
PERFORMANCE, RESOURCE AND COST AWARE

VIRTUAL MACHINE ADAPTATION

Lajanugen Logeswaran

148055X

Thesis submitted in partial ful�llment of the requirements for the degree Master

of Science in Computer Science and Engineering

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

August 2015

DECLARATION

I declare that this is my own work and this dissertation does not incorporate

without acknowledgement any material previously submitted for a Degree or

Diploma in any other University or institute of higher learning and to the best of

my knowledge and belief it does not contain any material previously published

or written by another person except where the acknowledgement is made in the

text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to

reproduce and distribute my dissertation, in whole or in part in print, electronic

or other medium. I retain the right to use this content in whole or part in future

works (such as articles or books).

Candidate

.. ..

Lajanugen Logeswaran Date

The above candidate has carried out research for the Masters thesis under my

supervision.

Supervisors

.. ..

Dr. H. M. N. Dilum Bandara Date

.. ..

Dr. A. S. Perera Date

i

ABSTRACT

Performance, Resource and Cost aware Virtual Machine Adaptation

Cloud Computing has increasingly become an attractive paradigm for computing during

recent years. In the current Infrastructure as a Service (IaaS) cloud landscape users

pay for statically con�gured Virtual Machine sizes irrespective of usage. Although the

auto-scaling features o�ered by current cloud providers enable cloud hosted applications

to dynamically scale the amount of resources allocated, the adopted con�gurations are

often sub-optimal owing to the lack of �exibility involved in resoure provisioning. This

results in higher costs and di�culty in meeting performance targets for clients.

It would be more favorable for users to consume (and be billed for) just the

right amount of resources necessary to satisfy the performance requirement of their

applications. Although prior work have suggested a variety of approaches to the

auto-scaling problem, the bene�ts of these approaches remain restricted to applications

that mainly depend on CPU and memory. The reason is partly due to cloud operators

not providing guarantees on resource types that are di�cult to partition such as IO and

networking performance in their typical VM o�erings (although specialized instances

for these types of resources are available).

We take a novel perspective in addressing this problem where we assume that the

cloud operator exposes a small, dynamic fraction (for security and privacy reasons)

of its infrastructure and the corresponding resource speci�cations and constraints to

each application. Assuming such a scenario we propose a dynamic VM recon�guration

scheme which comprises an Application Performance Model, a Cost Model and a

Recon�guration algorithm. The performance model helps estimate the performance

of an application given speci�c resources. The Cost model assigns a numerical cost

value to resource candidates made available to the application considering the lease

expense, recon�guration penalty and operating income. A recon�guration algorithm

assisted by the cost model makes optimal recon�guration decisions. Simulation results

for the RUBiS and �lebench-�leserver applications and the worldcup workload show

signi�cant cost savings can be achieved while meeting performance targets compared to

rule-based scaling systems.

Our proposed framework has the advantages of being simple, generic and

computationally e�cient. This framework is also attractive from a cloud operator's

perspective as it indirectly assists the operator with the problem of e�cient datacenter

utilization.

Keywords: Auto-scaling; Cloud Computing; Cost Model; IaaS Cloud;

ii

ACKNOWLEDGEMENTS

First and foremost, I express my sincere gratitude to my advisor Dr. Dilum

Bandara. His continuous support, patience, guidance and advice made the

successful completion of this research possible. I am thankful to him for regular

meetings and productive discussions despite his busy schedule. I highly appreciate

his tolerance during times of my slow progress due to health problems or other

issues. It has been a wonderful experience working with him, during the course of

which I have acquired and improved new knowledge and skills that will be useful

to my career in future.

I would like to thank members of my review committee Dr. Srinath Perera

and Dr. Chinthana Wimalasuriya for their helpful feedback during my progress

reviews.

