

AN EFFICIENT AND SCALABLE ACCESS REVIEW

EVALUATION MODEL FOR XACML: A SUBJECT-

OBJECT GRAPH BASED APPROACH

Malithi Madara Edirisinghe

138211N

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

April 2017

AN EFFICIENT AND SCALABLE ACCESS REVIEW

EVALUATION MODEL FOR XACML: A SUBJECT-

OBJECT GRAPH-BASED APPROACH

Malithi Madara Edirisinghe

138211N

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

April 2017

 - i -

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

In addition, I hereby grant to University of Moratuwa the non-exclusive right to

reproduce and distribute my thesis, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works.

Malithi Madara Edirisinghe Date

I certify that the declaration above by the candidate is true to the best of my knowledge

and that this project report is acceptable for evaluation for the Post Graduate Project.

...................................

Dr. H.M.N Dilum Bandara Date

 - ii -

ABSTRACT

Attribute-Based Access Control (ABAC) never explicitly constructs the access control

matrix like traditional access control models such as Role-Based Access Control

(RBAC) and Access Control Lists (ACL). Rather, it relies on an access control policy

that implicitly defines the access matrix. Thus, in ABAC evaluating access review

queries like “Which objects does this user have access to?” and “What actions can this

user perform on those objects?” is computationally expensive. We propose a graph-

based model to represent the permission relationships between the subjects and

objects, which can be used to solve access review queries more efficiently. The

solution is proposed in the context of XACML (eXtensible Access Control Markup

Language), the standard that defines a declarative fine-grained, attribute-based access

control policy language, an architecture, and a processing model. The proposed

solution parses and transforms complex logical expressions in XACML policies into

a subject-object relationship graph by extracting conditions starting from the lower

levels of a XACML policy tree and constructing condition paths from them. Therefore,

the proposed model can isolate matching subjects or objects, for a given access review

request, to extract applicable set of conditions efficiently. Using two real-world

datasets, we analyzed the computational cost of graph construction, memory usage,

and the query evaluation performance of the proposed model with a XACML policy

evaluation engine, which implements Multi-Interval Decision Diagrams (MIDD).

Compared to MIDD the proposed solution is 100% to 550% and 61.8% to 99.1%

efficient in terms of computational and memory requirements, respectively. Further,

the solution resolve access review queries 33.9% faster compared to MIDD even for

large policy sets.

Keywords: Access Reviews, Attribute-Based Access Control, Authorization Reverse

Queries, XACML.

 - iii -

ACKNOWLEDGMENTS

I would like to express profound gratitude to my advisor, Dr. Dilum Bandara, for his

invaluable support by providing advice, supervision and useful suggestions throughout

this research work. His expertise and continuous guidance enabled me to complete my

work successfully.

I express my utmost gratitude to Mr. Prabath Siriwardena, my external project

supervisor for providing me the initial project idea and giving immense and invaluable

assistance and support throughout the process of finding the optimum solution. Despite

his busy schedule, he always encouraged to organize meetings, discuss the progress

and clarify issues.

I am grateful for the support and advice given by Dr. Malaka Walpola, by encouraging

continuing this research until the end. Especially I would like to thank my dearest

friend Ms. Iromi U. Ranaweera, PhD Student at Norwegian University of Science and

Technology for helping to get research materials. Further, I would like to thank all my

colleagues for their encouragement.

I am as ever, especially indebted to my parents for their love and support throughout

my life. Finally, I wish to express my gratitude to all my colleagues at WSO2 for the

support given me to manage my MSc research work.

- iv -

TABLE OF CONTENTS

DECLARATION .. i	
ABSTRACT ... ii	
ACKNOWLEDGMENTS .. iii	
TABLE OF CONTENTS .. iv	
LIST OF FIGURES .. vi	
LIST OF TABLES .. viii	
LIST OF ABBREVIATIONS ... ix	
1	 INTRODUCTION .. 1	

1.1	 Attribute Based Access Control .. 1	
1.2	 Problem Statement .. 2	
1.3	 Objectives ... 4	
1.4	 Research Contribution .. 4	
1.5	 Outline .. 5	

2	 LITERATURE REVIEW ... 6	
2.1	 Access Control Overview ... 6	
2.2	 Concepts ... 6	
2.3	 Access Control Models and Mechanisms ... 7	

2.3.1	 Discretionary Access Control .. 8	
2.3.2	 Mandatory Access Control .. 9	
2.3.3	 Role Based Access Control .. 10	
2.3.4	 Attribute Based Access Control ... 10	

2.4	 XACML .. 13	
2.4.1	 XACML Policy Language ... 14	
2.4.2	 XACML Data Flow Model .. 18	

2.5	 Access Reviews with XACML ... 21	
2.5.1	 Partial Evaluation of Policies ... 21	
2.5.2	 Axiomatics Reverse Query .. 27	
2.5.3	 Multi Interval Decision Diagrams ... 30	

3	 PROPOSED SOLUTION ... 38	
3.1	 Subject – Object Relationship Model ... 39	
3.2	 Methodology ... 42	
3.3	 Theoretical Comparison .. 46	

3.3.1	 Space Complexity .. 46	
3.3.2	 Time Complexity ... 49	
3.3.3	 Discussion .. 51	

4	 IMPLEMENTATION .. 54	

- v -

4.1	 Graph Construction ... 54	
4.2	 Graph Update .. 70	
4.3	 Access Review Request Evaluation .. 71	

5	 PERFORMANCE ANALYSIS .. 76	
5.1	 Environment and datasets ... 76	
5.2	 Graph Construction Evaluation .. 77	
5.3	 Query Resolution .. 81	

6	 SUMMARY AND FUTURE WORK .. 89	
6.1	 Summary ... 89	
6.2	 Limitations .. 90	
6.3	 Future Work .. 91	

REFERENCES .. 93	
Appendix A .. 95	

- vi -

LIST OF FIGURES

Figure 2.1 - XACML reference architecture. .. 13	
Figure 2.2 - XACML policy language model. .. 15	
Figure 2.3 - Hypothetical XACML policy. ... 17	
Figure 2.4 - XACML data flow model. .. 19	
Figure 2.5 - XACML access control request. ... 20	
Figure 2.6 - Partial query request. ... 24	
Figure 2.7 - Simplification of condition element. ... 26	
Figure 2.8 - Reverse query system. ... 29	
Figure 2.9 - Axiomatics reverse query in action. .. 30	
Figure 2.10 - Sample XACML policy. ... 32	
Figure 2.11 - Example of function decomposition. .. 33	
Figure 2.12 - Decision diagram illustration for function decomposition. ... 33	
Figure 2.13 - MIDD of R1's Target. .. 34	
Figure 2.14 - X-MIDD of R1. ... 35	
Figure 2.15 - X-MIDD of sample policy P0. .. 36	
Figure 3.1 - Subject-Object relationship model. .. 41	
Figure 3.2 - Predicate tree. .. 44	
Figure 3.3 - Subject-Object relationship graph. ... 45	
Figure 3.4 - XACML policy tree structure. .. 47	
Figure 3.5 - XACML policy evaluation structure. .. 50	
Figure 4.1 - XACML policy tree of hypothetical example. .. 55	
Figure 4.2 - Overview of the subject-object relationship graph construction. 56	

Figure 4.3 - Target expression of WineLiqorAllowanceForForeigners rule. 57	

Figure 4.4 - Target expression tree structure. ... 58	
Figure 4.5 - Match expression example. ... 59	
Figure 4.6 - Resource node example. .. 59	
Figure 4.7 - AllOf expression example 1. ... 60	
Figure 4.8 - Tree structure resulted from AllOf expression example 1. ... 60	
Figure 4.9 - AllOf expression example 2. ... 60	
Figure 4.10 - Tree structure resulted from AllOf expression example 2. ... 60	
Figure 4.11 - AnyOf expression example. .. 61	
Figure 4.12 - Predicate tree resulted from AllOf expression. ... 63	
Figure 4.13 - AllOfa.AllOfb. ... 63	
Figure 4.14 - Predicate tree list of AnyOf1. .. 64	

- vii -

Figure 4.15 - Predicate Tree List of AnyOf2. ... 64	
Figure 4.16 - Predicate tree list of AnyOf1.AnyOf2. ... 64	
Figure 4.17 - Predicate tree list after reduction. .. 64	
Figure 4.18 - Predicate tree list of WineLiquorAllowanceForForeigners rule. 66	
Figure 4.19 - Predicate tree list of DutyFreeAllowancesForForeigners policy. 67	

Figure 4.20 - Subject-Object relationship graph of DutyFreeAallowancesForForeigners policy. 68	

Figure 4.21 - Subject-Object relationship graph of the hypothetical policy example. 69	
Figure 4.22 - Access review request. .. 73	
Figure 4.23 - Links extracted for the access review request. .. 74	
Figure 4.24 - Overview of access review request evaluation. .. 75	
Figure 5.1 - Average graph construction time. ... 77	
Figure 5.2 - Number of nodes in the graph. .. 79	
Figure 5.3 - Average graph construction time for varied number of policy sets. 80	
Figure 5.5 - Average query resolution times for GEYSERS dataset. .. 83	
Figure 5.6 - Standard deviation of query resolution time for GEYSERS dataset. 84	
Figure 5.8 - Standard deviation of query resolution time for Continue-a dataset. 86	
Figure 5.9 - Average query resolution time for varied number of policy sets. 87	

- viii -

LIST OF TABLES

Table 2.1 - Match, AllOf, AnyOf, Target, Condition result. .. 31	
Table 2.2 - Rule, Policy, PolicySet result. .. 31	
Table 3.1 - Summary of space complexities. .. 51	
Table 3.2 - Summary of time complexities. .. 52	
Table 5.1 - XACML 3.0 sample policy datasets. .. 76	
Table 5.2 - Access review request query types. .. 81	

- ix -

LIST OF ABBREVIATIONS

ABAC Attribute Based Access Control

ACL Access Control List

ARQ Axiomatics Reverse Query

DAC Discretionary Access Control

JSON JavaScript Object Notation

MAC Mandatory Access Control

MIDD Multi Interval Decision Diagram

NIST National Institute of Standards and Technology

OASIS Organization for the Advancement of Structured

Information Standards

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PQE Partial Query Evaluation

RBAC Role Based Access Control

SOD Separation of Duty

URI Universal Resource Identifier

URN Universal Resource Name

XACL XML Access Control Language

XACML Extensible Access Control Markup Language

XML Extensible Markup Language

- 1 -

1 INTRODUCTION

Providing adequate security for information and information systems is a fundamental

management responsibility of any enterprise. Thus, almost all applications include

some form of access control, especially when they deal with financial, privacy,

administration or defense aspects. The primary goal of access control is to protect

system resources against inappropriate or unauthorized user access. Based on the

access control requirements of information technology systems a number of access

control models with different properties are available to choose from [1].

However, as systems grow, in size and complexity, there is a massive increase in

digital data that is stored, which also causes for an equal increase in data that is shared.

This leverages the ability to access data anytime and from anywhere. Thus, imposing

access control becomes more challenging with traditional access control models such

as Discretionary Access Control (DAC), Mandatory Access Control (MAC) and Role-

Based Access Control (RBAC), which grants or denies based on the pre-assigned

capabilities to users directly or via some predefined attribute types such as roles or

groups [1]. They fail to capture the contextual information of the system, users and

resources, when an access control request is made, such as access time, location etc.,

and decide dynamically. Further with the growing number of users and resources

participating in the system, managing the association of capabilities become hard.

Moreover, roles and groups are often insufficient to express real-word access control

requirements. One of the promising alternative is Attribute-Based Access Control

(ABAC) [2], which avoids the need for explicit authorizations to be directly assigned

to individual users prior to a request to perform an operation on the resource. ABAC

grant or deny user requests based on the arbitrary attributes of the user and arbitrary

attributes of the resource, and environment conditions, bringing dynamism and context

evaluation to access control.

1.1 Attribute Based Access Control

 Attribute-Based Access Control (ABAC) allows a higher no of discrete inputs to an

access control decision. Therefore, provides a larger set of possible combinations of

- 2 -

those variables to reflect larger set of rules to define access control enterprise policies.

In ABAC, access control decisions can change between requests simply by altering

request values without changing (subject, resource) relationships. This provides

dynamic access management capabilities and easy maintenance. Administrators can

apply Access control policy without prior knowledge of the specific subject and for an

unlimited no of subjects that may require access. They do not need to modify or assign

capabilities as new subjects join or leave the system. If the subject is assigned the

necessary attributes to access a specific resource, as defined by the access control

policy, subject will gain access, which is known as accommodation of external (i.e.,

unanticipated) user [2].

Due to above properties, ABAC is becoming more popular with the increase of

interactions between users, devices, services, data, and external environments. It is

more scalable and dynamic over traditional approaches. Thus, ABAC has the potential

to dramatically improve access control in modern applications such as e-commerce,

and the Internet of Things, becoming more relevant in supporting privacy and security

in a Big Data context.

Gartner predicted that 70% of all businesses will use ABAC as a dominant mechanism

to protect critical assets by 2020 [3]. Gartner predicts that ABAC will replace RBAC,

as the number of possible interactions between users, devices, services, data, and the

external environment increases and notes that this trend is evidenced by examples in

popular software vendors’ product strategies, such as dynamic access control within

Microsoft Server 2012, the claims-based architecture in Windows Identity Foundation,

and Oracle’s Fusion middleware.

1.2 Problem Statement

The ABAC model differs from traditional access control models such as RBAC and

ACL. Traditional methods assign capabilities directly to subjects, roles or groups

before the access request is made, thus constructs the access matrix (i.e., a matrix

between subjects and resources, where each row represents a subject and each column

represents a resource). However, in ABAC access matrix is never explicitly

- 3 -

constructed. Instead, ABAC relies on an access control policy that implicitly defines

the access matrix. Given a subject, a resource and an action, the policy defines whether

the subject can perform the action on the resource. Thus, the policy is defining the

function to be executed in each cell of the access matrix. While this makes ABAC rich

and flexible, it complicates the access review. For example, it is difficult to solve

queries like “Which objects does this user have access to?” and “What actions can this

user perform on those objects?”. Such queries are important in auditing, generating

audit reports and to make decisions before executing access requests based on

capabilities.

Answering such a query in ABAC involves, evaluating the policy for each cell over a

row for subject-centric access review requests such as “Which objects does this user

have access to?”, or for each cell over a column for resource-centric access review

requests such as “Who has access to this resource?”. That means policy will be

evaluated for each (subject, resource) combination over a row or column regardless of

the relationship between the subject and resource. Further, based on the complexity of

the policy, computing the value for each cell may be computationally expensive.

Therefore, ABAC makes it extremely difficult to determine permissions available to a

user, because an extremely large number of rules might need to be executed, in the

same order in which the system applies them, to successfully determine access.

The biggest concern in supporting access reviews with ABAC model, is the

performance, caused due to the cost of determining the value of a cell in the matrix,

lack of data representation (how data related and located) which makes it hard to

isolate a specific row or a column to go over for a given access review request, and the

inability to avoid empty cells in the access matrix where there is no relationship

between the specific subject and the resource. Thus, the problem that this research try

to address can be stated as follows:

How to perform access reviews in Attribute-Based Access Control (ABAC), while

minimizing computational and memory requirements?

- 4 -

1.3 Objectives

The research achieves the following objectives:

• Study existing solutions that support access reviews with XACML, and

analyze the access review representation model, computational costs incurred,

and limitations.

• Build up a memory efficient data representation model, from an XACML

access control policy or policy set, which is scalable and which can be used to

evaluate access review requests efficiently.

• Come up with a low latency algorithm to evaluate access review requests that

reduces query evaluation cost.

1.4 Research Contribution

ABAC relies on an access control policy, that is evaluated at the time an access control

request is made. This makes ABAC rich and flexible in supporting access control

requests, but complicates the access review requests. However, support for access

reviews is important in auditing, generating audit reports, performing access control

administration, when deciding on access control policies, reviewing privileges, and

making decisions before executing access requests based on capabilities. This research

addresses the problem of supporting access review queries within the ABAC model

through the following contributions:

• Development of a subject-object graph representation to XACML policies.

• Propose an algorithm to extract applicable set of conditions from the subject-

object graph representation to an access review request.

