructs like Filter Processor and Event Window Processor

can be changed. This is because users are able to modify, enhance and add new event

processing construct to the library, if they are familiar with CUDA. Even it is possible to

enhance the performance of existing event processing constructs in the library without

changing the API. So users of the library can gain increased performance with zero

changes in Siddhi code.

Segregating lower level implementation of GPU event processing in to a separate library

and accessing it through a unified API gave us the ability to test and debug Siddhi and

event processing library separately. The library can be tested and debug separately

using its API. The testing can be done using both Java and non-Java code.

The three main tasks done by the event processing library include:

1. Allocating memory buffers for event data serialization.

2. Create and organize event processing constructs.

3. Call event processing functions of Event processors, which in turn invoke CUDA

kernels.

Form Siddhi code the library API is accessed by the GpuStreamRuntime, where it

calls necessary functions to initialize the library and create GPU event processors.

GpuStreamRuntime initialize the library to create a GpuQueryRuntime (see Figure 4.1).

There should be one GpuQueryRuntime for each GpuStreamRuntimes. Which means
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there are separate instance of library runtime for each event queries defined by the

user. GpuQueryRuntime provides necessary runtime environment for creating and

maintaining GPU processors. It holds an array of GpuStreamProcessors which handles

each stream related to the particular query. Most of the time there is one instance

of GpuStreamProcessors in the array, but for Join streams, Sequence and Pattern

streams there can be more than one GpuStreamProcessors. As shown in Figure 3.3,

in Siddhi, each stream has chain of event processors to process events in defined order.

Following the same design we have created a chain of GpuEventProcessor chain in each

GpuStreamProcessors that process events. For each event processor type in Siddhi

there is a matching GpuStreamProcessors implementation in the library. Currently

we have implemented three GpuStreamProcessors for following operators.

Figure 4.1: High-level design of GPU Event Processing Library.
GPU Event Processing Library provides access to GPU Event processing constructs
and memory buffers through well-defined API.

• GpuFilterProcessor - Provides event filter processing.

• GpuLengthSlidingWindowProcessor - Provides sliding window operator with

fixed length event window.

• GpuJoinProcessor - Provides stream join operator for two event streams.

Currently supports only event window with fixed length.

Each event processor implementation can have one or more GpuProcessorKernels.

GpuProcessorKernel wraps the actual CUDA kernels implemented for this GPU event
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processor. Usually there can be more than one GpuProcessorKernels per GPU event

processor and more than one CUDA kernel per GpuProcessorKernel. The library API

only provides access to GpuQueryRuntime class, GpuEventProcessor implementations

and GpuStreamMeta class. All the other classes and data structures are hidden to

library users. Following API functions are provided by the library.

• void GpuQueryRuntime::Initialize(

string queryName,

int cudaDeviceId,

int inputEventBufferSize)

Initialize new GpuQueryRuntime environment by providing query name, GPU

device ID and input buffer size in bytes. GPU device ID is the numerical index

of attached GPU devices. Input buffer size is used for allocating host side and

GPU device side memory for input event memory buffer.

• void GpuQueryRuntime::AddStream(

string streamId,

GpuStreamMeta * streamMetaInfo)

Create new stream representation in GPU side using the given meta info.

GpuStreamMeta contains the definition for each attribute of the events that can

arrive through this stream.

• void GpuQueryRuntime::AddProcessor(

string streamId,

GpuProcessor * processor)

Add new GPU event processor instance in to the stream identified by

streamMetaInfo. processor can be any specific implementation of the

GpuProcessor

• char * GpuQueryRuntime::GetInputEventBuffer(string streamId)

int GpuQueryRuntime::GetInputEventBufferSizeInBytes(string

streamId)

Get memory buffer for input events and its size in bytes. This memory buffer is

accessed by GpuStreamRuntime from Siddhi side using a NIO ByteBuffer.

• int GpuQueryRuntime::Process(int numberOfEvents)

This function is called when the GpuStreamRuntime is done serializing the input

events and it need to start processing that events. Input parameter set how many

events in the buffer should be processed and the output parameter returns the

number of resulting events.

API of each event processors will be discussed in their relevant sections.
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4.2.1 GPU Event Processors

Each implementation of GPU event processors should implement interface functions

defined by the GpuProcessor. Following interface functions are defined in

GpuProcessor.

• void GpuProcessor::Configure(

int streamIndex,

GpuProcessor * prevProcessor,

GpuProcessorContext * context)

• void GpuProcessor::Initialize(

int streamIndex,

GpuStreamMeta * streamMetaInfo,

int inputEventBufferSize)

• int GpuProcessor::Process(

int streamIndex,

int numEvents)

The Process() method is the entry point to the GPU processor. It gets called by either

GpuQueryRuntime::Process() method or by the Process() method of previous GPU

Processor in processor chain. And the GPU processor should also implement copying

of event data back to host memory if it is the last processor of the processor chain.

All the memory buffers are wrapped by a data structure called GpuEventBuffer which

provides convenient event data wrapper to memory buffers. All the memory copying

of host-to-device and device-to-host are implemented in the GpuEventBuffer.

4.2.2 Event Processor Basic Concepts

Before designing each GPU event processor we have analyzed existing event processors

in siddhi, how events are flown through these processors and how they are maintaining

the state of the processor. The following facts were observed in general for each event

processor.

• Each event processor have a state

By state what meant here is the values in the memory of each event processor

instance. For example, event window processor has an array of events stored in

the memory which called “Event Window”. For a given time there can be some

set of events in this event array. For a given time this is called the state of that
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window event processor for that time instance. Values stored in memory for that

particular event processor for a particular time defines its state for that time

instance.

• Each event processor gets one or more events as input

• After processing input events there can be zero, one or more output

events

Most of the event processors output more than one events, but there are event

processors like event filter processor which can filter out all incoming events. In

some event processors there can be more output events than the number of input

events (for example stream join processor).

• After processing a batch of input events, the state of the processor can

be changed

The stored data inside the event processor instance can have new set of values

after processing all events. For example, the window event processor can have

new set of events in its window buffer after it processed batch of events.

Figure 4.2: Basic concept of GPU event processors.
When designing GPU event processor algorithms, the guiding principle was to maintain
same output events, pre- and post- states of event processor as the sequential algorithm.

These factors are important because when designing parallel event processing algorithm

for GPUs primary objective was maintaining same pre and post state in event

processor and generate same output events for particular batch of incoming events

(see Figure 4.2). We considered above observations as a guideline for implementing

GPU processors. They helped us to to design and implement novel algorithms for
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parallel event processing in GPUs without just translating sequential algorithms to

their parallel version.

4.3 GPU Filter Event Processor

Filter processor provides selective output of events based on the user defined selection

criteria. Events that matched to the given criteria output to the output event buffer

and forward to the next event processor. Other events are discarded. See sample filter

query defined in Listing 4.1.

1 from StockStream[price > 100.5 AND symbol == "GOOG" OR symbol

== "FB"]

2 select symbol , price , volume

3 insert into TopStockStream;

Listing 4.1: Filter query defined in SiddhiQL.

Siddhi implements Filter processor using object oriented expression tree evaluation.

The selection criteria is a collection of Expressions that ultimately evaluate to a boolean

value. Expressions can be in many types.

• Condition expressions - AND, OR, NOT, COMPARE, PREFIX, SUFFIX,

CONTAINS, etc.

• Mathematical expression - ADD, SUB, MULT, DIV, MOD, etc.

• Variable expression - Value of event attribute symbol

• Constant value expression - 100.5, “GOOG”, etc.

Siddhi defines separate Java classes, called Executors, for each of these expressions.

In fact, there are separate classes for each expression for each type combination like

AndExpressionExecutorFloat, MultiplyExpressionExecutorInt, etc. When a user

defined filter query is compiled and comes to Siddhi runtime, it creates an expression

tree of these Executor class instances as shown in Figure 2.5. When an event needs

to be evaluated using this expression, the root Executors of the expression tree will

be called with event as a parameter. The expression tree is evaluated in in-order tree

traversal and returns a boolean value indicating the matching or none matching of the

particular event. The advantage of using an expression tree is it stops evaluating the

given event at first instance it finds the whole tree will evaluate to true or false, without

evaluating the whole tree.

In our approach to implement Filter operator in GPUs, we first tried implementing the

CCM algorithm propose by Cugola et. al. [28] for their content based event dispatching
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mechanism. This solution could provide very high throughput of event processing (over

8 million events per second) for basic operators like AND, EQUAL, GRATER THAN,

etc. But the solution could not evaluate most of other expressions supported by Siddhi.

For example, it could not process expressions that are connected with OR operator.

This approach was not continued.

Figure 4.3: Filter operator expression tree conversion to executor array for query defined
in Listing 4.1.
Expression tree is converted to an array using post-order traversal and constructing
executor node to represent each node in the tree.

The second approach was to implementing the same expression tree as a tree data

structures in GPU memory and evaluate it using a given event. This way, instead of

evaluating events sequentially, we could evaluate every event in the batch in parallel

at once. But the initial performance results showed otherwise. Evaluating a tree

data structure is not optimized in GPU environment. Hence, the expression tree was

converted to an array based data structure following pre-order tree traversal. As shown

in Figure 4.3, each element in the array is of ExpressionNode or ConditionNode type

and contains the expression/condition type, data type of the evaluated result, constant

value if the node is a Constant value expression and event attribute name if the node

is a Variable expression.
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1 __device__ float AddExpressionFloat(FilterEvalParameters & _rParameters)

2 {

3 return (ExecuteLeftFloatExpression(_rParameters) +

4 ExecuteRightFloatExpression(_rParameters));

5 }

6
7 __device__ bool GreaterThanCompareIntInt(FilterEvalParameters & _rParameters)

8 {

9 return (ExecuteLeftIntExpression(_rParameters) >

10 ExecuteRightIntExpression(_rParameters));

11 }

12
13 __device__ bool AndCondition(FilterEvalParameters & _rParameters)

14 {

15 return (EvaluateLeft(_rParameters) & EvaluateRight(_rParameters));

16 }

Listing 4.2: CUDA functions for filter expression evaluation.