My sincere thanks goes to the Computer Science Department of the University

of Moratuwa for facilitating me with the necessary resources throughout the

course of my research. I am thankful to Dr. Dilum Bandara and Prof. Sanath

Jayasena for providing me with o�ce space necessary to carry out my research

without any hindrance. Thanks are in order to the System Engineers of the

Department, especially Mr. Sujith Fernando, for helping me acquire, setup and

manage hardware resources. I also thank the department sta� in general for their

friendly interaction, making my time at the department a fruitful and pleasant

one.

I thank the Senate Research Committee of the University of Moratuwa

for supporting this research under Senate Research Grant award number

SRC/LT/2014/01. I also thank the LK Domain Registry for supporting this

research through the Prof. V. K. Samaranayake top-up grant.

iii

TABLE OF CONTENTS

Declaration i

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Figures vi

List of Tables vii

List of Abbreviations 1

1 Introduction 2

1.1 Cloud Computing 2

1.2 Resource Provisioning in the Cloud 3

1.3 Problem Statement 5

1.4 Contributions 5

1.5 Organization of the Thesis 7

2 Literature Survey 8

2.1 Auto Scaling 8

2.1.1 Rule Based Systems 9

2.1.2 Reinforcement Learning 9

2.1.3 Control Theory 10

2.1.4 Queuing Theory 10

2.2 VM Placement 11

2.3 Application Placement and VM Provisioning 13

2.4 Application Performance Modeling 15

2.5 Cost Model 17

2.5.1 Cost of VM migration 18

2.5.2 Income Model 20

2.6 Simulation Tools 21

2.6.1 CloudSim 22

2.6.2 DynamicCloudSim 22

iv

2.6.3 CloudSim extension for Three-Tier Applications 23

3 Proposed Framework 26

3.1 Application Performance Model 27

3.2 Cost Model 28

3.3 Recon�guration Algorithm 29

3.4 Speci�c Choices of Models 30

3.4.1 Application Performance Model 30

3.4.2 Recon�guration Cost 34

3.4.3 Income Model 36

4 Performance Analysis 37

4.1 Experimental Setup 37

4.1.1 Hardware and Software Setup 37

4.1.2 Application Setup 37

4.1.3 Workload Emulation 38

4.1.4 Collecting Performance Data 39

4.1.5 Workload 39

4.2 Simulation Setup 41

4.3 Performance Validation 44

4.3.1 VM sizes from Amazon EC2 44

4.3.2 A private cloud scenario 48

4.3.3 Application a�ected by IO performance 50

4.3.4 Pro�t Maximization 52

5 Conclusions and future work 54

5.1 Conclusions 54

5.2 Future Work 55

References 57

v

LIST OF FIGURES

Figure 1.1 A few instance types o�ered by Amazon EC2. 3

Figure 1.2 Overprovisioning and underprovisioning. 4

Figure 2.1 Utility models. 21

Figure 3.1 Resource candidate pool made available to an application. 26

Figure 3.2 Solution overview. 27

Figure 3.3 Mean response time observed for the RUBiS application in

di�erent VM con�gurations. 31

Figure 3.4 The con�gurations with highest prediction error when a single

global model is �t to the data. 32

Figure 4.1 Performance Statistics collected for di�erent number of active

users under a particular VM con�guration. 40

Figure 4.2 Response time distributions observed for di�erent number of active

users under a particular VM con�gurations. 40

Figure 4.3 Sessions generated from World Cup '98 trace. 41

Figure 4.4 Collecting performance statistics in the simulator. 43

Figure 4.5 Comparison of scaling schemes for a particular day's worldcup

workload. 46

Figure 4.6 Comparison of CDFs for rule-based and proposed scaling schemes

- RUBiS application, entire worldcup workload. 47

Figure 4.7 A private cloud scenario - Dynamic recon�guration of CPU and

Memory and variation of the corresponding cost. 49

Figure 4.8 A private cloud scenario - Response time CDF. 50

Figure 4.9 Comparison of CDFs for static provisioning and proposed scaling

scheme - �lebench-�leserver application driven by simple synthetic

workload. 51

vi

LIST OF TABLES

Table 2.1 Components of cost function. 18

Table 3.1 List of symbols. 28

Table 4.1 VM types from Amazon EC2 considered and their prices. These

prices vary over time and the �gures below are as of Apr 01, 2015. 45

Table 4.2 Performance comparison of rule-based scaling with di�erent VM

types against the proposed scheme. 47