• The proposed technique is memory and computationally efficient compared to

Partial Query Evaluation of XACML Policies [4], and Multi-Interval Decision

Diagrams (MIDD) [5].

• Performance analysis using two real-world access policy datasets showed that

the proposed solution is 100% to 550% and 61.8% to 99.1% efficient in terms

- 5 -

of computational and memory requirements compared to MIDD and the

solution resolves access review queries 33.9% faster compared to MIDD.

1.5 Outline

Rest of the thesis is organized as follows. In Chapter 2, we discuss related work on

access control, ABAC and XACML, as well as initiatives taken to address access

review requests in ABAC. We further discuss research work on using policy

simplification for access review requests and decision diagram approaches taken to

pre-compute a data model from XACML policies for performance efficient evaluation.

Research methodology is presented in Chapter 3. We can represent an ABAC policy

with a performance efficient data model, from which we can isolate subjects and

resources, to easily identify their relationships for a given access review request, how

to compute that data model from a given XACML policy set, and finally on how an

access review request will be evaluated over the constructed model.

Chapter 4 presents the algorithm that constructs the (subject, resource) permission

relationship model and will discuss how policy updates can be accommodated.

Further, we present the access review request evaluation algorithm, which is based on

the data model constructed.

Performance evaluation of the implementation is presented in Chapter 5. Analysis

discuss the experiments conducted to evaluate graph construction performance and

query evaluation performance.

Chapter 6 discuss the results of performance analysis, capabilities and the limitations

of the solution proposed and future improvements and research work.

- 6 -

2 LITERATURE REVIEW

2.1 Access Control Overview

In information System Security, authentication and authorization are two key

components of security enforcements. Authentication is to bind a subject to an identity

that uniquely identifies the respective subject from others. Once subject identity is

known, authorization decides what that subject may or may not do within the system.

Access control is about enforcing appropriate authorization for the system based on

the user's identity. Its objective is to protect system resources against inappropriate or

undesired user access.

2.2 Concepts

There are several terms and concepts that are commonly used within access control

research community. Next, some of the related terms are defined.

• Subject - An active entity, generally in the form of a person, process, or device

that causes information to flow among resources or other entities in the system

or changes the system state [6].

• Resource/Object - An entity that contains or receives information. Access to

an object implies access to the information it contains. Examples of objects are

database records, fields, files, directories, process, processors, video displays,

keyboards, clocks, printers, and network resources etc. [6].

• Action/Operation - An active process invoked by a subject. For example, in a

file system, there will different types of files. A user can perform number of

operations on a file. He may read, write, delete etc. [7].

• Permission/Privilege - Authorization to perform some action on the system.

Mostly permission is defined as the combination of the resource (object) and

the action (operation). Thus, an action allowed to be performed on two different

resources represents two different permissions. For example, a bank teller

machine may have permissions to execute debit and credit actions on a user’s

- 7 -

account through performed transactions, while an accountant in the bank may

execute credit and debit operations on the general ledger based on the

transactions of the bank [7].

• Access Control Matrix (ACM) - A table in which each row represents a

subject and each column represents a resource in the system. Each cell of the

table is the set of access rights for that subject to that resource. ACM is a

hypothetical model used to describe permission relationships between subjects

and resources. It is a sparse matrix with many empty cells, as most subjects do

not have access rights to most resources.

• Separation of Duty (SOD) - The principle that no user should be given enough

privileges to misuse the system. For example, a person authorizing a specific

transaction should not be the person who made it. Separation of duties can be

enforced either statically by defining conflicting roles (i.e., roles which cannot

be executed by the same user) or dynamically by enforcing the control at access

time. An example of dynamic separation of duty is the two-person rule. The

first user to execute a two-person operation can be any authorized user,

whereas the second user can be any authorized user different from the first [1].

2.3 Access Control Models and Mechanisms

When planning an access control system, an enterprise should consider three

abstractions [1].

• Access Control Policies

• Access Control Models

• Access Control Mechanisms

Access control policies are the high-level access control requirements of the enterprise.

That will specify how access is managed and who may access, what information, under

what circumstances. These access control policies are enforced through an access

control mechanism that will capture a user’s access request over a structure defined by

the properties of an access control system. Access control models bridge the gap

- 8 -

between policy and mechanism. Access control mechanism is designed to adhere to

the properties of the model.

2.3.1 Discretionary Access Control

DAC [8] is an access control model, in which access to a specific resource is managed

by the resource owner or anyone else who is authorized to control the resource’s

access. For example, in a file system, the owner of the file will control other user’s

accesses to the file. Only those users specified by the owner may have some

combination of read, write, execute and other permissions to the file.

DAC is known to be weak for two reasons.

1. Granting read access is transitive - When Ann grants Bob read access to a file,

nothing stops Bob from copying the contents of Ann’s file to an object that

Bob controls. Bob may now grant any other user access to the copy of Ann’s

file without Ann’s knowledge.

2. DAC policy is vulnerable to Trojan horse attacks - Bob may write a program

for Ann such that from top it is like performing some useful function, while at

the same time destroys the contents of Ann’s files. When investigating the

problem, the audit files would indicate that Ann destroyed her own files.

Thus, DAC model includes following drawbacks.

1. Information can be copied from one object to another.

2. No restrictions apply to the information when a specific user has received it.

3. Access privileges for objects are decided by the owner of the object, rather than

a global policy or administrator that enforces the organization's security

requirements.

Access Control List

ACL [9] is the most common implementation mechanism of DAC model. An ACL

associates the permitted operation to a resource and specifies all the subjects that can

access that resource, along with their rights to the resource. That is, each entry in the

- 9 -

list is a pair of (subject, set of rights). Moreover, an ACL corresponds to a column of

the access control matrix. With an ACL, it is easy to answer the question “Who are the

users that have access to this resource?”, but it is difficult to determine all privileges

for a user. In that case, we need to search privileges for that user traversing over each

ACL defined for each resource.

Capability List

CL [9] is the inversion of an ACL, where it is attached to the subject and specifies

which resources the subject may access. That is, each entry in the list is a pair of

(resource, set of rights). Moreover, it corresponds to a row of the access control matrix.

The main advantage of a capability list is, that is it easy to review all access that are

authorized for a given subject. However, it is hard to derive the subjects that have

access to a resource. Thus, with capability lists it is difficult to model DAC policies

and therefore, not commercially popular.

2.3.2 Mandatory Access Control

MAC [9] is an access control model, in which access control policy decisions are

enforced by a central administrator, not by individual object owners and neither the

owners can change access rights. MAC is usually associated with multilevel security

models such as Bell-LaPadula Model Confidentiality [10] and Biba Integrity models

[11]. MAC is used when the risk of attack is very high and confidentiality is a primary

access control concern, or the resources being protected are valuable. Thus, it is

commonly used by the military and intelligence agencies to maintain classification

policy access restrictions.

The assignment and enforcement of security levels by the system under the MAC

model places restrictions on user actions that, while adhering to security policies,

prevents dynamic alteration of the underlying policies, and requires large parts of the

operating system and associated utilities to be “trusted” and placed outside of the

access control framework. MAC systems are difficult and expensive to implement due

to the reliance on trusted components and the necessity for applications to be rewritten

to adhere to MAC labels and properties. MAC also does not address fine-grained least

privilege, dynamic separation of duty or validation of trusted components.

- 10 -

2.3.3 Role Based Access Control

In RBAC [9], access decisions are based on the roles that individual users have been

assigned. Access rights are grouped to a role, and the use of resources is restricted to

individuals based on the associated role. The operations that a user is permitted to

perform are based on the user's role. Assignment of users into roles can be revoked

easily and new assignments can be made as the user responsibilities change. Further,

permissions for a role can be revised as organizational functions change and evolve.

Thus, this model simplifies the administration and management of privileges, because

roles can be updated without updating the privileges for every user on an individual

basis.

However, in RBAC there is a cost on ensuring least privilege. When a user is

associated with a role, the user can be given no more privilege than necessary to

perform the job, which is known as least privilege. Because many of the

responsibilities overlap between job categories, maximum privilege for each job

category could cause unauthorized access. Thus, this requires a certain amount of role

engineering to identify the user's job functions, determine the minimum set of

privileges required to perform those functions, and to restrict the user to a domain with

only those privileges. Even though, RBAC is known to be the best way to address

typical access control use cases with compliance and administrative efficiencies, as

organizations expand with identity and access management, role management will

finally end up with “role explosion”, where more roles exist than actual individuals in

the system.

2.3.4 Attribute Based Access Control

ABAC [2] avoids assigning capabilities directly to subjects, roles or groups before the

access request is made. Instead when the subject requests access, the ABAC engine

can make an access control decision based on the assigned attributes of the requestor,

assigned attributes of the object, environment conditions, and a set of policies specified

in terms of those attributes and conditions. Thus, in contrast to RBAC, this allows

much more fine-grained access control capabilities, by not only combining attributes

of the subject or the identity, but also taking context information into account, such as

- 11 -

location, time of the day to access control decisions. Further, ACLs and RBAC are in

some ways special cases of ABAC in terms of attributes used. ACLs work on the

attribute of 'identity'. RBAC works on the attribute of 'role'. The key difference with

ABAC is the concept of policies that express a complex Boolean rule that can evaluate

many different attributes.

ABAC, facilitates the establishment of business focused, centralized policy

management and a common, consistent access control model for applications across

the enterprise. Further, in ABAC, authorization is provided as a service, externalizing

the access decision point. This simplifies the software development, as authorization

is now not embedded to applications. Moreover, this reduce the cost of maintenance

from applications perspective and from policy administration perspective, because

decisions are made at runtime based on attributes, thus, changes in access status are

immediately recognized when attributes are updated.

Therefore, ABAC is useful when:

• Authorization requests are complex and using RBAC drives for role explosion.

• Authorization rules can be expected to change over time.

• Authorization rules need to take external factors and context information into

account when making the authorization decision.

Given these properties, ABAC is commonly to be adopted by industries such as:

• Which have highly distributed and remote operating entities, where access for

such remote entities need to be managed by a central authorization system such

as Financial/Insurance service sector, Airlines, Telecommunication companies

etc.

• Organizations that are mandated by government or regulatory policy to control

what information to be provided or what goods may be exported such as

Aerospace Manufacturers, Defense Manufacturers, Nuclear Energy

Organizations, Oil & Gas companies, Exporters.

- 12 -

• Organizations that have a need for strong protection of their Intellectual

Property such as Research & Development Organizations.

• Organizations that have a requirement involving sensitive health data with

associated consent management requirements such as Hospitals, Primary,

Secondary or Tertiary Healthcare organization and Pharmacies.

In addition to above NIST Guide on ABAC [12], evangelizes the adoption of ABAC

in enterprises with a comprehensive set of guidelines on when to migrate to an ABAC

model and why it is important. Moreover, ABAC also make it more relevant in

supporting privacy and security in a Big Data context, due to the ability of capturing

context information for access control decisions, whereas context is a key factor in Big

Data, just as context is key to understanding privacy [13].

However, there are some complexities incurred with ABAC model. In ABAC, access

control rules are defined composing policies, with some policy language where it may

be cumbersome for administrators, as they need to expertise on the specific language

to express complex, access control rules. However, vendors like Axiomatics have

come up with a comprehensive set of tooling to support composing of complex policies

and easy administration [14]. Further, it is difficult to perform access reviews

specifically being used to audit policies, generate the audit reports and to make

decisions before executing access requests based on capabilities, which we are going

to address in this thesis.

To enable ABAC implementations, the community has undertaken efforts to develop

common terminology and interoperability across access control systems. The

Organization for the Advancement of Structured Information Standards’ (OASIS)

Extensible Access Control Markup Language (XACML) [15] and IBM’s XML Access

Control Language (XACL) [16] are access control policy specification frameworks

that are mainly geared towards supporting ABAC model. The most popular policy

language being used to express ABAC policies is XACML, which specifies an

industry standard [1].

- 13 -

2.4 XACML

XACML is the OASIS standard for fine grained authorization management based on

the concept of ABAC.

Figure 2.1 - XACML reference architecture.

XACML standardizes three aspects of the authorization process.

• XACML Policy Language - Used to express access control rules and

conditions.

• XACML Request/Response Protocol - Used to query a decision engine that

evaluates real-world access requests against existing XACML policies.

XACML response will include either one of below.

o Permit - Access request is permitted

o Deny - Access request is denied

o Not Applicable - For the access request made no matching rules

identified to decide on the access control decision

o Indeterminate - An error has occurred while evaluating the access

request

- 14 -

• XACML Reference Architecture - Provides a standard for the deployment of

necessary software modules to achieve efficient enforcement of XACML

policies. As represented by Figure 2.1, several modules are defined in the

XACML reference architecture that are used to enforce XACML policies.

Policy Decision Point (PDP) evaluates policies against access requests

provided by Policy Enforcement Points (PEP). PDP or PEP may also need to

query Policy Information Point (PIP) to retrieve attributes of the user or the

resource to which access is requested. Policies are maintained via a Policy

Administration Point (PAP).

2.4.1 XACML Policy Language

XACML Policy Language is XML based. It defines the XACML policy structure,

functions and algorithms, attribute categories, data types, and so on. The top-level

elements of the policy language model specified in XACML 3.0 Core specification

[17] can be represented as in Figure 2.2.

Policies contain rules which can decide from a certain set of attributes whether to

permit or deny access for a certain request. For that to happen, any condition of the

rule must evaluate to true. Conditions contain declarative logic from a set of predefined

functions, which use attributes in the access request as input. These functions can be

arithmetic, logical, comparative, set, functional, and so on. Each function is referenced

with a unique Universal Resource Name (URN), that is defined in the XACML

specification and we can define our own functions too.

Policy element includes a combining algorithm which decides how to combine results

from multiple rules and give the final answer. There is an also set of standard

combining algorithms, but custom algorithms can also be used.

The result of each evaluation of each policy is returned to the policy set. Just like with

rules, policy sets also have combining algorithms. The final decision for the access

request is returned from the policy set based on that.

Policy Set, Policy and Rule elements also includes a Target. Target contains Match

elements, which is a set of comparisons on different category of attributes. These

- 15 -

targets are used to determine whether a policy, policy set or individual rule is

applicable to the access request. If the policy, policy set or rule is not applicable, the

PDP will not use it to determine the outcome of the request.

Figure 2.2 - XACML policy language model.

In ABAC, attributes are the variables on which the access control decisions are based.

Hence, in XACML they are supplied in the access request as input values for the

policy, and they referenced in the policy by their unique Universal Resource Identifier

(URI). XACML supports four different attribute categories, namely Subject, Resource,

Action and Environment. In these categories, different attributes can be used. For

example, subject attributes may include id, username, role, etc. There is a standard set

of attributes defined in the XACML specification, but custom ones can also be used.

In the access request, they are put in subject, resource, action and environment

elements respectively. In the XACML policy, the element, which is used to reference

these attributes, is called attribute designator. Attribute designators exist inside

- 16 -

conditions as well as targets. There are four types of attributes designators, subject

attribute designators, resource attribute designators, action attribute designators and

environment attribute designators matching attribute categories.

XACML is a rule engine. Yet, it defines a rule engine architecture and standard

dedicated to access control. XACML rule engine, i.e., PDP, can answer Yes/No

questions, with a set of conditions defined based on the attributes of various entities

participating. Its extensible standard, provides the capability of using XACML beyond

typical access control use cases. For the ease of explanation of XACML access control

policies, let us consider a hypothetical use case, which deviates from everyday access

control use cases we see. Let us represent that in XACML policy language adhering

to the above model.

Suppose at immigration, specific duty free allowance policies being applied by Sri

Lankan Customs. Suppose this allowance policy implies below conditions:

• If the immigrant is a foreigner, below conditions will apply:

o Only 1.5 liters of wine only 1.5 liters of liquor will be permitted.

o Total value of the items allowed to bring in should be less than $250.

• If the immigrant is a resident, below conditions will apply:

o Only 2 liters of wine and only 2.5 liters of liquor will be permitted.

o If the stay abroad is less than 90 days, total value of the items allowed

to bring in should be less than $125.

o If the stay abroad is greater than 90 days and less than 365 days, total

value of the items allowed to bring in should be less than $625.

o If the stay abroad is greater than 365 days, total value of the items

allowed to bring in should be less than $1750.