A set of CUDA device functions was implemented to represent each

expression/condition types and each of these functions evaluates its child nodes

calling relevant expression functions. Few sample CUDA expression evaluate functions

are shown in Listing 4.2. Pointers to all these functions are stored in a function pointer

array indexed by the type of the function.

In the CUDA kernel we followed the algorithms, shown in Algorithm 4.1 and

Algorithm 4.2, to evaluate a given event with the expression array. GPU filter

processor will invoke number of GPU threads equal to the number of input events

in the batch. So each GPU thread is processing one input event form the batch.

Each GPU thread executes the FilterEntryFunction shown as Algorithm 4.1. A

GPU thread gets its assigned input event from the inputEventBuffer by calculating

the offset of the input event using sizeOfEvent and threadIdx. This is shown in

line 2. expressionNodeArray is a globally accessible data structure which contains

the expression nodes as discussed in Figure 4.3. In line 4, this expression node array

is accessed to get the first expression evaluation function pointer. The first expression

evaluation function pointer is always a Condition Expression. Expression evaluation

function pointer is recursively executed to get the overall evaluation result. If overall

evaluation result is True, then the input event is copied to the output event buffer (see

line 7). If the overall result is False, the input event is discarded.

In each of the filter evaluation expression functions, first, the

expressionNodeArrayIndex is incremented to access the next node in

expressionNodeArray. Then the left and right operands of the current expression,

which represented as nodes in the array, is executed recursively. If the results of the

operands are boolean values, they are evaluated according to the evaluator function

and the resulting boolean value is returned. Otherwise the variable value or the

constant value is returned. This is shown in Algorithm 4.2.
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Algorithm 4.1 FilterEvaluation - Entry Function.

1: function FilterEntryFunction
Input: inputEventBuffer
Input: outputEventBuffer
2: inputEvent← inputEventBuffer[sizeOfEvent ∗ threadIdx]
3: expressionNodeArrayIndex← 0
4: EvalFunction← expressionNodeArray[expressionNodeArrayIndex].Func
5: eventMatched← EvalFunction(inputEvent, expressionNodeArrayIndex)
6: if eventMatched == True then
7: outputEventBuffer[sizeOfEvent ∗ threadIdx]← inputEvent
8: end if
9: end function

There are two versions of GPU Filter evaluation function. If the Filter event processor is

the only event processor defined in the query, then we use one version of the function.

In this case we optimized the output events by only output index of the events in

the input event batch that matched the given criteria. This reduced the number of

operations in the GPU kernel and also reduced size of the output buffer. For all the

other cases, the other version of the filter function is used, where it output full event

data to the output event buffer.

In the second version of the GPU filter function, where it output full event data to

the output event buffer of matched events, to identify the location to write output

event by each GPU thread, a thread synchronization mechanism was needed. Since

synchronizing GPU threads in multiple thread block may have negative impact on

performance, we have used a synchronization-less algorithm. There are three phases of

this algorithm. An integer array is created with the size of number of GPU threads.

In first phase each thread process its assigned input event and check if it matches the

given filter criteria. If it matches, integer array position matches to its thread index is

updated with the value one. If assigned event did not matched the filter criteria, the

array is updated with value zero. In the second phase of the algorithm, we performed

parallel prefix-sum on this integer array using a GPU prefix-sum algorithm. Prefix-sum

provides the number threads that has output data to be written to output event buffer.

By using the integer value in the index of each GPU threads’ thread index, it can get

the output event buffer writing index. The resulting integer array is used by the third

phase of the algorithm to update output event buffer without overwriting other threads

event output data.

The most notable advantage of this approach over the other previous approaches is

this can support almost all filter criteria evaluation functions currently supported by

Siddhi. The only filter criteria evaluation function that cannot be supported by this

approach is user defined functions. But if the user is familiar with CUDA, she can

write a custom CUDA function which does the same task as the user defined function.
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Algorithm 4.2 FilterEvaluation - Expression Functions.

1: function Binary Condition Function
Input: inputEvent
Input: expressionNodeArrayIndex
2: expressionNodeArrayIndex+ +
3: EvalFunction← expressionNodeArray[expressionNodeArrayIndex].Func
4: leftResult← EvalFunction(inputEvent, expressionNodeArrayIndex)
5: EvalFunction← expressionNodeArray[expressionNodeArrayIndex].Func
6: rightResult← EvalFunction(inputEvent, expressionNodeArrayIndex)
7: return ApplyBinaryOp(leftResult, rightResult)
8: end function

9: function Unary Condition Function
Input: inputEvent
Input: expressionNodeArrayIndex
10: expressionNodeArrayIndex+ +
11: EvalFunction← expressionNodeArray[expressionNodeArrayIndex].Func
12: result← EvalFunction(inputEvent, expressionNodeArrayIndex)
13: return ApplyUnaryOp(result)
14: end function

15: function Binary Expression Function
Input: inputEvent
Input: expressionNodeArrayIndex
16: expressionNodeArrayIndex+ +
17: EvalFunction← expressionNodeArray[expressionNodeArrayIndex].Func
18: leftResult← EvalFunction(inputEvent, expressionNodeArrayIndex)
19: EvalFunction← expressionNodeArray[expressionNodeArrayIndex].Func
20: rightResult← EvalFunction(inputEvent, expressionNodeArrayIndex)
21: return ApplyBinaryExpressionOp(leftResult, rightResult)
22: end function

23: function Variable Expression Function
Input: inputEvent
Input: expressionNodeArrayIndex
24: expressionNodeArrayIndex+ +
25: attrIdx← expressionNodeArray[expressionNodeArrayIndex].AttrIdx
26: attributeV alue← inputEvent.Attributes[attrIdx]
27: return attributeV alue
28: end function

29: function Constant Value Expression Function
Input: inputEvent
Input: expressionNodeArrayIndex
30: expressionNodeArrayIndex+ +
31: constV al← expressionNodeArray[expressionNodeArrayIndex].Const
32: return constV al
33: end function
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This user written custom CUDA functions can be linked and called within GPU filter

processor.

4.4 GPU Sliding Window Event Processor

Window event processor is used to store input events in an event buffer for temporal

processing. There are several types of Window event processors implemented in Siddhi,

such as Length Window, Time Window, Length Batch Window, Time Batch Window

and Unique Window. In this research we have implemented only Length Sliding

Window Processor. Length Sliding Window Processor store input events in a fixed

length event buffer and when a new event comes to the Window processor, if the buffer

is full, least recent event in the buffer is removed and output to the output event buffer

as an Expired Event. This way it maintain a fixed length sliding window of last received

events. The incoming event is always output to the output event buffer (see Figure 4.4).

Sample length sliding window query is shown in Listing 4.3. Window event processor

is mainly used for event aggregation and stream joining.

1 from StockStream#window.length (100000)

2 select symbol , avg(price) as avgPrice , sum(volume) as

totalVolume

3 insert into WindowStockStream;

Listing 4.3: Length sliding window query defined in SiddhiQL.

The reason for implementing only length sliding window processor is that it has

deterministic memory usage in GPU memory. GPU memory needs to be pre-allocated

in order to achieve full performance, because memory allocation in GPU is an expensive

operation. Length sliding window has fixed size memory requirement whereas time

sliding window processor has non-deterministic memory requirement. If the input event

rate is so high, it is hard to define a size for GPU memory buffer beforehand. So as

a proof of concept, only the length sliding window processor is currently implemented.

Implementation of length batch window processor would be the same as length sliding

window processor.

As stated in the Section 4.2.2, every event processor has state before processing set of

input events and this state is changed once the processing is complete. This behavior

is obvious in the window processor and guided us to design our GPU event processing

algorithm. There are two phases in the algorithm; (i) generate output events, (ii) set

post-process window state from input events. These two steps are handled by two

CUDA kernels and explained in following sections.
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Figure 4.4: Length Sliding Window Processor.
Length sliding window maintain a fixed length of previous input events in a event buffer.
If the buffer is full, least recent event is removed to make space for new events.

4.4.1 Generating Window Output Events

In the first phase of the algorithm, output events for a set of input events are calculated.

In sequential algorithm this is done by processing one input event at a time and checking

it with the current state of the even window. This sequential method needs update

of event window with each input event in order to produce correct output events. In

a parallel algorithm for calculating output events, updating event window and using

updated event window from other thread is not practical as this approach requires tight

synchronization between threads. In GPU threads, synchronization between multiple

threads can be expensive, if they are in two different thread blocks.

In the sequential algorithm, it is observed that there is a connection between output

event for each input events and the final output events for the same input event batch.

As shown in Figure 4.5, the output event set is a sequenced collection of {expired,input}
event pairs calculated for each input events in input order. It is also observed that

{expired,input} event pair can be calculated in parallel for each input event without

depend on other thread’s values. The only required data for the parallel calculation is

initial state of the event window and the batch of input events.

A parallel algorithm were developed, as shown in Algorithm 4.3, to calculate

{expired,input} event pairs for each input event and update the output event buffer

using calculated event pair. GPU event window processor invokes a number of GPU

threads that match number of input events in the incoming event batch. Each GPU

thread is assigned an event in the input event batch and it calculates the {expired,input}
event pair for its assigned input event.

At the initialization, GPU event window processor allocates GPU memory for event

window and output events buffer. Output events buffer has the twice the size of input

event buffer, since there can be two output events ({expired,input} event pair) for each

input event, as shown in line 1 and 2 of Algorithm 4.3. Each GPU thread is allocated

two event positions in the output buffer to write its output events. When writing events

to the output event buffer, each GPU thread uses its thread index to access its allocated

buffer position in output buffer. Always the first position is used to write the expired
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Figure 4.5: Length Sliding Window Processor - output event calculation.
In sequential algorithm output event for each input event is calculated one event at a
time. In parallel algorithm output events for a input event batch calculated each event
in parallel using expired/input event pairs.

event and the second position is used to write the input event. In case if there is no any

expired event for a particular input event, then the Null value is written to expired

event position. This way the synchronization between GPU threads is removed.