Table 4.3 Di�erent schemes and corresponding performance, cost �gures. 52

Table 4.4 Pro�t Maximization - Performance comparison of rule-based

scaling with di�erent VM types against the proposed scheme. 53

vii

LIST OF ABBREVIATIONS

Amazon EC2 Amazon Elastic Compute Cloud

CDF Cumulative Distribution Function

IaaS Infrastructure as a Service

IOPS IO operations per second

KCCA Kernel Canonical Correlation Analysis

MI Millions of Instructions

MIPS Millions of Instructions per second

PaaS Platform as a Service

PDF Probability Distribution Function

PM Physical Machine

RL Reinforcment Learning

RUBiS Rice University Bidding System

SaaS Software as a Service

SLA Service Level Agreement

SVC Support Vector Clustering

SVR Support Vector Regression

VM Virtual Machine

VMWare DRS VMware Distributed Resource Scheduler

1

Chapter 1

INTRODUCTION

1.1 Cloud Computing

Cloud computing has become an attractive paradigm for computing in the recent

years. Cloud computing refers to the applications delivered as services over

the Internet and the hardware and systems software in the datacenters that

provide those services [1]. This model of computing o�ers numerous advantages,

some of the most attractive ones being no upfront investment, elasticity and

the pay-as-you-go model. It saves us the hassle of purchasing and maintaining

hardware and software for personal/enterprise use, and instead provides compute

capability as a utility.

There are three service models associated with cloud computing -

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software

as a Service (SaaS). IaaS provides computing infrastructure (physical or virtual

machines) and other resources such as storage and networking for lease. Major

providers of IaaS include Amazon EC2, Windows Azure, Rackspace and Google

Compute Engine. PaaS provides computing platforms which typically include

an operating system, programming environments and tools to build and deploy

applications, database, web server, etc. Major players in this market segment

include Windows Azure, Heroku, Google App Engine, Apache Stratos, etc. SaaS

provides access to application softwares often referred to as on-demand softwares.

In this case the client does not need to be concerned about installation, setup

and running of the application, which are done by the service provider and the

user simply uses the software and pays for it. Examples include Google Apps,

Microsoft O�ce 365 and SalesForce.

We concern ourselves with the IaaS service model. As mentioned above, in

the IaaS setting users of the cloud may request for compute and other resources,

2

Figure 1.1: A few instance types o�ered by Amazon EC2.

for which they are billed based on usage. Figure 1.1 shows a few Virtual machine

(VM) instance types o�ered by Amazon EC2 [2].

A cloud computing infrastructure is a complex system with a large number

of shared resources and users. The cloud provider is faced with the challenge of

accomodating and managing the large number of its user VMs e�ectively and

e�ciently on its hardware. The user is faced with such problems as how to

determine the performance needs of his application, choose a particular VM size,

deal with applications sensitive to networking and IO performance, etc. We

discuss these challenges associated with resource provisioning in IaaS clouds next.

1.2 Resource Provisioning in the Cloud

In the current setting, users pay for statically con�gured VM sizes irrespective of

the actual resources consumed by the hosted application. This makes it necessary

for clients to choose a particular VM resource con�guration in advance, which also

requires a good understanding of the kind of workload to expect. As Figure 1.2

shows, underprovisioning leads to performance requirements not being met, and

overprovisioning leads to higher operating costs to the user. It is desirable for user

VMs to adapt based on actual performance needs. This bene�ts users because

3

Figure 1.2: Overprovisioning and underprovisioning.

of the ability to meet performance needs at lower costs, as well as the provider

because of increased customer willingness to use the cloud.