We can express this as an XACML policy similar to that in Figure 2.3. Here

the policy is represented in JSON format to improve the readability. The exact XML

based XACML policy is included in Appendix A.

- 17 -

PolicySet {
 id:DutyFreeAllowances,
 combine-algorithm:first-applicable,
 target:,
 children:[
 Policy {
 id:DutyFreeAllowancesForForeigners,
 combine-algorithm:permit-override,
 target:subject.citizenship = foreigner,
 children:[
 Rule {
 id:WineLiqorAllowanceForForeigners,
 effect:Permit,
 target:resource.id = wine or resource.id = liquor,
 condition:resource.volume <= 1.5,
 },
 Rule {
 id:AllowedItemAllowanceForForeigners,
 effect:Permit,
 target:resource.id = allowedItems,
 condition:resource.value <= 250,
 },
 Rule {
 id:Allowed,
 effect:Deny,
 }
]
 },

 Policy {
 id:DutyFreeAllowancesForResidents,
 combine-algorithm:permit-override,
 target:subject.citizenship = local,
 children:[
 Rule {
 id:WineAllowanceForResidents,
 effect:Deny,
 target:resource.id = wine,
 condition:resource.volume <= 2
 },
 Rule {
 id:LiquorAllowanceForResidents,
 effect:Permit,
 target:resource.id = liquor,
 condition:resource.volume <= 2.5
 },
 Rule {
 id:AllowedItemAllowanceForResidents,
 effect:Deny,
 target:resource = allowedItems,
 condition: (subject.stay < 90 and resource.value > 125) or
 (90 < subject.stay < 365 and resource.value > 625) or
 (subject.stay > 365 and resource.value > 1750) ,
 },
 Rule {
 id:Allowed,
 effect:Deny,
 }
],
 },
]
}

Figure 2.3 - Hypothetical XACML policy.

In this policy, the top-level element is a PolicySet. The PolicySet has two Policies

defined. The PolicySet has an empty target that means the target is always true (i.e.,

for any access request this PolicySet will be picked up for evaluation). The combine-

algorithm in the PolicySet is defined as first-applicable, which means to pick up the

first policy from the policies defined, that matches for the access request for

- 18 -

evaluation. Two policies defined, have permit-override as the combining-algorithm,

which means if any of the rules evaluated to Permit, policy result also evaluates to

Permit. Therefore, any rule that evaluated to Deny will be overridden if at least one

evaluated to a Permit. The first policy DutyFreeAllowancesForForeigners, will be

matched only if the subject is a foreigner, and second policy

DutyFreeAllowancesForResidents will be matched only if the subject is a local as

defined in the target. Each policy defined includes a set of rules. The top most rules

have the effect defined as Permit, which means if the conditions defined in the rule

evaluates to true, the result of the rule will be Permit. Moreover, an empty rule defined

in each policy at the last, to Deny, if none of the rules above matched.

2.4.2 XACML Data Flow Model

The XACML data flow for policy administration and for access requests is represented

in Figure 2.4, as specified in XACML 3.0 Core specification [17].

XACML data flow model is as follows:

1. PAPs write policies and policy sets and make them available to the PDP. These

policies or policy sets represent the complete policy for a specified target.

2. The access requester sends a request for access to the PEP.

3. The PEP sends the request for access to the context handler in its native request

format, including attributes of the subjects, resource, action, environment and

other categories that received with the access request.

4. The context handler constructs an XACML request context, adds received

attributes, and sends it to the PDP.

5. The PDP requests any additional subject, resource, action, environment

attributes from the context handler.

6. The context handler requests the attributes from a PIP.

7. The PIP obtains the requested attributes.

8. The PIP returns the requested attributes to the context handler.

- 19 -

9. Optionally, the context handler includes the resource in the context.

10. The context handler sends the requested attributes and (optionally) the resource

to the PDP. The PDP evaluates the policy.

11. The PDP returns the response context (including the authorization decision) to

the context handler.

12. The context handler translates the response context to the native response

format of the PEP. The context handler returns the response to the PEP.

13. The PEP fulfills the obligations.

14. If access is permitted, then the PEP permits access to the resource; otherwise,

it denies access (not shown in Figure 2.4).

Figure 2.4 - XACML data flow model [17].

- 20 -

Considering the same hypothetical use case, let us see how can a XACML request be

made. Suppose, a foreigner named Alice, brings one liter of wine. Customs now want

to know if that amount is permitted for Alice. Thus, the access request shown in Figure

2.5 will be made to the PDP. Access Request is represented in JSON format for

readability. See Appendix A for the exact XML-based request.

Request {
 Category {
 id: subject
 Attribute {
 id: subject.id
 value: Alice
 }
 },
 Category {
 id: resource
 Attribute {
 id: resource.id
 value: wine
 },
 Attribute {
 id: resource.volume
 value: 1
 }
 },
}

Figure 2.5 - XACML access control request.

In the access request under each attribute category (subject, resource, action,

environment), we define the attributes, so that when the policy is evaluated missing

attributes will be picked from the PIP, for the respective category from attributes

already received.

In this request, we have asked from the PDP, “Can subject Alice bring 1 liter of volume

from wine resource?” Then, as per the policy defined in Figure 2.3, this request is

permitted. The specific evaluation steps are as follows:

1. PDP receives the subject.id as Alice but it wants the subject.citizenship

attribute.

2. PIP will solve that to the PDP and say that subject.citizenship is foreigner.

3. Therefore, the first policy DutyFreeAllowancesForForeigners will match for

this request as per the condition in the target. Thus, that policy will be picked

up for evaluation.

- 21 -

4. As the resource is wine the first rule WineLiqorAllowanceForForeigners will

be executed as its target will be matched.

5. The condition evaluates to true, thus rule result is Permit.

6. Now, the rule-combining algorithm used in the policy is permit-override,

which gives priority to Permit decisions over Deny decisions, which means if

at least one rule evaluates to Permit the net result will be Permit. Thus,

application of this algorithm in this context will result to a Permit decision as

the first rule itself evaluates to a Permit and there is no need of evaluating the

rest.

Therefore, the net result of this access request will be Permit and PDP will send the

decision response to the PEP (XML based response generated from the PDP is listed

in Appendix A). However, asking a query like “What are the items allowed for Alice?”,

rather than specifying the resource, requires evaluating the policy over all resource

attribute combinations to decide on the conditions under which Alice can bring in that

resource.

2.5 Access Reviews with XACML

In this section, we look at related work on improving the performance aspects of

XACML policy evaluation where they solved the policy administrative and

management functions, and which tried to solve the exact access review problem that

we are focusing in this research.

2.5.1 Partial Evaluation of Policies

Sandberg, has conducted a feasibility study at [4], which verifies if reverse queries

such as “What resources can this user access”, can be initiated as a partial request with

some supplied attributes, and get a simplified policy by a partial policy evaluation

being performed on top of the attributes received.

Considering the hypothetical example mentioned in Section 2.4.1, suppose we need to

know “What items are permitted for Alice”. Expressing this in an access request will

- 22 -

include only the subject id, which is known as ‘Alice’. Thus, such a request is termed

as a partial query in this research.

Partial Query:

subject.id = Alice

The exact policy evaluation for such an access request will return Not Applicable or

Indeterminate indicating an error, as all attributes required to evaluate the policy

cannot be extracted with such a partial query. Therefore, what can be conducted is a

policy simplification, in which received and extracted attributes from PIPs are applied

to simplify policy conditions. This will result in a simplified policy, with a set of

conditions that cannot be simplified furthermore, for successful policy evaluation.

Thus, results after a partial evaluation will be a set of conditions that need to be

satisfied.

Result after partial evaluation:

Permit if resource.id=wine or resource.id = liquor and resource.volume <= 1.5 or

Permit if resource.id=allowedItems and resource.value <= 250

Else Deny

In the suggested approach, when a partial query is received below steps are invoked

for partial query evaluation which results in a simplified policy:

1. The partial query is chosen and the supplied attributes are inserted at their

referencing designators in the policy.

2. The policy reduced to a simpler form through simplifications, exploiting the

information of the inserted attributes.

3. The result of simplification is a piece of logic containing references to

attributes that have not been supplied. The context of these attribute references

answers the access review query.

Given a XACML policy, policy simplification includes simplifying Targets and

Conditions.

- 23 -

As discussed in [4], Targets are simplified by removing Match elements that evaluates

to true. If the Target evaluates to false, what the Target designates (Rule, Policy,

PolicySet) is removed.

Apply and Condition elements are reduced by reducing functions used within these

elements applying known attributes. Research further defines the simplification for

such functions.

Finally, Rule, Policy and PolicySets are simplified with respect to combining

algorithms. For an example the Deny Overrides combining algorithm defined in

XACML Core specification [17], gives priority to Deny decisions over Permit

decisions. Thus, adhering to that definition of the algorithm, the author defines below

simplification rules for the Deny Overrides combining algorithm.

1. If there exists a rule that evaluates to Deny whose target is applicable, remove

all other rules and return Deny.

2. If there exists a rule that evaluates to Indeterminate whose target is applicable,

remove any rule with a Permit effect. (I think we can remove only if the rule

effect of the one return Indeterminate is a Deny)

3. If there exists a rule that evaluates to Permit whose target is applicable, remove

all rules that evaluate to Indeterminate if their effect is Permit.

4. If there exist no rules with a Deny effect and at least one rule with a Permit

effect, remove all other rules and return Permit. (Yet if the rule evaluates to

Indeterminate it should be Indeterminate)

5. If there exist no rules with a Deny effect and all rules evaluate to Indeterminate,

return Indeterminate.

However, there are some inconsistencies with the exact Deny Override algorithm

defined in the specification [17]. For example, in rule (2), we can only remove rules

with Permit effect, if the effect of the rule, which evaluates to Indeterminate is a Deny.

This is because precedence is given for rules with Deny effect, thus, if such a rule

evaluates to an Indeterminate, that result gets precedence over other rules with Permit

- 24 -

effect. However, if it is a rule with Permit effect that evaluates to Indeterminate, a rule

which evaluates to a Permit is given precedence over the rule evaluated to error state.

The author explains the simplification approach with an example. A company policy

set defines a printer usage policy and an internet access policy for employees. First

applicable policy is executed.

Printer access policy:

• An employee can print on PrinterA or PrinterB.

• If Red or Green ink is used print access denied.

• If Client-version is less than 4 or No Of Pages to print is greater than 50, print

access denied.

• Unless otherwise employee is permitted to print.

Internet access policy:

• send-packets to main-router is permitted.

• If the MAC-address is one of (aa:bb:cc:dd:ee: ff, 00:11:22:33:44:55,

99:88:77:66:55:44, 55 :00:99:11:88:22) access is denied.

<Request>
 <Subject>
 <Attribute AttributeId="role" DataType="string">
 <AttributeValue>employee</AttributeValue>
 </Attribute>
 <Attribute AttributeId="clientVersion" DataType="integer">
 <AttributeValue>5</AttributeValue>
 </Attribute>
 </Subject>
 <Action>
 <Attribute AttributeId="action" DataType="string">
 <AttributeValue>print</AttributeValue>
 </Attribute>
 </Action>
 <Resource>
 <Attribute AttributeId="destination" DataType="string">
 <AttributeValue>Printer A</AttributeValue>
 </Attribute>
 </Resource>
</Request>

Figure 2.6 - Partial query request.

- 25 -

The partial query that needs to be executed is “What affects if an employee may print

on Printer A if he uses client version 5?”, which is represented by the XACML 2.0

request protocol [18] as in Figure 2.6.

Steps in the simplification algorithm will be as follows:

1. Replace attribute designators with all known attributes.

2. Keeps references to all the elements, which were inserted, go through each of

inserted attributes placed within Targets and evaluate each Target.

3. Iterate below, as long as policy can be reduced.

a. Evaluate Apply elements.

b. Evaluate Condition elements.

c. Apply rules of simplification.

d. Simplify by combining algorithms.

For example, simplification of Condition element, in which attribute designators are

replaced with known attribute values is depicted in Figure 2.7. Here, the Condition

element includes two Apply functions, which are combined with OR function. First,

one is an integer less than function and the second one is an integer greater than

function. The attribute designator value in the first function has been replaced by the

clientVersion attribute received in the partial request, which is five, whereas the

attribute designator of the second function is replaced with an empty element, as its

value is not known. Thus, when considering the complete Condition element, first

function can be simplified as its value argument values are now known. Applying the

function integer less than, to the two arguments evaluates the function to false as,

5 < 4	 → 𝐹𝑎𝑙𝑠𝑒

Thus, the simplified Condition element is now expressed as below.

𝐹𝑎𝑙𝑠𝑒	𝑂𝑅	(𝑥 < 50)

- 26 -

Here x is the no of pages attribute, which is not denoted in Figure 2.7. Thus, the

simplified expression now denotes that the no of pages should be less than 50 for this

condition to be satisfied.

Figure 2.7 - Simplification of condition element [4].

Therefore, finally applying such simplification for the policy will result in a simplified

policy, which will denote a set of logical functions to be satisfied, which express the

conditions that should be met for the partial query to evaluate. However, the author

does not explain on how to interpret the exact answer, for the access review query

initiated from the simplified policy. He just highlights that this model is feasible to

answer access review requests, which are partial queries in XACML context. Further,

compared to exact algorithms defined in XACML, there are some inconsistencies with

the derived simplification rules. Moreover, the simplification process drops

expressions that evaluates to Indeterminate results which simply cannot be neglected

when it comes to some logical expressions. For example, when evaluating a Boolean

AND function, any argument of the function which evaluates to True may be discarded

- 27 -

as the result of the function in that case will depend entirely on the other arguments of

the AND function. However, if the first argument of an AND function results into a

simplified expression and the second argument results in an Indeterminate, the AND

expression cannot be simplified further, and the Indeterminate of the second argument

cannot be discarded. The reason is that the result of partial evaluation must be

equivalent to the original AND expression with respect to any access control request

which is consistent with the partial request. Thus, because the first argument is

simplified it may take any value True, False or Indeterminate. If the first argument

evaluates to True or Indeterminate, then the Indeterminate of the second argument

makes the whole AND expression Indeterminate. If the first argument evaluates to

False, then the whole AND expression is False. This is also discussed at [19], as a

drawback of [4].

2.5.2 Axiomatics Reverse Query

Axiomatics Reverse Query (ARQ) extend the policy simplification approach defined

in [16], to define methods on constructing a simplified policy such that, it reproduces

not only Permit and Deny decisions, but also data relating to errors which lead to

Indeterminate and Not Applicable state. Thus, they intend to address the fact that

evaluation of any partial request should be consistent with an evaluation of an access

request.

The authors provide a method for partially evaluating an ABAC policy, creating a

representation of the simplified policy [19]. This representation includes a dedicated

data field associated with an expression, for storing intermediate results of evaluation

of the expression itself or an expression subordinate. Following rules are imposed with

simplification:

• An expression evaluable only to False is formed in the simplified ABAC policy

for each expression in the full ABAC policy which is not completely evaluable

under the partial request and which is connected by a Boolean AND function

to at least one expression that evaluates under the partial request to False.

• An expression evaluable only to Indeterminate is formed in the simplified

ABAC policy for each expression in the full ABAC policy which is not

- 28 -

completely evaluable under the partial request and which is connected by a

combining algorithm to at least one expression that evaluates under the partial

request to Indeterminate.

Adhering to above simplification rules, authors define a way to perform partial

evaluation. The fundamental goal in this approach is to construct a simplified ABAC

policy equivalent to a full ABAC policy.

1. Input a full ABAC policy that includes attribute dependent expressions,

wherein each expression is evaluable to one of Not applicable, Indeterminate

and either Permit or Deny.

2. Input a partial request comprising at least one attribute value and at least one

attribute identified as variable.

3. Partially evaluate the full ABAC policy by substituting at least one attribute

value for a corresponding attribute appearing in the policy. Then form a

simplified ABAC policy equivalent to the full ABAC policy based on the

evaluation result thus obtained, and predetermined simplification rules.

4. Simplified ABAC policy includes an expression having a result data field for

storing evaluation result.

