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ABSTRACT 

 

Traditional software update and patch distribution mechanisms use a centralized 

approach where clients pull updates from central servers or a content distribution 
network. Peer-assisted patch distribution provides a scalable alternative to the 

centralized approach. It has great potential for providing fast patch delivery and while 
reducing the load on central servers. Due to speedy patch distribution, Peer-to-Peer 
(P2P) approach is effective in combating against fast spreading worms. However, 

during P2P patch sharing, peers are exposed to each other and the patch interest of 
individual peers is revealed. Therefore, P2P approach is not effective in combating 

against a topological worm as vulnerable hosts are exposed to other nodes in the P2P 
overlay. A topological worm spreads by attacking on known or connected hosts to the 
infected node. Therefore, a vulnerable peer will certainly be compromised, if it is 

connected with an infected peer. Furthermore, as the patch interest of individual peers 
is revealed peer privacy is also compromised.  

We propose a BitTorrent based, peer-assisted patch distribution system that prevents 
the exposure of peers to each other. The proposed solution utilizes a set of non-
vulnerable peers already available in the P2P network to mediate the connections 

between patch-sharing peers. These peers are called pseudo-downloaders as they 
enable patch downloading without exposing the existence or interests of patch-sharing 

peers. Pseudo-downloaders can be accommodated by introducing minor modifications 
to the BitTorrent protocol. Through simulations, we show that our solution can 
significantly reduce the infections due to address exposure while having a minimal 

effect on the patch download time. When the pseudo-downloader population exceeds 
50% of the patch downloaders, our solution achieves the same download time as a 

typical BitTorrent network. Moreover, when the number of peers participating in the 
system is large, proposed solution download patches even faster than a typical 
BitTorrent network. 
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Chapter 1  

Introduction 
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1.1 Software Patch Distribution  

A computer worm is a malicious program, which replicates itself and spreads to other 

computers without any human intervention [1]. Typically, worms use a known 

vulnerability of the operating system or the installed software of victim hosts to 

propagate through the network. After compromising a host, worms typically look for 

the next target to propagate by scanning IP addresses. Recent worm attacks indicate 

that thousands of computers on Internet could be compromised within minutes. Few 

of these well-known worms are CodeRed, Slammer and Blaster [2]. 

Software vendors distribute software patches and updates to fix vulnerabilities in their 

software. Typically, software vendors use a set of centralised servers to serve these 

software patches to client computers. Alternatively, there could be Content 

Distribution Network (CDN) based approach which is centralised in nature as well. 

However, such a set of servers has a finite capacity and can only serve a limited set of 

clients at any given time. Moreover, some clients might have to wait until their turn 

arrives. When a large number of clients need to be patched it takes long time to patch 

all the vulnerable hosts with a fixed number of patch servers [2]. Nevertheless, it is 

essential to distribute these software patches to hosts as quickly as possible, because 

of the potential for a worm to spread rapidly. Furthermore, centralized approach is 

costly for software vendors as they need to keep scaling their servers and bandwidth 

as their user base grows. 

 

1.2 Peer-Assisted Software Patch Distribution 

A Peer-to-Peer (P2P) network is a distributed system, in which nodes in the network 

exchange data without any centralized control. There are no dedicated servers in a P2P 

network and all nodes act as both clients and servers. P2P network creates a self-

organizing virtual topology on top of the Internet, which is referred to as the P2P 

overlay network or P2P logical network.  

To address the limitations of centralized patch distribution, research community has 

considered the possibility of patching one node by obtaining the security patch from 

previously patched nodes, rather than obtaining the security patch directly from 

central servers for each node [3], [4], [5], [6]. This kind of patch distribution processes 

are classified as peer-assisted patch distribution (PAPD) systems because peers assist 
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each other to download the patch instead of solely depend on the central servers. As 

only a small subset of the nodes initially obtains the patch from the central servers, 

peer assisted solution is much more scalable and time efficient than the centralized 

approach. Furthermore, Gkantsidis et al. [6] and Shakkottai and Srikant [2] 

demonstrated that P2P approach has a great potential for providing a fast, scalable, 

and effective patch delivery compared to the centralized server based solution.   

 

1.3 Research Problem 

Although peer-assisted patch distribution appears to be a better candidate than the 

centralized approach, there is an address exposure problem in peer-assisted patch 

distribution. The address exposure problem can be described as follows. Consider two 

peers A and B. When Peer A requests the patch from Peer B, B gets to know the 

existence and the address of A. Note that the patch requesting peer is always 

vulnerable as it does not have the patch. Thus, when sharing the patch in a P2P style, 

vulnerable peers get exposed to potential attackers. If the worm in question is capable 

of attacking on the origin of incoming connections and B is already infected, then A 

will become a victim of the worm as well. Such a worm that uses local 

communication topology to find new victims is known as a topological worm [1]. 

With a topological worm in effect, peer-assisted patch distribution mechanism will 

facilitate the propagation of the worm outweighing the propagation prevention 

intentions. Wu et al. [7] showed that a large majority of the vulnerable hosts will 

become compromised with such an attack targeting a peer-assisted patch distribution 

system. 

Another problem arising from the address exposure is revealing the content interests 

of patch sharing peers or inability to preserve the privacy of patch sharing peers. For 

instance, a peer sharing a patch targeted for particular software implies the fact that 

the peer is most probably installed with that particular software. Therefore, in a peer-

assisted patch distribution system, an attacker can discover which software is installed 

on which nodes. This is known as the privacy problem in peer-assisted patch 

distribution. This information can be used for a later attack when some vulnerability 

of some software is disclosed.   
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Therefore, the problem addressed in this research is that: 

How to develop a peer-assisted software patch distribution system to share the patch 

or update in P2P style without being exposed to the potential attackers? 

One might think that, one obvious solution to prevent the address exposure is to use an 

anonymizing network such as TOR [8]. TOR sends traffic through a series of 

volunteered relays to hide the origin of the communication and data is encrypted such 

that no one can determine both origin and content of the communication. Such a 

solution has already been explored by Wu et al. [7]. Nevertheless, requesting patch 

through an anonymizing network does not completely solve the privacy problem. This 

is because, in such a scenario only the privacy of patch requesting peer is preserved 

and the patch provider’s privacy is not preserved as the patch requester is well aware 

that the patch provider is sharing the patch. Patch provider’s privacy is also important 

to protect against attackers who try to discover patch interest of peers. In addition, 

these networks send data through a series of relays and in turn it introduces delays to 

the patch distribution process. Therefore, peer-assisted patch distribution over TOR is 

not the most optimum solution to prevent exposure of peers to each other.  

Several solutions have been suggested to hide the content interests of users or to 

preserve privacy in BitTorrent networks [9], [10]. OneSwarm [11] proposes a novel 

P2P protocol which preserves the privacy of its users. Peers in most of these solutions 

use cover traffic (i.e., downloading uninterested files), to obscure their content 

interests. A topological worm would attack on any known node regardless of its 

content interests; hence, preserving privacy of peers is insufficient. In other words, 

vulnerable peers will become targets even if they managed to conceal their content 

interests once they interacted with an infected peer. 

Moreover, prior work that requests patches through an anonymous network or 

preserving privacy while sharing the patches, do not propose a self-contained, peer-

assisted patch distribution system that prevents the exposure of patch sharing peers to 

potential attackers. 
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1.4 Objectives 

The high-level objective of this research is to design a self-contained, peer-assisted 

software patch and software update distribution system which does not expose patch 

sharing peers to each other. The specific objectives of the research are: 

1. How to prevent the address exposure of vulnerable peers to defend against 

attacks similar to topological worms? 

2. How to preserve the privacy of patch sharing peers or in other words, how to 

hide content interests of patch sharing peers? 

3. How to design a peer-assisted patch distribution system to provide an 

infrastructure to distribute software patches and updates from multiple 

software vendors or multiple sources by utilizing a single P2P system, 

preferably an existing public P2P network. 

 

1.5 Contributions 

We propose a peer-assisted patch distribution system which is based on the most 

popular P2P file sharing protocol, BitTorrent [12]. We demonstrate the utility of the 

proposed solution using an OMNet++ [13] based simulator. 

Thus main contributions of this research are as follows: 

1. Design of a peer-assisted patch distribution system that conceals identities of 

patch sharing peers from possible attackers. Mainly these attackers are 

topological worms and attackers who try to find out installed software on patch 

sharing nodes. Furthermore, the proposed system is capable of distributing 

patches from multiple software vendors by utilizing the same P2P network, 

which may also be used to share other contents such as songs and movies.  

2. Validation of the effectiveness of the proposed system through OMNet++ [13] 

simulation framework based BitTorrent simulation module [14]. Simulation 

results show that our solution can completely eliminate infections due to the 

address exposure problem. Furthermore, we show that the patch download 

time would not get affected due to the intermediate hop introduced by the 

pseudo-downloaders, if sufficient number of pseudo-downloaders are available 

in the P2P network. 
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In addition to those contributions this research made significant improvements to the 

OMNet++ based BitTorrent simulation module which was initially developed by 

Katsaros et al. [14]. These improvements include porting BitTorrent simulation 

module from OMNet++ version 3 to OMNet++ version 4, and improving extensibility 

of BitTorrent simulation module. The improved BitTorrent OMNet++ module is 

publically available at Github [15] . 

 

1.6 Outline 

The rest of the thesis is organised as follows. Chapter 2 presents the background of the 

research and related work. It discusses about computer worms, P2P systems, 

BitTorrent P2P protocol, and related work on peer-assisted patch distribution. Chapter 

3 presents the details of the proposed patch distribution solution. Simulation setup and 

performance evaluation are presented in Chapter 4. Chapter 5 summarizes the findings 

and suggest future works. 
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Chapter 2  

Literature Review 

  



-8- 

This chapter provides the background related to the research. The chapter starts by 

presenting about computer worms (Section 2.1), P2P networks and BitTorrent 

protocol (Section 2.2) and solutions that have been proposed to preserve the privacy in 

P2P networks (Section 2.3). It also discusses the limitations of the traditional 

centralized patch distribution approach and how the peer-assisted patch distribution 

provides solutions to those limitations. Several existing peer-assisted patch 

distribution solutions are presented in Section 2.4. Finally the in Section 2.6 chapter 

concludes by presenting the OMNet++ BitTorrent module [14] which is used as the 

simulation platform in this research. 

 

2.1 Computer Worms 

A computer worm is a malicious program that self-propagates across a network by 

exploiting security flaws in widely used services [1]. Worms gained wide attention 

after the Morris worm was released in 1988, which is considered as one of the first 

identified computer worms [1]. Computer worms are different from computer viruses 

because, computer viruses infect non-mobile files and they require user actions to 

propagate [1], whereas computer worms do not require such user intervention for 

propagation. Worms spread faster than viruses because human intervention is not 

required for the worm propagation. Most worms attack by exploiting vulnerabilities 

once the vulnerability of a service has been disclosed [2], [16]. In addition, some 

worms are reverse engineered from patches that are released to fix vulnerabilities [17]. 

Therefore, in most cases a software patch is available to fix the vulnerability to 

prevent the propagation of a potential worm. Nevertheless, time between the patch 

release and the worm appearance is decreasing, and some worms appear even before 

the patches are released, e.g., ANI worm [16]. Furthermore, worms that exploit 

unidentified vulnerabilities are known as zero-day worms [2]. While such a worm 

could cause significant damages before a suitable patch is released, such worms are 

typically rare. Typically a worm does not destroy the host during the propagation 

phase because it may disrupt worm’s propagation [1].  

A worm can be used to capture sensitive information of users of compromised hosts or 

can be used for other attacks such as Distributed Denial of Service (DDoS). Worms 

have already demonstrated that they can be quite destructive. CodeRed infected more 
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than 35,900 hosts within 14 hours in 2001 and caused a damage of about a $2.6 billion 

[18]. Slammer infected more than 90% of the vulnerable hosts in less than ten minutes 

[2], [18]. Measurement studies indicate that the number of infected hosts by a worm 

usually follows sigmoid curve as shown in Figure 2.1. It can be seen that the number 

of infected hosts due to CodeRed (v2) worm increased in an exponential manner. 

Shakkottai and Srikant [2] showed this fact analytically.  

 

Figure 2.1: Propagation of CodeRed (v2) worm [2]. 

To locate new targets most worms use IP address scanning or probing. However, these 

IP address scanning can be easily detected from intrusion detection systems because 

IP address scanning traffic is very different from normal traffic. Some other worms 

use target lists for propagation. This kind of a list is called a hit list and it contains IP 

addresses of hosts, to which worm is intended to propagate. Some applications contain 

connectivity information about other hosts. This information can be used to locate 

new targets by a worm. These kinds of worms, where worm uses the local information 

in the infected host to locate new targets are known as topological worms [1]. For 

example, the original Morris worm used IP addresses in the /etc/hosts file to spread to 

other hosts. Topological worms can spread very fast, because they do not need to 

waste time on IP address scanning. In addition, a topological worm would not create 

any abnormal network traffic, because it connects to already known computers to the 

current infected hosts [18].  
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Worms that are considered in this research are topological worms. In this research it is 

assumed that, the worm is smart enough to obtain the IP address of the remote end of 

established network connections and attack on those IP addresses. 

 

2.2 P2P Overlay Networks 

A P2P overlay network is an application layer, or virtual network, which is 

constructed on top of the Internet Protocol (IP) networks. Logical topology of the P2P 

overlay network does not necessarily represent the underlying physical topology of 

the physical network. A host or node participating in the overlay network is referred to 

as a peer. 

P2P systems are distributed systems and they are different from traditional client-

server architecture because every peer can act as both a server and a client. Therefore, 

in most circumstances, role of every peer in a P2P network is symmetric. Because of 

this symmetry in roles, P2P systems can offer services beyond the client-server 

systems. These services include building self-organizing overlay network, resource 

sharing and searching between peers, redundant storage, load balancing, selection of 

nearby peers, robust routing architecture, trust between peers, and massive scalability 

[19]. While the most popular practical application of P2P computing is being the file 

sharing, there are many other application areas such as application-level multicast, 

distributed file systems, and web caches. 

NA

NB

NC

ND

 

Figure 2.2: Topology of a P2P network. 

Figure 2.2 shows connections between peers in a P2P network. We use this diagram to 

explain some common terms in P2P networks. In Figure 2.2 circles are the peers or 

nodes and lines between circles are open connection between peers. Two peers who 
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maintain an open connection is referred as neighbours [20]. In Figure 2.2 NA and NB 

are neighbours. An open connection between two peers is known as an edge [20]. A 

graph can be drawn, taking these open connections as edges and peers as vertices. 

This graph is known as the topology of the P2P network. Figure 2.2 shows topology 

of an unstructured P2P network. The number of neighbours of a peer is called as its 

out-degree [20]. The out-degree of peer NA is four. If a message needs to be sent from 

one peer to another, who are not neighbours, message has to be sent over multiple 

edges. The length of the path or the number of edges passed by the message is known 

as the hop count between two peers those who have exchanged the message [20]. 

Therefore, hop count between peer NA and ND is three. 

To find a particular data item in the P2P network, different P2P overlay networks use 

different schemes. Typically, a peer sends a lookup message to other peers to find out 

a particular data item in the P2P network. This kind of a message is known as a query. 

When a peer receives a query from another peer it needs to decide what to do with 

such a query message. This decision making process is known as query processing in 

P2P networks. Typically a peer chooses to respond to the query message, if it 

possesses the particular data item, and it forwards the query to one or more peers it is 

does not possesses the particular data item.  

There are two main classes of P2P overlay networks, which are called as structured 

P2P networks and unstructured P2P networks. The main difference between these two 

types is how the P2P logical topology is created and maintained. 

 

2.2.1 Structured P2P Networks 

In structured P2P networks, P2P overlay topology is tightly controlled and content 

shared in the P2P network is placed at deterministic locations, which makes query 

processing for data items more efficient and guaranteed [19]. In structured P2P 

networks, each node has a unique ID. These structured P2P networks are built on the 

concept of Distributed Hash Table (DHT), where each data object has a unique ID 

(chosen from the same space of node IDs) and each of these data objects are assigned 

to a particular node based on the ID. Hence, every peer in the network knows where 

(at which peer) to store a particular data object and where to look exactly for a 

particular data object. For an instance, Figure 2.3 shows the topology of Chord [21], 
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which is a structured P2P network. In Chord each peer has a node ID obtained by 

hashing the IP address of the node and each data object has a key, obtained by hashing 

the identifier of the data object. Both node ID and key of a data object have m bits 

which makes node ID and object keys in the same space. Figure 2.3 shows an instance 

of Chord where m = 6. Therefore, both node IDs and object keys are in the range of 0 

- 63 in this particular instance. Nodes are ordered in a circle ordered by node ID. Key 

k is assigned to the first node whose ID is equal to the key or follows key. For 

example, key 38 is assigned to node 38 and key 30 is assigned to node 32. Widely 

known examples of structured P2P networks are Content Addressable Network 

(CAN), Pastry, Tapestry, Chord, Kademlia, and Viceroy [19].  