Although cloud providers do provide scaling mechanisms to cope with

workload variations, these schemes are based on rules such as adding/removing

VMs based on resource utilization [3]. They provide limited �exibility to the

application in adapting di�erent resource con�gurations over time and often

produce suboptimal con�gurations.

Prior work have suggeted a variety of approaches to the auto-scaling problem

beyond rule-based systems [4]. However, the bene�ts of these approaches remain

restricted to applications that mainly depend on CPU and memory. The reason

is partly due to cloud operators not providing guarantees on resource types that

are di�cult to partition such as IO and networking performance in their typical

VM o�erings.

Another main drawback of statically con�gured VMs is that applications

co-located on the same hardware can have unpredictable impacts on each

other [5]. This is typically a problem for types of resources which are hard

to partition. As a result cloud providers are unable to provide guarantees for

IO and network resource availability to o�ered VM's. Although some providers

do provide specialized network/IO optimized instances with guaranteed discrete

levels of service such as low, moderate and high [2]. The availability of these

resources can vary over time depending on the applications running on the cloud.

This situation would be better if it were possible for users to request and for

providers to provide speci�c quantities of many types of resources.

4

1.3 Problem Statement

Consider the scenario of a client application deployed in an IaaS (Infrastructure

as a Service) cloud. The client is interested in spending less for leasing resources

while making sure that the application performance requirements are met. This

requires the ability to accurately estimate resource requirements of an application,

and a framework to provision the required amount of resources dynamically over

time based on the workload.

The cloud being a highly dynamic environment with co-located applications

exerting unpredictable impact on each other, a signi�cant challenge involved is

the ability to provision required amount of resources along resource dimensions

that are hard to partition such as IO and networking performance. Furthermore,

any such scheme has to be mutually agreeable between the client as well as the

provider without con�icts of interest.

In summary, we attempt to enable an application deployed in an IaaS cloud to

consume just the right amount of resources to ful�ll its performance needs while

minimizing the cost of resources leased.

1.4 Contributions

We propose a novel dynamic resource recon�guration framework for cloud hosted

applications. The proposed scheme enables applications to meet performance

targets and maximize pro�ts while minimizing the cost of resources leased from

the cloud provider.

Prior approaches have looked at the resource scaling problem from the

perspectives of the user as well as the provider. User space solutions exist

such as scaling schemes driven by application performance models. Rule-based

scaling is a provider perspective solution where the provider determines resource

requirements and allocates VMs appropriately. We take a hybrid approach in

which the user and cloud operator both provide some information regarding the

5

application and the cloud infrastructure respectively. This leads to a resource

provisioning scheme that is bene�cial to both the user and the provider.

Our speci�c contributions are as follows:

• We break away from prior approaches which limit themselves to the resource

management capabilities of current cloud providers, and consider a scenario

where the cloud provider makes available a relatively small pool of machines

as choices (VMs/PMs) to each client application hosted by the provider.

The main advantages of this scenario are:

� It provides applications the �exbility to adopt favorable con�gurations

along resource dimensions that are di�cult to partition (such as IO and

networking performance). This makes it possible for applications to

make more accurate scaling decisions and o�ers room for cost savings.

� It naturally exploits the co-hosted application interference problem in

shared resources to the bene�t of the client as well as the cloud vendor.

Instead of determining and controlling performance interference due to

co-located applications, the applications themselves �gure out which

of the vacant resource options are suitable to meet performance needs.

• Within this proposed framework, we propose a novel dynamic

recon�guration scheme for cloud hosted applications in an attempt to �ll

the gaps in prior work discussed in Section 1.1, which is comprised of the

following components:

� Application Performance Model

Predicts the performance of an application given the workload and

resources allocated to application.