Going forward, they propose a system for evaluating access review queries at [20]

based on the above policy simplification model. The system is depicted in Figure 2.8.

Following steps are invoked by the system with respect to the evaluation of an access

review request (reverse query):

1. Receive a reverse query indicating a given decision (d) (Permit or Deny), and

a set (R) of admissible access requests, each of which comprises one or more

attributes appearing in the ABAC policy and explicit values assigned to them.

2. Extract attributes to which all access requests in the set (R) assign identical

values.

3. Reduce the ABAC policy at least by substituting values for the extracted

attributes.

- 29 -

4. Cache the policy after said reducing, as a simplified policy (P′).

5. Translate the cached simplified policy (P′) and the given decision (d) into a

satisfiable logic proposition in Boolean variables.

6. Derive all variable assignments satisfying the logic proposition.

7. Extract, based on the variable assignments thus derived, all access requests

from the set (R) for which the ABAC policy (P) yields the given decision (d).

Thus, the extracted access requests denote the respective conditions that should be met

to yield the given decision by the reverse query.

Figure 2.8 - Reverse query system.

Based on above inventions, Axiomatics have come up with a comprehensive solution

on supporting access review requests with XACML, which is known as Axiomatics

Reverse Queries (ARQ) [21]. This solution is capable of extracting conditions for a

given access review query. Further, it supports producing the support in various

formats. For example, ARQ can generate SQL queries based on conditions extracted

for an access review request [22].

- 30 -

Figure 2.9 illustrates a simple such use case in a health care industry, where a doctor

views a page with medical records, where he or she is only allowed list them based on

the location from which they try to access.

Figure 2.9 - Axiomatics reverse query in action [22].

2.5.3 Multi Interval Decision Diagrams

Ngo et al. [5] propose a decision diagram approach using the data interval partition

aggregation, to improve policy evaluation performance. Proposed solution can parse

and transform complex logical expressions in policies into decision tree structures to

improve policy evaluation. The model proposed can be used to solve access review

queries as well.

As defined in XACML, specification [17], Match, AllOf, AnyOf, Target and Condition

elements, will always evaluate to one of the results in Table 2.1, on evaluation of the

logical function expressed from each element, via subject, resource, action or

environment attributes and attribute values. The authors denote these evaluation results

by VM where,

𝑉2 = {𝑇, 𝐹, 𝐼𝑁}

- 31 -

Table 2.1 - Match, AllOf, AnyOf, Target, Condition result.

Element Result Notation

Match T

No Match F

Indeterminate IN

Similarly, per [17], Rule, Policy and PolicySet segments will evaluate to one of the

results in Table 2.2.

Table 2.2 - Rule, Policy, PolicySet result.

Element Result Notation

Permit P

Deny D

Not Applicable N

Indeterminate IN

These evaluation results are denoted by VR where,

𝑉: = {𝑃, 𝐷, 𝑁, 𝐼𝑁}

Then, to represent functions having signature over each domain above, the authors

define two types of decision diagrams, which are derived by considering variable

interval partitions.

Let us look at the sample policy listed in Figure 2.10 to understand how decision

diagrams are structured. This sample policy includes two rules, one with Permit effect,

and the other with Deny effect. Each rule includes a target condition, which is a logical

function with three variables, vol (volume), t (time), p (price). In addition, each rule

includes an obligation [17] as well. Rules are combined in the policy via permit-

override combining algorithm. If we list the interval partitions that the variable vol can

take in above policy, it will be similar to the following:

- 32 -

In Rule R1: [100,150), (300,500)

In Rule R2: [100], [100,300], [500]

In Policy P0: [100, 500]

Policy {
 id: P0;
 combine_algo: permit-override;
 target: {(vol ≥ 100) ∧ (vol ≤ 500)};
 childrens: {R1, R2}
}

Rule {
 id: R1;
 effect: Permit;
 target: {[(100 ≤ vol ≤ 150) ∧ (12 ≤ t ≤ 17) ∧ (3 ≤ p ≤ 4)] ∨
 [(300 ≤ vol ≤ 500) ∧ (1 ≤ p ≤ 2)] ∨
 [(100 ≤ vol ≤ 150)	∧ (6 ≤ t ≤ 9)	∧ (1 ≤ p ≤ 2)]};
 obligations: {O1, Permit}
}

Rule {
 id: R2;
 effect: Deny;
 target: {[vol = 100)	∧ (t = 17)] ∨
 [(100 ≤ vol ≤ 300)	∧ (t = 9)] ∨
 [(vol = 500) (t ≥ 12)]};
 obligations: {O2, Deny}
}

Figure 2.10 - Sample XACML policy [5].

Now, if we extract the first sub expression of the complete logical expression defined

in Rule R1’s target, we can denote that as a logical function as below.

𝑓 𝑣𝑜𝑙, 𝑡, 𝑝 = 100 ≤ 𝑣𝑜𝑙 ≤ 150 ∧ 12 ≤ 𝑡 ≤ 17 ∧ 3 ≤ 𝑝 ≤ 4 	 (2.1)

For the interval partition P of variable vol, when P{[100, 150]}, we can define a partial

function of the function above, like below.

𝑓HIJ[LMM,LNM] = 12 ≤ 𝑡 ≤ 17 ∧ 3 ≤ 𝑝 ≤ 4 	 (2.2)

By defining a boolean function for the interval partition of variable vol where,

ℎHIJ
[QRR,QSR] = 1			𝑖𝑓	𝑣𝑜𝑙	 ∈ [100,150],

ℎHIJ
QRR,QSR = 0		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

Equation 2.1 can be represented as,

- 33 -

𝑓 𝑣𝑜𝑙, 𝑡, 𝑝 = 	ℎHIJ
QRR,QSR ∧ 	𝑓HIJ[LMM,LNM] 											 (2.3)

Thus, for interval partition [100,150] of variable vol, above function can be

represented in a decision diagram, as in Figure 2.11.

Figure 2.11 - Example of function decomposition [5].

Similarly, a logical function f, can be represented as a rooted, acyclic graph G(V,E),

with the node set V, having internal nodes containing variables and leaf nodes

containing Boolean values. Each outgoing edge represents the boolean function over

the partition variable. Therefore, each subgraph of a variable is a partial function. This

structure is illustrated in Figure 2.12.

Figure 2.12 - Decision diagram illustration for function decomposition [5].

Authors then extends this representation to Multi Interval Decision Diagrams (MIDD),

where two types of decision diagrams are defined as MIDD and X-MIDD to represent

VM and VR domains respectively.

- 34 -

Definition: MIDD

MIDD is the G(V, E) representing a function having the signature over VM domain.

• Each internal node m in MIDD is the tuple of (Node variable, State value, Set

of tuples that represent an outgoing edge which contains a reduced interval

partition).

• State value can be (F, IN). If node variable is marked as required state value is

IN, else it is F.

• Descendent node can be another internal node or a leaf node containing T

value, which is called as T-leaf-node.

Adhering to above definition, MIDD of the R1’s target can be represented as in Figure

2.13.

Figure 2.13 - MIDD of R1's Target [5].

Definition: X-MIDD

X-MIDD is the G(V, E) representing a function having the signature over VR domain.

• An internal node m is a tuple of (Node variable, State (state value in VR

domain), Obligations and Advices if state is Permit or Deny else empty, Set of

tuples that represent outgoing edges).

- 35 -

• Leaf node contains the policy evaluation result, which is a tuple of (State (state

value in VR domain), Obligations and Advices if state is Permit or Deny, else

empty).

Adhering to above definition, X-MIDD of R1 can be represented as in Figure 2.14.

Figure 2.14 - X-MIDD of R1 [5].

Finally, given a XACML policy tree, an equivalent X-MIDD is constructed as below.

1. Extract intervals and build MIDDs representing Target and Condition

elements.

2. Create the X-MIDD for each rule from its MIDDs following the mechanism.

3. For a Policy or PolicySet, join X-MIDDs of its children by equivalent

combining operators to construct the final X- MIDD instance representing the

root policy.

Therefore, the final decision diagram constructed for the policy P0 can be represented

as in Figure 2.15.

- 36 -

Figure 2.15 - X-MIDD of sample policy P0 [5].

The advantage of this model is that the decision paths are precomputed, thus answering

an access request or an access review request is just a matter of traversing over the

graph. For example, suppose an access review request as below is initiated.

“Which resources can the subject Alice access during 9am-6pm?”.

Given an X-MIDD representing the policies, the problem now becomes how to

enumerate all possible paths reaching the permit decision for the partial request

initiated.

{subject.id = ‘Alice’, action = ‘read’, time ∈ [9,18]}.

However, there are several other drawbacks of this solution.

• The depth of the graph will grow with respect to the number of variables in the

policy.

• No of nodes in the graph will grow with respect to the number of variables and

the number of value intervals that each variable could take.

• Ordering of variables may affect the complexity of the graph (the order in

which variables are picked to construct the graph).

- 37 -

• Adding a new policy will involve constructing the graph for that policy and

merging with the existing graph. However, when updating a policy, it is not

clear how to accommodate newly added variable conditions or modified

conditions to the graph. Therefore, updating a policy may need to build the

graph for whole policy set from beginning.

- 38 -

3 PROPOSED SOLUTION

Two approaches have been proposed to solve the problem of performing access

reviews in XACML space ([4], [5]). The first approach performs partial evaluation of

policies using the usual policy evaluation approach [4]. This approach takes more time,

as each policy needs to be evaluated and simplified, against a subset of attributes that

needed to evaluate a policy, to extract the applicable set of conditions. The second

approach, construct a decision graph that represent XACML policy sets. Due to pre-

constructed representation, this approach reduces evaluation complexity, but incurs

scalability problems as the graph grows with respect to the number of variables in the

policy set and the distinct value intervals that each variable could take.

Thus, in this research, we look to construct a data model for XACML policy

representation, that could represent the permission relationships between subjects and

objects and could isolate matching subjects or objects, for a given access review

request to extract applicable set of conditions efficiently. Reconsidering the problem

statement, we can conclude about access control in ABAC with following facts:

1. Goal of access control is to define permissions between subjects and objects

and restrict access, based on those permissions.

2. In access control models, permissions define the connections between the

subjects and objects.

3. Similarly, in ABAC, a policy defines the permissions between subjects and

objects.

4. In a policy, both the subjects and objects are defined with their attributes. Then

there are actions and context information, which define permissions between

subjects and objects.

5. Therefore, ultimately, an ABAC policy will define a specific set of subjects

with a specific set of attributes, similarly it will define a specific set of objects

with a specific set of object attributes. Thus, from a policy it should be possible

to identify subject sets and resource sets and model the permissions among

them as connections.

- 39 -

6. In such a model, asking a query like ‘What objects can Alice read?’ means

identifying the subject set that Alice belongs to, from the attributes of Alice,

and identifying resource sets that such a subject will have permission to. That

means, the query will return the conditions that define the respective resource

sets that ‘Alice’ will be permitted, and the conditions that should be met to

reach each resource set.

Therefore, going in this direction we should be able to model the relationship between

subjects and objects via the set of conditions defined in a policy, from which we could

easily extract the applicable set of conditions to answer an access review request.

3.1 Subject – Object Relationship Model

In XACML, there are four attribute categories namely, subject, resource, action and

environment. Here, subject and resource attributes represent subject sets and resource

sets. Action and environment attributes define permissions among such subject and

resource sets. Thus, given a XACML policy tree, we can identify resource sets and

subject sets and model permissions among them as a directed graph. For example,

assume a company policy that defines access to employee appraisal forms as follows:

• During the annual performance appraisal time, appraisal forms will be opened

for employees to fill in and submit within a specified period. During that period

employees, can view and edit their own appraisal forms and submit. After the

deadline for submission, they will no longer be able to edit it, but they can view

their own appraisal form.

• Managers can view and comment on the submitted appraisal forms, of his/her

subordinates before the deadline defined for manager approval. Soon after they

will no longer be able to comment, but they will be able to view them.

• HR personnel can view appraisal forms of all the employees anytime.

Suppose in this context,

• Each user has an attribute as id, which is the user identifier.

- 40 -

• Employees, managers, and HR personnel are identified by the roles assigned

to them, which is denoted by the role attribute.

• Managers have an additional attribute as subordinateIds, which holds the set

of identifiers of his or her subordinates.

• An appraisal form is a resource. It is identified as an appraisal form by the id

attribute. Resource will have an attribute sid, which defines the subject

identifier that the resource belongs to.

• Users can perform read, write or comment actions on appraisal forms as

denoted by id attribute of actions.

• Submission period and the approval period are environmental conditions, that

are defined by submission-period and approval-period environmental

attributes respectively.

If we model this access control policy, categorizing subjects and resources as vertices

and permissions among them as edges, we can generate the following graph as shown

in Figure 3.1. Thus, vertices in the graph represent subject category or resource

category entities that will include a collection of predicates, which describe the subject

or the resource. Edges will represent the access control decision and the conditions

that should be satisfied for that decision, which include predicates constructed with

action and environment category attributes.

Vertices in the graph will be either subjects or resources. Therefore, a vertex in the

graph will hold following properties.

• Category: Subject or Resource

• List of (Attribute Id, Attribute Value, function) tuples, i.e. the conditions that

should be satisfied

- 41 -

Figure 3.1 - Subject-Object relationship model.

For example, this could be formulated as follows:

node: {
 id: employee_node
 category: subject
 conditions: [
 condition
 {
 attribute_id: subject.role
 attribute_value: employee
 function: string-equal
 }
]
}

- 42 -

node {
 id:appraisal_form_node
 category: resource
 conditions: [
 condition {
 attribute_id:resource.type
 attribute_value:appraisal_form
 function:string-equal
 }
]
}

To match with a node, the category of the node should be matched and each attribute

should be matched to the attribute value when the defined function is applied.

Edge in the graph will store,

• Decision: Permit or Deny

• List of (Attribute Id, Attribute Value, function) tuples, i.e. the conditions that

should be satisfied

• Subject node: subject category node that this edge links to

• Resource node: resource category node that this edge links to

For example,

edge {
 id:edge_employee_to_appraisal_form
 decision: Permit
 subject_node:employee_node
 resource_node:appraisal_form_node
 conditions: [
 match_attribute {
 attribute_id:action.id
 attribute_value:read
 function:string-equal
 }
]
}

For an edge to be evaluated to the decision specified, each attribute should be matched

to the attribute value when the defined function is applied.

3.2 Methodology

Constructing the above XACML policy representation model, requires traversing over

each policy set and policy in the top most XACML policy set, to extract the predicates

- 43 -

defined in each policy, and represent them in a data structure. In XACML, a predicate

evolves from the bottom of a XACML policy tree, with Match and Apply elements

within Targets and Conditions respectively. A predicate defined with Match or Apply

is a single function with few variables, whereas each variable in the function is either

a subject, resource, action or environment attribute. Targets and Conditions are then

derived by combining such simple functions with AND or OR operators, to express

complex predicates that should be evaluated to true for the respective Target or

Condition element to be matched. Finally, by combining the result of Target and

Condition elements, a policy evaluates to either Permit or Deny. Therefore, starting

from bottom most Match and Apply elements, we can build a data structure to express

each predicate that lead to a Permit or Deny decision. That means, such a predicate

combines conditions defined with subject, resource, action and environment attributes

with AND operator. Representing that in the data structure will also include the

decision that the successful evaluation of that predicate will lead to, i.e., either Permit

or Deny. In a policy, there will be a set of such predicates that lead to either Permit or

Deny decision, based on the conditions defined in that policy, as such conditions merge

with OR operator. Therefore, the data structure, which represents a predicate that lead

to a Permit or Deny decision, will have,

• a subject node, which includes conditions that define the subject.

• a resource node, which includes conditions that define the resource.

• a link node, which includes conditions that define the subject and resource

relationship.

• a decision node, which will say if this leads to a Permit or Deny.

However, if the predicate does not include subject conditions, the data structure will

not have a subject node. Similarly, it may not have a resource or link node as well.