 

Figure 2.3: Topology of Chord P2P network [21]. 

2.2.2 Unstructured P2P Networks 

Unstructured P2P networks are the most common P2P systems in the today’s Internet. 

Best known example of unstructured P2P networks is P2P file sharing applications 

such as Gnutella and BitTorrent [19]. Unstructured P2P networks are composed of 

peers without any constraints on the topology and a peer can join at any location of the 

P2P topology. As the topology of the network is unknown, queries in unstructured 

P2P networks are resolved using flooding of messages though the network. When one 

peer is looking for some data item, it forwards the query to all its neighbours and 

every peer who receives this request, checks whether it has the particular data item 

and if it does, it replies to the query. If it does not have the particular data item, it 



-13- 

forwards the query to all of its neighbours (in some cases query may be forwarded to 

neighbours, even if the result is locally available). In order to prevent the network 

overwhelming from this kind of queries, there is a Time-To-Live (TTL) value for each 

query. The TTL is the number of overlay hops query should be discarded. So TTL is 

reduced by one at each peer and once TTL reaches zero, peers drop the query instead 

of forwarding it. For example, Figure 2.4 shows a scenario of query processing in an 

unstructured P2P network. Node Nq generates the search query and sends it to all the 

neighbours. This query is flooded in the network until hop count reaches two as TTL 

is set to two. When TTL reaches zero (or in other words hop count reaches two) the 

query is discarded. As Nr has the particular data item, it responds to the query by 

sending a message back to Nq. 

 

Figure 2.4: TTL-based query processing in unstructured P2P network for TTL=2 [22]. 

 

Even though this kind of flooding based technique is effective for locating replicated 

data items while peers join and leave the network frequently, it is not effective for 

locating rare data items. In such a case, a query may end up with no results, even 
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though the data item exists in the P2P network, because the TTL constraint prevents 

flooding the query to all nodes in the network. For example, in Figure 2.4, the query 

generated by Nq does not reach the node Nar because of the TTL limit. If only the node 

Nar had the particular data item searched by node Nq, the query will end up with no 

results, even though the network has the particular data item. 

Unstructured P2P networks described above as known as pure P2P systems, which are 

not scalable for several reasons. First, the query-processing load on the each peer 

increases with the number of queries and the number of peers in the network. 

Secondly, load on the network increase rapidly with the number of queries because of 

flooding. Third, peers with limited capabilities can cause bottlenecks in pure 

unstructured P2P networks when processing queries [20]. Finally, search mechanism 

is not efficient because of the flooding of queries and TTL limitation [20]. Because of 

the TTL limitation, queries for rare items may always end up with no results. For 

example, the Gnutella network experienced degraded performance, such as slower 

response time when the size of the network increased in August 2000 [20]. In those 

days, Gnutella was a pure unstructured P2P network without super-peers.  

 

2.2.2.1 BitTorrent 

BitTorrent [12] is a P2P file sharing protocol. BitTorrent is an unstructured P2P 

network. However, BitTorrent does not depend on flooding to locate peers who share 

a particular content. Instead, BitTorrent uses a central server known as a tracker 

which facilitates the discovery of peers who holds a particular content. A single entity 

shared in BitTorrent is known as a torrent. A torrent could be a single file or 

collection of files. Every peer who shares a torrent registers with the tracker and 

tracker maintains a list of peers associated with each torrent.  

The original file is logically sub-divided into smaller data units called pieces. Piece 

size is selected based on the size of the file and generally it is 512KB or less [23]. 

Pieces are sub-divided into smaller data units called blocks, typically 16KB in size. 

Blocks are the units that are transmitted between peers. Each file or a collection of 

files that is shared in the P2P network is described by a file called a meta-info file or 

torrent file. Torrent file contains metadata about the original file. Any peer who wants 

to download the file first needs to obtain the torrent file from an out of band method 
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such as a web site. Among other things main attributes of the torrent file are info 

dictionary and the URL of the tracker server. Info dictionary contains the file name, 

file length, md5sum of file, piece length and SHA-1 hashes of all pieces. The 20-byte 

SHA-1 hash of the info dictionary is known as the info-hash. Therefore, info-hash is 

unique to a single entity shared in the BitTorrent network and in BitTorrent protocol, 

torrents are uniquely identified by their info-hash. 

The complete message transfer sequence between a peer and the tracker, as well as 

between peers is showed in Figure 2.5. Once a peer obtained the torrent file, it 

registers with the tracker for the particular torrent by sending the tracker-request 

message. Then the tracker adds the peer to the set of peers who share the requested 

torrent. Set of peers who share a particular torrent known as a swarm. On the 

reception of the tracker-request from a peer, tracker replies to the peer with the 

tracker-response message. Among several other things, tracker-response message 

contains a peer list which contains a sub-set of peers from the swarm.  

 

Figure 2.5: Message exchange sequence in BitTorrent. 

Peers who have the complete file are known as seeders. Peers who do not have the 

complete file are known as leechers. Upon the reception of the tracker-response the 

peer uses information in the peer list to contact other peers. After connection 

establishment peers exchange handshake messages. Handshake message is the first 
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message in the communication between peers and connection initiator should send the 

handshake message first. Handshake message contains protocol identifier, info-hash 

and peer-id. Therefore, upon reception of the handshake message, recipient of the 

connection can safely identify the details about the torrent using the info-hash. If the 

recipient of the connection does not serve the specified torrent, recipient will drop the 

connection. After exchanging handshake messages peers exchange bit-field messages. 

Bit-field message indicates which pieces are available at the sender of the message. 

The bit field message may only be sent immediately after the handshaking sequence is 

complete, and before any other messages are sent. The bit field message is an optional 

message. 

After exchanging bit fields, each peer knows which pieces the other peer can offer, 

and proceeds to request specific blocks of the file. A peer sends an interested message 

to notify the other peer that it would like to download pieces. The other peer responds 

with the unchoke message only if it is willing to share the pieces with sender of the 

interested message. Upon receiving the unchoke message, the interested peer asks for 

specific blocks of the file by sending piece-request messages. Then the other peer 

responds with the piece message which contains the requested block. 

 

2.3 Preserving Privacy in P2P Networks 

Peers are exposed to each other when sharing a file in P2P manner and a peer is able 

to know other peers who are interested in the file. Furthermore, in BitTorrent anyone 

can obtain a list of peers who share a particular file by just querying the tracker. Thus 

in a typical P2P network, one cannot download a file while hiding his or her interest 

about downloading the file. Anonymization networks, such as TOR [8] or Freenet [24] 

can offer complete anonymity in the cost of hindered performance. As P2P networks 

do not require such a complete anonymity and performance penalty is significant in 

anonymous networks, many solutions have been proposed to preserve privacy in P2P 

network without significantly degrading the performance. 

BitBlender [9] is an anonymous network protocol which is specifically tailored for 

BitTorrent. BitBlender does not provide complete anonymity but satisfies 

requirements to achieve plausible deniability. Plausible deniability in a BitTorrent 

network ensures that every peer listed in the tracker or participating in the swarm is 



-17- 

not actively downloading the file. Thus, an adversary cannot discover which peers 

actually share the file. BitBlender achieves plausible deniability by utilizing a set of 

peers which are called relay peers who forwards messages on behalf of other peers 

who are actively participating in the swarm. In order to attract relay peers for an 

anonymous torrent, the tracker contacts the blender server and requests that some 

number of relay peers to join the torrent. The blender is a directory server in which 

relay peers are listed. The number of relay peers is a percentage of true peers 

participating in the swarm and this percentage can be set per torrent. Upon reception 

of such a message from a tracker, the blender server probabilistically asks relay peers 

to join the particular swarm such that requested number of relay peers will join the 

swarm. As the blender server asks relay peers probabilistically to join the swarm, 

blender server itself is unaware about which peer joined the swarm. As a result, a peer 

participating in the swarm might establish connections with other peers in the swarm 

and relay peers as well. Relay peers establishes connections with other peers in same 

manner by querying the tracker. When a relay peer receives a piece request, it 

forwards the request to another peer that might be a relay peer or a peer who is 

actively sharing the file. Ultimately, the piece request will receive by a peer who 

actively shares the file and that peer will responds with the piece and the response 

message will be routed along the same path as the request. Therefore, when a peer 

receives a piece request from another peer, receiving peer cannot determine exactly 

whether the request arrived from a peer who is actively engaged in the file sharing or 

from a relay peer. Furthermore, an adversary cannot get a list of peers by querying the 

tracker as peer list from the tracker contains relay peers as well. Authors show that 

expected path length of a piece request is 1/(1-r) where r is the fraction of relay peers 

to total peers participating in the swarm. Note that as r increases degree of anonymity 

is increased while degrading the performance. Authors claim that BitBlender does not 

require any protocol modification to BitTorrent. Using a modified BitTorrent client 

and 20 peers deployed in PlanetLab [25] authors show that when relay peer to true 

peer ratio is 1.0, download time only increase by 31% with respect to the download 

time without relay peers. Nevertheless, authors have not specified clearly how relay 

peers are listed in the Blender server and how a particular peer is encouraged to 

participate in a swarm as a relay peer. 
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OneSwarm [11] is a novel P2P protocol which is designed to preserve the privacy of 

its users. OneSwarm provides much better privacy than BitTorrent while providing 

much better performance than P2P data sharing over an anonymous network. 

OneSwarm provides flexible privacy where each individual user can control the trade-

off between performance and privacy per file by managing trust placed on other peers. 

OneSwarm offers three sharing scenarios which are public distribution, sharing with 

permissions and sharing without attribution. In public distribution, data that need not 

to be private is shared and OneSwarm works similar to BitTorrent in this mode. 

Therefore, OneSwarm client is fully backward compatible with BitTorrent protocol to 

share data publically. When sharing with permissions, a user can specify with which 

other users, he or she is willing to share a specific file. Identifying other users in the 

network is possible as OneSwarm uses persistent identities to identify its peers. 

Sharing without attribution is used to share sensitive data by obscuring the source and 

the destination of the data transfer. OneSwarm peer limits direct communication to a 

small set of persistent contacts and these contacts provide connectivity to the rest of 

the overlay indirectly. These persistent contacts define the overlay links in OneSwarm 

P2P overlay. Two peers initiate such a link by exchanging their public keys. These 

public keys serve as identities of OneSwarm peers and these identities are persistent in 

order to manage trust relationships between peers.  

To connect to a particular peer, its public key should be known. Therefore, OneSwarm 

automates these key exchanges by three ways; that are, 1) automatic peer discovery 

and key exchange in a Local Area Network (LAN), 2) using existing social network 

relationships, and 3) email invitations. These persistent peer identities are mapped to 

IP addresses using a DHT based on Kademlia [26]. Although peer connectivity 

information is published publically in a DHT, contact information of a particular peer 

can only be decrypted by peers who have initiated a persistent contact with that 

particular peer. This is because when a peer inserts its contact information in to the 

DHT, it inserts connectivity information multiple times for each of its persistent 

contacts by encrypting data by their public keys individually. Each of these entries is 

indexed in the DHT using a 20-byte shared secret which was generated at the 

initiation of the persistent contact between the two peers. Instead of using a tracker as 

in BitTorrent, OneSwarm locate data by flooding search messages in the overlay. 

Search messages do not contain a time-to-live field to hide the source of the message. 
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A peer forwards a search message only if it has not forwarded the message previously. 

Each peer adds 150ms delay to a search message. When the source peer found enough 

results, it generates a search cancel message and which will be forwarded in the same 

path as the search message without any delay. Therefore, the search cancel message 

reaches the search frontier quickly and cancels the search effectively.  

In OneSwarm the path taken by the search message determine the path of the data 

transfer. Therefore, it is important not to forward search messages along the 

overloaded links. OneSwarm achieves this by adding additional delays to search 

message at nodes where load is high which effectively route the search message 

around the overloaded links and peers. If a peer can fulfil the search, it stops 

forwarding the message and generate a search reply by introducing a random delay to 

hide the source of the search reply message. When the search reply message reaches 

the search initiator, search reply message contains a path identifier. The path identifier 

is a unique identifier to identify the circuit between the data source and data receiver. 

Every hop in the search reply path has contributed to generate the path identifier and 

each hop in the path knows where to forward the data given the path identifier. 

OneSwarm uses the wire-level protocol from BitTorrent and search initiator treats 

each overlay path identified by one path identifier as a virtual BitTorrent peer. A peer 

in OneSwarm can improve its rating by contributing to the system whenever possible 

and during periods of contention peers give priority of service to peers that have 

higher rating.  

OneSwarm clients have been implemented for Windows, Mac OS X and Linux. 

OneSwarm is publically available and according to authors OneSwarm has been 

downloaded by hundreds of thousands of users. Authors validate OneSwarm by 

instrumented clients run on PlanetLab [25] and simulations. For simulations overlay is 

built based on social relationships from a web site called last.fm. Authors show that 

OneSwarm performs well against adversaries who attempt to infer the data source by 

measuring the response time of a search. Furthermore, authors discuss about how 

various attacks are challenging on OneSwarm due to its protocol design. Authors 

show that when 50% of users use TOR to tunnel their BitTorrent traffic the median 

download time increases by a factor of 1.9 relative to OneSwarm. Authors claim that 

OneSwarm’s average download time is competitive with BitTorrent as well; 

nevertheless exact numbers are not specified. We note that even though OneSwarm 
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offers good privacy benefits to its users, OneSwarm users have to spend significant 

amount of their computational resources to be a peer in the OneSwarm Overlay. For 

an instance to facilitate data transfer between two peers several peers have to invest 

their processing power and network bandwidth as the data transfer is indirect between 

peers. Moreover, we note that flooding-based search might fail for rare data objects 

and download speed for rare data objects will be significantly low due to longer path 

lengths. Moreover, users do not benefit from network effect, as they have to use a 

completely new P2P solution which does not have a relationship or connectivity to a 

network/community like BitTorrent. 

Petrocco et al. [10] presented a P2Pfile sharing system that hides content interests of 

its users. Peers of this system use cover traffic to hide their content interests. Similar 

to BitBlender [9], this system only achieves plausible deniability and the solution is 

based on BitTorrent. A peer creates several deception downloads to obscure its real 

interest from rest of the swarm and these deception downloads are indistinguishable 

from actual downloads. As peers create several deception downloads, it results in 

more collaboration in the swarm, which in turn increases the overall performance of 

the swarm. Peers who participate in a swarm to generate cover traffic known as 

helpers. Seeders, leechers and helpers cannot be differentiated from each other by 

examining their traffic externally. In contrast to BitTorrent, peers in this solution do 

not advertise their complete set of available pieces to other peers in order to hide 

seeders. However, a peer can request unadvertised pieces from another peer. When a 

peer receives a request for such un-advertised piece, and the piece is locally 

unavailable it relays the request to another peer in the swarm. Even the requested 

piece is locally available, but the piece is unadvertised, the receiving peer of the 

request will respond to the request after introducing some random delay to make it 

appear as the piece has been obtained from relaying. However, we note that 

introducing additional delays to locally available pieces might results in higher overall 

download times. While relaying, peers always send the piece request to an advertised 

peer to avoid relay loops. All these relayed requests look similar to original requests. 

Seeders also relay some fraction of piece requests to hide the identification of seeders. 

When a peer participates in a swarm as helper, it keeps the pieces it has downloaded 

in the memory, which is known as caching of pieces. Cache size of a peer is limited 

and when a helper removes a piece from cache it removes the least recently used 
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piece. Furthermore, cache of a helper is filled with rarest pieces in the perspective of 

the helper peer to improve the piece availability in the swarm. Authors analytically 

show that their system performs better than OneSwarm [11] in face of a collusion 

attack. In a collusion attack an adversary controls multiple nodes in the swarm that 

work in collaboration to reveal content interest of a peer by connecting with the 

particular peer. Authors evaluate performance of their system using experiments. 