� Cost Model

Assigns a numerical value to resource con�gurations considering

performance predictions, monetary costs and recon�guration penalties.

� Recon�guration Algorithm

Makes use of the cost model to make favorable scaling decisions.

6

• The proposed framework is generic and o�ers the �exibility to plug in

speci�c choices of models for each of the components. We propose speci�c

choices of models for these components, including a novel analytical cost

model.

• We build a discrete event simulator and use it to validate our approach.

Simulation results of di�erent scenarios indicate that the proposed approach

o�ers signi�cant cost advantages while meeting application performance

requirements compared to scaling schemes currently used by cloud

providers.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 reviews prior related work.

In Chapter 3 we describe the proposed approach. We evaluate our approach in

Chapter 4 - Section 4.1 describes the experimental setup, Section 4.2 describes

the simulation setup and performance results are discussed in Section 4.3. We

conclude and discuss future work in Chapter 5.

7

Chapter 2

LITERATURE SURVEY

We set out with the goal of devising a resource provisioning and management

scheme that is desirable from both the client as well as cloud providers

perspective. We reviewed several related problems addressed by previous work,

as well as their approaches to the problem considered. Several ideas from these

prior work formed the basis of our work. We discuss these ideas under the

following major class of problems in an attempt to place our work in the context of

previous studies. In Section 2.1 we discuss literature on the Auto Scaling problem.

Sections 2.2 and 2.3 discuss the VM Placement and Application Placement

problems. In Section 2.4 we discuss prior work on Application Performance

Modeling. Section 2.5 describes cost models proposed in the literature. Finally,

in Section 2.6 we discuss relevant simulation tools.

2.1 Auto Scaling

The auto-scaling problem has been widely studied. Auto-scaling refers to

adding/removing resources to the operating pool of resources of an application

dynamically depending on the workload. These scaling actions can be of two

types; horizontal scaling : adding or removing a number of VM instances, and

vertical scaling : adding more resources (CPUs/memory) to existing VMs on the

�y, while they are running.

Approaches to auto-scaling dominantly fall under the following techniques:

Rule-based systems, Reinforcement Learning, Queueing Theory and Control

Theory. We give a brief overview of these techniques and discuss their pros

and cons in the following sections. A comprehensive review of these techniques

and related bibliography can be found in [4].

8

2.1.1 Rule Based Systems

Rule based systems are the most intuitive approach to auto-scaling [6, 7, 8].

Scaling decisions are made based on a set of rules for scaling up and down. Rules

dictate adding or removing VMs based on a performance metric such as CPU load,

request rate or average response time. Scaling actions are controlled by upper

and lower thresholds, which correspond to scaling up and down respectively.

To prevent frequent recon�gurations and system instability inertia durations are

introduced during which scaling actions are forbidden. An example rule could

be something like If CPU utilization exceeds 90% throughout a duration of 100s

add a new VM. Further parameters have also been introduced for more �exibile

rule-based systems.

An apparent di�culty associated with these systems is choosing a good set of

parameters for a target application. However, usually adopted best practices are

useful [9].

Despite all the sophisticated techniques for auto-scaling proposed in the past

(which we discuss brie�y below), cloud providers dominantly use rule-based

autoscaling systems. The main reason being the simplicity and intuitive nature of

rule-based systems and the skepticism about these methods due to the unrealistic

models they employ and their lack of robustness [10].

2.1.2 Reinforcement Learning

Approaches to the auto-scaling problem based on reinforcement learning have

been quite common [11, 12, 13]. A Reinforcement Learning (RL) formulation

contains an intelligent agent that automatically learns from an environment.

The main elements of the RL framework are states, actions and rewards. The

agent interacts with the environment by applying an action and learning from the

reward (positive or negative) awarded by the environment. The agent chooses

actions based on a policy. The objective of the agent is to learn the optimal policy

to achieve maximum reward in the long run.