However, at least the data structure will include just a decision node (in case of empty

rules, which defines only the rule effect). At most, there will be only four nodes in this

data structure. This is because, conditions will always be categorized into either

subject, resource, or link, and with the decision node, the data structure will have only

four nodes at most. Further, because this data structure is organized hierarchically,

- 44 -

with each node having a directed edge exactly from a one other node, it could be

considered as a tree. Figure 3.2 represent the model of a predicate tree. Each internal

node of this tree will include either a set of conditions derived from subject attributes,

a set of conditions derived from resource attributes or a set of conditions derived from

action or environment attributes. The external node or the leaf node will include the

decision, the predicate will lead to, i.e., either Permit or Deny. Therefore, here

onwards, this tree will be termed as a predicate tree.

Figure 3.2 - Predicate tree.

Once all predicates in the XACML policy are extracted to a set of predicate trees that

group subject-category conditions, resource-category conditions and link-category

conditions, the subject-resource relationship graph can be built by combining them

together. For each predicate tree perform following,

• Create a vertex for subject, equivalent to the subject category node.

• Create a vertex for resource, equivalent to the resource category node.

• Create an edge between the subject and the resource node, in which the

decision is the value of the decision node and add all the conditions of the link

node to the edge created, to denote the subject-resource relationship conditions

that should be satisfied to meet the decision.

This defines the relationship between a specific subject category and a resource

category.

Note that if either subject or resource node is missing, the predicate tree does not

represent the subject and resource relationship. Such trees are ignored when building

the relationship. Ideally, empty trees could result only with empty rules, which means

- 45 -

there are no conditions within such a rule. Therefore, ignoring them could not have an

impact on evaluation, which ultimately extracts the condition set.

For each such relationship, add the subject node to the graph labelling as a subject

node, if it is not already present. If such a subject node already exists, merge the edges

of node with the edges of the existing node. That means, if the same edge exists in the

existing subject node pointing to the same resource node ignore that edge. Else, link

the edge with the existing subject node. Similarly, add resource nodes to the graph and

merge edges of the node to the existing node if such resource node exists. This will

construct a graph as in Figure 3.3, where subjects and resources can be easily identified

and the permissions among them can be easily derived.

Figure 3.3 - Subject-Object relationship graph.

Now with the above graph constructed, answering an access review request includes,

1. Identifying the set of subject nodes or identifying the set of resource nodes,

from the attributes received or can be derived from the access review

request.

- 46 -

2. Traversing over the edges that the identified set of subject nodes or resource

nodes linked to, and identify the set of resource nodes or subject nodes that

relates.

Thus, answering a query like ‘What objects can Alice read?’ means identifying the

subject node set that Alice belongs to, from the attributes of Alice. Then from the edges

of those nodes, identifying the set of resource nodes that such a subject will have

permission to. Therefore, the query will return the full set of conditions defined in the

path from each subject node to each resource node isolated. This greatly simplifies the

query resolution leading the fast and accurate access reviews.

3.3 Theoretical Comparison

In this section, we compare the time complexity and space complexity of the proposed

solution, with the Partial Query Evaluation approach [4] and MIDD approach [5] in

literature.

3.3.1 Space Complexity

Space Complexity of Subject-Object Relationship Model

In this model, conditions that should be matched for subjects and resources are

categorized based on the attributes and attribute values appearing in the policy. There

are a set of nodes representing types of subjects via a set of conditions derived from

subject attributes. Similarly, there are a set of nodes representing types of resources

via a set of conditions derived from resource attributes.

Number of nodes representing subjects and the number of nodes representing

resources will always be less than the total number of subjects and resources in the

system. Because, the model will not uniquely define each subject or resource, rather it

represents subject types and resource types via a set of conditions derived from subject

or resource attributes. Therefore, each subject or resource in the system, may match

one or more subject nodes or resource nodes based on its attributes.

Suppose, there are m no of subject nodes and n no of resource nodes. Therefore,

- 47 -

Total	no	of	nodes	in	the	subject − object	relationship	graph = 𝑚 + 𝑛 					 (3.1)

If number of edges linking subject and resource nodes is l, in the worst case, there will

be a link from every subject to every object. Therefore, in the worst case,

Total	no	of	edges	in	the	subject − object	relationship	graph = 𝑚. 𝑛 					 (3.2)

Thus, in this model, space complexity will depend on the number of subject and

resource conditions defined and how uniquely do they categorize subject sets and

resource sets. Moreover, in a typical access control policy, there will not be a link from

every subject to every object, because the access control matrix that the policy defines

will include many empty cells, where permission relationship between the subject and

resource not defined. Having a link from every subject to every object means, each

cell in the access control matrix is occupied, which is not the practical case.

Space Complexity of Partial Query Evaluation

Partial Query Evaluation model does not change the default XACML policy tree

structure which is represented in Figure 3.4, considering only the top-level elements

defined by XACML Policy Language Model. Thus, in the XACML policy tree a node

will be represented by a policy set, policy or a rule and each edge represents the parent

– child relationship among policy sets, policy sets and policies, or policies and rules.

Figure 3.4 - XACML policy tree structure.

Suppose, in such a policy set defined, there are n policy sets, m policies and r rules. In

that case,

- 48 -

Total	no	of	nodes	in	the	XACML	tree	structure = 𝑚 + 𝑛 + 𝑟 	 (3.3)

Thus, in this model, the space complexity depends on the number of policy sets,

policies and rules defined. The tree structure grows as more policies, rules and rule

conditions come in to the system.

Space Complexity of MIDD Approach

Suppose, there are n attributes defined in the policy set, and the attribute set A is

denoted as follows:

				𝐴 = 𝑎Q, 𝑎v, 𝑎w, … , 𝑎y, … , 𝑎z 	 (3.4)

If ai attribute has only one value a¢ appearing in the policy set, distinct value intervals

for attribute ai is derived as follows:

{(-¥, a¢), [a¢], (a¢, +¥)}

Therefore, there are three distinct value intervals for only one value appearing in the

policy set. If there are two values a¢ and a¢¢ appearing in the policy set, where a¢ < a¢¢,

distinct value intervals for attribute ai is derived as follows:

{(-¥, a¢), [a¢], (a¢, a¢¢), [a¢¢] (a¢¢, +¥)}

Thus, there are five distinct value intervals. Therefore, if ai attribute has ki different

values appearing in the policy set, distinct value intervals for attribute ai can be

separated into 2ki + 1 intervals. Therefore, the MIDD representing the policy tree has

at most 2ki + 1 outgoing edges from any node at level li (for n no of attributes in the

policy there will be n+1 levels). Therefore,

				Maximum	no	of	nodes	at	level	𝑙y = (2𝑘� + 1)y
��Q 	 (3.5)

Total	no	of	nodes	in	the	MIDD	in	worst	case = 	 (2𝑘� + 1)
y

��Q

z

y�Q

	
(3.6)

Total	no	of	edges	in	the	MIDD	in	worst	case = 	 (2𝑘� + 1)
y

��Q

z

y�Q

	
(3.7)

- 49 -

Thus, in this model the space complexity in the worst case does not depend on the

number of policies, or the complexity of logical formulas in target or condition

expressions. It depends on the number of attributes and number of distinct attribute

values in the full policy set. Moreover, the size of the MIDD is affected heavily by the

attribute ordering.

3.3.2 Time Complexity

Time Complexity of Subject – Object Relationship Model

In the proposed model, subject sets and resource sets defined by the access control

policy, are isolated. Therefore, for a subject centric access review, such as ‘What are

the resources can this user access?’, it is a matter of finding the set of subject nodes

that the request match. Each subject node in the model, groups a set of conditions

defined with certain set of subject attributes. Therefore, the subject in the access review

request may match with one or more subject nodes in the model, based on the attribute

values of that subject.

Suppose there are m such subject nodes in the model, if subject nodes are denoted by

S,

				𝑆 = 𝑠Q, 𝑠v, 𝑠w, … , 𝑠y, … , 𝑠� 	 (3.8)

If si has ki conditions, time complexity to evaluate each node and find the matching

subject set is as follows:

Time	Complexity	of	Subject − Object	Relationship	Model = 	𝑘Q + 𝑘v + ⋯+ 𝑘�

= 𝑘y

�

y�Q

				Therefore, worst	case	complexity	is	 = 𝑂(𝑘y)�
y�Q 	 (3.9)

Same evaluation time complexity applies for resource centric access reviews as well.

Time Complexity of Partial Query Evaluation

In XACML, access control logic resides in Target elements, of policy sets, policies,

rules and Condition elements of rules. Thus, evaluation includes traversing over the

- 50 -

XACML policy tree, and evaluating Targets of policy sets, policies, rules and

Conditions of rules as represented in Figure 3.5.

Figure 3.5 - XACML policy evaluation structure.

Partial Query Evaluation (PQE) approach follows the same model. In a typical access

control request, policy evaluation expects all attributes needed to evaluate the policy

successfully. However, in an access review request, only a subset of the attributes will

be available. Thus, policy simplification includes traversing over the tree and

simplifying each Target and Condition for available attributes in the worst case.

Suppose, in such a policy set defined, there are n policy set targets, m policy targets, r

rule targets and k rule conditions. In that case,

Time	Complexity	of	PQE	Model = 𝑂 𝑚 + 𝑛 + 𝑟 + 𝑘 	 (3.10)

Time Complexity of MIDD Approach

In this model, for a given access review request, which is a partial access request with

few attributes, we need to traverse the graph over the paths that will lead to a Permit

decision node, for given attribute values. Each path traversed, denotes the conditions

that should be met. Thus, evaluation of an access review request is a depth first graph

search. Therefore, in the worst case, we will be visiting all nodes and edges, where the

time complexity can be given as follows:

Time	Complexity	of	MIDD	approach = 𝑂 𝑉 + 𝐸 	 (3.11)

- 51 -

Where V is the number of vertices and as E is the number of edges, which is given by

Equation 3.7.

3.3.3 Discussion

Table 3.1 summarizes the space complexities computed for the proposed model and

the prevalent solutions. As derived in Equation 3.3, the space complexity of the PQE

approach solely depends on the number of policy sets m, policies n, and rules r

introduced to the access control system. Such policies or rules may refer the same set

of subjects or resources, but irrespectively the structure will grow.

Table 3.1 - Summary of space complexities.

Solution Number of Nodes Number of Edges

Subject - Object Relationship Model 𝑚 + 𝑛 	 𝑚. 𝑛 	

PQE 𝑚 + 𝑛 + 𝑟 	 𝑚 + 𝑛 + 𝑟 − 1	

MIDD 2𝑘� + 1
y

��Q

z

y�Q

	 (2𝑘� + 1)
y

��Q

z

y�Q

	

In MIDD approach, space complexity depends on the number of attributes defined in

the XACML policy set and the distinct value intervals they could take. Both, the

number of nodes and the number of edges in the model incurs the same complexity,

with respect to the number of attributes and the distinct value intervals they take.

Thus, the graph grows when more attributes come into the access control policy.

Moreover, if we look at the space complexity derived for MIDD approach, the size of

the graph is mainly determined by the distinct attribute value intervals. Further, the

graph complexity will vary with the attribute ordering considered at graph

construction. Thus, this affects the scalability of this model.

As derived in Equation 3.1 and Equation 3.2, in Subject – Object relationship model

the graph depends on the number of subject sets m and resource sets n identified from

the XACML policy set. Therefore, the graph will grow only with the addition of a new

subject set or a resource set. The model clearly isolates the subject groups and resource

groups and links among them. Thus, this model is more scalable over the PQE and

MIDD approaches.

- 52 -

Table 3.2 summarizes the time complexities computed for the proposed model and the

prevalent solutions. The time complexity of PQE approach depends on the number of

policy set m, policy targets n, rule targets r, and rule conditions k in the access control

policy. During the access review query, each condition needs to be evaluated against

the specified functions over simplification rules. This adds a considerable cost to the

query evaluation. Moreover, in a typical access review request, the attributes received

will be a collection of subject category, action category and environment category, or

it will be a collection of resource category, action category and environment category,

based on whether it is a subject-centric access review request or resource-centric

access review request. However, in PQE model, irrespective of the nature of the access

review request, all targets and conditions needs to be evaluated for simplification.

Table 3.2 - Summary of time complexities.

Solution Time Complexity

Subject - Object Relationship Model 𝑂(𝑘y)
�

y�Q

	

PQE 𝑂 𝑚 + 𝑛 + 𝑟 + 𝑘 	

MIDD 𝑂 𝑉 + 𝐸 	

In MIDD approach, for the worst case, all nodes and edges in the tree will be visited.

Thus, as the number of nodes and number of edges of the tree depends on the number

of attributes and the distinct attribute intervals they can take as derived in Equation 3.6

and Equation 3.7, time complexity depends on the same variables. The advantage of

this model is that some complex function evaluations are skipped from query

evaluation time, because the representation derives paths based on the value intervals.

However, the evaluation complexity is still affected by the attribute ordering.

In Subject – Object relationship model, attribute categories received are taken into

consideration, from which subjects and resources can easily be identified. Therefore,

each condition defined in the policy is not evaluated. Thus, this reduces the cost of

evaluation considerably when compared to PQE method. However, to find the

matching set of subjects or the matching set of resources, all identified subject sets or

resource sets will be evaluated and condition evaluation will happen at the time of

- 53 -

processing the query. Therefore, when compared with the MIDD approach, for a

smaller number of attributes and distinct attribute intervals in the policy, MIDD

approach will perform well. Yet, for higher number of attributes, attribute value

intervals and with respect to attribute ordering, the evaluation time of the MIDD

approach will be effected heavily, whereas the Subject - Object relationship model

will not be effected at the same rate, as it grows at a relatively slower rate with respect

to those variables.

Therefore, looking at the space complexities derived, we can conclude that the

proposed model is more scalable over PQE and MIDD approach. Then with respect to

time complexities, proposed model is not much affected by the number of conditions

or the number of attributes introduced to the access control system and fluctuate in

query evaluation times with respect to those variables. Thus, the proposed model will

perform efficiently, irrespective of the complexity of the XACML policy tree.

- 54 -

4 IMPLEMENTATION

This chapter illustrates the algorithm that constructs the subject-object relationship

model proposed in Chapter 3. The hypothetical example presented in Section 2.4.1 is

used to explain the algorithm.

4.1 Graph Construction

In a XACML policy, predicates are defined with Target elements of a policy set,

policy, or rule and Conditions element of a rule. When an access request is made, those

are the elements that are evaluated against the received set of attributes. Therefore,

extracting the predicates from a XACML policy and constructing predicate trees,

include parsing Target elements of policy set, policy, and rules, Conditions element of

rules, and finally combining them together.

This research focus on parsing Target elements only. But the same model can be

followed to parse rule Conditions to build predicate trees, to include them in the

subject - object relationship graph.

Let us consider the hypothetical example presented in Section 2.4.1. In the sample

policy presented, we can express access control predicates from policy and rule Target

elements and build up the evaluation structure of the XACML policy tree as in Figure

4.1. Now, let us see how we can parse above policy structure to construct the subject-

object relationship model proposed in Chapter 3. An overview of the algorithm, which

builds the subject-object relationship graph, is represented in Figure 4.2. Next each of

the key steps are discussed in detail.

- 55 -

Figure 4.1 - XACML policy tree of hypothetical example.

- 56 -

Figure 4.2 - Overview of the subject-object relationship graph construction.

- 57 -

Step 1: Start with rule Target elements and construct the set of predicate trees that

defines the Target expression.

Let us consider the WineLiqorAllowanceForForeigners rule target. In XML-based

XACML policy, this rule target will be represented as shown in Figure 4.3. To improve

readability namespaces of functions, attributes, attribute categories and data types are

removed. Refer Appendix A to find the complete XACML policy.

<Target>
 <AnyOf>
 <AllOf>
 <Match MatchId="string-equal">
 <AttributeValue DataType="string">wine</AttributeValue>
 <AttributeDesignator AttributeId="resource-id"
Category="resource" DataType="string">
 </AttributeDesignator>
 </Match>
 </AllOf>
 <AllOf>
 <Match MatchId="string-equal">
 <AttributeValue
DataType="string">liquor</AttributeValue>
 <AttributeDesignator AttributeId="resource-id"
Category="resource" DataType="string">
 </AttributeDesignator>
 </Match>
 </AllOf>
 </AnyOf>
 <AnyOf>
 <AllOf>
 <Match MatchId="double-greater-than-or-equal">
 <AttributeValue DataType="double">1.5</AttributeValue>
 <AttributeDesignator AttributeId="volume"
Category="resource" DataType="double">
 </AttributeDesignator>
 </Match>
 </AllOf>
 </AnyOf>
</Target>
	

Figure 4.3 - Target expression of WineLiqorAllowanceForForeigners rule.