To calculate the expired event for a particular input event, first, the remaining event

window buffer size is checked. If there are remaining buffer positions in window buffer,

input event is written to that position and no expired event is generated (see line 3 of

Algorithm 4.3). If event window size is larger than current thread’s thread index, then

expired event is calculated from event window buffer (see from line 4 to line 11). If

event window size is less or equal to current thread’s thread index, then expired event

is calculated from input event buffer (see from line 13 to line 15).

4.4.2 Set Post-process Window State

Once the output event calculation phase is completed by the GPU processors, event

window update processor is scheduled to update the state of the event window using

input events. When this process completes the execution, event window should have

same state as the sequential version of event window processor.

We invoke number of GUP threads that match to number of input events in the batch.

Each GPU thread is responsible for one input event and the Algorithm 4.4 is used in

each GPU thread to update event window using its assigned input event.

Inputs to this algorithm are input event buffer, event window buffer, input event count,

window length, window remaining count and size of an event in bytes. The window
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Algorithm 4.3 EventWindowOutputEventsCalculation

Input: inputEventBuffer
Input: eventWindowBuffer
Input: outputEventBuffer
Input: inputEventCount
Input: windowLength
Input: windowRemainCount
Input: sizeOfEvent
1: inputEvent← inputEventBuffer[sizeOfEvent ∗ threadIdx]
2: outputEventPair ← outputEventBuffer[sizeOfEvent ∗ threadIdx ∗ 2]

3: if threadIdx ≥ windowRemainCount then
4: if threadIdx < windowLength then
5: bufOffset← sizeOfEvent ∗ (threadIdx− windowRemainCount)
6: expiredEvent← eventWindowBuffer[bufOffset]
7: if expiredEvent 6= Null then
8: outputEventPair[0]← expiredEvent
9: else

10: outputEventPair[0] = Null
11: end if
12: else
13: bufOffset← sizeOfEvent ∗ (threadIdx− windowLength)
14: expiredEvent← inputEventBuffer[bufOffset]
15: outputEventPair[0]← expiredEvent
16: end if
17: else
18: outputEventPair[0] = Null
19: end if

20: outputEventPair[1]← inputEvent
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Algorithm 4.4 EventWindowStateSet

Input: inputEventBuffer
Input: eventWindowBuffer
Input: inputEventCount
Input: windowLength
Input: windowRemainCount
Input: sizeOfEvent

1: inputEvent← inputEventBuffer[sizeOfEvent ∗ threadIdx]
2:

3: if windowLength > inputEventCount then
4: shiftDistance← windowLength− inputEventCount

5: if inputEventCount > windowRemainCount then
6: exitEventCount← inputEventCount− windowRemainCount
7: windowWritePosition← threadIdx + shiftDistance

8: EventShift(eventWindowBuffer,
9: windowWritePosition,

10: exitEventCount,
11: windowRemainCount)

12: bufOffset← sizeOfEvent ∗ windowWritePosition
13: windowEvent← eventWindowBuffer[bufOffset]
14: windowEvent← inputEvent
15: else
16: shiftDistance← windowLength− windowRemainCount
17: windowWritePosition← threadIdx + shiftDistance
18: bufOffset← sizeOfEvent ∗ windowWritePosition
19: windowEvent← eventWindowBuffer[bufOffset]
20: windowEvent← inputEvent
21: end if

22: else
23: shiftDistance← inputEventCount− windowLength

24: if threadIdx ≥ shiftDistance then
25: windowWritePosition← threadIdx− shiftDistance
26: bufOffset← sizeOfEvent ∗ windowWritePosition
27: windowEvent← eventWindowBuffer[bufOffset]
28: windowEvent← inputEvent
29: end if

30: end if
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Algorithm 4.5 EventShift

Input: eventWindowBuffer
Input: windowWritePosition
Input: exitEventCount
Input: windowRemainCount
1: endPosition← windowWritePosition
2: previousToEnd← endPosition
3: while endPosition ≥ 0 do
4: if eventexistineventwindowatendPosition then
5: previousToEnd← endPosition
6: endPosition← endPosition− exitEventCount
7: else
8: break
9: end if

10: end while

11: if endPosition < 0 then
12: endPosition← previousToEnd
13: end if

14: while endPosition < windowWritePosition do
15: eventOffset← endPosition+ exitEventCount
16: fromEvent← eventWindowBuffer[eventOffset]
17: eventWindowBuffer[endPosition]← fromEvent
18: endPosition← endPosition+ exitEventCount
19: end while
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remaining count means the number of free slots in an event window that still to be

filled with events. Apart from above inputs each thread gets its thread specific indexes

(threadIdx and blockIdx) as inputs.

Using these input values each thread performs three main steps in this algorithm.

1. Find assigned input event

Each GPU thread finds its assigned input event from the input event batch using

thread specific indexes. Since we invoke GPU kernel with threads matching to

number of input events in batch, each input event is assigned to one GPU thread.

This task is explained in line 1 in Algorithm 4.4.

2. Find writing position in event window

Finding event window position can be explained in three scenarios.

• Event window length is larger than input event count and window

remaining count is less than input event count

As shown in the Figure 4.6, in this scenario all the input events are written

to event window and the existing events in event window are shift forward

to make space for input events. This is shown in Algorithm 4.4 from line 5

to line 15.

Figure 4.6: Event window state set algorithm: scenario 1.
Event window length is larger than input event count and window remaining count is
less than input event count.

• Event window length is larger than input event count and window

remaining count is larger or equal than input event count

As shown in the Figure 4.7, in this scenario all the input events are written

into event window as previous scenario. Since there are enough space left

in event window for new incoming events, no events will be removed from

event window. This is shown in Algorithm 4.4 from line 15 to line 21.
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Figure 4.7: Event window state set algorithm: scenario 2.
Event window length is larger than input event count and window remaining count is
larger or equal than input event count.

• Event window length is less or equal to input event count

As shown in the Figure 4.8, in this scenario, not all input events written into

event window. Number of events that matched to event window length from

the back of the input event batch is written into event window buffer and

the rest is discarded. This is shown in Algorithm 4.4 from line 22 to line 30.

Figure 4.8: Event window state set algorithm: scenario 3.
Event window length is less or equal to input event count.

There may be threads that do not write its assigned event to event window depend

on input parameters.

3. Writing input event data to window position

Once a thread has input event position and window writing position and if there

is no existing event in the window at the writing position, it copies input event

data into that position. We have used direct memory copy for copying event data

to event window.
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If there is an existing event in the event window in the writing position, then we

use a separate algorithm to shift existing events to make space for input events

(see Figure 4.9 and Algorithm 4.5). Event shifting is associated with an shifting

distance which was calculated along with step two. Starting from event window

writing position, we first check if there is an existing event in that position, if so

it is moved shift distance number of event positions backward. If there is also

an existing event in this new position, we move that event shift distance further

back. This logic apply recursively until we reache the begin of event window.

Figure 4.9: Event replace mechanism of EventWindow state update GPU algorithm.
Each GPU thread replaces particular Window position with its assign event. If there
is already an event, shift it backward by Shift Distance. Last event removed from
Window.

Initial version of this algorithm used recursive function to replace events in

Window with assigned event, recursively traverse to the last position in event

window and swapping events on the way-back. Although it is easy to develop

recursive functions for this particular task, performance measurements showed

that recursive functions are expensive in GPU environment. This is particularly

observable when event window size is very larger than input event batch size.

4.5 GPU Event Stream Join Processor

Event stream join processor is used to join two event streams based on the attribute

values of their individual events. Each streams should associate an event window in

order to join the two streams. The join condition is evaluated for each input events with

the events in other streams event window and all the matched events are added to a new

event stream. Sample stream join query is shown in Listing 4.4. In the sample query,

StockQuotesStream, which alias to sqs, is joined with HighFrequentTweetStream,

which alias to hfts, using the join condition sqs.symbol == hfts.company. When

an input event from stream StockQuotesStream comes to the join processor, all the
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events in HighFrequentTweetStream event window which having company attribute

value equal to symbol attribute value of this event are selected and written into

InterestingStockQuotesStream along with this event. In Siddhi, the output event from

join processor is called StateEvent and it wraps both input event and the matched

event from window. The selection from event attributes form both events in StateEvent

happens at the Selector processor.

1 from StockQuotesStream#window.length (100) as sqs

2 join HighFrequentTweetStream#window.length (1000) as hfts

3 on sqs.symbol == hfts.company

4 select sqs.symbol as company ,

5 sqs.price as lastTradedPrice ,

6 hfts.words as wordsTweeted

7 insert into InterestingStockQuotesStream;

Listing 4.4: SiddhiQL definition of a stream Join.

There are two scenarios that joining of the events happens in the join processor, (i)

when a new event comes to the join processor from either of input streams, (ii) when

an event in either of event windows leaving the join processor when it is expired. This

behavior can be controlled by the user at the definition of the join query. It is possible

to restrict from which events the join operation is triggered, either from input events or

from expired events and it is also possible to control events from which event stream can

trigger the joining process. Moreover, user can define a time restriction on the matched

events saying the two matched events should be with in a given time difference. Event

flow of stream join processor is shown in Figure 4.10 for (a) join with input events and

(b) join with expired events.

In single-threaded mode, Siddhi process events from both input streams sequentially

at the exact order that they are arrived to the system. In multi-threaded mode, two

input streams should be processed in parallel and the join stream should synchronize

the access to the join stream processor by two threads. Synchronization between

two threads when high frequent input stream processing is so expensive, hence multi-

threaded mode is currently not implemented in Siddhi for stream join processors.