9

Reinforcement Learning applied to the auto-scaling problem takes the

following form: The states represent resource con�gurations (a set of VMs with

speci�c resource parameters). Actions correspond to scaling decisions. Rewards

depend on metrics such as whether performance requirements were met or amount

of income obtained due to the scaling decision.

The main challenges associated with designing an RL agent for the

auto-scaling problem is the large training time and huge state space. The system

is initially running sub-optimally, and it may take a long time for the agent to

learn good (state,action) pairs. Recent techniques have proposed techniques to

overcome such problems through better initial functions and usage of non-linear

function approximators instead of lookup tables for Q-learning [14, 15].

2.1.3 Control Theory

Control systems are a natural approach to the auto-scaling problem [16, 17].

Adaptive feedback and feedforward controllers have been widely suggested by

prior work. The objective of the control system is to maintain the output

(performance) of the target system (the application) to the desired level by

adjusting the control input (resource con�guration).

2.1.4 Queuing Theory

In techniques based on queuing theory [18, 19], applications are modeled using

queuing models. The application hosting VMs are considered as VMs and

the workload as a queue of requests. Assumptions are made regarding the

properties of the workload such as requests come from a Poisson process which

makes computing properties of the queuing model tractable. Properties of

the system such as response time and throughput are calculated based on

analytical treatments available in queuing theory. Queuing networks, which are

a combination of several queues, are also used to model multi-tier applications,

each tier typically being represented as a separate queue.

10

A drawback of analytic methods such as queuing models are assumptions

made that are usually not realistic. Also, computations become less tractable as

the system grows in complexity.

2.2 VM Placement

Another related problem is the VM placement problem, which requires

determining on which hosts a given set of VMs need to be placed/instantiated

with objectives such as maximizing VM consolidation ratios considering impact of

co-located VMs and datacenter energy optmization. A bin packing formulation is

commonly employed. The complexity of solving the bin packing problem increases

exponentially with problem size. Proposed optimization objectives are NP-hard

in general and heuristic based algorithms are usually proposed [20, 21, 22, 23, 24].

In [22] a dynamic server migration and consolidation algorithm is proposed

for Service Level Agreement (SLA) satisfaction. The optimization objective

considered is minimizing the time averaged number of active physical servers

hosting virtual machines respecting the constraint that demands exceeds capacity

in no more than a percentage p of measurement intervals indicated by a threshold

p (SLA requirement).

The algorithm has three stages:

• Measure (past historical demand data).

• Forecast future demand.

• Remap: mapping of VMs to PMs minimizing the number of PMs required

to support a workload at a speci�ed rate of SLA violations and reduce rate

of SLA violations for a �xed capacity.

VM placement is formulated as a bin packing problem and a heuristic based

solution is proposed. The focus is only on one type of resource in this work.

A Minimum Cost Maximum Flow (MCMF) Algorithm for VM placement is

proposed in [21]. Optimal VM placement for pro�t maximization is modeled as a

maximum �ow problem and a MCMF based solution is presnted. The proposed

algorithm is claimed to be of low complexity.

11

The idea of exploiting demand correlation between VMs, also called VM

multiplexing, for the placement problem is suggested in [25]. This work proposes

joint VM provisioning - instead of allocating resources on a per VM basis,

allocating resources to a group of VMs exploiting statistical multiplexing among

their workload patterns. Demand patterns di�er across di�erent VMs. While

demand for one peaks, the demand for another may dip, in which case it placing

both VMs on the same PM will not result in contention for resources. The main

objective is making use of statistical multiplexing to consolidate VMs, thereby

achieving CPU capacity savings. The authors propose algorithms for identifying

group of VMs with most compatible demand patterns and allocating resources to

the group as a whole making sure that the SLAs of individual VMs are met.