In a XACML policy, a Target expression includes several other constructs, that

combines predicates over OR and AND operators, to build up the complete logical

expression. Thus, a Target can be represented as in Figure 4.4.

- 58 -

Figure 4.4 - Target expression tree structure.

In XACML, a Target expression constructs as follows:

• Target includes a set of AnyOf elements. Predicates expressed from these

AnyOf elements are combined with the AND operator, which represents the

complete Target expression.

• AnyOf elements include a set of AllOf elements. Predicates expressed from

these AllOf elements are combined with the OR operator, which represents the

complete AnyOf expression.

• AllOf elements include a set of Match elements. Predicates expressed from

these Match elements are combined with the AND operator, which represents

the complete AllOf expression.

• Match element is composed from a tuple of (match-id, attribute value, attribute

id), where match-id is a two-operand predicate Boolean function. Thus, each

Match element represents a Boolean function, which defines a subject, resource

or an action or environmental condition to be satisfied.

Thus, parsing the Target element includes,

1. Traverse up to Match elements.

- 59 -

2. Extract the Boolean predicate from the Match element as a condition.

For example, let us consider the Match element depicted in Figure 4.5 of the

Target depicted in

Figure 4.3. Here predicate is, 	

resource-id = wine

Extracting this predicate as a condition which is a tuple of (attribute, attribute

value, function), we can construct the condition structure as below.

condition {
 attribute: resource-id,
 attributeValue: wine,
 function: string-equal
}

<Match MatchId="string-equal">
 <AttributeValue DataType="string">wine</AttributeValue>
 <AttributeDesignator AttributeId="resource-id"
Category="resource" DataType="string">
 </AttributeDesignator>
</Match>

Figure 4.5 - Match expression example.

3. For each such Match element within a AllOf element, identify the condition

and the category that condition belongs, from the attribute. Then, add the

condition to the respective node that group conditions of that category as in

Figure 4.6.

Figure 4.6 - Resource node example.

4. Link each node created, such that it forms a tree, where the leaf node will be a

node with value True.

- 60 -

This denotes that all conditions of all nodes should be satisfied to lead to a True

value. Thus, as the XACML core specification defines, each Match condition

in AllOf element is merged with AND operator and represented in a tree.

<AllOf>
 <Match MatchId="string-equal">
 <AttributeValue
DataType="string">wine</AttributeValue>
 <AttributeDesignator AttributeId="resource-id"
Category="resource" DataType="string">
 </AttributeDesignator>
 </Match>
</AllOf>

Figure 4.7 - AllOf expression example 1.

For example, let us consider the AllOf expression depicted in Figure 4.7.

Parsing this AllOf expression results the tree shown in Figure 4.8. Similarly,

parsing AllOf expression in Figure 4.9 will result the tree in Figure 4.10.

Figure 4.8 - Tree structure resulted from AllOf expression example 1.

<AllOf>
 <Match MatchId="string-equal">
 <AttributeValue
DataType="string">liquor</AttributeValue>
 <AttributeDesignator AttributeId="resource-id"
Category="resource" DataType="string">
 </AttributeDesignator>
 </Match>
</AllOf>

Figure 4.9 - AllOf expression example 2.

Figure 4.10 - Tree structure resulted from AllOf expression example 2.

Suppose cost of extracting the condition from Match is C1 and adding the

condition to the node is C2. Therefore, time, Tsum taken to parse Match

- 61 -

expression is C1+ C2. For ki such conditions (Match expressions) within AllOfi

expression the number of iterations is ki. Thus, time complexity of parsing all

Match expressions is ki(C1+ C2). If, cost of constructing the tree and linking

nodes is C3, time consumption, Tsum of parsing AllOfi expression is ki (C1+ C2)

+ C3. Therefore, complexity of parsing AllOfi is 𝛰(𝑘y).

5. Next, parse AnyOf expressions, parsing each AllOf expression within AnyOf as

explained in Step 4 above. As per the XACML core specification AllOf

expressions are merged with OR operator within a AnyOf expression.

For example, AnyOf expression defined in Figure 4.11 includes two AllOf

expressions represented in Figure 4.7 and Figure 4.9 respectively. Thus,

parsing this AnyOf expression parse each AllOf expression, which constructs a

predicate tree as, discussed in Step 3. Each such tree constructed will be added

to a List, because with AnyOf, any such predicate result in true means, the

expression evaluates to true.

<AnyOf
 <AllOf>
 <Match MatchId="string-equal">
 <AttributeValue
DataType="string">wine</AttributeValue>
 <AttributeDesignator AttributeId="resource-id"
Category="resource" DataType="string">
 </AttributeDesignator>
 </Match>
 </AllOf>
 <AllOf>
 <Match MatchId="string-equal">
 <AttributeValue
DataType="string">liquor</AttributeValue>
 <AttributeDesignator AttributeId="resource-id"
Category="resource" DataType="string">
 </AttributeDesignator>
 </Match>
 </AllOf>
</AnyOf>

Figure 4.11 - AnyOf expression example.

Having kj no of AllOf elements means there are kj possible expressions, and if

at least one evaluates to True, AnyOf expression evaluates to True. Thus,

parsing AnyOf will return the set of predicate trees. For, kj number of AllOf

- 62 -

elements, time required (Tsum) to parse AnyOfj = 𝐴𝑙𝑙𝑂𝑓y
��
y�Q can be given as

follows:

Tsum = 𝐶𝑘y +	𝐶�
��
y�Q

Therefore, complexity of parsing AnyOfj is 𝛰(𝑘�𝑘y).

6. Parse Target expression, parsing each AnyOf expression within Target as

described in Step 5, and merge the lists of predicate trees resulted from AnyOf

expressions using AND operator.

We can express AllOf, AnyOf and Target expressions as Boolean functions as

in Equation 4.1, 4.2 and 4.3 respectively.

𝐴𝑛𝑦𝑂𝑓Q = 𝐴𝑙𝑙𝑂𝑓� + 𝐴𝑙𝑙𝑂𝑓�	 (4.1)

𝐴𝑛𝑦𝑂𝑓v = 𝐴𝑙𝑙𝑂𝑓� + 𝐴𝑙𝑙𝑂𝑓� 	 (4.2)

𝑇𝑎𝑟𝑔𝑒𝑡 = 	𝐴𝑛𝑦𝑂𝑓Q. 𝐴𝑛𝑦𝑂𝑓v	 (4.3)

Thus, Target can be expressed as follows:

𝑇𝑎𝑟𝑔𝑒𝑡 = 𝐴𝑙𝑙𝑂𝑓� + 𝐴𝑙𝑙𝑂𝑓� . 𝐴𝑙𝑙𝑂𝑓� + 𝐴𝑙𝑙𝑂𝑓� 	 (4.4)

Applying distributive law, we can express Target expression as follows:

𝑇𝑎𝑟𝑔𝑒𝑡 = 𝐴𝑙𝑙𝑂𝑓�. 𝐴𝑙𝑙𝑂𝑓� + 𝐴𝑙𝑙𝑂𝑓�. 𝐴𝑙𝑙𝑂𝑓� + 𝐴𝑙𝑙𝑂𝑓�. 𝐴𝑙𝑙𝑂𝑓�
+	𝐴𝑙𝑙𝑂𝑓�. 𝐴𝑙𝑙𝑂𝑓� 	

(4.5)

Therefore, as each predicate tree in the list of trees returned by parsing AnyOf

expression, represent the Boolean predicate of each AllOf expression, merging

two AnyOf expressions means iterating over each list and merging each

predicate tree of list 1 with each predicate tree of list 2 and building new list of

predicate trees.

As described in Step 3, parsing any AllOf expression will result in a predicate

tree with a maximum of four nodes, if the AllOf expression includes predicates

defined with each attribute category, i.e. subject, resource, action or

environment. Such a tree is represented in Figure 4.12. Therefore, considering

- 63 -

Equation 4.5, merging AllOfa and AllOfb with AND operator means merging

the predicate tree resulted from each expression as in Figure 4.13.

Figure 4.12 - Predicate tree resulted from AllOf expression.

Figure 4.13 - AllOfa.AllOfb.

Then reduce the tree merging nodes of same category as follows:

i. Start from first node and mark it as current node.

ii. Iterate over the nodes.

iii. If a node of same category of the current node found merge with the

current node.

iv. Move to the next node and start from Step ii

This will return an ideal predicate tree defined, with maximum of four nodes

(i.e., subject, resource, link, and decision node). For example, let us consider

the WineLiqorAllowanceForForeigners rule target represented in

Figure 4.3. If we denote the first AnyOf expression in the Target expression as

AnyOf1, the predicate tree list of AnyOf1 can be illustrated as in Figure 4.14.

Similarly, if we denote the second AnyOf expression in the Target expression

as AnyOf2, the predicate tree list of AnyOf2 can be given as in Figure 4.15.

Therefore, AnyOf1.AnyOf2 will result in the predicate tree list in Figure 4.16.

Reducing each predicate will result the predicate tree list in Figure 4.17.

- 64 -

Figure 4.14 - Predicate tree list of AnyOf1.

Figure 4.15 - Predicate Tree List of AnyOf2.

Figure 4.16 - Predicate tree list of AnyOf1.AnyOf2.

Figure 4.17 - Predicate tree list after reduction.

- 65 -

Let us analyze the cost of reducing the predicate tree. For n number of internal

nodes (without the decision node) in the tree, cost of time Tsum of reduction can

be stated as:

𝑇��� ≤ 𝑛 + 𝑛 − 1 + 𝑛 − 2 +⋯+ 1											 (4.6)

𝑇��� ≤ 𝑖
z

y�Q

	
	

𝑇��� ≤ 𝑛(𝑛 + 1)/2		 	

As the maximum number of internal nodes in the merged predicate can be only

six, cost of time, Tsum of reduction will always be ≤ 21. Now, suppose AnyOfj

expression includes kj number of predicate trees. Thus, merging predicate trees

of AnyOfj and AnyOfj+1 includes kj kj+1 iterations. Therefore, cost of time, Tsum

of merging AnyOfj and AnyOfj+1 ≤ kj kj+1(21).

For m AnyOf expressions, cost of time Tsum of merge operation can be stated

as:

𝑇��� ≤ 𝑘Q𝑘v 21 𝑘w 21 …𝑘� 21 	 (4.7)

𝑇��� ≤ 	 21 ��Q(𝑘Q𝑘v …𝑘�)		 	

𝑇��� ≤ 	 21 ��Q 𝑘y

�

y�Q

	
	

Therefore, the complexity of parsing the Target expression is,

𝛰(21 ��Q 𝑘y�
y�Q)

Step 2: Similarly construct the set of predicate trees that defines the Conditions

expression.

Parsing rule Conditions is skipped in this research now, because the present

implementation supports only two argument functions. However, Conditions can be

parsed similarly and a set of predicate trees can be constructed. This requires

- 66 -

supporting different types of functions and merging them together to construct

Boolean expressions.

Step 3: Merge rule Target with rule Conditions with AND operator and derive the

set of predicate trees

Predicate trees derived by parsing Target expression can be merged with predicate

trees derived by parsing Conditions expression, using the same algorithm used to

merge AnyOf expressions in Target, which is explained under Step 1, item 6.

Step 4: For each rule based on the rule effect change the decision of each tree to

Permit or Deny

For example, considering the predicate tree list derived for

WineLiquorAllowanceForForeigners rule defined in the hypothetical policy in Figure

4.1, they can be converted to predicate trees in Figure 4.18 considering the rules effect.

For n predicate trees, complexity of this operation is 𝛰(𝑛).

Figure 4.18 - Predicate tree list of WineLiquorAllowanceForForeigners rule.

Step 5: For each policy, parse policy Target and derive the list of predicate trees.

Then merge with rule predicates with AND operator.

This operation is performed using the same algorithm used to merge AnyOf

expressions in Target, which is explained under Step 1, item 6. For example, the

predicate tree list derived for DutyFreeAllowancesForForeigners policy can be given

as in Figure 4.19.

- 67 -

Figure 4.19 - Predicate tree list of DutyFreeAllowancesForForeigners policy.

Step 6: Perform Step 5 for each Policy Set.

Step7: Build the Subject-Object Relationship graph merging all predicate trees.

Following steps are used to build the subject-object relationship graph.

1. For each predicate tree,

a. Create a vertex for subject, equivalent to the subject category node.

b. Create a vertex for resource, equivalent to the resource category node.

c. Create an edge between the subject and the resource node, in which the

decision is the value of the decision node, and add all the conditions of

the link node to the edge created, to denote the subject-resource

relationship conditions that should be satisfied to meet the decision.

2. For each such relation,

a. Add the subject node to the graph if no matching node found. Matching

the node includes,

• Checking if both are of same category

- 68 -

• Checking if both includes same set of conditions.

If ith node has ki conditions and jth node has kj conditions, this

includes ki + kj iterations.

b. If a matching subject node is found, add the edges of the node to the

matching node.

c. Add the resource node to the graph if no matching node found.

d. If a matching resource node is found, add the edges of the node to the

matching node.

For example, Subject-Object Relationship graph for

DutyFreeAllowancesForForeigners policy, in the hypothetical policy listed in Figure

4.1, will be as in Figure 4.20. Thus, considering the full hypothetical XACML policy

listed in Figure 4.1, Subject-Object Relationship graph will be constructed as in Figure

4.21.

Figure 4.20 - Subject-Object relationship graph of

DutyFreeAallowancesForForeigners policy.

- 69 -

Figure 4.21 - Subject-Object relationship graph of the hypothetical policy example.

- 70 -

4.2 Graph Update

The Subject-Object Relationship graph constructed from the XACML policy tree in

Section 4.1, will need to reflect certain updates to the XACML policy tree as well. We

can categorize such updates as follows:

1. Adding a new PolicySet.

2. Adding a new Policy.

3. Adding a new Rule to a Policy.

4. Updating an existing PolicySet Target, Policy Target, Rule Target or a Rule

Condition.

To accommodate updates related to the first three cases above, the corresponding

predicate trees need to be constructed for the newly added PolicySet, Policy or Rule.

Later those needs to be merged with the existing graph. For a newly introduced

PolicySet, predicate trees can be derived by performing Step 1 to Step 6 (see Section

4.1). Then merge the derived set of predicate trees with the existing graph by

performing Step 7. Similarly, adding a new Policy includes deriving the set of

predicate trees, by performing Step 1 to Step 5 (see Section 4.1), and merging them

with the existing graph by performing Step 7. Adding a new Rule includes deriving

the set of predicate trees of that Rule, by performing Step 1 to Step 4 (Section 4.1),

then merging them with the parent Policy Target of that Rule, by performing Step 5,

and finally merging them with the existing graph by performing Step 7.

Yet, accommodating updates to the graph for the fourth case above is challenging. This

is because, Boolean predicates defined from Targets and Conditions in the XACML

Policy Tree are already combined with a specific set of nodes and edges in the graph.

Updates to Targets and Conditions will change the way such predicates are combined.

Therefore, it is not possible to simply isolate the predicates that changed, and update

them, because that does not reflect the changes to predicate combination. One option

is the reconstruction of the graph. However, effective accommodation of such updates

can be researched more, which we leave as future work.

- 71 -

4.3 Access Review Request Evaluation

With the Subject-Object Relationship graph constructed, an access review request will

be performed as follows. An overview of this algorithm is represented in Figure 4.24.

1. Extract subject category attributes from the set of received attributes to a List.

2. Extract resource category attributes from the set of received attributes to a List.

3. Add all attributes received for a separate List.

4. If subject category attributes are available, find the matching set of subject nodes

from the subject node list. In this case evaluating a node includes,

a. Requesting the missing subject attribute values that are being used in the

conditions of the node, from PIP, providing the received set of subject

attributes.

b. For all available subject attribute values now available, evaluate each condition

in the node.