Our approach of implementing parallel event processing GPU algorithm for stream

join is based on the same concept we followed in event window processor; output

event calculation and event window update. We process two event streams in parallel

in two separate GpuStreamRuntimes. These runtimes have two GpuStreamReceivers

both subscribed to their respective input stream’s StreamJunction. It is also possible

that these two GpuStreamReceivers subscribe to the same StreamJunction if they

are joining the events from the same event stream. As shown in Figure 4.11, both

GpuStreamReceivers wrapped in a new query runtime called GpuJoinStreamRuntime.
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Figure 4.10: Event stream join processor joins two event streams based on a join
condition.
Joining of events happens at two scenarios; (i) new event comes to the join processor,
(ii) an existing window event leaving the join processor when it is expired. At both
scenarios the particular event is joined with events in other stream’s event window.

Inside GpuStreamReceivers, using GPU event processing library individual GPU

event processing constructs are created and added to each runtimes. Both

GpuStreamReceivers using the same GPU stream join processor instance so they both

have access to other streams’ event window. Since timestamps of each input event

can get the same timestamp value if the input events arrive at high input rate, when

entering to GpuJoinStreamRuntime, each input event from both event streams get

a 64bit sequence number that is unique inside that GpuJoinStreamRuntime. This

sequence number is later used in CUDA kernels to identify causal ordering of events in

both input streams.

GPU join processor contains event windows for both input streams and a join condition

handler. There are several possible configurations in the GPU join processor by

changing join triggering parameter to any of:

• Trigger joining only from events coming from left event stream

• Trigger joining only from events coming from right event stream
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Figure 4.11: Siddhi GPU event processor model for stream join processor.
There are two separate GpuStreamRuntimes for each input streams and they are both
wrapped in a GpuJoinStreamRuntime. Both GpuStreamRuntimes configured to use
same join stream processor inside the GPU event processing library. There is a custom
selector processor inside each GpuStreamRuntimeto de-serialize and build output events
from output event memory buffer received from GPU event processing library.

• Trigger joining from events coming from both event streams

and by changing event source parameter to any of;

• Join only with input events

• Join only with expiring events

• Join with both input and expiring events

For each of these configurations, there is a separate CUDA function implemented

to generate output events using input events and event window. Depend on the

configuration used, total GPU memory allocation can be differ. GPU join processor

allocates GPU memory for both event windows and output event buffer. Each event

stream will output input event batch size into number of events in the other event

streams window number of events. This count is doubled if join is triggered for both

input events and output events. Since each event stream do the joining in parallel they

output their joined events into two separate output event buffers. These two event

buffers are then processed in parallel by two special event selector processors called

GpuJoinSelectorProcessor. GpuJoinSelectorProcessor de-serialize output event

buffer and construct Siddhi representation of output events. All the event aggregation

happens inside this selector processor. Finally, all output events are published to stream

junction of respective output stream.

As mentioned earlier, there are two phases of GPU stream join processor; output

event calculation and event window state update. In the first phase, each stream

will launch number of GPU threads matched to number of input event count and each

GPU thread is assigned an input event in input event buffer. In the earlier version
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of this algorithm each GPU thread joined its assigned input event with all the events

in other stream’s event window sequentially. If there are lot of events in the event

window, this sequential processing consumes lot of time. The algorithm is changed so

each thread will process part of the event window, called “work size”, by joining it with

assigned input event. With the latest version of the algorithm (input event count

* work size) number of GPU threads invoked and (other stream event window

size / work size) number of GPU threads, called “work group”, assigned one input

event form the input event batch (see Figure 4.12). Each GPU thread in work group

executes Algorithm 4.6.

Figure 4.12: GPU thread allocation for join output event calculation phase.
Number of input events into work size number of GPU threads created and work group
size GPU threads assigned one input event from input event batch. Each GPU thread
join its assigned input event with work size number of events in other stream’s event
window.

The second phase of join processor is same as the second phase of event window

processor. So they both uses the same algorithm to update post-process state of their

event window.

4.5.1 Concurrent Event Window Access

Concurrent access to event window buffer of other stream should be synchronized as

they are accessed by two threads. It was observed that, if we consider one event

window, even if both threads are reading event data from the event window, only

one thread is actually updating the event window at window state update phase. The

GpuStreamRuntime that handles particular stream is responsible for updating its event

window. It is possible to use a locking mechanism to access both event windows, but

that would yield significant performance overhead. So a lock-free algorithm was used

to access event windows.
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Algorithm 4.6 StreamJoinOutputEventsCalculation

Input: inputEventBuffer
Input: inputEventCount
Input: sizeOfInputEvent
Input: eventWindowBuffer
Input: windowLength
Input: windowRemainCount
Input: otherWindowBuffer
Input: otherWindowLength
Input: otherWindowRemainCount
Input: otherStreamSizeOfEvent
Input: joinCondition
Input: withInT ime
Input: outputEventBuffer
Input: sizeOfOutputEvent
Input: workSize
Input: workGroupSize

1: workerCount← otherWindowLength/workSize
2: windowStartEventIndex← (threadIdx%workerCount) ∗ workSize
3: inputEvent← inputEventBuffer[sizeOfEvent ∗ threadIdx/workerCount]
4: outputEventSegment ← outputEventBuffer[sizeOfOutputEvent ∗ threadIdx ∗
workSize]

5: otherWindowFillCount← otherWindowLength− otherWindowRemainCount
6: if windowStartEventIndex < otherWindowFillCount then
7: workStart← windowStartEventIndex+ workSize
8: minV alue← min(workStart, otherWindowFillCount)
9: windowEndEventIndex← minV alue

10: matchedEventCount← 0
11: index← windowStartEventIndex
12: for index < windowEndEventIndex do
13: windowOffset← otherStreamSizeOfEvent ∗ index
14: otherWindowEvent← otherWindowBuffer[windowOffset]
15: segmentOffset← sizeOfOutputEvent ∗matchedEventCount
16: outputEvent← outputEventSegment[segmentOffset]

17: timeDiff ← (inputEvent.timestamp− otherWindowEvent.timestamp)
18: if inputEvent.sequence > otherWindowEvent.sequence&timeDiff ≤

withInT ime then
19: isMatched← JoinConditionEvaluate(inputEvent, otherWindowEvent)
20: if isMatched == True then
21: Copy attributes of inputEvent and otherWindowEvent to outputEvent
22: matchedEventCount← matchedEventCount+ 1
23: end if
24: end if
25: end for
26: end if
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As shown in Figure 4.13, Double Buffering mechanism for event window is used to

provide concurrent access to event window data. For each event window, there are two

identical sized event buffers allocated in GPU memory. Pointers to these buffers are

stored in an array of size two and these buffers are accessed using two integer buffer

indexes which called read-only buffer index and read-write buffer index. When it needs

to access read-only buffer, the read-only buffer index is used as the offset of buffer

pointer array and get correct event buffer index. Same mechanism is used to access

read-write event buffer.

Figure 4.13: Event window double buffering.
To manage concurrent access to event window from both event streams of join processor,
Double Buffering is used. One event buffer is in read-only mode while other buffer in
read-write mode. Read-write buffer is updated and index to two buffers atomically
swapped to reflect changes to read-only buffer.

A CUDA kernel always use read-write event buffer when accessing its own event window

and use read-only event buffer when accessing other stream’s event window. At the

event window state updating CUDA function, the read-write buffer is updated to reflect

the latest changes and once update complete the two buffer indexes are atomically

swapped in host side. So now read-write buffer index will give previous version of the

event buffer while read-only buffer index will give latest version of event buffer. After

swapping indexes, the GpuStreamRuntime sync two buffers copying read-only buffer

to read-write buffer using CUDA device-to-device memory copy mechanism. This way

thread-safe concurrent access to two event windows are assured while avoiding any

performance overhead. The only concern about this mechanism is increased memory

requirement for event windows. Even with the twice memory requirement, performance

gain we achieved is significant.
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4.6 Improving Performance in Event Processing Library

Apart from the performance improvements done in the Siddhi side GpuStreamRuntime,

there are several other mechanisms we used to improve query processing throughput in

GPU event processing library.

• Use of pinned CPU memory

For all the memory allocations for event buffers in CPU memory, we have used

non-pageable (pinned) memory. So this avoids memory paging overhead for these

frequently accessed memory regions and also enable us to use overlapped GPU

operations.

• Overlap operations in CPU and GPU

CUDA runtime API provides both blocking and asynchronous methods for same

tasks like memory copying and kernel invocations. In the main control flow of the

GPU processors, asynchronous CUDA runtime functions were used to overlap

GPU operations with CPU. For example, there are scenarios which we need

to copy two event buffers into GPU and invoke two CUDA kernels. In such

situations, first memory copying to GPU device memory is done asynchronously

and then invoke the two CUDA kernels. So copying of one event buffer happens

while one CUDA kernel is running at GPU.

• Coalesces memory accesses

All the event buffers are aligned to 8 or 16 byte boundaries, so it coalesces the

memory accesses of the threads within the warp.

• Multiple GPU device utilization

If there are more than one GPU devices attached to the server, users are able

to utilize them just by specifying the suitable GPU device ID for each query. If

device id is not specified, best GPU device in terms of GFLOPS is used. For

example, if there are two GPU devices attached to the server and one of them

has more memory and higher compute capability than the other, users are able

to specify that GPU device for queries that need more memory or higher event

processing throughput, while other queries can use the other device.

• Reducing divergent execution

Divergent execution is when two GPU threads within the same thread block

need to fetch different instructions at a particular time. For example, if there is

an if statement in a CUDA kernel whose condition is dependent on the thread

index, one thread will execute the body of the if and another will execute the

else part. When this happens it is called the execution has diverged. GPU

executed diverged path sequentially, so if there is lot of work done in diverged

code block, the parallelism is reduced. Special care has taken in order to minimize
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diverging code blocks. But it is inevitable to remove some of the diverging paths.