Although authors claim that their system is efficient in terms of overall average 

download time, it is difficult to compare the presented results with BitTorrent. 

 

2.4 Peer-assisted patch Distribution 

2.4.1 P2P Networks for Patch Distribution 

In order to address limitations of centralized patch distribution, P2P-based patch 

distribution has gained the interest of both the industry and research community. This 

is also known as peer-assisted patch distribution. In peer-assisted patch distribution, a 

node that requires the patch can request the patch from other nodes that have already 

downloaded the patch. Thus, only a subset of vulnerable nodes will obtain the patch 

from central servers and nodes that have already downloaded the patch, will share the 

patch with other nodes in P2P style. As only a subset of nodes obtains the patch from 

the central servers, load on the central servers reduce significantly.  

Gkantsidis et al. [6] explored the possibility of distribution of software patches in P2P 

style. They characterized “Windows Update”, one of the largest update services in the 

world. Their goal was to come up with a set of guidelines on how to design and 

architect a fast and effective large-scale patch dissemination mechanism. They 

considered two standard content distribution architectures, caching at the ISP level 

and peer-to-peer, and evaluated their applicability to patch dissemination. They 

demonstrated that the P2P approach has a great potential for providing fast and 

effective patch delivery. Although they did not propose any specific P2P architecture 

or mechanisms to distribute patches, using empirical observations and analytical 

results they showed that P2P patching is highly effective in reducing the load on the 

central servers. Alternatively, they also showed that P2P can generate significant inter 

ISP traffic (backbone traffic), if the patch distribution algorithms do not give 

preference for downloading the patch from peers which are located in same ISP. 
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Shakkottai and Srikant [2] analytically showed that with fixed number of patch servers 

and with a well-designed worm, maximum number of infections is θ(N), where N is 

the number of hosts in the vulnerable population. That is, almost all the hosts in the 

population get infected with a fixed number of the patch servers and a well-designed 

worm. Authors also showed that, the worm only takes θ(ln N) time to infect a 

significant fraction of the hosts in the vulnerable population. Provided that hosts can 

be recovered by providing the patch even after the worm infection, authors showed 

that it takes θ(N) time to disinfect the system with a fixed number of patch servers. 

This is because number of sources for the worm propagation increases at every time 

unit by worm replication, while the number of patch sources/servers remains fixed at 

each time unit. Therefore, a fixed number of patch servers cannot outrun a well-

designed worm. Shakkottai and Srikant [2] also showed that a P2P patch distribution 

approach can defend against worms effectively. They analytically showed that with a 

P2P patch distribution approach, the maximum number of infected hosts is θ(N 1/γ) and 

the time taken to disinfect the system is θ(ln N). Here γ is the ratio of the maximum 

rate of patch propagation to worm’s virulence. The virulence of the worm is infections 

per unit time or in other words maximum rate at which worm can spread.  

Therefore, it is clear from the above work that P2P patch distribution mechanism 

provides a fast, scalable and cost effective alternative to the centralized server based 

patch distribution mechanism. 

 

2.4.2 P2P Patch Distribution Solutions 

There are many peer-assisted patch distribution approaches proposed in literature. 

This section presents a subset of such peer-assisted patch distribution solutions that 

are important in the content of our research problem.  

Serenyi and Witten presented RapidUpdate [4], a peer-assisted distribution system to 

distribute security content. Their goal was to save vendor’s bandwidth, while meeting 

distribution deadlines and allowing peers to participate fully in the system even if they 

are located behind a firewall or NAT device. The meaning of distribution deadline in 

their work is that every client in the community should have a file by an 

administratively controlled time. RapidUpdate is geared towards small files that are 

200KB or less in size. RapidUpdate system consists of a topology server that 
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coordinates file distribution by routing clients that need a file to clients that already 

have it. RapidUpdate use specialized UDP (User Datagram Protocol) based protocol 

for client-server and client-client communication. This protocol facilitates UDP NAT 

hole punching such that clients can ultimately communicate directly with each other 

even if they are located behind a NAT device. Use of UDP makes their 

communication and topology server more scalable. RapidUpdate does not divide file 

into pieces as in BitTorrent because it is only tailored for small files. As in many other 

P2P patch distribution systems, RapidUpdate assumes that clients will discover 

availability of a patch by out-of-band polling mechanism. When a client wants to 

download the patch it first contacts the topology server. Then the server sends a reply 

message which instructs the client to obtain the patch from the HTTP server or from 

another client. If it is to download the patch from another client, topology server sends 

the contact details of the other client in reply message. Which action the server 

instructs the client to take is a function of its goal to minimize vendor bandwidth 

while meeting the specified deadline. If the deadline is a tight one, server will direct 

more clients to the HTTP server, to increase the number of initial seeds. If the 

deadline can be met by fetching the patch from another client and if there are any 

seeder clients available to fulfil the request, patch requesting client will be directed 

those seeding clients. Once a client obtains the patch, it will notify the server such that 

server can track which clients have the patch. Experimental results showed that 

RapidUpdate was able to meet the specified deadline while saving more than 70% of 

vendor’s bandwidth in all cases. As RapidUpdate is tailored for small files, it can only 

be used for software patch distribution but not for software update distribution as 

software updates could be few or more Megabytes in size. 

Rahman et al. proposed iDispatcher [5], a P2P information dissemination platform 

that is targeted to disseminate security patches quickly to client computers. The 

uniqueness of iDispatcher is that it provides a unified platform to support information 

dissemination from multiple sources in a seamless manner. iDispatcher uses a hybrid 

approach with both push and pull based information dissemination to achieve low 

dissemination latency. In iDispatcher, when a node initially join the network, it 

consults another component in the system called community server to obtain the 

bootstrapping information such as the IP address and port of another node already 

connected with the network. Information sources are known as dissemination centres 
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that are also a part of the P2P network. When some information is available the 

dissemination centre starts to push it to subset of its neighbours. Those nodes push 

that information to subset of their neighbours and so on. This is called a push 

campaign. Before pushing the received data to a neighbour, sending node verifies that 

the neighbour has not received the particular data previously by querying the 

neighbour. How many nodes a node pushes the received data is tuneable and this 

parameter it is called quota. Larger quota is used for time critical information. Thus, 

lower distribution latency is achieved in the expense of higher bandwidth usage as 

larger quota implies that nodes receive push requests for the same data from several 

neighbours. Furthermore, lower quota means a large number of nodes will not receive 

data from a push campaign as some nodes might leave out while other nodes pushing 

data to only a few of their neighbours. Size of the quota is selected dynamically 

depending on the time criticalness of the received data. Nodes that have missed 

information from a push campaign use pull method to retrieve the missed information. 

To identify whether it has missed any information, a node sends the list of all 

information IDs it received in the last few hours to its neighbours in a certain interval. 

After receiving such a list, the neighbour can verify whether it has missed any 

information. If it finds any information missing, it requests the sender to send that 

specific information. Authors have not clearly specified what the sender node is, in the 

above mentioned pull-based scenario. Dissemination centres sign the information they 

want to disseminate with their private keys and every node validates a dissemination 

centre’s identity using its public key upon receiving that information. iDispatcher 

stores public keys of dissemination centres in a distributed hash table. As data from 

many sources is distributed in the same network, a node might receive data it does not 

need to consume. Nevertheless, the node should validate the received information and 

forward that information to its neighbours. This might be a waste of network 

resources. Authors have implemented a prototype of iDispatcher and deployed in 

PlanetLab [25] which had around 1,400 nodes at the time of iDispatcher experiments. 

Their results show that, for 2KB file, it took 20 seconds to reach around 90% nodes 

and took 70 seconds to reach all the nodes with quota size of 15. In this case, in 

average each node received around nine push requests to the same data. For a file of 

2MB, it took around 300 seconds to reach around 90% nodes and took around 2,000 

seconds to reach data to all the nodes with quota size of 15. 
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Xie and Zhu [3] studied the feasibility and effectiveness of using the existing P2P 

overlay structure to distribute security patches automatically to vulnerable nodes. 

Authors examined two approaches; partition-based approach and a Connected 

Dominating Set (CDS) based approach. In partition-based approach, a set of selected 

nodes is protected initially by applying the patch. These selected nodes are known as 

guardian nodes. Authors assume that those guardian nodes would block the spread of 

the worm through them after patching. Therefore, the P2P network is partitioned by 

these worm-immune guardian nodes and worm will not propagate from one partition 

to another. Hence, worm containment is possible in a small area in the P2P network. 

In CDS-based approach, a dominating set of nodes is chosen from the P2P overlay, 

which are known as the key nodes. Security patches are first delivered to these key 

nodes and those nodes will deliver the patch to the rest of the nodes. In the CDS-based 

approach, if P2P network do not have rich node connectivity, then the number of key 

nodes may be unreasonably large. If that is the case, authors propose to push security 

patches to a randomly selected subset of nodes from key nodes. However, if only a 

subset of key nodes receive the patch initially, some nodes may experience high 

latency for patch delivery, because they are located far away from a key node who 

received the patch. In both of their approaches to select a subset of nodes (guardian 

nodes or key nodes) security servers needs to be deployed in the P2P network. These 

security servers crawl the P2P network, construct the P2P topology, and then select a 

subset of nodes from the topology as guardian nodes or key nodes. If network is very 

large, crawling the P2P network will not be feasible and then their methods may not 

be scalable. Moreover, topology information in the security servers may be stale 

compared to actual topology due to churn in the P2P network. 

 

2.4.3 Privacy Issues 

Wu et al. [7] presented privacy issues that arise in P2P patch dissemination and 

proposed solutions for the same. The privacy problem in peer-assisted patch 

distribution is that, when peer A requests a patch from another peer B, it announces its 

vulnerability to B, which B can exploit instead of providing the patch [7]. Using 

analytical modelling and simulation authors show that large fraction of hosts gets 

compromised with a basic model (which does not consider privacy issues) for peer-

assisted patch distribution. They proposed two solutions for the privacy problem in 
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peer-assisted patch distribution, that are honeypot-based approach and anonymizing 

network based approach. In honeypot-based approach, honeypots detect and blacklist 

malicious peers who listen for patch requests and attack vulnerable hosts. In the 

anonymizing network based approach, patch requests are sent through an 

anonymizing network. In an anonymizing network, receiver of the message cannot 

find the identity of the sender, and this is usually achieved by forwarding the message 

through multiple intermediate hops. Anonymizing network hides the identities of 

susceptible hosts from malicious peers. Using simulations authors showed that 

honeypot-based approach is not a good candidate and anonymizing network is more 

suitable for secure patch dissemination. However, anonymizing networks are slow as 

the messages are forwarded through many hosts to hide the identity of the sender. 

Moreover, anonymizing network based approach is not very effective for large patch 

sizes. Moreover, when using an anonymizing network to request patches only the 

patch requester’s identity is hidden from other peers while patch provider is always 

known to the patch requester. Therefore, patch provider’s privacy is not preserved 

with an anonymizing network. In their simulations, the simulation network ended up 

with about 80% of infected peers at network scanning rate of 0.01 when patch size is 

675KB. Therefore, both approaches are not effective, if patch size is large.  

 

2.5 Defending Against Worms 

A new trend of defending against P2P worms is to use benign worms [27]. These 

worms are also known as anti-worms [16]. A benign worm is a worm, which utilizes 

the spreading mechanism of a malicious worm. Benign worms are used to disinfect 

the infected nodes and to patch the vulnerability [27]. A benign worm use the same 

security vulnerability as the malicious worm to spread. Benign worms have some 

drawbacks like generating large traffic on the network when spreading [27], [16]. 

Some of the practical benign worms are Nachi, Code green, CRClean and Welchia 

[16]. In many countries, it is illegal to intrude a system without the user’s permission 

[27]. Therefore, benign worms are not legal as they spread by intruding. 

Chen et al. [27] presented two benign worms known as SWORM and RWORM, 

which are supposed to work together to quarantine malicious worms. Both of these 

worms spread in an active manner that is these worms spread actively by searching 



-27- 

targets. SWORM is aimed at disinfecting and repairing the infected hosts. SWORM 

does not contain the patch for the vulnerability hence hosts which are affected by 

SWORM still susceptible to malicious worms. Disinfecting and repairing made by 

SWORM includes killing the worm processes, recovering the damaged files and 

registry keys, deleting files and registry keys created by malicious worms. After some 

time when the patch is available, propagation of RWORM will be started. RWORM 

contains the patch for vulnerability and it will patch the vulnerability when it spreads 

to susceptible hosts. If the host is infected (not affected by SWORM) RWORM will 

patch the security hole. If the host is affected by SWORM (but still contains the 

vulnerability and susceptible), RWORM will remove the SWORM and patch the 

security hole. If the host is susceptible (not affected by malicious worm or the 

SWROM) RWORM will fix the security hole. The reason to have two kinds of worms 

is benign worms like SWORM can be generated quickly while benign worms like 

RWORM which contain the patch requires time, to generate and test. Authors do not 

specify about how to detect malicious worms or how to generate these benign worms. 

They derive discrete differential equations to describe the propagation and the 

interplay of malicious and their benign worms. Authors also implemented a simulation 

to validate their approach. Using simulations authors show that their approach is about 

two times faster and protects about 35% more hosts compared to sheer manual 

reactions and their method protects about 34.4% hosts with lower consumption of 

bandwidth when compared to the random scanning benign worms.  

Jia et al. [16] also proposed a benign worm to patch the infected and vulnerable hosts. 

Their benign worm propagates by using a hit list, which consists of the IP addresses of 

the peers who are vulnerable to the malicious worm. This hit list is generated at some 

server, which initiates the propagation of benign worm. Their benign worm 

propagates through the same vulnerability, which has been used by the malicious 

worm. Authors assume that benign worm is stronger than the malicious worm so that 

if benign worm comes across the malicious worm it can destroy and clean the 

malicious worm. The functions of their benign worm include invading the vulnerable 

peer, cleaning the malicious worm, dividing the hit list to propagate to next targets, 

patching, recording peer information, reporting to the server and self-destructing. 

When propagating from one host to another hosts, benign worm divide the existing hit 

list among the next hosts and propagation stops when hit list becomes null. To 
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decrease the payload of the benign worm the patch has been made external to the 

benign worm. Therefore, the patch is downloaded from the central server or some peer 

who has been patched previously by the propagation of the benign worm. The benign 

worm should report to the server which peers it passed by before it self-destructs. The 

server uses the reporting information from the benign worm to update the 

vulnerability information of the network. In our perspective, approach proposed by Jia 

et al. is not practical because in practical networks, it is very difficult to know which 

hosts are vulnerable to a particular vulnerability. Also generating a hit list by 

examining these vulnerabilities of a larger population at a single location is not 

feasible. Hence, generating a hit list for the benign worm is not practical. In addition, 

if an intelligent worm closes the backdoor or the vulnerability after infection, 

propagation of their benign worm is not possible. 

 

2.6 OMNet++ Based BitTorrent Module 

Evaluation of the proposed patch distribution system in this research is achieved 

through simulations. To simulate the proposed patch distribution system, a BitTorrent 

module [14] developed for the OMNet++ [13] simulation framework is used. This 

specific BitTorrent module was selected due to following reasons: 

1. It provides packet-level simulation enabling more realistic simulation 

environment. 

2. It simulates a more realistic network which is based on INET [28]. INET 

simulation framework implements several network protocols including 

complete TCP/IP stack for the OMNet++ platform.  

3. Its underlying framework, OMNet++ is a very powerful simulation 

framework, which provides modularity by design and simulation modules in 

OMNet++ are highly customizable and extensible. 

4. It provides more realistic BitTorrent node arrival process which is proposed in 

[29]. 

An OMNet++ simulation model consists of modules which communicate with each 

other by message passing. There are two types of modules in OMNet++, which are 

simple modules and compound modules. Simple modules are the basic building 
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blocks of a simulation model. Behaviour of a simple module is defined by writing 

C++ code and behaviour of one simple module is encapsulated in one C++ class. A 

compound module consists of several simple or compound modules. The behaviour of 

a compound module is defined by its sub-modules and how those sub-modules are 

connected together. 

The BitTorrent module consists of three main modules which are Tracker, 

TrackerClient and Peer-Wire modules as shown in Figure 2.6. One BitTorrent node is 

known as BTHost. BTHost is a compound module which consists of simple modules 

TrackerClient and Peer-Wire. Tracker module provides the functionality of the 

tracker. TrackerClient module handles the communication between the peer and the 

tracker. Peer-Wire module provides the functionality of the peer-wire protocol. Peer-

wire protocol is the protocol between two BitTorrent peers, which is described in 

Section 2.2.2.1. Communication between a peer and the tracker or between two peers 

happens through a simulated TCP/IP network which is provided by INET.  