In evaluation, there can be conditions that cannot be evaluated due to missing

attribute value(s). That means the respective condition should satisfy to pick

up the respective node as a match. From access review perspective, such

conditions need to be communicated in the response, which means such

conditions are evaluated as true.

If any other condition evaluates to false, that means the respective node is not

a match for the received set of attributes. Else if, all other conditions evaluated

to true, the node is picked as a matching node.

5. Extract the set of matching edges from the matching set of subject nodes, against

all attributes received. Same algorithm used to evaluate subject nodes in Step 4, is

used to find matching edges as well.

6. If resource category attributes are also available, for each edge filtered out, check

if the resource node that the edge points is a match against the set of resource

category attributes. Same algorithm used to evaluate subject nodes in Step 4, is

- 72 -

used to find matching resource nodes as well. If the resource node that the edge

points is a match, filter out that edge as a successful match to the access review

request received. If no resource category attributes are available, the set of edges

filtered out in will be the paths matching the access review request.

7. For each edge extracted, the subject and resource node that the edge points to

denote the subject and resource conditions that should be satisfied and the

conditions in the edges denotes the action, environment and subject to resource

linking conditions that should be satisfied. Thus, the result of the access review

request is the extracted set of edges. Therefore, build the response from the set of

edges extracted and return.

8. If no subject category attributes are available, check if resource category attributes

are available in the access review request. If so, find the matching set of resource

nodes from the resource node list, performing the algorithm in Step 4, against the

resource category attributes.

9. Extract the set of matching edges from the matching set of resource nodes, against

all attributes received. Same algorithm used to evaluate subject nodes in Step 4, is

used to find matching edges as well. The extracted set of edges is the result of the

access review request. Therefore, build the response from the set of edges extracted

and return.

Let us consider the same hypothetical access control policy defined in Section 2.4.1.

Suppose we want to know ‘What are the items that Malithi can bring in?’, given the

fact, that Malithi is a resident, and she has travelled for United States for two weeks to

attend to a business conference. Such as access review request initiated with XACML

policy language, will be like in Figure 4.22. To improve readability namespaces of

functions, attributes, attribute categories and data types are removed.

- 73 -

<Request>
 <Attributes Category="subject">
 <Attribute AttributeId="subject-id">
 <AttributeValue DataType="string">
 Malithi
 </AttributeValue>
 </Attribute>
 <Attribute AttributeId="stay">
 <AttributeValue DataType="integer">
 14
 </AttributeValue>
 </Attribute>
 </Attributes>
</Request>

Figure 4.22 - Access review request.

Now, let us apply the algorithm defined above to this access review request. Then

query evaluation is as follows:

1. Performing Step 1, we can identify that this request includes the two subject

attributes where,

subject.subject-id = Malithi

subject.stay=14

2. Performing Step 2, we can identify that there are no resource category attributes.

3. Performing Step 3, will extract the two subject attributes that we already identified.

4. Performing Step 4, will request the citizenship attribute from the PIP, and the PIP

will return the value as local. Now, the available set of attributes of this subject is

as below.

subject.subject-id = Malithi

subject.stay=14

subject.citizenship=local

5. Now, matching above attributes against each subject node, in the subject node list

of the graph in Figure 4.21, will pick subject to resource links in Figure 4.23 after

performing Step 4 and Step 5 respectively.

- 74 -

Figure 4.23 - Links extracted for the access review request.

6. Step 6 will be skipped as no resource category attributes are received. Thus, the

result of the access review request is the subject to resource links extracted as in

Figure 4.23, which will be returned in Step 7.

- 75 -

Figure 4.24 - Overview of access review request evaluation.

- 76 -

5 PERFORMANCE ANALYSIS

In this chapter, we discuss the evaluation experiments conducted on the

implementation of the solution proposed. In our experiments, we compare our

implementation with the SNE-XACML engine [23], which implements XACML

policy evaluation with MIDDs [5]. Originally, SNE-XACML engine supports only

XACML access control requests. Therefore, SNE-XACML engine implementation

was improved to support access review requests using depth first graph traversal

technique, to use it with access review query evaluation experiments.

5.1 Environment and datasets

We use two of the three datasets used in [5] and those are summarized in Table 5.1.

The first dataset is a real-world policy taken from GEYSERS project [24]. The policy

set from this project applies access control to a logical network infrastructure based on

network roles. There are three network roles defined in the policy, each allowed to

perform a defined set of operations on a defined set of logical network infrastructure

resources. The second dataset applies access control to a web-based application that

supports submission, review, discussion, and notification phases of conferences based

on roles [25]. This dataset is converted to from XACML 2.0 to a XACML 3.0 policy

with appropriate attribute categories in place.

We implement the proposed solution in JRE 1.8. Experiments are carried on an OS X

10.11.6 system with Intel Core i7 (I7-4750HQ) quad-core 2GHz processor and 8 GB

DDR3 RAM.

Table 5.1 - XACML 3.0 sample policy datasets.

ID Datasets No of Policy
Levels

No of Policy
Sets

 No of
Policies No of Rules No of

Attributes

1 GEYSERS 3 6 7 33 3

2 Continue-a 6 111 266 298 14

- 77 -

5.2 Graph Construction Evaluation

Figure 5.1 shows the average time taken to construct the subject-object relationship

graph by parsing the policy set. Average construction time was computed by

processing the graph 10 times for each dataset. In Figure 5.1 the proposed solution is

denoted as Subject-Object Relationship Model and the MIDD approach is denoted

from MIDD. Here, we observe that our solution is 100% faster in graph construction

for the GEYSERS dataset and 550% faster for the Continue-a dataset than the MIDD

approach, which is highly dependent on the number of attributes n and number of

attribute values k.

Figure 5.1 - Average graph construction time.

Figure 5.2 shows the growth of the subject-object relationship graph by computing the

number of nodes that will reside in the graph. Here, we observe that the proposed

solution does not include a large number of nodes in the graph with respect to the

complexity of the policy. The graph has grown only by 38.1% though the policy set of

Continue-a dataset has a higher number of conditions, attributes, and attribute values

compared to the GEYSERS dataset. This is because the proposed solution maintains a

separate node only for each unique subject type and resource type defined in the policy.

In Equation 3.1, we derived that the number of nodes of the subject-object relationship

- 78 -

graph, is the summation of uniquely identified subject sets and resource sets. In

GEYSERS dataset, only a one subject attribute and a resource attribute is used to

identify subjects and resources. The subject attribute has three distinct values, which

used to define three subject sets and the resource attribute has 18 distinct values, which

used to define 18 resource sets. Therefore, the total number of nodes in the subject-

object relationship graph is 21, which is the same we received by constructing the

graph for the GEYSERS dataset. Similarly, Continue-a dataset also has one subject

attribute and resource attribute used to identify subjects and resources. The subject

attribute has four distinct values, which defined four subject sets and the resource

attribute has 25 distinct values, which defined 25 resource sets. This results 29 nodes

in the graph for Continue-a dataset, which is the same resulted from graph

construction. However, in Figure 5.2, graph of Continue-a dataset for MIDD approach,

is 50 times larger compared to graph of GEYSERS dataset. This is because the graph

size is proportional to the number of attributes n and number of attribute values k in

the policy as derived in Equation 3.6. GEYSERS dataset has three string type attributes

defined, where each has 3, 18 and 30 distinct attribute values defined respectively.

Because, the attribute is of string type, which is not a continuous data type, and string

equal function is used to define conditions, we can conclude that each attribute has 3,

18 and 30 distinct attribute value intervals, which is less than the worst-case attribute

value intervals derived in Equation 3.6. If we calculate the total number of nodes for

these numbers using Equation 3.6, starting from the same order, we get that the graph

has 1677 number of nodes in the worst case. But, constructing the graph from the

implementation resulted only 55 number of nodes. This is because, each target

condition defined in the XACML policy does not use all attributes as its variables.

Therefore, the MIDD graph, will not have edges from one level to the next level for

each distinct attribute value interval that attribute can take. Also, if we traverse over a

path from the root node to a decision node, that path may not visit nodes defined for

each attribute in the policy. Yet, the graph has grown with respect to the number of

attributes and number of attribute values in the policy. Comparing the graph size of

the proposed solution and the MIDD approach for GYSERS dataset we can observe

that proposed solution is 61.8% memory efficient than the MIDD approach. With

- 79 -

respect to the Continue-a dataset proposed solution is 99.1% memory efficient than

the MIDD approach.

Figure 5.2 - Number of nodes in the graph.

Next, we analyze the average graph construction time while varying the number of

policy sets in the second level. For this we choose Continue-a dataset as it spans up to

six levels, includes 25 policy sets in the second level, and has a high policy complexity

than the GEYSERS dataset. As seen in Figure 5.3 number of policy sets is varied from

five to 25 in increments of five policy sets in the second level. Average graph

construction time was calculated by processing the graph 10 times by randomly

selecting the expected number of policies in the second level during each iteration.

Then, using the same policy set used for computation in Figure 5.3, average number

of nodes is analyzed while varying the number of policy sets in the second level of

Continue-a dataset as shown in Figure 5.4. While the graph construction time of both

the solutions increase with increasing number of second-level policies, rate of increase

for MIDD is about 20 times greater than the graph construction time taken for the

proposed solution (see Figure 5.3). Similarly, as seen in Figure 5.4 graph size grows

with the number of second-level policies.

- 80 -

Figure 5.3 - Average graph construction time for varied number of policy sets.

Figure 5.4 - Average number of nodes for varied number of policy sets.

However, graph size of the MIDD approach grows at a rate that is about 150 times

greater than the proposed solution. This pattern is observant in both graph construction

time and the graph size because MIDD approach depends on the number of attributes

and attribute values in the policy. Whereas the proposed approach is dependent only

- 81 -

on parsing the newly introduced policy constructs and extracting the conditions. Thus,

the graph of the proposed solution will grow only with the addition of a new subject

set or a resource set. Therefore, we can conclude that the proposed solution is faster in

graph construction and uses less memory than the MIDD approach. Thus, the proposed

solution is more scalable over the MIDD approach.

5.3 Query Resolution

Access review requests were performed for a set of query types as listed in Table 5.2.

For each query type, 100 random queries were generated and evaluated 10 times

against the proposed solution (Subject-Object Relationship Model) and the MIDD

(MIDD) approach. XACML policy engines supports access requests only. They result

only Permit or Deny for an access request. Therefore, to perform an access review

request with XACML for each subject, resource, action, or environment condition

available in the system, access requests should be generated. This requires to access

attribute sources of the system, such that for each subject or resource their attributes

can be retrieved. The evaluation performance depends how many subjects and

resources are available in the system. However, both solutions considered for this

analysis does not require to plug attribute sources as they return the possible set of

conditions. Given the respective attribute values that exists in the policy, both these

solutions can successfully return the set of conditions. Thus, as the outputs and inputs

deviates, performing an access review request against an XACML policy engine that

supports only XACML access control requests by evaluating the XACML policy tree,

is not considered for this analysis.

Table 5.2 - Access review request query types.

Query Type Description

subject-only Access review requests with subject attributes only

resource-only Access review requests with resource attributes only

subject-resource Access review requests with subject and resource attributes

subject-resource-link Access review requests with subject, resource, action or environment
attributes

- 82 -

Figure 5.5 shows the average query resolution time for the four query types on Table

5.2 with GEYSERS dataset. Figure 5.6 shows the standard deviation of query resolution

time for the four query types with GEYSERS dataset. In Figure 5.5 we can observe that

MIDD approach has less average query resolution times than the proposed approach

for subject-only, resource-only, and subject-resource-link query types, which is

29.7%, 7.7% and 41.7% lesser than the solution proposed. GEYSERS is a small policy

set with less number of attributes. Therefore, graph size of the MIDD approach is

small. Moreover, the query resolution time of the MIDD approach depends on the

number of nodes and edges visited from the depth first graph traversal for an access

review request as we derived in Equation 3.11. In the proposed solution, the received

set of attributes will be evaluated against the conditions in each subject node or

resource node in the graph, based on the attribute category received as derived in

Equation 3.9. Moreover, the function evaluation will also happen in the query

evaluation time while evaluating conditions. Therefore, for a small graph size, MIDD

approach will perform well in query evaluation when compared with the proposed

model, as we observe in Figure 5.5. Further, we can observe that both models have

high query resolution times for subject-only query type where only subject attributes

are received. GEYSERS policy set has only one subject attribute defined with three

distinct values. Also, there is only one resource attribute and action attribute defined

but there are number of conditions defined with respect to resource attribute and action

attribute. Thus, there are number of distinct attribute values for resource and action

attributes as well. In that case, in MIDD approach having only the subject attribute will

cause to traverse a larger part of the graph. Further, if the subject attribute is used only

in a lower level of the graph while traversing from the root of the graph many

unnecessary nodes and edges will be visited. This is visible from the average query

resolution time incurred for the resource-only query type for MIDD approach.

Resolution time for subject-only query type is very low when compared with the

resolution time for resource-only query type, which means from the root level

respective path is selected and the graph is visited optimally. In the proposed model

average query resolution time for subject-only query type is high because after

selecting the respective subject node by evaluating each subject node in the graph for

the received attribute values, each edge and resource node should be traversed to

- 83 -

extract the conditions to be satisfied. Now as the conditions should be evaluated this

requires more time than the MIDD approach. For other query types, we cannot observe

large differences in resolution times between the two approaches. However, we can

observe that for subject-resource query type the proposed model has performed 80%

faster than the MIDD approach. This could be because MIDD approach is highly

dependent on the attribute ordering.

Figure 5.5 - Average query resolution times for GEYSERS dataset.

From Figure 5.6 we can observe that the proposed solution has larger standard

deviation for subject-only query type. The minimum query resolution time that it took

was 0 µs and maximum query resolution time was 8000 µs. The MIDD approach took

only 6000 µs in maximum while minimum was 0 µs. That means a specific subject

node should be linked with a smaller set of resource nodes while others link with a

larger set of resource nodes or vice versa. This is clear because the MIDD approach

also has a larger standard deviation for subject-only query type comparatively to other

query types.

- 84 -

Figure 5.6 - Standard deviation of query resolution time for GEYSERS dataset.

Figure 5.7 and 5.8 show the average query resolution time and standard deviation for

the four query types with the Continue-a dataset. Continue-a policy set is complex

than the GEYSERS and includes a larger condition set with more attributes present in

the policy. Therefore, the graph constructed in MIDD approach for this dataset is large,

because it is dependent on the number of attributes and distinct attribute values.

However, the graph size of the proposed solution grows only with the subject sets and

resource sets that can be uniquely identified in the policy as we derived in Equation

3.1. Similar to the GEYSERS policy set Continue-a policy set also includes one subject

attribute with four distinct values defined. However, there are many action and

environment attributes defined in the policy. As such conditions define the relationship

among the subject and the resource, the graph of the proposed solution will not grow

similar to the graph of the MIDD approach. As we derived in Equation 3.11, time

complexity of MIDD approach depends upon the number of nodes and the number of

edges in the graph, which depends on the number of attributes and distinct attribute

value intervals each attribute will take, as derived in Equation 3.6 and 3.7. Thus, for

Continue-a policy set graph size of the MIDD approach grows with respect to all

attribute types, subject, resource, action and environment, and their distinct attribute

values. This impacts on its query resolution time. From Figure 5.7 we can clearly

- 85 -

observe for a complex and large policy set the proposed solution outperforms the

MIDD approach in query evaluation. Moreover, from Figure 5.7 we can see that the

MIDD approach has a higher query resolution time when compared to the proposed

approach for subject-only query type. Here, MIDD approach is 90.1% slower than the

proposed model. For the four query types considered the proposed solution performs

33.9% faster in query evaluation than the MIDD approach in average.

From Figure 5.8 we can see that the MIDD approach has a large standard deviation for

the subject-only query type. This is different from the results obtained for subject-only

query type for GEYSERS dataset for both the solutions. In this case, we can observe

this deviation only for the MIDD approach. Thus, we can conclude that this is caused

not due to the different complexities among subject and resource relationships, but due

to the attribute ordering, which highly impacts the performance of the MIDD approach.

Figure 5.7 - Average query resolution times for Continue-a dataset.

- 86 -

Figure 5.8 - Standard deviation of query resolution time for Continue-a dataset.