For example, when filtering events based on their event attribute values, two

consecutive input events can have totally different set of attribute values. So it

is possible the two GPU threads that process these events with in a same warp

and become diverge.
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Chapter 5

Evaluation

To demonstrate the effectiveness of our work, we have performed an extensive

experimental evaluation of our implemented GPU event processors using wide verity

of event queries. Our main goal of this research is to find the possibility of using

GPU hardware devices provided computing power to increase the event processing

performance in Siddhi CEP engine. There are two measurements of event processing

performance; (i) the throughput of event processing and (ii) the latency of event

processing. In this research, we choose to increase the event processing performance of

Siddhi by increasing the throughput of event processing.

Our evaluation had several goals. First, we wanted to compare our work with the

existing sequential and parallel event processing algorithms implemented in Siddhi.

Second, we wanted to understand and analyze our design and implementation choices

that has impact on the performance. Finally, since the event processing performance

is largely influenced by the number and the complexity of deployed queries and the

type and load of the workload, we wanted to explore the parameter space to identify in

which cases it is more profitable to use particular algorithm or hardware architecture.

This chapter presents the approach we took to evaluate our proposed solution for GPU

event processing. Evaluating query processing performance of a CEP engine is strongly

influenced by the input workload. A publicly available data set has been used as the

workload of the experiments. Section 5.1 describes this workload. In Section 5.2, we

explain how we carried out the experiment and the configurations of out experiment

setup. Section 5.3 presents the evaluation results for the Event Filter Operator and

analysis of the results while Section 5.4 presents the evaluation results and analysis

for Stream Join Operator. We have also carried out an experiment to evaluate query

processing performance when there are mix of event queries in the system, which we

present the analysis in Section 5.5.
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5.1 Analysis of the Workload

With the increased usage of event-based systems in many application domains ranging

from real time monitoring systems in production, logistics and networking to complex

event processing in finance and security, there is a appealing requirement for a standard

benchmarking platform for event-based systems. In complex event processing domain

alone, there are more than twenty CEP products, developed by both industry and the

academic community, currently available in the market and there are no any standards

and widely accepted way to compare these CEP engines. Usually vendors use their

own benchmarking to demonstrate capabilities of their products. This problem is

well recognized within the event processing community and there is on going process

within “Event Processing Technical Society (EPTS)” to standards for Event Processing

Systems [74].

ACM International Conference on Distributed Event-Based Systems (DEBS)∗ is a

well-recognized conference and workshop on event-based computing which inaugurated

on 2007. The conference provides forum for academia and industry to exchange

and publish ideas. Starting on 2011 DEBS conference host an event called “Grand

Challenge” in order to provide a common ground and evaluation criteria for a

competition aimed at both research and industrial event-based systems. In Grand

Challenge, they provide a real-world problem to be solved using event-based systems.

A real-world dataset is also provided as the workload to evaluate solutions from

participants. Since participants from both industry and academia submit their solutions

and evaluate using a same data set, DEBS Grand Challenge competition data set can

be used as a standard data set for evaluating and comparing event-based systems.

Our evaluation is based on the data set provided for 2013 Grand Challenge

competition†. The challenge for 2013 was to demonstrate the applicability of event-

based systems to provide real-time complex analytics over high velocity sensor data

along the example of analyzing a soccer game. The provided real-world data set was

recorded from a number of wireless sensors embedded in the shoes and a ball used

during a soccer match. These sensor data spans the whole duration of the game and

the maximum data rate reaches roughly 15000 sensor events per second.

Event schema of each sensor data is as follows;

sid, ts, x, y, z, |v|, |a|, vx, vy, vz, ax, ay, az

• sid - sensor id which produced the position event

• ts - timestamp in picoseconds

∗http://debs.org/
†http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
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• x, y, z - position of the sensor in mm (the origin is the middle of a full size

football field)

• |v| - velocity in µm/s

• vx, vy, vz - direction by a vector with size of 10,000

• ax, ay, az - absolute acceleration and its constituents in three dimensions in

m/s2

There are 49,576,080 events in the data set that range 71 minutes and 4 seconds.

So in average there are 11,626 events per second. If an event processing system

needs to provide real-time analytics processing these data set, it has to have event

processing throughput of at least 11,626 events per second. In our evaluation we used

this calculations as the baseline for deciding the event processing performance of our

proposed solution.

Similar to the lack of standard workload for event processing systems, there is lack

of standard measurement for the complexity of the event processing rules/queries.

Having a standard measurement for the complexity for event processing queries helps

to compare event processing performance of two queries. For evaluating this work, we

have developed SiddhiQL queries for some of the event queries defined in DEBS 2013

challenge. Since our work does not implement all the event processing operators to run

on GPUs, we are unable to get the performance measurements for complete individual

queries which completely running on GPUs. Instead we have developed partial event

queries to evaluate individual event processors and compared their performance by

running them in GPUs and CPUs.

5.2 Experiment Setup and Methodology

Usually in Siddhi deployments, each use case is wrapped in their own execution plan.

For an example, in DEBS 2013 challenge, there are several queries like running analysis

of players, ball possession, shots on goal, etc., on which participants have to provide

data as an output streams. If used Siddhi CEP as the event processing system, each of

these queries may need several SiddhiQL queries to process input events and produce

output events. So all the SiddhiQL queries that work on same higher-level query is

wrapped in a execution plan. Depend on the resource usage, there can be several

execution plans in one Siddhi instance.

Siddhi allocates resources per execution plan. Each execution plan has its own thread

pools, executor service pools, input stream queues and output stream queues. Except

for heap memory allocated for the JVM instance that Siddhi is running, execution plans

do not share anything among them.
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Figure 5.1: Architecture of the experiment setup.
In the experiment, each use case is configured in their own execution plan and there
are multiple instance of same execution plan running in same Siddhi instance.

In our experiments, we configured each use case in one execution plan and there are

multiple instance of same execution plan running in same Siddhi instance as shown in

the Figure 5.1. Intension of running multiple parallel use cases was to measure how

our algorithms scale with multiple high complex queries.

To simulate a real-world scenario, in this experiment setup, we have fed the workload

into a queue where the application reads and put into Siddhi’s stream junction. Then

we measured time it takes to process all the input events put into this queue. Using

this time measurement we can calculate event consume rate of the each configuration.

Using the single-threaded mode as the base, we calculated how much speedup we gain

for CPU multi-threaded mode, GPU single device mode and GPU multi device mode.

The main event queue is a Java ConcurrentBlockingList. So if the event processing

cannot keep up with event produce rate, there will be queue build up. If there is a

queue build up, there will be increased latency when enqueue an event into the queue.

We have measured and plotted the average event enqueue latency for each configuration.

We have also measured average time it takes to process an event batch which received

to StreamReceiver. Batch size divided by this measurement gives the actual event

processing throughput of Siddhi. In GPU event processors, time it takes to process an

event batch includes individual time measurements of;

• time to serialize events in the batch,

• time to transfer serialized events to GPU memory,
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• actual event processing time in GPU,

• time to copy result events back into CPU memory,

• and time to de-serialize and create event objects and send to output stream

junction.

We have individually measured average time of each of these phases to identify what

phase contribute lot to total processing time and identified possible places to improve.

Individual time measurements are plotted against each configurations.

To avoid any bias in server load, we have repeated all the tests presented in this chapter

five times and used the average of the measured values and the 95% confidence interval

was always below 1% of the averages of measured values. There was no any other extra

services running on the test server other than default OS services.

All the tests we explain in this section were executed on a 64bit Intel Core i7 950

CPU, with 8 cores running at 3.07GHz base frequency, and 7GB of DDR3 memory.

To compile and run Siddhi, we used 64-Bit Oracle Java compiler and runtime version

1.6.0 26. CUDA SDK Version 5.5.0 for 64-Bit Linux was used to compile and run CUDA

kernels and GPU event processing library and internally it uses gcc version 4.6.3. GPU

device attached to the testing server was Nvidia GeForce GTX 480 with 480 CUDA

cores and 1.5GB DDR3/GDDR5 RAM. Two GPU devices of Nvidia GeForce GTX 480

were used to do multi-device performance testing. To avoid the impact of Java garbage

collection as much as possible we have allocate 6GB of heap memory in each of these

tests and almost all the tests have uses less than the allocated amount of memory.

5.3 Filter Query Performance

1 define stream sensorStream ( sid string , ts long ,

2 x int , y int , z int ,

3 v double , a double , vx int , vy int , vz int ,

4 ax int , ay int , az int , tsr long , tsms long );

Listing 5.1: Sensor stream definition.

For all the perfromance tests presented in this chapter, we have used Siddhi stream

definition for sensor data stream as defined in Listing 5.1. This is the only input event

stream for our test setup. When serialized using our event serialization technique,

described in Section 3.3.1, each input event takes 104 bytes. So each memory allocation

for event buffers are multiple of 104 bytes.
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Table 5.1: Filter query test setup parameters.

Number of input events 49,576,080

Input event time span 71 minutes and 4 seconds

Average input event rate 11,626 events per second

Disruptor buffer size 8192

GPU thread block size 128 threads

GPU process event batch sizes 2048 events

Concurrent query count 2 to 50

All the test setup parameters for filter query evaluation are summarized in Table 5.1.

In the early stage of the research we have evaluated the effect of GPU thread block size

by running the same experiment with different GPU thread block sizes. It was found

that thread block size 128 to 256 gives the best event processing throughput for most

of the cases (see Figure 5.2). We have used thread block size of 128 for all of the tests

we have presented here. Using the 128 threads per block than using 256, gives better

chance of running multiple parallel queries in same GPU device.