Tracker module consists of two C++ classes that are BTTrackerBase and 

BTTrackerClientHandlerBase. BTTrackerBase class handles the server functionality 

of the tracker and BTTrackerClientHandlerBase class handles the communication 

with the client. For each client BTTrackerClientHandlerBase instance is created. 

Similarly Peer-Wire consists of two C++ classes that are BTPeerWireBase and 

BTPeerWireClientHandlerBase. All the functionality of a BitTorrent peer is 

implemented in the BTPeerWireBase class including the BitTorrent choking 

algorithm. BTPeerWireClientHandlerBase class handles the communication between 

peers and instance of this class is created for each connection between peers at both 

ends of the connection. 

For dynamic BitTorrent node deployment in the network, the OMNet++ BitTorrent 

module make use of the OverSim [30], which is P2P simulator implemented on 

OMNet++. For the node arrival process, BitTorrent node arrival process proposed in 

[29] is used. 

It should be noted that a BitTorrent seeder is implemented as a separate node called 

BTHostSeeder and only one seeder is supported, which is initially deployed in the 

network along with the tracker. Having only one seeder is a limitation of the 

OMNet++ BitTorrent module. 
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Figure 2.6: BitTorrent module architecture [14]. 
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2.7 Summary 

This chapter explained computer worms, P2P overlay networks, existing solutions for 

preserving privacy in P2P networks, existing peer-assisted patch distribution solutions 

and existing solutions for preserving privacy of patch sharing peers in peer-assisted 

patch distribution. It was highlighted that only existing solution for preserving privacy 

in peer-assisted patch distribution, is not sufficiently robust in terms of performance. 

The OMNet++ based BitTorrent module, which is used carry out simulations in this 

work, was described as well. The following chapters utilize the theory presented in 

this chapter to build up a novel peer-assisted patch distribution system. 
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Chapter 3  

Methodology 
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This chapter describes the implementation of the proposed peer-assisted patch 

distribution system. The chapter starts by presenting the solution overview (Section 

3.1) and system overview (Section 3.2). Section 3.3 presents pseudo-downloaders, 

their selection and their behaviour. Section 3.4 describes modifications that are 

required at the tracker to implement the proposed patch distribution system. Finally, 

chapter concludes by presenting suggested modifications to the BitTorrent protocol in 

Section 3.5 and operational constraints of the proposed system in multi-tracker 

environment in Section 3.6. 

 

3.1 Solution Overview 

We propose a peer-assisted patch distribution system which is based on the most 

popular P2P file sharing protocol, BitTorrent [12]. BitTorrent peers who shares a 

particular file is collectively known as a swarm. We adopt the BitTorrent protocol, by 

introducing minor modifications, such that it would not expose patch sharing peers to 

each other and it would prevent interaction between vulnerable peers and attackers. 

Attackers are the peers who are infected with the topological worm. The proposed 

patch distribution system is supposed to be utilized by multiple software vendors at 

the same time. A set of non-vulnerable peers, that do not have the vulnerability 

addressed by the patch, are inserted into the swarm to avoid the direct contact between 

patch sharing peers. We term these peers as pseudo-downloaders. Such none 

vulnerable peers anyway exist in the patch distribution system as the proposed patch 

distribution system is utilized by multiple software vendors. For example, for a 

Windows patch, peers who share a Linux patch or update could be selected as pseudo-

downloaders. Instead of connecting directly, peers are connected with each other 

through pseudo-downloaders. Therefore, pseudo-downloaders act as intermediate 

hops while facilitating the file transfer between patch sharing peers and as such, peers 

who actually share the patch are not exposed to each other. As these pseudo-

downloaders are not vulnerable, the worm cannot exploit pseudo-downloaders. 

Therefore, pseudo-downloaders would not become infected by the worm, and as a 

result pseudo-downloaders would not become attackers. Thus, vulnerable peers are 

protected from the topological worm as vulnerable peers would not connect with an 

infected peer. 
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These pseudo-downloaders are selected randomly by the tracker and a peer cannot 

deliberately elect itself as a pseudo-downloader. Tracker plays the role of placing the 

pseudo-downloaders as intermediate hops between patch sharing peers. When a patch 

sharing peer requests a peer list from the tracker, tracker only sends a set of pseudo-

downloaders and when a pseudo-downloader requests a peer list from the tracker, 

tracker sends a mix of pseudo-downloaders and patch sharing peers. Therefore, a 

patch sharing peer would never know about other patch sharing peers and even 

randomly selected pseudo-downloaders cannot differentiate peers who share the patch 

actually from other pseudo-downloaders. Thus, the privacy of patch sharing peers is 

preserved. 

 

3.2 System Overview 

3.2.1 Selection of P2P File Sharing Protocol 

As stated in the problem statement the goal of this research is to design a peer-assisted 

patch distribution system which alleviates the address exposure problem. File sharing 

protocol among peers plays a key role in a peer-assisted patch distribution system. We 

had two design options when selecting P2P file sharing protocol. First option was to 

design a brand new P2P file sharing protocol and second option was to use an existing 

well-established P2P file sharing protocol. If new P2P file sharing protocol was 

introduced, its effectiveness and practical usefulness should be validated thoroughly, 

and it is not a trivial task. Moreover, building a sufficiently large user community with 

both the peers interested in a particular software and of the pseudo-downloaders 

would be difficult due to network effect where users tend to stay in a large well-

known network than adopting a new unknown network. As there are several well 

established file sharing protocols available at present we decided to select an existing 

P2P file sharing protocol. 

BitTorrent [12] is the most popular and successful P2P file sharing protocol to the 

date. Organizing peers who share the same file into a single P2P overlay, providing 

fast download rates by allowing peers to download multiple chunks of the file 

concurrently from multiple sources, rarest first chunk scheduling and discouraging 

free-riding by introducing an tit-for-tat incentive mechanism were the main reasons 

for success of BitTorrent over early P2P file sharing protocols [29]. Therefore, in the 
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proposed peer-assisted patch distribution system BitTorrent is used as the file sharing 

protocol between peers. However, we adopt the BitTorrent protocol by introducing 

minor changes to the BitTorrent protocol to prevent the address exposure problem. 

The modifications introduced to the BitTorrent protocol is described in Section 3.5. 

We note that, even though our work is based on BitTorrent, techniques we have 

introduced in this research can also be used with other P2P file sharing protocols. In 

that case, the role of the BitTorrent tracker needs to be fulfilled by some other central 

component which assists peers to discover each other.  

 

3.2.2 High-Level Architecture 

A key feature of the proposed peer-assisted patch distribution system is its ability to 

download patches of all kinds of software from various vendors through a single 

system. Figure 3.1 shows the high-level architecture of the proposed patch distribution 

system. The patch distribution system contains three main components, which are 

patch distribution servers, a tracker, and client computers. Central patch distribution 

servers assume the same role as in a traditional patch distribution system. In addition 

to that, as in other peer-assisted patch distribution systems [4], [7], central server 

might direct clients to download the patch from the P2P network if it is busy. Tracker 

assumes the same role as in an ordinary BitTorrent P2P network. Tracker hosts 

torrents of software patches and updates from many vendors and there could be 

multiple trackers, if one tracker cannot handle the load. Figure 3.1 shows an example 

setup with a tracker, two patch distribution servers for software X and Y, and clients 

who installed with software X, Y and both. 
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Figure 3.1: Basic components of the patch distribution system. 

 

3.2.3 P2P Client Application 

Client computers are installed with a P2P client application to download the software 

patches and updates in P2P style. Both the tracker and the P2P client application run 

the modified version of the BitTorrent protocol. The P2P client application installed in 

client computers is used to download software patches for multiple software installed 

on the client machine as proposed patch distribution system is intended to download 

software patches from many software vendors. The P2P client application provides a 

service to other software installed on the client machine to download software patches 

and updates through the P2P network. Other software installed on the client machine 

register themselves with the P2P client application as it needs to know the details of 

software and their versions installed on the client machine. Why these details are 

necessary will be described in Section 3.3.3. Once software installed on client 

machine needs to download a patch from the P2P network, it notifies the P2P client 

application with corresponding torrent file which it obtained from the central patch 

server after polling the central server. Once the patch or update file download is 

complete P2P client application will notify back to the relevant software to install the 

patch. 
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3.2.4 Node States  

When particular software vulnerability is considered, client machines in the Internet 

have several states with respect to the particular vulnerability. We define four such 

states. Those states are: 

1. Vulnerable – Any node that has the vulnerability and has not installed the 

patch is in vulnerable state. 

2. Infected – If a vulnerable node infected with the worm before applying the 

patch, it goes to the infected state. We assume that the infection cannot be 

cleaned by applying the patch. This is a reasonable assumption because in 

most cases patches only fix the vulnerability and do not targeted for cleaning 

adversaries which have exploited the vulnerability. Thus, once a node is 

infected it will remain infected even if the vulnerability has been fixed by 

applying the patch. 

3. Immune – Once a vulnerable node is installed with the patch before it gets 

infected it goes to the immune state. 

4. Not-vulnerable – There are nodes that do not have the vulnerability addressed 

by the patch because they are not installed with the particular software which 

has the vulnerability. Therefore, those nodes are in not-vulnerable state. 

 

3.2.5 Attack Model 

The main attacker we consider in this work is a topological worm which exploits the 

vulnerability fixed by the patch which is being distributed in P2P fashion. Therefore, 

we treat any peer that has been infected by the worm as an attacker. Infected peers 

would try to attack every peer known to them. That means an infected peer will attack 

the remote peer of every established connection. This could be the worst-case attack 

model, however by assuming this model we show that our solution is resilient against 

such an attack model as well. Thus, in our experiments, we assume that a node would 

become infected if it connected with an already infected node. Note that as previously 

stated, we assume that node infections cannot be cleaned by applying the patch. This 

implies the fact that there could be attacking peers who have fixed their vulnerability 

and also have the complete patch. 
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In addition to topological worms, proposed peer-assisted patch distribution system 

should provide the protection against attackers who attempt to discover which peers 

share which patches. By doing so, those attackers can determine which software are 

installed on which nodes. If an attacker can build such an association between peers 

and installed software on those peers, that will be a threat to the privacy of patch 

sharing peers. Note that, to defend against topological worms, only vulnerable peers, 

i.e., peers without the complete patch, need to be protected. However, to protect from 

attackers who attempt to build an association between peers and installed software on 

those peers, privacy of all peers in the system, including peers who have fixed their 

vulnerability, should be preserved. Thus, another type of attacker we consider in this 

research is an attacker who attempts to determine patch interest of peers. These 

attackers might attempt to achieve their goal either by participating in the swarm and 

establishing connections with other peers as a regular peer or they might query the 

tracker to get a list of peers who shares a particular patch. 

 

3.2.6 Node Classification 

For analysis purposes and to build up the solution we attempt to identify the possible 

attackers who are infected with the topological worm. Therefore, we present following 

arguments: 

1. Attackers are the peers who are in the infected state. 

2. Any peer who has the vulnerability could be attacker because it might be 

already infected with the topological worm. 

3. Peers who downloaded the complete patch and fixed their vulnerability might 

be attackers as well, due to the fact that infection cannot be cleaned by 

applying the patch. 

4. From point 2 and 3, it is clear that any peer that has or had the vulnerability 

could be an attacker because it might be already infected with the topological 

worm. 

5. Any peer who has showed an interest on downloading the patch could be 

vulnerable because it is looking for patch to fix its vulnerability. 

6. From point 4 and 5, it can be derived that, any peer who has showed an interest 

on downloading the patch could be an attacker. 
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7. Furthermore, if some peer has not showed any interest on the patch, implies 

the fact that probably it is not installed with the vulnerable software and could 

not be infected with the worm. 

Thus, by considering the past interests of peers we analytically classify them into two 

categories as: 

1. Probable attackers – Probable attackers are the peers who have showed an 

interest about the patch. i.e., any peer participating in the swarm in which the 

patch is shared could be an attacker. 

2. Probable benevolent peers – Probable benevolent peers are the peers who have 

not showed any interest about the patch until now. Therefore, peers who are 

not sharing the particular patch are most probably benevolent. However, there 

could be peers who have the vulnerability, but not showed any interest on 

downloading the patch yet. Therefore, when designing the solution we 

consider the fact that there could be attackers in the probable benevolent peer 

population as well. 

 

3.3 Pseudo-Downloaders 

In the proposed patch distribution system, exposure of peers to each other is prevented 

by introducing a set of peers to the swarm, which are called pseudo-downloaders. A 

pseudo-downloader (Ps) act as an intermediate hop between the patch sharing peers to 

prevent direct interaction between patch sharing peers while facilitating file transfer. 

Vulnerable peers only connect with pseudo-downloaders to protect themselves from 

probable attackers and pseudo-downloaders freely connect with other peers in the 

swarm. Figure 3.2 illustrates connections between two peers with and without pseudo-

downloaders. We denote normal downloaders as true-downloaders or true-peers to 

distinguish from them pseudo-downloaders. 
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Figure 3.2: Connection between peers; (a) without pseudo-downloaders (b) with 

pseudo-downloaders. 

 

Note that, pseudo-downloaders do not act as relays to facilitate file transfer between 

patch sharing peers. However, they download the file independently as any other peer 

in the swarm even though they are not interested in the file; hence named pseudo-

downloader. As pseudo-downloaders also download the file, vulnerable peers who are 

connected to pseudo-downloaders, can request required pieces from pseudo-

downloaders and complete their file download process. 

 

3.3.1 Pseudo-Downloader Selection  

Pseudo-downloaders are selected from probable benevolent peers, i.e., pseudo-

downloaders are selected from peers that do not share the particular patch in the P2P 

network. Therefore, for the patch PX, which is targeted for software X, pseudo-

downloaders are selected from peers who share some other patch or update which is 

not targeted for software X. For instance, as a pseudo-downloader for a Windows 

patch, peers who share a Linux patch or update could be selected. This is possible 

because the proposed peer-assisted patch distribution system is used to distribute 

patches of many software vendors. Pseudo-downloaders are selected from probable 

benevolent peers, to ensure that pseudo-downloaders are not attackers and pseudo-

downloaders are not vulnerable as well. Pseudo-downloaders’ benevolence and 

security are assessed more thoroughly in Section 3.3.4.  

Tracker selects pseudo-downloaders by examining which peers are registered for 

which torrents. In the proposed patch distribution system, tracker has information 

about targeted software of each patch or update hosted by the tracker. Therefore, 

tracker can select pseudo-downloaders for a particular patch simply by examining its 
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local data. How tracker’s data structures are arranged will be described in Section 

3.4.1.  

Size of the peer population that could be selected as pseudo-downloaders could be 

huge. Thus tracker randomly selects only a subset from this population as pseudo-

downloaders. We term this as pseudo-downloader pooling at tracker. As tracker 

selects small set of peers as pseudo-downloaders from a large population, no peer will 

be able to deliberately elect itself as a pseudo-downloader for a particular patch. This 

act as a good security measure against attackers, who are not necessarily peers 

infected with the topological worm, but who try to enter into the pseudo-downloader 

population of a particular patch deliberately, to carry out malicious activities. 

 

3.3.2 Pseudo-Downloader Insertion into the Swarm 

Tracker inserts pseudo-downloaders to the swarm by including them in the peer list of 

the tracker response. When a vulnerable peer requests a peer list from the tracker, 

tracker only includes pseudo-downloaders into the peer list. Then instead of 

connecting with true downloaders in the swarm, vulnerable peers will only connect 

with pseudo-downloaders to obtain the patch. Once a peer receives such connection 

for a torrent, for which it does not share, the peer will start to participate in the swarm 

as a pseudo-downloader. Therefore, by inserting a set of peers who do not share the 

patch in to the peer list, they will start to participate in the swarm as pseudo-

downloaders. Once a pseudo-downloader has joined the swarm, it will query the 

tracker to obtain a list of peers to download file pieces just as any other peer. 