In Figure 5.9, we analyze the average query resolution time while varying the number

of policy sets in the second level. For this we choose Continue-a dataset as it spans up

to six levels, includes 25 policy sets in the second level, and has a high policy

complexity than the GEYSERS dataset. As seen in Figure 5.9 number of policy sets is

varied from five to 25 in increments of five policy sets in the second level. Average

query resolution time was calculated by generating 100 random queries for each query

type in Table 5.2, against a subject-object relationship graph and MIDD graph

constructed 10 times by randomly selecting the expected number of policies in the

second level in each iteration. Continue-a policy set includes one subject attribute with

four distinct values defined in each second level policy set. Also, each second level

policy set is defined for a distinct resource which is uniquely identified from a resource

attribute. However, there are many action and environment attributes defined, that

varies with the number of second level policy sets used. Therefore, even though the

number of second level policy sets is varied, subject attributes and subject attribute

values defined in the policy set is not varied. Rather, only resource, action and

environment conditions are varied. Thus, with varied number of policy sets in second

- 87 -

level graph size of the MIDD will grow as it is dependent on the number of attributes

and distinct attribute values.

Figure 5.9 - Average query resolution time for varied number of policy sets.

However, the graph of the proposed solution will not grow similar to the graph of the

MIDD approach, as the graph size of the proposed solution grows only with the subject

sets and resource sets that can be uniquely identified in the policy, and action and

environment conditions define the relationship among the subjects and the resources.

Due to this reason, we cannot observe variations of average query resolution time of

the proposed solution for each query type with the varied number of policy sets in

Figure 5.9. Thus, we can conclude that this is caused not due to different complexities

among subject and resource relationships, but due to attribute ordering, which highly

impacts the performance of the MIDD approach. For MIDD approach, query

resolution time of subject-only queries is higher and grows heavily with the varied

number of policy sets. This is caused as the graph size of MIDD grow with respect to

the attributes and attribute values introduced with the increasing number of policies,

and attribute ordering. Also, for resource-only queries MIDD approach has higher

query resolution times, but when more attributes are included in the access review

request with subject-resource and subject-resource-link query types, MIDD approach

- 88 -

has lower query resolution times. Therefore, with these observations, we can conclude

that the query resolution of MIDD approach is heavily dependent on attribute ordering.

- 89 -

6 SUMMARY AND FUTURE WORK

6.1 Summary

Traditional access control models such as RBAC and ACL have a precomputed access

matrix with capabilities directly assigned to subjects, roles, and groups before an

access request is made. However, ABAC never explicitly constructs this access control

matrix. Rather it relies on an access control policy that implicitly defines the access

matrix. Therefore, it is difficult to solve access review queries like “Which objects does

this user have access to?” and “What actions can this user perform on those objects?”

with ABAC.

This research contributes towards supporting access review queries with ABAC

model, which is the biggest drawback to use ABAC with access control administration,

auditing and reviewing. In this research, we analyzed two approaches that have been

proposed to solve the problem of performing access reviews in XACML, which is a

popular ABAC standard. The first approach performs partial evaluation of policies

using the usual policy evaluation [4]. This approach takes more time, as each policy

needs to be evaluated and simplified, against a subset of attributes that needed to

evaluate a policy, to extract the applicable set of conditions. The second approach [5],

construct a decision graph that represent XACML policy sets which is named as Multi

Interval Decision Diagram (MIDD). Due to pre-constructed representation, this

approach reduces evaluation complexity, but incurs scalability problems as the graph

grows with respect to the number of variables in the policy set and the distinct value

intervals that each variable could take. Analyzing the computational costs, limitations

in each approach and the XACML policy representation, we proposed a graph-based

model that can represent the permission relationships between subjects and objects.

The proposed solution parses and transforms complex logical expressions in XACML

policies into a subject-object relationship graph by extracting conditions starting from

the lower levels of a XACML policy tree and constructing condition paths from them.

Therefore, that can isolate matching subjects or objects, for a given access review

request to extract applicable set of conditions efficiently.

- 90 -

Theoretical comparison in Section 3.3 proved that the proposed solution is more

scalable over partial query evaluation and MIDD approaches and has less space

complexity than those approaches. With respect to time complexity, the proposed

solution is not much affected by the number of attributes or number of conditions

introduced to the access control system, while the other two are highly dependent on

policy complexity, number of attributes and attribute values in the policy. Therefore,

irrespective of the complexity of the XACML policy tree the proposed model can

perform well. In the performance analysis conducted in Chapter 5 against the MIDD

approach, it was seen that the proposed solution is 100% faster in graph construction

than the MIDD approach for a small policy set and around 550% faster for a large

policy set. The proposed solution was 61.8% to 99.1% memory efficient than the

MIDD approach. This clearly proves the fact that the proposed solution is highly

scalable, and computational and memory efficient in graph construction compared to

the MIDD approach. Experiments conducted further illustrates that the solution

efficiently performs query evaluation for larger and complex policy sets when

compared with the MIDD approach which is dependent on the number of attributes,

distinct attribute values in the policy set, and attribute ordering selected when

constructing the decision graph in 33.9%. Therefore, we can conclude that the

proposed solution has efficient evaluation performance in time complexity, highly

scalable as it incurs less space complexity and less evaluation time complexity with

respect to the complexity of the XACML policy set.

6.2 Limitations

There are few limitations in the proposed solution and its implementation. The present

implementation parses only Target elements in the policy sets, policies, and rules to

extract the conditions defined in the XACML policy set. However, in an XACML

policy, rule Conditions also define access control conditions that should be met for the

successful evaluation. This is because the present implementation only supports two

argument functions such as equal, greater than, and less than. However, this can be

improved to support complex functions with multiple arguments on different data

types.

- 91 -

This research does not discuss on how to accommodate updates to the subject-object

relationship graph when an existing PolicySet Target, Policy Target, Rule Target, or

Rule Condition get updated. Accommodating such updates to the graph is challenging,

because updates to Targets and Conditions will change the way Boolean predicates

defined in the XACML policy tree are combined with the nodes and edges in the graph

now. Therefore, the graph will need to be computed again to accommodate such

changes. While this warrants future work, we believe such reconstruction is acceptable

as polies change infrequently.

XACML allows multi-valued attribute requests, where an attribute can have a list of

values. For example, a person can have several roles such as employee and manager.

The present implementation of the proposed solution supports access review requests

only with a single-valued attribute.

6.3 Future Work

This research can be improved to support complex functions with multiple arguments

on different data types. Thus, support parsing rule Conditions to accommodate them

in the subject-object relationship graph model. This is an improvement in the

implementation level of the solution proposed.

Further, effective accommodation of updates to the subject-object relationship graph

when updating an existing PolicySet Target, Policy Target, Rule Target or Rule

Condition can be researched more in future, rather than processing the graph again for

the complete policy set. In this case, subject-object relationship graph should be

designed in a way such updates can be easily applied.

Proposed solution acts similar to the PDP defined in the XACML reference

architecture. Rather than answering access control requests with a Permit or Deny

decision, it answers access review requests with the set of conditions that should be

met to satisfy the query. Yet, from the requestor perspective, this is not a complete

access review request answer. For example, if the requestor asks “What are the

resources Alice can read?” the answer, that the requestor expects is the set of resources

that Alice will have access to, not the condition set that Alice should meet to access a

- 92 -

specific type of resource. However, given a XACML policy set, the request evaluation

point can only extract the conditions from the policy set. Therefore, there should be

some other module that can access parse the extracted set of conditions, access

attribute sources in the system and answer with the specific set of subjects or objects.

Thus, this solution can be improved in future by designing another such module, that

can convert the condition set retrieved from the proposed solution to a set of data

access queries, which will retrieve data from attribute data sources to respond with an

exact answer for an access review query.

Moreover, the solution proposed in this research focus only on solving access review

queries. However, as it constructs a precomputed data model, which represents the

XACML policy tree, it can be improved to support access control requests as well.

This will improve the access control query evaluation efficiently. Therefore, this

research can be extended to represent XACML policy sets to support access control

requests in future.

- 93 -

REFERENCES

[1] V. C. Hu, D. F. Ferraiolo and D. R. Kuhn, "Assessment of Access Control
Systems," National Institute of Standards and Technology , Gaithersburg, 2006.

[2] V. C. Hu, D. R. Kuhn and D. F. Ferraiolo, "Attribute-Based Access Control,"
Computer, vol. 48, pp. 85-88, February 2015.

[3] R. Wagner, "Identity and Access Management 2020," Information Systems
Security Association Journal, pp. 26-30, 2014.

[4] J. Sandberg, "Administrative Queries in XACML-feasibility of partial-query
evaluation," 2006.

[5] C. Ngo, Y. Demchenko and C. d. Laat, "Decision Diagrams for XACML
Policy Evaluation and Management," Computers and Security, vol. 49, pp. 1-
16, 21 November 2014.

[6] National Computer Security Center, "Glossary of Computer Security Terms,"
1988.

[7] D. Ferraiolo, D. Kuhn and R.Chandramouli, "Role-Based Access Control,"
Computer Security Series, 2003.

[8] National Computer Security Center (NCSC), "A Guide to Understanding
Discretionary Access Control in Trusted System," 1987.

[9] C. P. Pfleeger, Security In Computing, 2nd Edition ed., Prentice-Hall, 1997.

[10] D. Bell and L. LaPadula, "Secure computer system: Unified exposition and
multics interpretation," March 1976.

[11] K. Biba, "Integrity considerations for secure computer systems," 1977.

[12] V. C. Hu, D. Ferraiolo and R. Kuhn, "Guide to Attribute Based Access Control
(ABAC) Definition and Considerations," National Institute of Standards and
Technology , Gaithersburg, 2014.

[13] A. Cavoukian, M. Chibba, G. Williamson and A. Ferguson, "The Importance of
ABAC: Attribute-Based Access Control to Big Data: Privacy and Context,"
2015.

[14] Axiomatics AB, "Axiomatics Policy Server 6.0 White Paper," 2015.

- 94 -

[15] OASIS, "OASIS eXtensible Access Control Markup Language (XACML) TC |
OASIS," 2016. [Online]. Available: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml.

[16] "XML Access Control Language (XACL)," 2001. [Online]. Available:
http://xml.coverpages.org/xacl.html.

[17] OASIS, "eXtensible Access Control Markup Language (XACML) Version
3.0," 2013. [Online]. Available: http://docs.oasis-open.org/xacml/3.0/xacml-
3.0-core-spec-os-en.html.

[18] OASIS, "eXtensible Access Control Markup Language (XACML) Version
2.0," 2005. [Online]. Available: http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf.

[19] Axiomatics, "System and method for performing partial evaluation in order to
construct a simplified policy". US Patent US20140317685 A1, 23 Oct 2014.

[20] Axiomatics, "System and method for evaluating a reverse query". Patent
US9223992 B2, 29 December 2015.

[21] S. Kumar, "Blimey! What’s Axiomatics Reverse Query?," 2015. [Online].
Available: http://www.axiomatics.com/blog/entry/blimey-what-s-axiomatics-
reverse-query.html.

[22] "XACML Meets SQL - ARQ 2.0 Just the Cure for Secure Data Sharing,"
Axiomatics, 2016. [Online]. Available:
https://www.axiomatics.com/resources/96-webinars/250-webinar-xacml-meets-
sql-arq-2-0-just-the-cure-for-secure-data-sharing.html.

[23] C. Ngo, "SNE-XACML," [Online]. Available: https://github.com/canhnt/sne-
xacml.

[24] GEYSERS, "GEYSERS - generalised architecture for dynamic infrastructure
services," 2010. [Online]. Available: http://www.geyser.eu/.

[25] F. K, K. S, M. LA and T. MC, "Verification and change-impact analysis of
access-control policies," in Proceedings of 27th International Conference on
Software Engineering ICSE'05, New York, 2005.

[26] "Docs.oasis-open.org," 2016. [Online]. Available: http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en_files/image002.gif.

- 95 -

Appendix A

Hypothetical XACML Policy defined in Figure 2.3

<PolicySet xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-
applicable"
PolicySetId="DutyFreeAllowances"
Version="1.0">
<Target></Target>
<Policy PolicyId="DutyFreeAllowancesForForeigner"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:permit-
overrides" Version="1.0">
<Target>
<AnyOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">foreigner
</AttributeValue>
<AttributeDesignator AttributeId="citizenship"
Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
</AnyOf>
</Target>
<Rule Effect="Permit" RuleId="WineLiquorAllowanceForForeigners">
<Target>
<AnyOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">wine
</AttributeValue>
<AttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">liquor
</AttributeValue>
<AttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:double-greater-than-or-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#double">1.5
</AttributeValue>
<AttributeDesignator AttributeId="volume"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#double" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
</AnyOf>
</Target>
</Rule>
<Rule Effect="Permit" RuleId="AllowedItemAllowanceForForeigners">
<Target>
<AnyOf>
<AllOf>

- 96 -

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">allowedItems
</AttributeValue>
<AttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#integer">250
</AttributeValue>
<AttributeDesignator AttributeId="value"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
</AnyOf>
</Target>
</Rule>
<Rule Effect="Deny" RuleId="AccessDenyForForeigner"></Rule>
</Policy>
<Policy PolicyId="DutyFreeAllowancesForResidents"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:permit-
overrides" Version="1.0">
<Target>
<AnyOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">local
</AttributeValue>
<AttributeDesignator AttributeId="citizenship"
Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
</AnyOf>
</Target>
<Rule Effect="Permit" RuleId="WineAllowanceForResidents">
<Target>
<AnyOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">wine
</AttributeValue>
<AttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true">
</AttributeDesignator>
</Match>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:double-greater-than-or-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#double">2
</AttributeValue>
<AttributeDesignator AttributeId="volume"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#double" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
</AnyOf>
</Target>
</Rule>
<Rule Effect="Permit" RuleId="LiquorAllowanceForResidents">
<Target>
<AnyOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

- 97 -

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">liquor
</AttributeValue>
<AttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true">
</AttributeDesignator>
</Match>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:double-greater-than-or-equal">
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#double">2.5</AttributeValue>
<AttributeDesignator AttributeId="volume"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#double" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
</AnyOf>
</Target>
</Rule>
<Rule Effect="Permit" RuleId="AllowedItemAllowance">
<Target>
<AnyOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">allowedItems
</AttributeValue>
<AttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match <MatchId="urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-
equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#integer">90
</AttributeValue>
<AttributeDesignator AttributeId="stay"
Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"
DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true">
</AttributeDesignator>
</Match>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-equal">
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#integer">250</AttributeValue>
<AttributeDesignator AttributeId="value"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:integer-less-than">
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#integer">90</AttributeValue>
<AttributeDesignator AttributeId="stay"
Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"
DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true">
</AttributeDesignator>
</Match>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#integer">365
</AttributeValue>
<AttributeDesignator AttributeId="stay"
Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"
DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true">
</AttributeDesignator>
</Match>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-equal">

- 98 -

<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#integer">625</AttributeValue>
<AttributeDesignator AttributeId="value"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:integer-less-than">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#integer">365
</AttributeValue>
<AttributeDesignator AttributeId="stay"
Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"
DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true">
</AttributeDesignator>
</Match>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-equal">
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#integer">1750</AttributeValue>
<AttributeDesignator AttributeId="value"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
</AnyOf>
</Target>
</Rule>
<Rule Effect="Deny" RuleId="AccessDenyForLocal"></Rule>
</Policy>
</PolicySet>

XACML Request to the above policy.

<Request xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17”
CombinedDecision="false"
ReturnPolicyIdList="false">

<Attributes Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

IncludeInResult="false">
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">Alice</AttributeValue>
</Attribute>
</Attributes>
<Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"/>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

IncludeInResult="false">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">wine
</AttributeValue>
</Attribute>
<Attribute AttributeId="volume" IncludeInResult="false">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#double">1.0
</AttributeValue>
</Attribute>
</Attributes>
</Request>

XACML Response to the above Request.

<Response xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:oasis:names:tc:xacml:3.0:core:schema:wd-
17 http://docs.oasis-open.org/xacml/3.0/xacml-core-v3-schema-wd-
17.xsd">

 <Result>
 <Decision>Permit</Decision>
 </Result>
</Response>