Figure 5.2: Filter query event consume rate speedup for different GPU thread block
sizes.
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1 from sensorStream[sid == ’4’ or sid == ’8’

2 or sid == ’10’ or sid == ’12’]

3 select sid , ts , x, y

4 insert into ballStream;

5

6 from sensorStream[sid != ’4’ and sid != ’8’

7 and sid != ’10’ and sid != ’12’

8 and sid != ’105’ and sid != ’106’]

9 select sid , ts , x, y

10 insert into playersStream;

Listing 5.2: SiddhiQL event filter queries used for evaluation.

For evaluating GPU filter processor, SiddhiQL filter query defined in Listing 5.2 is used.

In practical usages filter queries are rarely used individually, but used in conjunction

with other event processor operators. But intention of evaluating GPU filter processor

is to compare performance gain or loss which can achieve by using GPU hardware.

So evaluating individual filter query make sense in this scenario. Moreover, some of

the GPU parallel algorithms developed for filter processor are used in other event

processors like event stream join processor. So by individually evaluating filter query,

we can isolate these algorithms’ effect on the performance of event processing.

5.3.1 Event Consume Speedup Analysis

The Figure 5.3 analyzes the speedup of input event consume rate of event filter processor

relative to single-threaded mode for different concurrent query counts. As stated in the

previous sections, input events are queued to a common queue by the workload sender,

where these events are then de-queued and fed into different parallel execution plans.

If events are de-queued from the common queue as soon as they are enqueued means,

system can process events in a higher rate than the event produce rate. If this scenario

happens, it is called a “Speedup” of event processing. Event consume rate is measured

at the workload sender by measuring size or emptiness of the common event queue.

Total time it takes to process all enqueued input events, which also means time it takes

to empty the common input event queue, is measured and along with the number of

total input events the input event consuming throughput is calculated. If this value is

greater than average event input rate, then there is a speedup of event consuming. We

can also safely say there is a speedup of event processing if there is a speedup of event

consuming.

Note that the concurrent query count is not incrementing uniformly. In order to do

more test iterations we have skipped some of the configurations in between.

Siddhi event filter processor in single-threaded mode outperform both multi-threaded

and GPU event processing throughput when there are a few filter queries. This is
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Figure 5.3: Filter query event consume rate speedup against concurrent query count
(event batch size 2048 events).

because there are no any internal event queuing overhead in single-threaded mode as

there is for multi-threaded mode. But once the number of concurrent queries increases,

the effect of queuing overhead is overcome by the effect of parallel processing.

GPU filter processing is always has higher speedup than the multi-threaded mode.

When the number of concurrent queries increases, CPU multi-threaded mode does not

significantly increase its event processing speedup. But our GPU based filter processing

continues to increase its event processing speedup with the increase of number of

concurrent queries. So, in order to gain increased event processing performance for

filter processor, the CEP engine should be loaded with lot of concurrent queries.

We have done performance test to evaluate the effect of event batch size by running

the filter query in GPU with varying batch sizes. The results are shown in Figure 5.4.

As per the performance results, there is no significant improvement in event consume

speedup if we increase the size of event batch. So event batch size of 2048 is used for

all the tests for filter processor.

5.3.2 GPU Processing Time Analysis

The lower event consume speedup and event consuming throughput of GPU filter

processor is due to several reasons. First, the event serialization and de-serialization

times consume more time from total GPU event processing time. This is clearly visible

in Figure 5.5. And with the increase of number of parallel event queries, the average
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Figure 5.4: Filter query event consume rate speedup for different event batch sizes.

serialization and deserialization time increases. This behavior is due to the fact that

event serialization and de-serialization happens in CPU and when number of queries

increase, the GPU runtime has to compete with other parallel threads to do its tasks.

For serialization and deserialization, we have used dynamically generated Java bytecode

to optimize serialization and de-serialization logic. This Java bytecode was generated

at runtime using the event schema details for the particular event stream. So we have

hard-coded like serialization logic in our application, that is optimized for the particular

schema of the event stream. Even with this optimizations, these two phases consume

more percentage of total GPU processing time. Figure 5.6 shows the percentage time

spent in serialization, actual GPU event processing and de-serialization phases. The

actual GPU processing time consumes about 10% of total processing time irrespective

of number of queries. This is because, in GPU, even if there are more queries to process

the task is done in parallel and GPU can accommodate more parallel tasks than CPU

does.

Inside the actual GPU processing time, most of the time consumed by event data

transfer from CPU memory to GPU memory. About two third for the total actual GPU

processing time was taken by event data transfer to CPU memory to GPU memory.

This is shown in Table 5.2. Actual Filter kernel time accounts for only about 30% of

whole time and it is 32.542 microseconds on average. GPU device to CPU memory

copy time is reduced because of the optimization we have done for filter result events.

In individual filter queries we are not copying the actual output events from GPU to

CPU, instead we copy only an array of integers representing the matched event index
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Figure 5.5: GPU Filter processor: GPU processing time breakdown (event batch size
2048 events).

in the input event buffer. Using this array of indexes we can create actual Siddhi events

at the de-serialization phase.

Table 5.2: Filter query GPU processing time breakdown.

GPU Kernel Time(%) Average Time

[CUDA memcpy HtoD] 66.73 72.938us

ProcessEventsFilterKernel(KernelParameters*, int) 29.75 32.542us

[CUDA memcpy DtoH] 3.52 3.8490us

The final reason for low event processing performance in GPU filter processor is due

to CUDA kernel path divergence. CUDA profiler shows that there is 10% branch

divergence in CUDA filter kernel. Filter kernel has control flow branches that depend

on attributes of individual input events and in the real-world workload consecutive

events with same event attributes are rare. We have re-factored the kernel code to

avoid and resolve diverging paths up in the CPU side, but it is hard to eliminate all

the path divergence.

While there is no performance gain by using GPU processing, this results show us where

not to use GPU processing and when should we start using GPU processing.
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Figure 5.6: GPU Filter processor: GPU processing time as a percentage of total
processing time (event batch size 2048 events).

5.4 Join Query Performance

Stream Join operator is inherently a complex operator than the previous event operator

that we have evaluated. This is because stream join operator involves more than

one event streams and should process events from both these input event streams

simultaneously. Unlike the previous event operator, stream join operator has obvious

data parallel use case where each input event needs to be process against all of the

events in a event window. If event window size is larger, this cross joining process

takes higher processing time when processed sequentially. Our implementation tries to

improve the performance of processing join queries by utilizing parallel hardware and

parallel algorithms.

Table 5.3: Join query test setup parameters.

Number of input events 49,576,080

Input event time span 71 minutes and 4 seconds

Average input event rate 11626 events per second

Disruptor buffer size 8192

GPU thread block size 128 threads

GPU process event batch sizes 2048 events

GPU Selector work size 100 events

GPU Selector worker count 8

Concurrent query count 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
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The performance test carried out to evaluate the GPU stream join processor has

the same test setup as the previous tests and uses the stream join query defined in

Listing 5.3. All the test setup parameters are summarized in Table 5.3. GPU thread

block size was fixed at 128 thread and the event batch size was 2048 events for all the

test iterations.

As stated in earlier test analysis, varying batch sizes do not have much effect on the

event processing throughput once they exceed 2048 events. So we are not presenting

the measurements of each batch size, instead performance measurements are plotted

only for batch sizes of 2048 events. Increasing the input event batch size also means

higher memory allocation in GPU for input event buffers. Because there should be

memory buffers pre-allocated for each input event batch. Having larger input event

batch size means, there is less room for more parallel queries in GPU device.

For stream join operator, current Siddhi implementation dose not provide a parallel

algorithm. Hence, we are comparing event processing performance only for single-

threaded mode and GPU processing modes.

GPU algorithms developed for event window operator are not evaluated individually

since event window operator is not used in event queries individually. Instead, they

are used conjunction with other event operators like stream join operator. So in this

experiment the GPU algorithms for event window operator are also evaluated along

with the GPU stream join operator.

Parallel processing event stream join operator in multi-threaded mode does not produce

the same joined output events as the sequential event processing. This is because of

the random nature of event batching in multi-threaded mode. But the output events

does not violate the causal ordering of their input events. This nature is inherent in

multi-threaded processing in both the CPUs and GPUs.

1 from sensorStream[sid == ’4’ or sid == ’8’

2 or sid == ’10’ or sid == ’12’]# window.length (200) as a

3 join sensorStream[sid != ’4’ and sid != ’8’

4 and sid != ’10’ and sid != ’12’

5 and sid != ’105’ and sid != ’106’]# window.length (200)

as b

6 on a.x == b.x and a.y == b.y

7 and a.ts > b.ts

8 and (a.ts - b.ts < 1000000000)

9 select b.sid as psid , a.sid as bsid , b.ts as pts ,

10 a.ts as bts , b.x as px , b.y as py , a.x as bx , a.y as by

11 insert into nearBallStream;

Listing 5.3: SiddhiQL Join query used for evaluation.
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5.4.1 Event Consume Speedup Analysis

Figure 5.7: Join Query: Average event consume rate speedup against concurrent query
count (event batch size 2048 events).

The Figure 5.7 analyzes the speedup of input event consume rate of join processor

for different concurrent query counts. Input event consume rate denotes how quickly

input events are consumed form the input event queue. As per the performance

measurements, for a single join query, GPU join processor has achieved almost

twice speedup than single-threaded mode processing when there are lower number

of concurrent queries. With the increase of concurrent queries the speedup is also

increasing.

In practical usage, once the input event consume rate speedup is at or below one, that

means there should be queue build-up as the event processors cannot keep up with

the event produce rate. Single thread CPU processing mode is not usable after four

concurrent filter queries in this performance test. But the GPU join processor can

maintain positive event consuming speedup until eight concurrent join queries.

To analyze how our algorithm scale with multiple GPU devices, we have done the same

test using two identical GPU devices which we have used in earlier tests. The Figure 5.8

shows the average event consume rate speedup for CPUs, single GPU and two GPU

devices. We have executed join queries in multiple of two and each GPU is assigned

identical queries and there can be multiple queries assigned to a single GPU depend on

number of concurrent queries. Almost all the time our algorithm has scaled twice with

two GPU devices.
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Figure 5.8: Join Query: Average event consume rate speedup for multiple GPU devices
(event batch size 2048 events).