However, when sending a peer list to a pseudo-downloader, tracker sends mix of 

seeders and pseudo-downloaders in the peer list. Therefore, pseudo-downloaders will 

connect with seeders and other pseudo-downloaders and act as a bridge between 

seeders and vulnerable peers who does not have the complete patch. When, 

responding to a pseudo-downloader, tracker includes a mix of pseudo-downloaders 

and seeders in order to preserve the privacy of seeders. If tracker only sent details of 

seeders to a pseudo- downloader, the pseudo-downloader would be able to accurately 

determine peers participating in the swarm. Leechers do not have the complete patch 

and they are guaranteed to be vulnerable. As such, leechers are never included in the 

peer list by the tracker. As result of above actions, an overlay with connections 

between peers as shown in the Figure 3.3 is formed when sharing a patch. 
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Figure 3.3: Connections between peers while using pseudo-downloaders. 

 

3.3.3 Behaviour of Pseudo-Downloaders 

Consider a Peer A, which is interested in Patch X. When A requests a peer list from the 

tracker, tracker will include pseudo-downloaders into the peer list. Suppose Peer B 

which is sharing another torrent but not Patch X, has been inserted into the peer list as 

a pseudo-downloader. After receiving the peer list from the tracker, A will start to 

connect with peers in the peer list. As a result A will also initiate a connection to B, 

and then A will send a hand-shake message to B. When a peer receives a connection 

from another peer, how that connection is handled by the connection reception peer, in 

this particular case Peer B, is shown in Algorithm 3.1.  
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In BitTorrent, the handshake message contains the info-hash of the torrent. Upon 

reception of the handshake message Peer B first checks whether it is sharing the 

particular torrent, using the info-hash of the received handshake message. This action 

is shown line 3 in Algorithm 3.1. If B is sharing the torrent already as a pseudo-

downloaders or a true downloader, it will add the new connection to the torrent and 

then proceed to exchange pieces with the new peer after sending a reply handshake 

message. Those steps are shown in line 14-16. In this particular instance, peer B is not 

sharing the requested info-hash and that info-hash is unknown for B. Therefore, 

condition in line 3 evaluates to false. The default behaviour of BitTorrent is to drop 

the connection when a connection for unknown info-hash (i.e., unknown torrent) is 

received. However, in our solution pseudo-downloaders always receive connections 

for unknown torrents and they require accepting those connections to assist other 

peers to hide themselves from attackers. Therefore, we modified this default 

BitTorrent behaviour such that when a peer receives a connection for unknown 

torrent, instead of dropping the connection, the peer will start to share (i.e., start to 

download) the specified torrent as a pseudo-downloader. 

Thus, when Peer B receives the handshake message from Peer A, B starts to download 

the Patch X, even if X is not relevant to B. This scenario is called as, Peer B is acting 

as a pseudo-downloader. However, in order to participate in the swarm for Patch X, 

Peer B needs to know, the torrent file of the patch, as at this point B only knows the 

info-hash. Therefore, B sends a message to A asking the torrent file of the requested 

info-hash on the same connection. This is shown in line 4. Then in response Peer A 

sends the torrent file for the X which is shown in line 5. Now Peer B has all the 
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information to participate in the swarm as a pseudo-downloader for Patch X. This 

approach reduces the load on the central patch distribution server(s) as a pseudo-

downloader does not need to obtain the torrent file again. Moreover, this does not 

reveal any extra information about the presence of peers as A is already aware of 

pseudo-downloader B. 

Even though Peer B was not sharing Patch X, there is a possibility that B also has the 

vulnerability addressed by X. For an instance, B might be unaware of the release of 

Patch X yet. If that is the case, if B start to share the patch as a pseudo-downloader, it 

might also get attacked, because pseudo-downloaders are always exposed to probable 

attackers. Therefore, before participating as a pseudo-downloader in the swarm for 

Patch X, B must make sure that it does not contain the vulnerability addressed by X. In 

the proposed patch distribution system, torrent file contains the targeted software 

name and the version of the patch. Furthermore, P2P client software has details (i.e., 

software names and their versions) of installed software on the system. Thus, after 

receiving the torrent file from A, B can safely determine whether it requires Patch X, 

by comparing the target software details of the patch with its current software details. 

This is shown in line 7 in Algorithm 3.1. If patch is required for B, instead of 

participating in the swarm as a pseudo-downloader B will start to download the patch 

as a true-downloader. This is shown in line 8. 

If Patch X, is not required by B, it starts to participate in the swarm as a pseudo-

downloader. As the name implies, pseudo-downloaders participate in the swarm just 

as any other peer, even though the patch is not required for them. Pseudo-downloaders 

send piece requests to other peers and supply pieces to other peers as they request. If 

pseudo-downloader stayed in the swarm for a sufficient time it might download the 

whole patch as well. There are two differences between a true downloader and a 

pseudo-downloader. First, pseudo-downloaders and true downloaders use different 

parameters in tracker request message. In our solution we have introduced a new field 

to tracker request message, which is “isPseudoDownloader” field. Pseudo-downloader 

flag indicates to the tracker that, this particular peer is a pseudo-downloader. Pseudo-

downloaders set isPseudoDownloader flag and true downloaders do not. It helps 

tracker to identify who are pseudo-downloaders and who are true peers. Second 

difference between a true peer and a pseudo-downloader is that once there are no 

connections initiated by other peers for the particular torrent (i.e., Patch X in this 
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example) pseudo-downloader will stop sharing the particular patch. That means 

pseudo-downloader will tear down all the connections it has initiated for that 

particular torrent and stop sending tracker request messages to the tracker for that 

particular torrent. This is because, it will be a waste of resources to participate in a not 

interested swarm once there are no true peers to serve. 

How a peer behaves when it is acting as a pseudo-downloader is shown in Algorithm 

3.2. First, the peer will initialize the torrent as shown in line 3. This step includes 

creating necessary memory and data structures for the torrent. Then the peer handles 

the connection it received, which triggered the process of participation as a pseudo-

downloader. This is shown in lines 4-6. Then the peer enters a loop where it sends 

tracker requests, initiate connections with the peers in the peer list and exchange 

pieces with those peers. This is shown in lines 8-25. Note that the peer sets the 

isPseudoDownloader flag to true, in the tracker request as shown in the line 10 as it is 

a pseudo-downloader. Furthermore, once there are no connections initiated by other 

peers for the particular torrent, it will stop the participation in the torrent as shown in 

lines 20-23. 

How a peer behaves when it is acting as a true-downloader is shown in Algorithm 3.3. 

First, the peer will initialize the torrent as shown in line 2. Then the peer enters a loop 

where it sends tracker requests, initiate connections with the peers in the peer list and 

exchange pieces with those peers. This is shown in lines 3-14. As shown in line 4 the 

peer sets the isPseudoDownloader flag to false because it is a true-peers. Note that 

peer will continue to participate in the swarm even after the download is complete, as 

it can act as a seeder after the download is complete. 
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3.3.4 Assessment of Benevolence and Safety of Pseudo-downloaders 

This section describes how the proposed patch distribution system ensures the safety 

of pseudo-downloaders and their benevolence. In order to maintain the safety of the 

peer-assisted patch distribution system pseudo-downloaders should fulfil the 

following two requirements: 
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1. For their own protection pseudo-downloaders should not be vulnerable. 

Otherwise pseudo-downloaders will be attacked as they freely connect with 

other peers in the swarm. 

2. For the protection of vulnerable true downloaders, pseudo-downloaders should 

not be attackers.  

By selecting pseudo-downloaders from probable benevolent peer population, above 

two requirements are satisfied as follows. Probable benevolent peers are the peers who 

have not showed any interest about the particular patch until now, as described in 

Section 3.2.6. They are not interested about the patch probably because they are not 

vulnerable and not installed with the particular software. Thus, by selecting pseudo-

downloaders from probable benevolent peer population we almost satisfy the 

requirement of pseudo-downloaders should not be vulnerable. Nevertheless, there is a 

possibility that there could be vulnerable peers in the probable benevolent peer 

population even though they have not shown any interest regarding the patch until 

now. Thus, there may be vulnerable peers in the selected pseudo-downloader 

population. Nevertheless, when a pseudo-downloader received the first connection 

from a true peer, the pseudo-downloader first requests the torrent file from the true 

peer prior to taking any other action. The torrent file contains the targeted software 

name and the version. Therefore, pseudo-downloader can safely determine whether it 

requires the particular patch by comparing details in torrent file and details about 

locally installed software. If pseudo-downloader is vulnerable, it will find out that 

patch is required for itself and instead of participating in the swarm as a pseudo-

downloader, it will participate in the swarm as a true downloader. Thereafter, tracker 

will no longer use that peer as a pseudo-downloader, as the peer is already 

participating in the swarm as a true peer. To summarize, even though vulnerable peers 

are selected as pseudo-downloaders, they will be removed from the pseudo-

downloader population as soon they started to participate in the swarm, causing 

minimal harm to pseudo-downloaders. 

Mainly attackers that are considered in this work are the peers that are infected with 

the topological worm. In addition, infected peers are a subset of vulnerable peer 

population as only vulnerable peers can become infected. Hence, by selecting pseudo-

downloaders from non-vulnerable population, the second requirement, which is 

pseudo-downloaders, should not be attackers, is satisfied as well. Still, there could be 
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vulnerable peers among pseudo-downloaders, and in turn there might be infected 

peers among pseudo-downloaders. In this work it is assumed that even if a peer is 

infected, the worm will not be able to influence the patch downloading process 

because they are independent to each other. Thus, when an infected peer is selected as 

a pseudo-downloader, the peer will detect that it needs the patch and will try to 

download the patch as a true downloader as soon as it receives a connection for the 

patch. Then tracker will remove that infected peer from pseudo-downloader 

population as it is already participating in the swarm as a true peer. However, if the 

connection initiator is a vulnerable true peer it will be exposed to the infected pseudo-

downloader. Thus, the time window an infected peer is kept at pseudo-downloader 

population is minimal. Hence, the probability of an attack due to an infected pseudo-

downloader is minimal. We validate this argument through simulations. 

In another case someone might try to place a malicious peer intentionally into the 

pseudo-downloader population to find out patch interest of other peers. This type of 

malicious peer would not seek for the patch and therefore it will never participate as a 

true peer in the swarm. Thus, once such a peer is selected as a pseudo-downloader it 

will not be removed from the pseudo-downloader population as in the case of an 

infected peer with the topological worm. Nevertheless, we note that intentionally 

getting into the pseudo-downloader population is difficult because tracker selects 

pseudo-downloaders from a large population of peers as described in Section 3.3.1. 

However, if such a malicious peer is selected as a pseudo-downloader by chance, even 

such a pseudo-downloader cannot determine which peers share the patch actually. 

This is because, a pseudo-downloader receives a mix of true-seeders and pseudo-

downloaders in the peer list from the tracker. As a result, a pseudo-downloader 

receives connections from true-peers and as well as pseudo-downloaders. Thus a 

pseudo-downloader cannot determine exactly which peers are true-downloaders.  

 

3.3.5 Piece Caching Effect at Pseudo-Downloaders 

As stated previously pseudo-downloaders do not act as relays but they participate in 

the swarm actively even though they are not interested in the swarm. Furthermore, 

Pseudo-downloaders keep the pieces they download until they participate in the 

swarm. This is called piece caching at pseudo-downloaders. Therefore, true peers join 

the swarm lately find all or most of the pieces of the file in the pseudo-downloaders. 
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Because of the piece caching at pseudo-downloaders, a true peer will not experience a 

performance bottleneck due to pseudo-downloaders because a pseudo-downloader 

behaves as another regular peer in the swarm while increasing the collaboration in the 

swarm. 

 

3.4 Modification to the Tracker 

The tracker of the proposed patch distribution system needs to carry out some 

additional tasks than a traditional a BitTorrent tracker. These additional tasks are: 

1. Selecting pseudo-downloaders for a particular torrent. 

2. Managing a pseudo-downloader pool for each torrent and dynamically adjust 

the size of each pseudo-downloader pool corresponding to the true peer count 

in each torrent. 

3. Handling announce-requests from pseudo-downloaders and validating those 

announce requests are from genuine pseudo-downloaders. 

4. Identifying situations where a selected pseudo-downloader starts to participate 

in the swarm as a true peer. In such situations that particular pseudo-

downloader should be removed from the pseudo-downloader pool. 

In order to carry out these tasks tracker of the proposed patch distribution system uses 

a different set of data structures and a different tracker announce request processing 

algorithm than a traditional tracker. How tracker manages its data structures and how 

it processes announce requests will be described in next two sections. 

 

3.4.1 Tracker Data Structures 

A traditional BitTorrent tracker only needs to keep peers associated with each torrent. 

However, the tracker of the proposed patch distribution system needs to manage a 

pool of pseudo-downloaders for each torrent. Moreover, to select pseudo-downloaders 

for a particular torrent, tracker should be aware of the target software of each torrent 

(i.e., each patch). In order to make pseudo-downloader selection efficient torrents 

need to be arranged in such a way that torrents that are not targeted for particular 

software can be straightforwardly discovered. Therefore, data structures of the tracker 

are arranged as shown in Figure 3.4. 
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Tracker keeps a map called “Torrent Map” to maintain associations between the info-

hash and the Torrent Objects. The key of this map is the info-hash and value is the 

corresponding torrent object. Each Torrent object contains the target software details 

of the torrent, the map of true peers who participate in the swarm and the pseudo-

downloader pool selected for the particular torrent. The Torrent Map is used to 

discover the corresponding torrent object when a peer makes an announce request as 

the peer sends the info-hash in the tracker request. In addition to the Torrent Map, 

tracker keeps another map called “Software Map” to discover pseudo-downloaders for 

each torrent. As there could be multiple patches and updates for particular software, 

key of the Software Map is the software name and value is a Patch Map. A Patch Map 

contains mappings of patch name to Torrent Objects. 
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Figure 3.4: Tracker data strucutres. 

 

Hence, when the tracker wants to discover pseudo-downloaders for a particular torrent 

T, tracker first derives the targeted software name X of the torrent. Targeted software 

name is an attribute of the Torrent Object. Then the tracker refers to the Software Map 

to find Patch Maps that are not related to the X. Those Patch Maps contains mappings 

to Torrent Objects that are not related to the X. Then the tracker selects pseudo-

downloaders randomly from those Torrent Objects. However, before adding a selected 

pseudo-downloader Ps, to the pseudo-downloader pool T, the tracker first verifies that 

Ps is not participating in T as a true downloader. This is because peers who do not 

participate in T should be selected as pseudo-downloaders, for the protection of true 

peers and as well as protection of pseudo-downloaders, as specified in Section 3.3.1. 
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3.4.2 Tracker Announce Processing Algorithm 

Both true-peers and pseudo-downloaders send announce requests to tracker for a 

particular torrent. However, tracker needs to differentiate between true-peers and 

pseudo-downloaders to process the announce request properly. Therefore, pseudo-

downloaders set a flag called isPseudoDownloader in the tracker request to notify the 

tracker that a pseudo-downloader is making the announce request. 

isPseudoDownloader is a newly added field to BitTorrent tracker request in the 

proposed patch distribution system. 

Announce processing algorithm of the tracker is shown in Algorithm 3.4. When an 

announce request arrived, tracker first checks whether the sending peer is a true-peer 

or a pseudo-downloader. This is shown in line 3. If it is a pseudo-downloader, tracker 

then checks whether the particular peer is a valid pseudo-downloader. This is done by 

confirming that the particular peer is present in the selected pseudo-downloader pool 

as shown in line 4. Because of this validation, a peer cannot pretend to be a pseudo-

downloader if it has not been selected as a pseudo-downloader by tracker. If it is a 

valid pseudo-downloader, tracker fills a mix of seeders and pseudo-downloaders in to 

the tracker response as shown in line 9 and 10. This mix is a parameter per torrent and 

it is specified as pseudoDownloaderMixFraction. For example, when 

pseudoDownloaderMixFraction = 0.2 and maximum number of peers that is allowed 

fill in to the peer list is 50, then tracker fills 10 pseudo-downloaders and 40 seeders in 

to the peer list. This calculation is shown in line 6 and 7. If there is not enough 

pseudo-downloaders or seeders available, tracker will fill peers accordingly, while 

keeping the pseudo-downloader fraction in the peer list at 0.2. 

If the peer is not a valid pseudo-downloader, tracker sets a failure message in tracker 

response and does not fill any peer into the tracker response. This prevents leaking 

information of patch sharing peers to intruders who try to pretend as pseudo-

downloaders. 