Once the input event consume rate is decreasing below 1, the input event queue is filled

and the event producer has to wait until the event processors process some events and

make space for new input events. This wait time for input event queue is measured

and plotted against the number of concurrent query count in Figure 5.9. The queue

publish latency graph is exactly matching with the event consuming speedup graph. In

CPU single threaded processing mode, after query count four, the queue wait time is

drastically increased because of input event consume rate is below one. For GPU event

processors, the queue build-up is much less compared to CPU event processors. And

the increase of queue build-up is also not rapidly increasing. This shows that GPU

processors can maintain high input processing throughput even with multiple complex

queries. The queue publish latency for two GPU deives scenario is always about half

the latency of single device scenario.

Less queue build-up means less overhead on event producers. In a real-time high

frequent event stream, if the input event queue is filled, either input events needs to

be stored temporary until the event queue is get released or the input events should be

discarded. Both options are not ideal when input events needs to be processed in-real-

time and should not be discarded. GPU processing of events can cater for these kind

of scenarios even with increased event processing latency.
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Figure 5.9: Join Query: Input event queue publish latency against concurrent query
count (event batch size 2048 events).

5.4.2 GPU Processing Time Analysis

The rapid decrease of event consume speedup in GPU join processor is due to the

effect of increase in GPU processing time for an individual join query. As shown in

Figure 5.10, GPU processing time increases as the number of parallel query count

increases. Profiling of CUDA kernels shows that most of the GPU processing time was

consumed by the data transfer form GPU memory to CPU memory (Device-to-Host).

Detailed breakdown of GPU processing time in GPU Join kernel is shown in Table 5.4.

The table shows only percentage of time each kernel consume and the average time

per kernel. The number of call to each kernel can be differ and usually the “CUDA

memcpy DtoH” kernel has more calls than the others.

Almost 85% of the total GPU processing time of GPU Join kernel is consumed by

Device-to-Host memory copy. Join kernel has a larger output event buffer than its

input event buffer. This is because if all the input events matched with all the events

in the event window, then there should be input event count times event window size

output buffer. This is only for one stream of the join processor, for other stream also

there is similar number of output events.

For example, for the join query defined for this test, if the input batch size is 4096

events, then there can be 1,638,400 total output events for this query. With the output

event size of 44 bytes, the output event buffer should be 72,089,600 bytes (or 68.75

MBytes). CUDA profiler shows, to transfer this much of data from device to host at
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Figure 5.10: GPU Join processor: Processing time breakdown (event batch size 2048
events).

about 3GB/s, it can take maximum of 22 milliseconds. The effect of CUDA memory

copy is more visible in this test because of the lack of multiple copy engines in the

GPU device we used for this testing. There is only one copy engine in Nvidia GeForce

GTX 480 GPU. So all the memory transfers from CPU to GPU and from GPU to CPU

happens sequentially.

Table 5.4: Join query GPU processing time breakdown.

GPU Kernel Time(%) Average Time

[CUDA memcpy DtoH] 84.87 8.5689ms

ProcessEventsJoinRightTriggerCurrentOn 6.97 2.8136ms

ProcessEventsJoinLeftTriggerCurrentOn 5.89 2.3815ms

[CUDA memcpy HtoD] 0.70 139.26us

JoinSetWindowState 0.67 135.86us

FilterKernel 0.89 179.513us

[CUDA memcpy DtoD] 0.01 2.2150us

The Figure 5.10 shows the individual time components of GPU processing. This

includes;

• time to serialize events in a event batch,

• time to transfer serialized events to GPU memory, time to invoke GPU kernels

and processing and time to copy result events back into CPU memory,

• time to de-serialize, create event objects and send to output stream junction
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As can be seen in the Figure 5.10, the event serialization and de-serialization takes

negligible amount of time when compared to event transfer and actual GPU processing

time. The less serialization and de-serialization time is due to the optimizations we

have done for these two phases. The event serialization code is dynamically generated

at runtime using a Java assembly code generation tool (Javassist) so that it has hard-

coded like logic specific for the input events it is serializing. The same optimization is

also applied to de-serialization phase. Moreover, the deserialization is done in parallel

threads. The number of serialization threads can be configured per-query using query

annotations.

5.4.3 Input Event Processing Throughput Analysis

Event processing throughput of GPU Join processor is shown in Figure 5.11. The

throughput of processing each event batch is measured atGpuStreamReceiver for GPU

event processors and at StreamReceiver for other event processors, and the average

value is presented in the graph. The average input event rate of this workload is 11626

events per second. So if any configuration cannot achieve event processing throughput

higher than this value, that configuration is not usable in real-world. In this test, the

single threaded mode processing cannot achieve event processing throughput than the

input event rate after four concurrent join queries. But the GPU join processor can

maintain higher event processing rate than the input event rate for eight concurrent

join queries.

The number of concurrent GPU event processors were limited due to memory resource

limitation in GPU device. We could only run ten concurrent queries of the Join query

defined for this test setup with 2048 input event batch size. Increasing the batch size

to 4096, this count further reduced to five concurrent queries.

5.5 Query Mix Analysis

Previous two experiments evaluated the query processing performance of individual

event operators. But in real-world use cases event queries in a single execution plan

contains mix of different event operators. To evaluate this use case, an experiment

was done using several event queries which uses different event operators. There are

three event queries consist of different CEP operators we have implemented for GPU

processing. These event queries are shown in Listing 5.4.
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Figure 5.11: Join Query: Input event processing throughput against concurrent query
count (event batch size 2048 events).

1 from sensorStream [(sid == ’4’ or sid == ’8’

2 or sid == ’10’ or sid == ’12’)

3 and ((ts >= 10753295594424116l and ts <= 12557295594424116l)

4 or (ts >= 13086639146403495l and ts <= 14879639146403495l))]

5 select sid , ts , x, y

6 insert into ballStream;

7

8 from sensorStream[sid == ’4’ or sid == ’8’

9 or sid == ’10’ or sid == ’12’]# window.length (200) as a

10 join sensorStream[sid != ’4’ and sid != ’8’

11 and sid != ’10’ and sid != ’12’ and sid != ’105’

12 and sid != ’106’]# window.length (200) as b

13 on a.x == b.x and a.y == b.y and a.ts > b.ts

14 and (a.ts - b.ts < 1000000000)

15 select b.sid as psid , a.sid as bsid ,

16 b.ts as pts , a.ts as bts , b.x as px ,

17 b.y as py , a.x as bx , a.y as by

18 insert into nearBallStream;

19

20 from sensorStream [(sid == ’4’ or sid == ’8’

21 or sid == ’10’ or sid == ’12’)

22 and ((ts >= 10753295594424116l

23 and ts <= 12557295594424116l)

24 or (ts >= 13086639146403495l

25 and ts <= 14879639146403495l))]# window.length (10000)

26 select sid , ts , x, y, avg(v) as avgV

27 insert into ballStreamAvgs;

Listing 5.4: Mix of SiddhiQL queries in a single use case.

107



The goal of this experiment was to evaluate the performance improvements gained by

executing mix of the event queries in an execution plan on GPU environment. From

the set of event queries listed in Listing 5.4, the second event query (stream join query)

is configured to run on GPU environment. Other two event queries run on CPUs. From

previous two experiments, it is observed that event query with stream join operator

can be efficiently processed in GPUs. So we have configured only the event query with

stream join operator to run on GPU. All the test setup parameters are summarized in

Table 5.5. For this experiment, the batch size has to be reduced to 2048 events in order

to accommodate maximum number or concurrent queries in our GPU device memory.

Table 5.5: Query mix test setup parameters.

Number of input events 49,576,080

Input event time span 71 minutes and 4 seconds

Average input event rate 11626 events per second

Disruptor buffer size 8192

GPU thread block size 128 threads

GPU process event batch size 2048

GPU Selector work size 50 events

GPU Selector worker count 3

Concurrent use case count 1 to 5

5.5.1 Event Consume Speedup Analysis

Figure 5.12: Query Mix: Average event consume rate speedup against concurrent use
case count (batch size 2048 events).
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The Figure 5.12 analyzes the speedup of input event consume rate of set of event

queries we have configured. The event consume speedup is plotted against the number

of concurrent use case count. We consider a set of event queries defined in a execution

plan as a use case.

Single-threaded mode has constantly increasing event queue buildup in the main

input event queue so the event publish latency was constantly increasing as shown

in Figure 5.13. This is because of the sequential processing of lot of event queries in a

single CPU core.

Multi-threaded mode event processing in general has more than two times higher event

consume rate than the single-threaded processing. When the number of event queries

running in CPU cores increasing gradually, the CPU resources are exhausted and

each processing thread has to contest with a lot of other processing threads to get

CPU time. With one execution plan running, single-threaded mode has higher event

consume rate than multi-threaded mode processing. This was because of the additional

queuing overhead incurred by the parallel processing in multi-threaded mode. Once

there are enough parallel work, queuing overhead has overcame by the event processing

improvements in parallel processing.

Figure 5.13: Query Mix: Input event queue publish latency against concurrent use case
count (batch size 2048 events).

With GPU processing, the same use cases has achieved at least ten times event consume

speedup for all the parallel use cases compared to the single-threaded mode. And

this is observed for both the GPU single device processing and GPU multiple device

processing. As shown by the previous two experiments, stream join operator takes the
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most processing time form all the implemented event processing operators and it is

the most complex and inherently parallel event processing operator. In average, event

query with stream join operator (second event query) has taken about 80% of the total

processing time for all the event queries in single-threaded mode. So by running event

queries with stream join operator in GPU devices, the other event queries get more CPU

time to do their processing. Moreover, our parallel GPU event processing algorithms

drastically reduces the event processing time which ultimately helps to achieve higher

event processing throughput (see Figure 5.14).