If a true-peer is making the announce request, tracker first checks whether that it has 

already selected the particular peer as a pseudo-downloader as shown in line 16. The 

particular peer might already present in the pseudo-downloader pool if tracker 

selected the peer as a pseudo-downloader before it participates in the particular swarm 

as a true-peer. Even though tracker might select vulnerable peers as pseudo-

downloaders, a vulnerable peer will never participate in the swarm as a pseudo-
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downloader as described in Section 0. Thus, if the particular peer is present in the 

pseudo-downloader pool, tracker removes the peer from the pseudo-downloader pool 

as shown in line 17. After those validations tracker fill only pseudo-downloaders into 

the tracker response. Then at the end of the processing tracker sends the tracker 

response to the client. 

 

 

3.4.3 Pseudo-Downloader Pool Size 

The number of pseudo-downloaders participate in the swarm is exactly the same as 

the size of the pseudo-downloader pool at the tracker. There should be sufficient 

number of pseudo-downloaders in the swarm to service all true-peers in the swarm, 

and if there are excessive number of pseudo-downloaders present in the swarm it will 

be a waste of resources of pseudo-downloaders. The number of pseudo-downloaders 

that should be placed in the swarm should be determined by the number of true-

leechers present in the swarm. This is because if there is large number of true-leechers 

in the swarm, there should be significant number of pseudo-downloaders to service 

them. Therefore, tracker determines the size of the pseudo-downloader pool by 

considering the number of active leechers. Tracker is configured with optimum 

pseudo-downloaders to true-leechers ratio. This ratio is known as pseudo-downloader 
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pooling factor. Hence, tracker dynamically adjust the size of the pseudo-downloader 

pool to keep the pseudo-downloaders to true-leechers ratio constant by adding and 

removing pseudo-downloaders as required. We carry out simulations to find out best 

pseudo-downloader pooling factor. 

 

3.4.4 Security Enforcements by Tracker 

As described previously tracker enforces connections between peers by including 

different types of peers in the peer list when sending the tracker response to different 

types of peers, i.e., true leechers, true seeders and pseudo- downloaders. Furthermore, 

tracker selects pseudo-downloaders randomly. As a result of these enforcements 

following restrictions will be hold in the overlay: 

1.  Tracker selects pseudo-downloaders randomly. Furthermore, when a pseudo- 

downloader requests a peer list from the tracker, tracker first validates whether 

the particular pseudo-downloader is present in the selected pseudo- 

downloader pool. Thus no peer can elect itself as a pseudo-downloader 

deliberately and no peer can pretend to be a pseudo-downloader. 

2. Tracker never includes true leechers, i.e., vulnerable peers or peer without the 

complete patch, in the peer list. Therefore, details of vulnerable peers are not 

published and no peer will be able to discover who are vulnerable peers or 

connect to a vulnerable peer. 

3. When sending the peer list to true leechers, tracker only includes pseudo- 

downloaders in the peer list. Therefore, vulnerable peers only connect with 

randomly selected pseudo-downloaders. As these pseudo-downloaders are 

most probably benevolent, vulnerable peers are rarely exposed to attackers. 

4. When sending the peer list to pseudo-downloaders, tracker sends a mix of 

pseudo-downloaders and true seeders. Therefore, a pseudo-downloader will 

connect with true seeders and other pseudo-downloaders as well. As a result, 

pseudo-downloaders cannot precisely determine the true seeders. Furthermore, 

as a pseudo-downloader receives connections from both vulnerable peers and 

other pseudo-downloaders, a pseudo-downloader cannot determine who are 

vulnerable peers precisely. Thus a pseudo-downloader cannot determine who 

are true peers in the swarm precisely. Therefore, patch interest of true peers is 

concealed from pseudo-downloaders as well. 
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5. When a seeder makes an announce request, tracker does not include any peer 

in the list. This is because, seeders have the complete patch and they do not 

need to initiate connections anymore. Therefore, a seeder will not be able to 

discover any other true-peer in the swarm. 

As a result of above restrictions kept in the overlay, a true-peer will never be able to 

discover or will never get exposed to another true-peer participating in the overlay. 

Furthermore, even randomly selected pseudo-downloaders cannot determine who are 

true downloaders. Thus, the privacy of patch sharing is preserved, while preventing 

exposure of vulnerable peers to probable attackers. 

 

3.5 Suggested Modifications to BitTorrent Protocol 

In the proposed peer-assisted patch distribution system, three extensions are 

introduced to the BitTorrent protocol. Even though these extensions are mentioned in 

previous sections, they are described here as well, to be more detailed. 

1. An additional field called isPseudoDownloader is added to tracker request 

message. This field helps tracker to identify whether a true peer or pseudo-

downloader is making the announce request. When pseudo-downloaders send 

the tracker request, they set this field to true and when true-downloaders send 

tracker request they set this field to false. 

2. An additional message exchange is introduced between peers, such that a peer 

is able to request and obtain the meta-info file or the torrent file from another 

peer. When a peer wants to obtain the torrent file for a particular info-hash it 

sends a Torrent-File-Request message to another peer who already have the 

torrent file. Torrent-File-Request message contains the info-hash of the 

required torrent file. When a peer receives a Torrent-File-Request message, it 

replies with the Torrent-File-Response message which contains the requested 

torrent file. Another alternative is to download the torrent file similar to any 

other files in the P2P overlay. However, this would introduce more overhead 

and latency as the typical file download process has to be followed. 

3. The default behaviour of BitTorrent is to drop the connection when a 

connection for unknown info-hash is received. However, in the proposed patch 
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distribution system a peer starts to participate in the particular torrent as a 

pseudo-downloader if the info-hash is unknown.  

 

3.6 Operational Constraints in Multi-Tracker Environment 

As user base grows one tracker might not be able to handle the load. Furthermore, 

there should be multiple trackers in the proposed patch distribution system to prevent 

a single point of failure. However, there is a constraint in the proposed peer-assisted 

patch distribution system when multiple trackers are present in the network. 

This constraint is that, one peer should communicate with only a single tracker at any 

given time instant for its every torrent it downloads. The reason for this is that a 

tracker might select a peer as a pseudo-downloader for a particular patch while the 

peer is already sharing the patch as a true-peer with another tracker. For instance if a 

peer registered with two trackers for two separate torrents in the same time, first 

tracker might select the peer as a pseudo-downloader for the second torrent, for which 

the peer is already registered with the second tracker as a true peer. Therefore, if a 

peer communicates with many trackers at the same time it might get exposed to 

attackers while sharing patches in the P2P network, because the peer might get 

selected as a pseudo-downloader while it is vulnerable. However, as every P2P patch 

download is launched through the P2P client application of the proposed solution, this 

constraint can be straightforwardly overcome by developing the P2P application in 

such a way that, at any given time frame it communicates with only a single tracker 

for all of its patch downloads. Exploration of a more comprehensive solution for this 

problem is left as future work. 

 

3.7 Summary 

This chapter described the design of the proposed peer-assisted patch distribution 

system. As the P2P file sharing protocol in the proposed solution, BitTorrent P2P 

protocol is used with minor modifications. A set of non-vulnerable peers which are 

called pseudo-downloaders, are used to preserve privacy of patch sharing peers. These 

pseudo-downloaders, act as intermediate hops between patch sharing peers. Pseudo-

downloaders are selected from peers who do not share the particular patch in the P2P 

network and pseudo-downloader selection is done by tracker. To preserve the privacy 
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of patch sharing peers, tracker regulates connections between peers by responding 

with different types of peers in the peer list for different types of peers. For a true-

leecher tracker only responds with pseudo-downloaders, for a pseudo-downloader 

tracker responds with mix of true-seeders and pseudo-downloaders and for a seeder 

tracker does not include any peer in the peer list. Tracker keeps a pool of pseudo-

downloaders and size of the pseudo-downloader pool is a multiple of currently active 

true-leecher count. As tracker might select vulnerable peers as pseudo-downloaders, 

before participating in a swarm as a pseudo-downloader, a peer first checks whether 

the particular patch is applicable for it. If the patch is applicable to itself, instead of 

participating in the swarm as a pseudo-downloader, the peer participates in the swarm 

as the true-downloader. As soon as a selected pseudo-downloader started to participate 

in the swarm as a true-peer, tracker removes that peer from the pseudo-downloader 

pool. Therefore, the time window a vulnerable or an infected peer is kept in the 

pseudo-downloader pool is minimal. Next chapter presents and analyses the 

performance of the proposed peer-assisted patch distribution system. 
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Chapter 4  

Performance Evaluation 
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To demonstrate the effectiveness of the proposed patch distribution system we 

performed an extensive set of simulation-based experiments. We simulated the 

proposed solution using OMNet++ [13] simulation framework. An existing BitTorrent 

module [14] for OMNet++, which was described in Section 2.6 is used to simulate a 

BitTorrent P2P network. 

This chapter presents the evaluation methodology of the proposed patch distribution 

system and the results of the evaluation. The chapter is organised as follows. Section 

4.1 describes the extensions made on the OMNet++ BitTorrent module. Section 4.2 

describes about the experimental setup and the parameters that are used in 

simulations. Performance metrics are described in Section 4.3. Next, few subsections 

describe the experiments that are performed to validate the effectiveness of the 

proposed patch distribution system. 

 

4.1 Extensions Made to OMNet++ BitTorrent Module 

We extended the OMNET++ BitTorrent module to accommodate our solution. For 

this purpose several existing modules were extended. Names of these extended 

module and classes are appended with “SPD” (Secure Patch Dissemination) in order 

to distinguish them from original names.  

A P2P node in our simulation model is represented by BTHostSPD module. The 

BTHostSPD module is extended from original BTHost module in OMNet++ 

BitTorrent simulation module. BTHostSPD module contains several sub-modules 

which are; Tracker-Client-SPD, Peer-Wire-SPD, Vulnerable-Software and Worm 

modules as shown in Figure 4.1. Tracker-Client-SPD module handles the 

communication with the tracker. Tracker-Client-SPD module is extended from 

original Tracker-Client module and this extension is made to accommodate the 

modification of the tracker request message. Peer-Wire-SPD module handles the 

peer–wire protocol which is the protocol between peers. Peer-Wire-SPD module is 

extended from the original Peer-Wire module. Peer-Wire-SPD module handles several 

functionalities; i) torrent file exchange between peers which happens when a pseudo-

downloader do not have the torrent-file, ii) notify the patch download completion to 

the Vulnerable-Software module and iii) implement functionalities of the pseudo-

downloader. Peer-Wire-SPD module communicates with the Tracker-Client-SPD 
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module to initiate the communication with the tracker and then to obtain the tracker 

response message which contains the peer list. Tracker-Client-SPD module and Peer-

Wire-SPD module collectively represent the P2P application installed on a P2P node. 

 

TCP/IP Protocol stack

Tracker-Client-SPD Peer-Wire-SPD 

Vulnerable-
Software

Worm

BTHostSPD

 

Figure 4.1: BTHostSPD OMNet++ simulation module. 

Vulnerable software installed on a P2P node is represented by the Vulnerable-

Software module. In order to represent the vulnerability, Vulnerable-Software module 

opens a TCP port to which attacker can connect and exploit the vulnerability by 

sending an attack message. Once the patch download is complete, Peer-Wire-SPD 

module notifies the completion to the Vulnerable-Software module. Subsequently, 

Vulnerable-Software module closes the TCP port to represent the fix of the 

vulnerability. Therefore, attackers cannot exploit the node once the patch download is 

complete. If some node is not vulnerable, Vulnerable-Software module is not 

activated and it does not open the TCP port, and as such, an attacker cannot exploit a 

non-vulnerable node. 

If Vulnerable-Software module receives an attack message, it activates the Worm 

module. Worm module represents the topological-worm and a node is treated as 

infected if the Worm module of the node is active. When the Worm module is active, 

it obtains the address of every node connected to its occupying node from Peer-Wire-

SPD module. Then Worm module connects to the TCP port of the Vulnerable-

Software module of each of these remote nodes. If the remote node is vulnerable this 

connection will be successfully established and will be failed otherwise. If connection 
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is successful, Worm sends the attack message to the Vulnerable-Software module 

which simulates the exploitation of the vulnerability. Furthermore, Worm module is 

always notified when a new connection is established such that Worm module is 

always aware of the established connections of its parent node. This behaviour of the 

Worm module closely simulates the epidemic distribution of the topological worm.  

 

4.2 Experimental Setup 

In experiments, we assume all clients obtain the patch from the P2P network, except 

one node, which acts as the initial seeder. By assuming this fact we perform our 

experiments for the worst-case node exposure scenario, because every node has to use 

the P2P network in order to obtain the patch instead of using the central server. 

Therefore, there is no central server present in the simulation network. There is only 

single tracker present in the network.  

There are two types of peers in the simulation network. First type is true peers, who 

are interested about the patch which we distribute though the P2P simulation network. 

We denote this patch as the primary patch as all measurements are taken with respect 

to this patch. Second type is the peers who are not interested in the primary patch but 

registered with the tracker for another patch file. These peers will be selected as 

pseudo-downloaders by the tracker. But these pseudo-downloaders might also become 

interested about the primary patch if they found out that they require the primary 

patch. In such a scenario their role will be switched to true-peers. 

True-peers start to download the patch as soon as they have started. Therefore, these 

nodes should be created and started to reflect a real world node arrival process in a 

BitTorrent network. We use arrival process proposed in [29]. In [29] authors propose 

a peer arrival process based on a tracker trace analysis study. Authors propose peer 

arrival rate in BitTorrent follows an exponentially decreasing rule with time t, 

 𝜆(t) =  𝜆0 𝑒−𝑡/𝜏 (4.1) 

where λo is the initial peer arrival rate and τ is the file popularity. In [29] it is shown 

that N = λoτ where N is the total peer population size. Thus, the only configurable 

parameter of this arrival process is initial peer arrival rate. We use initial arrival rate of 

0.001666 peers per second for both true-peers and pseudo-downloaders as in [14]. We 
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note that the value of this parameter is irrelevant to our final results as we compare our 

results with a typical BitTorrent download and where the parameter is same for both 

the cases. Furthermore, initially only the tracker and the initial seeder are present in 

the network and every other peer joins the network according to the above stated 

arrival process. 

As node leaving pattern in a BitTorrent swarm is highly unpredictable [29], we use a 

uniformly random node leaving pattern in our simulations. We configured true-

downloaders to leave the swarm after a random time which is no more than 100 

seconds once their download is complete. Pseudo-downloaders leave the network after 

some random time which is no more than 2,000 seconds since they started to 

participate in the swarm. Initial seeder stays in the swarm until the end of the 

simulation.  

Unless specified otherwise, we use 1,000 true-peers, one initial seeder and some 

number of pseudo-downloaders depending on the experiment. Even though we run 

most of experiments with 1,000 true downloaders, as we show in Section 4.7 

performance of our solution does not degrade as we scale the number of true 

downloaders. Unless specifically stated otherwise, it is assumed that all pseudo-

downloaders are not vulnerable and there are no infected peers in pseudo-downloader 

population. It is assumed that 5% of vulnerable nodes are initially infected. As number 

of initial infections is unpredictable we also run simulations for different initial 

infected percentages.  

As the underlying network OverSim’s InetUnderlayNetwork is used with 10 backbone 

routers and 100 access routers. These routers are connected to each other with 

10 Gbps links. Each node is connected to one of these access routers with an access 

link. Based on [5] we set upload and download capacity of this access link as 5.56 

Mbps and 13.69 Mbps, respectively. Again we note that network capacities of these 

links are irrelevant as typical BitTorrent download and our solution runs on the same 

network. Placement of nodes in the network is random. A true-downloader establishes 

connections with up to 30 peers. When participating in a swarm as a pseudo-

downloader, a peer might not allocate its resources to the swarm as a true-peer 

because it plays the role of a helper. In our experiments, in order to take this fact in to 

account, a pseudo-downloader establishes connections with only up to 15 peers. 
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In practice, most patches are usually of few hundred kilobytes [4]. Therefore, other 

than in the experiment that runs simulations for various file sizes, we use file size as 

1MB. Typically, we set pooling factor at tracker as five, i.e., tracker keeps the pseudo-

downloader pool size as five times of currently active true-leecher count. In order to 

examine the effect of pooling factor, we run experiments for different pooling factors 

as well. We run every experiment three times and take the average of the results of 

three cases. When the experiment was executed with 500 pseudo-downloaders and 

1,000 true-peers, for ten times average download time was 12.161 seconds. When it 

was executed for three times average download time was 12.533 seconds. As the 

average result of three runs is very close to the average result of ten runs, we selected 

to run three cases for each experiment. We conclude a simulation after all true-peers 

downloaded the patch file. Furthermore, the final infected node count indicated in 

results, only includes infections which occurred during sharing the patch and excludes 

the initial infection count unless specifically stated otherwise. 

Table 4.1: Simulation parameters. 

Parameter Value 

Initial seeder count 1 

Number of trackers 1 

True peer count 1,000 

Pseudo-downloader count Depends on the experiment (default value 

is 500). 

λo (initial peer arrival rate) 0.001666 

Maximum value for true-peer leave 
time 

 100 seconds, after download is complete 

Maximum value for pseudo- 

downloader leave time 

2,000 seconds, after starting to participate 

in the swarm 

Initial seeder leave time Initial seeder stays until the end of the 
simulation 

Initial infected percentage 5% of total vulnerable population 

Backbone router count 10 

Access router count 100 

Bandwidth of links between routers 10 Gbps 

Peer upload capacity 5.56 Mbps 

Peer download capacity 13.69 Mbps 

Maximum connection count for a true-
peer 

30 

Maximum connection count for a 
pseudo-downloader 

15 

File size 1MB 

Pooling factor at tracker 5 
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4.3 Performance Metrics 

The effectiveness of the proposed patch distribution can be quantified by two factors: 

1. Final infection count – How many nodes additionally become infected at the 

end of a patch distribution session for a given number of initial infections. 

2. Average download time – What is the growth of the average download time 

when the proposed patch distribution system is used with respect to the typical 

BitTorrent average download time. 

Our evaluation had several goals. First, we wanted to investigate the effect on the 

download time and final infection count as the pseudo-downloader population size 

varies. Second, we wanted to find an optimal value for the pooling factor at the 

tracker. Third, we wanted to investigate the effect of vulnerable pseudo-downloaders. 

Finally, we wanted to investigate the effectiveness of the solution for different patch 

file sizes. 

We compare the performance of our solution with the original BitTorrent protocol 

used for patch download (similar to downloading any other file) by measuring the 

total final infection count and the average download time. Therefore, throughout our 

experiments, we compare our results with a typical BitTorrent patch download where 

none of our solutions are used. We denote this typical BitTorrent patch download as 

the base-line scenario for our experiments. Only existing work similar to this research 

is [7]. However, we did not compare the results of the proposed solution with [7], as 

assumptions made in [7] are different from our assumptions. For example, in [7] 

authors considered that privacy of patch providing peers, i.e., seeders, is not 

important, whereas in our work we preserve privacy of seeders as well. Moreover, in 

[7] authors did not publish their solutions’ impact on download time. 

Patch download through a typical BitTorrent network without any of our methods in 

effect is considered as the base-line for our results. In a typical BitTorrent network 

with one initial seeder, if 1,000 downloaders downloaded the patch, mean download 

time results in 11.46 seconds and total of 923 peers (92.3%) additionally become 

infected at the end of the simulation when 5% of peers are infected at the beginning of 

the simulation. Therefore, the proposed solution would be effective, if it is capable of 

reducing the infection percentage significantly than 92.3% while achieving a 

download time comparable with 11.46 seconds. 
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4.4 Effect of Pseudo-Downloaders Population 

Effectiveness of our methods depends on the number of available pseudo-downloaders 

while true peers download the file. As there is no correlation between the number of 

peers who are eligible to be pseudo-downloaders and the number of true downloaders, 

we run our simulations for different number of pseudo-downloaders to investigate the 

effect of available pseudo-downloader population size on download time. In this 

experiment we assume that there are no pseudo-downloaders available at the 

beginning and all pseudo-downloaders arrive during the simulation. Similarly in this 

experiment we assume that, none of the pseudo-downloaders are vulnerable or 

infected. Furthermore, we assume that 5% of true downloaders are initially infected. 

The experiment carried out with 1,000 true downloaders and one initial seeder. 

Figure 4.2 shows the effect of pseudo-downloader population size on total infection 

count at the end of a patch distribution session. This infection count excludes the 

initially infected node count of 5% (i.e., 50). While a typical BitTorrent network 

results in 923 infected nodes, our solution produces zero infections at the end of the 

patch distribution in all cases provided that all pseudo-downloaders are not vulnerable 

or not infected. This is because, in our solution if pseudo-downloaders are not 

vulnerable or not infected, a vulnerable true peer never interacts with an infected peer.  
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Figure 4.2: Effect of number of pseudo-downloaders on final infection count. 

Figure 4.3 shows the effect of pseudo-downloader population size on the download 

time. For each pseudo-downloader population size, download time of our solution is 

higher than the typical BitTorrent download time because there is an additional layer 

of pseudo-downloaders between seeders and leechers in the P2P overlay. When 

pseudo-downloader population size is small download time tend to be high. This is 

because when collectively considered there are not enough resources in pseudo-

downloader population to provide service to all true downloaders. When available 

pseudo-downloader population exceeds 50% with respect to true peer population (i.e., 

500 pseudo-downloaders) download time becomes stable. This is because after 500 

pseudo-downloaders there is sufficient number of pseudo-downloaders to service true-

peers and after that increasing the pseudo-downloader population does not make any 

notable difference. With 500 pseudo-downloaders final download time is 12.55 

seconds, which is 9.51% increase from the base-line case of 11.46 seconds. Lowest 

download time, 12.1 seconds observed at 1,000 pseudo-downloaders which is 5.58% 

increase with respect to the base-line case.  

Therefore, we note that our solution is quite effective when none of the pseudo-

downloaders are vulnerable or infected because our solution produces zero additional 

infections and when available pseudo-downloader percentage is at least 50% of true 



-67- 

peer population size download time only increase by 9.5%. Furthermore, we note that 

download time can be further reduced even below the base-line case by increasing the 

pooling factor at the tracker as demonstrated in Section 4.5. 

50% is the minimum pseudo-downloader percentage that produces a download time 

which is competitive with the base-case scenario. Therefore, in experiments where we 

experiment with only a single pseudo-downloader population size, we use available 

pseudo-downloader population size as 50% of true-downloaders (i.e., 500 pseudo-

downloaders). 

 

Figure 4.3: Effect of number of pseudo-downloaders on download time. 

 

4.5 Effect of Pseudo-Downloader Pooling Factor 

Irrespective of the available pseudo-downloader population size, pseudo-downloader 

pool size acts as the upper bound for the number of pseudo-downloaders that 

participate in the swarm at any given instant. In our solution tracker maintains the 

pseudo-downloader pool size as the multiplication of the pseudo-downloader pooling 

factor and the current true-leecher count. Therefore, selecting a proper pooling factor 

at the tracker has a crucial effect on the performance of our solution. In this 

experiment we investigate the effect of the pseudo-downloader pooling factor on the 
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download time. We use all the default parameters specified in Table 4.1, in this 

experiment as well. 

Figure 4.4 shows the effect of pseudo-downloader pooling factor. Every curve for 

different pooling-factors follows the same shape. It is clear from Figure 4.4 that 

download time decreases with increasing pooling-factor. When pooling-factor is ten 

or above, download time is even better than the base-line case. However, we note that 

using higher pooling-factor means that higher number of pseudo-downloaders 

participates in the swarm and more resources of peers are allocated into a swarm for 

which they are not interested. Therefore, it is not recommended to increase the 

pooling-factor arbitrarily. As pooling factor of five is the minimum value which 

produces a download time close to the base case, we recommend using pooling factor 

as five. Furthermore, in next set of experiments we use pooling factor as five. 

Infection count for each pooling factor was zero because pseudo-downloaders are not 

vulnerable or infected, and vulnerable peers only interact with the pseudo-

downloaders. 

 

Figure 4.4: Effect of pseudo-downloader pooling factor on download time. 
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4.6 Swarm Dynamics 

In this experiment we investigate the dynamics of the swarm as peers download the 

patch file. We are particularly interested in how peers arrive to the swarm, complete 

their download and leave the swarm over time. In addition to that, we investigate how 

average download time varies over time. The experiment is performed with 1,000 true 

peers and 500 pseudo-downloaders with none of them are vulnerable or infected while 

5% of true-peers are initially infected. All other parameters remain same as specified 

in Section 4.2. 

Figure 4.5 shows variation of different node counts over time. In Figure 4.5, 

cumulative download completed node count curve closely follow the cumulative 

started node count curve except at the beginning. This indicates that peers complete 

their download in a steady rate which is close to the peer arrival rate and this is a clear 

sign to indicate that swarm progress smoothly. Furthermore, after 100 seconds, active 

node count and seeder node count became stable and cumulative download completed 

node count curve started to follow the cumulative started node count curve. This is 

because, even though there is less number of seeders is initially present in the swarm, 

after 100 seconds, total seeder count is sufficient for peers to complete their download 

without any difficulty. Therefore, this point could be thought as the point where 

swarm enters its steady state and once swarm entered into the steady state, peers 

complete their download in a rate which is similar to the peer arrival rate. 
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Figure 4.5: Variation of number of nodes over time. 

Figure 4.6 shows the variation of average download time over time. Average 

download time closely follows the negative exponential function except when time is 

less than 100 seconds. As stated previously, 100 seconds is the point where the swarm 

enters in to the steady state. Therefore, it can be safely stated that average download 

time varies according to the negative exponential function once the swarm entered in 

to its steady state. When the swarm is started there is only one piece provider which is 

the initial seeder. Then as peers complete their download, number of piece providers 

gradually increases as shown by the completed node count curve in Figure 4.5. 

Therefore, peers who lately join the swarm enjoy more piece availability in the swarm 

and complete their download quickly. This is the reason for the gradual decrease of 

average download time in the swarm. 
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Figure 4.6: Variation of average download time over time. 

 

4.7 Scalability of Proposed System 

As we perform our experiments only for 1,000 peers in most cases, in this experiment, 

we investigate the performance of our system for a large number of peers. This 

experiment is performed with 5,000 true-downloaders while the size of pseudo-

downloader population varies from 500 to 5,000 in 500 steps. We use default values 

for all other parameters as specified in Table 4.1. 

As the base case for this experiment we simulated a BitTorrent network with 5,000 

peers with none of our solutions applied. In a typical BitTorrent network with 5,000 

peers, download time resulted in 21.24 seconds and total additional infection count 

was 4,604 nodes which is 92.08% of the total peer population. With 1,000 peers, in 

typical BitTorrent network, download time was 11.46 seconds and infection 

percentage was 92.3%. Therefore, even in the base case download time increased with 

the true-peer population size and the reason for this as follows. In both cases, where 

the peer population size is 1,000 and 5,000, we used the same initial peer arrival rate. 

However, in the peer arrival process we used, N = λoτ [29] (see Equation 4.1). 

Therefore, as number of peers N increases, file popularity increases and peer arrival 
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rate attenuates slowly over time. Consequently, in the case of 5,000 peers, peers arrive 

to the swarm more rapidly and there are more peers present in the network than the 

1,000 peers case for any given time instant. However, only a single seeder is present 

initially in the network for both cases, and a seeder accepts only a limited number of 

concurrent connections. Therefore, in 5,000 case, many peers experience scarcity of 

some pieces due to the limited number of seeders in the network. Therefore, peers 

complete their download slowly and average download time increases.  

Figure 4.7 shows the variation of download time with the pseudo-downloader 

population size for 5,000 true-peers. Download time curve has the same shape of the 

case where true-peer population size is 1,000 which we described in Section 4.4. 

However in this experiment, even with 1,000 pseudo-downloaders (i.e., 10% out of 

true-peers) our solution achieved a better download time than the base-case. Note that, 

as we described in Section 4.5, with 1,000 true-peers to beat the BitTorrent download 

time, we had to increase the pooling factor more than 10 and pseudo-downloader 

population size had to be more than 60% of true-peer population size. The reason for 

this as follows. In base-case with 5,000 peers, download time increased due to the 

limited number of seeders and the increase of hop count from most leechers to a 

seeder. But in our solution leechers only connect with pseudo-downloaders and 

pseudo-downloaders are connected with seeders. Therefore, every leecher has a seeder 

one hop away and leechers in our solution experience a less piece scarcity than the 

base-case with 5,000 peers. Therefore, in our solution, growth of average download 

time with the peer population size is less than the base case and scalability of our 

solution is better than a typical BitTorrent network.  
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Figure 4.7: Effect of number of pseudo-downloaders on download time for 5,000 true-
peers. 

 

Figure 4.8 shows the variation of the infection count with the pseudo-downloader 

population size for 5,000 true-peers. Similar to the 1,000 true-peers case in Section 

4.4, additional infection count is zero in our solution while base case produces 4,604 

additional infections. 
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Figure 4.8: Effect of number of pseudo-downloaders on final infection count for 5,000 
true-peers. 

 

4.8 Effect of Vulnerable Pseudo-Downloaders 

Previous experiments indicate that as long as there are no vulnerable or infected 

pseudo-downloaders, the proposed patch distribution system behaves quite well 

producing zero infections. In this experiment we explore the effect of the vulnerable 

and infected pseudo-downloaders. We use all the default parameters specified in Table 

4.1. We vary the vulnerable pseudo-downloader percentage from 0% to 50% in steps 

of 10%. As we assume 5% of vulnerable peers are initially infected, the same initial 

infected percentage is assumed for the vulnerable pseudo-downloaders as well. For an 

instance, when 40% of pseudo-downloaders are vulnerable and total pseudo-

downloader population size is 500, there would be 200 vulnerable pseudo-

downloaders and out of that 10 pseudo-downloaders are initially infected. 

In the proposed patch distribution system, pseudo-downloaders are removed from the 

pseudo-downloader pool as soon as they started to participate in the swarm to prevent 

the exposure of vulnerable or infected pseudo-downloaders to the rest of the swarm. 

However, there is a small time window between the time instants where a peer is 
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elected as a pseudo-downloader and the peer is removed from the pseudo-downloader 

pool once it started to participate in the swarm as a true-peer. In this particular time 

window, a vulnerable pseudo-downloader might get attacked by an infected peer or an 

infected pseudo-downloader might attack a vulnerable true-peer and this possibility 

increases as the vulnerable pseudo-downloader percentage increases. Therefore, 

infection count increases with the vulnerable pseudo-downloader percentage as shown 

in Figure 4.9 We note that, in Figure 4.9, the infection count is more of a linearly 

increasing curve than an exponentially increasing curve. 

Furthermore, even when 50% of pseudo-downloaders are vulnerable, additional 

infected node count is 23.33 (fractional part is there because of taking the average) 

which is 1.86% of total vulnerable peer population. Total vulnerable peer population 

size in this case is 1,250 peers which includes 1,000 true peers and 250 pseudo-

downloaders. Therefore, our solution is very effective even when 50% of pseudo-

downloaders are vulnerable. In the base-case total additional infection count was 923, 

which is 97.15% of total vulnerable peer population. We did not indicate base-case 

value in the Figure 4.9 because, if base-case was included in the graph, it increases the 

range of y axis and reduce the focus on the important results.  
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Figure 4.9: Variation of final infection count with increasing vulnerable pseudo-

downloader percentage. 

Figure 4.10 shows download time linearly increases with vulnerable pseudo-

downloader percentage. When vulnerable pseudo-downloader percentage increases, 

effectively available pseudo-downloader population size decreases. For an instance, if 

there are 500 peers initially in eligible pseudo-downloader population and 50% of 

them are vulnerable, only 250 peers will be used as pseudo-downloaders actually. As 

we noted in Section 4.4, when available number of pseudo-downloaders decreases 

average download time increases due to the lack of resources in pseudo-downloader 

population. Therefore, when vulnerable pseudo-downloader percentage increases, 

effectively available pseudo-downloader population size decreases and as a result 

average download time increases. Note that, base-case result indicated in the Figure 

4.10 is only for comparison. In base-case experiment, there are no pseudo-

downloaders or no vulnerable pseudo-downloaders present in the network. 
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Figure 4.10: Variation of download time over increasing vulnerable pseudo-
downloader percentage. 

 

Figure 4.11 shows the vulnerability fixed pseudo-downloader percentage with 

increasing vulnerable pseudo-downloader percentage. Vulnerability fixed percentage 

is taken as the ratio of vulnerability fixed pseudo-downloader count to total vulnerable 

pseudo-downloader count. We note that almost 90% of pseudo-downloaders have 

fixed their vulnerability. The remaining pseudo-downloaders have not fixed their 

vulnerability because tracker has never selected those peers into the pseudo-

downloader pool and they have never participated in the swarm as pseudo-

downloaders. Therefore, we note that selecting a vulnerable peer as a pseudo-

downloader also has a positive side, because that particular peer who was not aware 

about the patch until now becomes aware of the patch and get to download the patch 

early. 
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Figure 4.11: Variation of vulnerability fixed pseudo-downloader percentage with 

increasing vulnerable pseudo-downloader percentage. 