As shown in the Figure 5.13, same as the previous two experiments, input event

queue size is drastically increasing in single-threaded mode which significantly increases

the pressure on event producers and reduces the event processing throughput. GPU

processing has significantly low queue event publish latency because of higher input

event processing throughput. Moreover, the input event queue build up is almost

constant with the increase of parallel use case count (number of event queries).

Figure 5.14: Query Mix: Input event processing throughput against concurrent use
case count (batch size 2048 events).

This research try to improve performance of event processing CEP queries as general,

without targeting any specific use case of complex event processing. Usually when using

complex event processing for any specific use case, the queries are specially optimized

for that particular use case. Sometimes custom functions or processor extensions are

developed to improve performance. In these tests we were not using any optimization

on the queries. Instead we were trying to analyze how query processing performance

of standard query can be improved just by running it on GPU devices. It is possible
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to develop custom CUDA kernels targeting particular event processing use case. For

example, it is possible to develop custom CUDA kernels for each event processing use

case in 2013 DEBS challenge, where each CUDA kernel is optimized for that particular

scenario and data load. This way it is possible to achieve much higher event processing

throughput than our approach.
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Chapter 6

Conclusions

6.1 Conclusion

First, this thesis has reviewed overall architecture of the Siddhi CEP engine, along

with some of the specific features and design characteristics which allow delivering high

performance in event processing applications on CPU hardware technologies. Then, it

presents our approach on improving Siddhi event processing throughput using GPGPU

hardware technologies. We have presented the design and implementation of parallel

event processing algorithms for highly used CEP event processors; filter event processor,

window event processor and event stream join processor.

In designing GPGPU-based event processing mechanism, we identified the requirement

of having a general purpose event processing framework for parallel hardware

technologies. Separation of low-level GPU communication and changes to Siddhi

CEP into two entities helped us to debug and test functionality separately. Hence,

this work has two main contributions; a general purpose event processing framework

implementation and new event processing runtime implementation for Siddhi CEP.

The general purpose event processing framework is implemented as a C++ library

which encapsulate all the low-level implementation of GPU event processing and

provides a well-defined API for use it in Siddhi CEP. Although our main concern

was to use this library within Siddhi CEP, this library can be used by the other CEP

engines as well. Within the scope of this research we have implemented only three event

processing constructs in the library; event filter processor, event window processor and

stream join processor. Other event processing constructs can be implemented in the

same way extending the library.

In order to utilize GPU for event processing, we have implemented a new Query

Runtime, which follows the same interface as standard Siddhi query runtimes but
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process all the events for a particular query using GPU hardware. The new query

runtime internally uses the event processing library we have developed. A user can

decide to run a particular query using GPU at the query define time. It is possible to

configure queries which run on CPUs to consume events generated by queries which

run on GPU and vice versa.

Designing an event data transfer mechanism between Java and C++/CUDA-C was the

main challenge we faced when implementing the event processing library. Performance

study on our initial implementations showed a significant overhead in data transfer

between Siddhi and GPU event processing library. So the data transfer overhead was

negatively affecting the performance gain achieved by the GPU parallel processing.

Our early approaches did not achieve any performance speedup due to this overhead.

However, through use of direct memory buffer sharing between Java and C++, we

eliminated significant fraction of data transfer overhead. Java NIO buffers were used

for this purpose which enable us to access low-level memory buffers within Java in

the same way it is done in C++. However, there is still a considerable performance

overhead associated with the event data serialization and de-serialization.

Since this research is one of the leading edge research in this area, there is no other

related research that we can compare our performance results. Moreover, as stated

in the Chapter 5, there is no any standard benchmarking platform for event-based

systems which is widely accepted by the research community and the industry. DEBS

grand challenge workload for 2013 ACM International Conference on Distributed Event-

Based Systems was chosen as the evaluation workload since it is publicly available and

it represents event stream of a real-world use case. Performance results were measured

with this workload for Siddhi single-threaded mode, multi-threaded mode and the

proposed approach for GPU event processing. Measured results were compared against

the single-thread mode to determine the speedup of event processing throughput.

Use of GPU event processing for simple queries did not achieve significant performance

speedup. In fact, Siddhi single-threaded mode can outperform both Siddhi multi-

threaded mode and GPU processing in simple queries. As suggested by the performance

analysis, to gain a considerable event processing speedup with GPUs, there should

be a significant number of concurrent complex event queries. Current Siddhi

implementation, even with the multi-threaded mode, could not achieve event processing

speedup when there are a lot of concurrent complex event queries. Whereas the event

processing in GPUs has achieved significant performance gain with the same workload.

This behavior was observed in the experiment with mix of different complex event

queries where we could achieve more than ten times event processing speedup with

GPU processing compared to single-threaded mode.

For complex event queries which involve many event processors, Siddhi single-threaded
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mode cannot deliver significant event processing performance speedup. This behavior

was observed in stream join operator test, where with Siddhi single-threaded mode,

input event consume and process rate is significantly lower than the input event rate.

So there was, on average, more than two times slowdown of event processing and

significant event queue was built up in the input event queue.

Moreover, delegating the event processing task to GPUs brings additional advantages

when considering the whole system. For example, reducing the CPU load so it can

perform other necessary tasks. Since GPU devices are constrained by its memory

capacity, configuring all the event queries in a Siddhi instance to run on GPUs is not

a viable option. The better strategy should be to delegate event processing of most

complex queries to GPUs and run other non complex queries in CPU cores. As of the

current state of our research, determining the performance gain achieved by running a

particular complex event query in GPUs is not possible. A pre-run with same workload

should be done in order to properly identify if running a particular query in GPU can

improve its event processing performance.

Performance gain of GPU event processing can vary significantly with different GPU

devices. Capabilities and resources available in GPU devices can affect the performance.

As we have discussed in Evaluation Chapter, some of the limitations we had in our GPU

processing algorithms were due to lack of capabilities in the GPU device we have used

for testing. But this should be further verified by proper testing in GPU devices with

different capabilities.

The performance improvements of using GPU devices for event processing should

be considered with the cost of acquiring and running GPU devices. Today, GPU

devices are becoming common in even entry-level PCs which are capable of hundreds

of GFLOPS performance. A mid-level GPU device like Nvidia GeForce GTX 970 can

be purchased at about $300 and provides 3,494 GFLOPS. The return of investment of

GPUs should be calculated for performance speedup gained for each extra dollar spend

on GPU devices. Pay per usage services and GPU as a service on cloud servers∗ can

also increase return of investment for GPUs.

In conclusion this work improves Siddhi event processing throughput when there are

several complex event queries to be evaluated on high frequent incoming input event

stream using a single Siddhi runtime. This work enables Siddhi users to utilize GPU

devices attached to their server for event processing without doing major changes

to their application. Users are able to gain parallel event processing performance

advantages offered by GPGPUs just by configuring event queries to use GPU event

processing at the query definition time.

∗http://www.nvidia.com/object/gpu-cloud-computing-services.html
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6.2 Future Work

We plan to extend our study on following directions.

6.2.1 Implementing GPU Algorithms for Other CEP Operators

This work has proposed several GPU parallel event processing algorithms for event filter

operator, event window operator and stream join operator. Apart from these event

operators, there are other event operators such as event sequence and pattern operator

which can benefit from GPU parallel algorithms. Implementing GPU algorithms for

those event operators will enable Siddhi to fully utilize GPU hardware and improve

query processing performance in production systems.

6.2.2 GPU Aware CEP Architecture

The performance evaluation results of our work suggest that using GPUs for improving

event processing throughput is not usable and profitable in all scenarios. It is only

profitable when there is high frequent input stream which need to be processed with

very complex event query. As described in Section 6.1, event serialization cost and de-

serialization cost governs the profitability of our approach. This can be eliminated, if

the CEP architecture is designed with utilizing parallel hardware in-mind. Particularly

if event schema is represented in event representation, it is easy to serialize and de-

serialize events for transfer them to GPU memory. For example, if attributes of an

event is represented in separate variables of a data structure, it is easy to serialize this

data structure into a memory buffer. Currently Siddhi uses array of Java Objects to

represent event attributes, where serialization algorithm has to determine data type of

each element at runtime in order to serialize them correctly. Having a data structure

that represent an event schema helps to speedup event serialization and de-serialization,

which in return increase event processing throughput in GPU environments.

6.2.3 Distributed GPU Servers

Having a GPU aware CEP architecture can be more beneficial in distributed CEP

deployments, where one node is acting as load balancer and the other sub-nodes do

the actual event processing. Each nodes have there own CEP instance deployed and

running. In sub-nodes, it is possible to develop a light-weight CEP engine that utilize

both CPU and GPU hardware, if available. This light-weight CEP engine can be

implemented using low level language like C++, and it can easily utilize GPU hardware

without any additional overhead.
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6.2.4 Automatic Query Configure to Run on GPUs

Current implementation needs users to define whether each query should run on GPU or

CPU. This requires user’s pre-knowledge about the input event rate and the complexity

of the query. Moreover, it may require few trial runs to decide on best configuration

for execution plan to get the best event processing performance. It is more beneficial

if Siddhi CEP is able to decide, in runtime, by running a particular query in GPU

will deliver significant performance gain, if so configure them to run on GPU. This

may require running same query in parallel in both CPUs and GPUs and compare the

performance. Have a performance metrics of previously executed similar queries can

also help to achieve this purpose.

6.2.5 Runtime GPU Kernel Generation

If it is possible to generate CUDA kernel runtime according to the user defined query

and compile them at the runtime, more optimized GPU algorithms can be used to

improve event processing for specific use cases. Compiling CUDA kernel may have

initial cost, but that is negligible if it is a long running event query. Siddhi can generate

CUDA kernels using the compiled execution plan. Since the generated CUDA kernel

can have hard-coded logic for the particular event query processing, it is possible to

get much higher performance than our current approach.
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