 

 

4.9 Effect of Initial Infection Count 

Next we investigate the effect of initially infected node count on the proposed patch 

distribution system. For this purpose, we vary the initially infected percentage from 

10% - 50% in steps of 10% while keeping all other parameters in default as in Table 

4.1. Initially infected percentage defines how many peers are infected out of the total 

vulnerable population. We record the final additional infection count and present the 

ratio of the final additional infection count to the total vulnerable population size. We 

do not take the initially infected node count into account in the presented results. In 

other words, we present how much percentage of vulnerable peers, those who were 

not infected initially, became infected at the end of a patch distribution session. We 

use this scheme to compare between different cases as with each case the total number 

of vulnerable peers changes. We run experiments for four cases, that are i) base case, 

ii) with 500 pseudo-downloaders while none of them are vulnerable, iii) with 500 

pseudo-downloaders while 10% of them are vulnerable, and iv) with 500 pseudo-
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downloaders while 25% of them are vulnerable. When there are vulnerable peers 

present in the pseudo-downloader population, there will be initially infected peers in 

the pseudo-downloader population as well. We use the same initially infected 

percentage for both true-peers and pseudo-downloaders. Therefore, as explained in 

Section 4.8, if initial infection percentage is 20% and 10% of pseudo-downloaders are 

vulnerable, in a population of 500 pseudo-downloaders there will be 10 (500 × 0.1 × 

0.2) infected pseudo-downloaders initially. 

Figure 4.12 shows the effect of initial infection percentage on final additional 

infection percentage. In a typical BitTorrent network, (i.e., base case) more than 99% 

of peers became infected at every initial infection percentage. When none of pseudo-

downloaders are vulnerable our solution produces zero additional infections because 

as long as there are no vulnerable or infected pseudo-downloaders present, a 

vulnerable peer never interacts with an infected peer in our solution. When there are 

vulnerable pseudo-downloaders present in the network our solution produces some 

infections. This is because proposed solution removes a vulnerable pseudo-

downloader from the pseudo-downloader pool after the peer started to participate in 

the swarm as a true peer. Therefore, there is a small time gap where a vulnerable 

pseudo-downloader or an infected pseudo-downloader is exposed to true-peers in the 

swarm. In this time frame, a vulnerable pseudo-downloader might get attacked or an 

infected pseudo-downloader might attack a vulnerable true peer. However, as this 

time gap is relatively small, final infection percentage is very small. For an instance, 

as shown in Figure 4.12 when 25% of pseudo-downloaders are vulnerable and 50% of 

vulnerable peers are initially infected our solution only produces only 11.56% of 

additional infections. Furthermore, when the initial infected percentage increases, 

there is more possibility for a vulnerable true-peer or vulnerable pseudo-downloader 

to connect with an already infected peer. Therefore, final infection percentage 

increases with the initial infected percentage. Similarly, when vulnerable percentage 

of pseudo-downloaders increases, there will be more vulnerable pseudo-downloaders 

and more infected pseudo-downloaders in the network. As a result there is more 

possibility for a vulnerable peer to connect with an infected peer. Therefore, final 

infection percentage also increases with the vulnerable pseudo-downloader percentage 

as shown in Figure 4.12. 
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Figure 4.12: Effect of initial infection percentage on final additional infection 

percentage. 

 

Figure 4.13 shows the effect of initial infection percentage on average download time. 

In each curve of Figure 4.13, download time decreases with the initial infection 

percentage. This is because, in our simulations, initially infected true-peers stays in 

the swarm until the end of the simulation while other true peers leave the swarm after 

some random time which no more than 100 seconds once their download is complete. 

This has been done to keep the attackers in the swarm until simulation finishes, 

because if initially infected nodes (i.e., attackers) also left the swarm early, there 

would be no more attackers in the network after some time and that would be 

unrealistic. However, it is also noted that by enforcing attackers to stay in the network, 

we demonstrate a worst-case behaviour compared to a real-world P2P system with 

random churn. Therefore, as the initial infected percentage increases, number of 

seeders who stays in the swarm until simulation finishes will increase and as a result 

average download time decreases with the initial infection percentage. We note that 
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infected pseudo-downloaders do not stay in the swarm until the end of the simulation 

as infected-true peers. Infected pseudo-downloaders leave the swarm after some 

random time which no more than 100 seconds once their download is complete. In 

Figure 4.13 download time increase with the vulnerable pseudo-downloader 

percentage. This is because, as we explained in Section 4.8, as vulnerable pseudo-

downloader count increases, effectively available pseudo-downloader population 

decreases and small effective pseudo-downloader population size produces a higher 

average download time.  

 

Figure 4.13: Effect of initial infection percentage on average download time. 

 

4.10 Effect of File Size 

In order to investigate the effect of file size on our solution we performed several 

experiments for files sizes, 100KB, 1MB, 5MB, and 25 MB. We considered three 

scenarios for these file sizes that are base-case, when none of pseudo-downloaders are 
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vulnerable and when 25% of pseudo-downloaders are vulnerable. All other parameters 

are set to default values as specified in Section 4.2. 

Figure 4.14 shows the effect of file size on download time. Download time penalty of 

the proposed solution increases with the file size due to the presence of pseudo-

downloaders. For example, when none of pseudo-downloaders are vulnerable, for 

1MB file download time increases by 9.5% compared to base case, whereas for 5MB 

file download time increases by 17.39% and for a 25MB file it is 32.72%. However, 

for a 100KB file download time increases only by 2.1%. Therefore, we note that, 

download time increase with the files size would not be a major drawback as most 

patch files are small [4]. When 25% of pseudo-downloaders are vulnerable, download 

time is higher than when none of the pseudo-downloaders are vulnerable due to the 

decrease of the effective pseudo-downloader population size. Furthermore, when 25% 

of pseudo-downloaders are vulnerable, download time growth is similar to the case of 

none of the pseudo-downloaders are vulnerable. 

 

Figure 4.14: Effect of file size on download time. 
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Figure 4.15 shows the effect of file size on the final additional infection count. 

Infection count increased with the file size in base case and when 25% of pseudo-

downloaders are vulnerable. This is because when file is large, peers had to stay 

longer in the swarm, which increased their infection probability. However, when none 

of the pseudo-downloaders are vulnerable additional infection count was zero in all 

four scenarios. Furthermore, when 25% of pseudo-downloaders are vulnerable and file 

size is 25MB, additional infection count is 24.33 (count is a fraction number because 

of taking the average), which is 2.27% of entire vulnerable peer population. Therefore, 

we state that file size has very little impact on the final infection count in our solution. 

 

Figure 4.15: Effect of file size on final infection count. 
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4.11 Summary 

This chapter investigated the performance of the proposed peer-assisted patch 

distribution system. Experiments validated that when none of the pseudo-downloaders 

are vulnerable, the proposed solution produces zero infections, where as a typical 

BitTorrent network end up with more than more than 90% of peers are infected, if 5% 

of peers are infected at the beginning of a patch distribution session. With 1,000 true-

peers, proposed solution is capable of achieving a download time which is similar to 

the typical BitTorrent download time when the pooling factor is five and available 

pseudo-downloader population size is more than 50% of true-peer population size. 

Moreover, proposed solution is capable of achieving a better download time than the 

typical BitTorrent download time, if the pooling factor is increased. Furthermore, 

when true-peer population size is increased to 5,000, download time of the proposed 

solution begin to beat the typical BitTorrent download time when pseudo-downloader 

population size is more than 10% of true-population size for a pooling factor of 5. 

Therefore, performance of the proposed solution increases with the true-peer 

population size. Proposed solution performs very well even when there are vulnerable 

peers present in the pseudo-downloader population. When 50% of pseudo-

downloaders are vulnerable, additional infection percentage is only 1.86%. 

Furthermore, when vulnerable pseudo-downloaders are present in the network, almost 

90% of those peers fixed their vulnerability. Although the files size has very little 

impact on final infection count, average download time of our solution increases with 

the file size. However, as most patch files are small, this performance loss is not a 

major drawback. 
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Chapter 5  

Summary 
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5.1 Conclusions 

In peer-assisted patch distribution, patch sharing peers are exposed to each other even 

though the peer-assisted patch distribution provides a scalable and cost effective 

alternative to centralized patch distribution. Such peer exposure is a threat to the patch 

sharing peers’ privacy and could be destructive in the face of attackers similar to 

topological worms. This thesis has reviewed the possibility of eliminating the peer 

exposure problem in peer-assisted patch distribution by utilizing set of non-vulnerable 

peers that are called pseudo-downloaders. 

Chapter 3 presented the proposed solution to eliminate the peer exposure in peer-

assisted patch distribution. A key feature of the proposed patch distribution system is 

that it is capable of distributing patches from multiple software vendors by utilizing 

the same infrastructure. The proposed patch distribution system is built upon 

BitTorrent. BitTorrent protocol was adopted by introducing minor modifications, such 

that it would not expose patch sharing peers to each other and it would prevent 

interaction between vulnerable peers and attackers. The proposed patch distribution 

system consists of a tracker, central patch distribution servers and a P2P client 

application which is intended to install on client machines. P2P client application 

provides a service to other software installed in the client machine to download 

patches from the P2P network. The main attacker which we considered in this work is 

a topological worm which exploits the vulnerability fixed by the patch that is being 

distributed. In addition to that, proposed patch distribution system provides the 

protection against attackers those who try to harvest addresses of patch sharing peers. 

In the proposed patch distribution system, a set of peers that are called pseudo-

downloaders are utilized to avoid direct contact between patch sharing peers. Pseudo-

downloaders act as intermediate hops between patch sharing peers while facilitating 

file transfer between them and as such, peers who actually share the patch are not 

exposed to each other. The selection criterion for a pseudo-downloader is that they 

should not be vulnerable. In order to fulfil this fact, tracker selects pseudo-

downloaders randomly from peers those who do not share the particular patch in the 

P2P network. For example, for a Windows patch, peers who share a Linux patch or 

update are selected as pseudo-downloaders.  

In the proposed solution, tracker regulates the connections between peers to avoid the 

peer exposure. A true-peer which does not have the complete patch is only allowed 
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connect with pseudo-downloaders. Pseudo-downloaders are only allowed initiate 

connections to other pseudo-downloaders and seeders. Seeders are not allowed to 

initiate connections to any other peer. As a result of these enforcements, a true-peer 

will never exposed to another true-peer and even randomly selected pseudo-

downloaders are unable to determine which peers share the patch actually. Tracker 

enforces these restrictions in the P2P network by including different kind of peers in 

the peer list when sending the tracker response to a peer. Tracker has to keep special 

data structures to facilitate this process and these data structures have been discussed 

in Section 3.4. 

In the proposed solution, tracker might select a vulnerable peer as a pseudo-

downloader for some patch, if the particular peer is not aware of the release of the 

particular patch yet. In order to provide the protection against such situations, when a 

peer receives a request to participate in a swarm as a pseudo-downloader, the peer 

only participate in the swarm as a pseudo-downloader only if the particular patch is 

not applicable to itself. If the patch is applicable to itself, instead of participating as a 

pseudo-downloader, the peer starts to download the patch as a true peer. Complete 

behaviour of a pseudo-downloader was detailed in Section 3.3.3. If a peer who is 

selected as a pseudo-downloader is started to participate in the swarm as a true-peer, 

tracker removes that particular peer from the pseudo-downloader pool. Therefore, the 

time window, where a vulnerable peer kept in the pseudo-downloader pool is 

negligible and risk of vulnerable pseudo-downloader become infected is minimum. 

Chapter 4 presented the evaluation of the proposed patch distribution system. 

Evaluation is performed by running simulations on OMNet++ simulation frame work. 

Experiments validated that when none of the pseudo-downloaders are vulnerable, the 

proposed solution produces zero infections, where as a typical BitTorrent network end 

up with more than more than 90% of peers are infected, if 5% of peers are infected at 

the beginning of a patch distribution session. Proposed solution is capable of 

achieving a download time which is similar to the typical BitTorrent download time 

when the pooling factor is five and available pseudo-downloader population size is 

more than 50% of true-peer population size. Moreover, proposed solution is capable 

of achieving a better download time than the typical BitTorrent download time, if the 

pooling factor is increased. Furthermore, performance of the proposed solution 

increases with the true-peer population size. Experiments that are performed in 
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Section 4.7 revealed that when true-peer population size is increased to 5,000, 

download time of the proposed solution begin to beat the typical BitTorrent download 

time when pseudo-downloader population size is more than 10% of true-population 

size for a pooling factor of five. 

Experiments performed in Section 4.8 revealed that proposed solution performs very 

well even when there are vulnerable peers present in the pseudo-downloader 

population. For example, if half of peers of pseudo-downloader population is 

vulnerable, additional infection count resulted in 23.33 when pseudo-downloader 

population size is 500 and true peer population size is 1,000. That is, when 50% of 

pseudo-downloaders are vulnerable, additional infection percentage is only 1.86%. 

Furthermore, when vulnerable pseudo-downloaders are present in the network, almost 

90% of those peers fixed their vulnerability. Performance of our solution degrades 

with the file size. However, as most patch files are small, this performance loss is not 

a major drawback. 

Thus, the proposed patch distribution is capable of completely preventing infections 

due to peer exposure in ideal conditions without sacrificing the download time. Even 

when the conditions are not ideal, i.e., when there are vulnerable peers in pseudo-

downloader population, proposed solution produces a negligible infection count. 

Furthermore, proposed patch distribution system scales better in terms of peer 

population size than an ordinary BitTorrent network. 

One limitation of the proposed approach is that when there are multiple trackers 

present in the patch distribution network, at any given time instant, a peer should 

register with only a single tracker for all of its patch downloads. However, as every 

P2P patch download is launched through the P2P client application of the proposed 

solution, this constraint can be straightforwardly overcome by developing the P2P 

application in such a way that, at any given time frame it only registers with a single 

tracker.  
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5.2 Future Work 

We plan to extend our study on following directions. 

 

5.2.1 Allow Peers to Locally Decide How Much Protection They Desire 

In the current implementation tracker attempts to completely protect vulnerable peers 

by avoiding their interaction with other true-peers in the swarm by sending only 

pseudo-downloaders in the peer list. If there are not sufficient pseudo-downloaders 

available in the network download time penalty will be high. In such situations some 

peers might want to keep their download time not impacted by exposing themselves to 

other peers to some extent. This can be achieved by introducing additional field into 

the tracker request which communicates the required pseudo-downloader percentage 

in the peer list. Then a peer start with 100% required pseudo-downloader percentage 

and if the download rate is not sufficient it will gradually reduce the required pseudo-

downloader percentage. Thus, a peer will get an opportunity to connect with seeders 

in the swarm if there are not sufficient pseudo-downloaders present in the P2P 

network. However to protect the privacy of seeders, tracker should not respond to 

requests which specifies required pseudo-downloaders percentage as zero. Therefore, 

there will be a minimum limit for the required pseudo-downloaders percentage which 

is configured at the tracker. 

 

5.2.2 Blacklisting Free Riders 

In the current implementation, no incentive is provided for a peer when it participate 

in a swarm as a pseudo-downloaders. Therefore, when a peer receives a request to 

participate as a pseudo-downloader in a swarm it might neglect the request while it 

enjoys the service of other pseudo-downloaders. As such, we propose to blacklist free 

riders at the tracker. Tracker can always detect peers who reject to participate as 

pseudo-downloaders because after selecting a particular peer as a pseudo-downloader, 

if it does not send announce requests as a pseudo-downloader that implies that the 

peer rejects to participate as a pseudo-downloader. In addition to that individual peers 

can report about peers who reject to participate as pseudo-downloaders. By collecting 
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those data, tracker will form a black list of peers, and will reject to service those peers 

in future. 

5.2.3 Modelling Proposed Peer-Assisted Patch Dissemination 

In this work we evaluated the proposed peer-assisted patch distribution system only 

through experiments. If a mathematical model can be developed to capture the 

dynamics of the proposed peer-assisted patch distribution system, it would give better 

insight on system dynamics and impact of various system parameters. The 

mathematical model should also be able to capture, how download time varies over 

time, how number of download completed peers progress over time and how number 

of infected peers progress over time when vulnerable pseudo-downloaders are present. 
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