Along similar lines [23] argue that previous work have ignored the dynamic

nature of the incoming stream of VM deployment requests. They suggest

that the demand correlation between VMs in the past can be used for future

prediction. The placement objective is formulated as a multi-dimensional bin

packing problem and a heuristic based algorithm is proposed. The constraint

considered is an upper bound on a weighted sum of the following:

• Amount of CPU allocated to VMs with respect to desired amount (sum of

allocated resources/sum of actual demands).

• Number of relocations (minimize number of VM migrations).

• Di�erence between most and least loaded hosts (load balancing).

VM deployment, undeployment and migration decisions are made based on

the algorithm. Our proposed approach indirectly employs the idea of VM

multiplexing whereby the application decides whether moving to a particular

physical host will satisfy its performance requirements.

In [26] the authors (from VMware) discuss challenges invovled in cloud

scale resource management. They discuss features of the VMware Distributed

Resource Scheduler (DRS) and highlight that DRS does not scale well to the

cloud environment and that it works well only in a small scale. They state that

what we really need is a combinination of two strengths: EC2's elasticity and

DRS's resource management. The main aspects/challenges to be considered in

12

the design of such a scheme are described as scale, resource heterogeneity, high

frequency of operations and failure tolerance.

A few proposals for a solution are also pointed out by the authors such as

hierarchical scaling, �at scaling and statistical scaling. Of these, we found the idea

of statistical scaling particularly attractive. The key idea is to obtain large-scale

resource management by doing small-scale optimizations. The authors propose

doing this by creating small clusters dynamically (sampling random hosts) and

to run DRS on individual clusters. Our proposed approach exploits a similar idea

to the bene�t of both the cloud provider as well as the client.

It is claimed in [27] that the two widely used VM placement products -

xenserver and VMware DRS, are not network-aware. The authors show how

VM placement could be better informed by network knowledge and propose

algorithms that improve performance by exploiting network tra�c and topology

knowledge. This work demonstrates incremental bene�ts of adding network

knowledge to today's CPU-only algorithms. A minimax objective is considered

- Minimizing the utilization of the maximally utilized resource (either a PMs

CPU or a network link). Two greedy algorithms and four variants of Simulated

Annealing are proposed as solvers.

2.3 Application Placement and VM Provisioning

While the VM placement problem looks at how a set of VMs should be placed

on PMs to satisfy a certain objective, the combined placement of applications

and VMs has the following objective: given a set of machines and applications,

determine how many machines to run for each application and on which physical

machines to place them, respecting resource constraints. This is a datacenter

level problem of concern to the cloud provider, as in the case of VM placement.

In [28] a Scalable Application Placement Controller for datacenters is

proposed. Given a set of machines and web applications with dynamic demands,

an online application placement controller decides how many instances to run for

each app and where to put them. Multiple optimization objectives are considered:

13

• Maximize total satis�ed application demand.

• Minimize total and of application starts and stops (overhead).

• Balance load across machines (utilization of individual machines must stay

close to the utilization of the entire system).

A placement restriction matrix (whether a given application can run on a

particular machine or not) as well as CPU and memory capacity constraints are

the constraints considered. The problem is formulated as a variant of the Class

Constrained Multiple-Knapsack problem and an onnline approximation algorithm

is proposed as a solver.

A dynamic resource provisioning and VM placement scheme, considering

application level SLAs and resource exploitation costs is proposed in [20]. The

following breakdown into two sub-problems is considered:

• VM provisioning - Determines the number of each of the di�erent types

of VMs to allocate to each application with the objective of maximizing a

weighted sum of utilities which relate to the application SLAs.

• VM packing - Pack the VMs suggested by the previous stage minimizing

the number of active PMs.

These problems are modeled as separate CSPs and solved using Constraint

Programming. This work considers heterogeneous applications and workloads

(batch oriented and enterprise online applications).

The following problem is addressed in [24]. Consumers submit requests for

allocation/deaallocation of VMs of di�erent capacities with associated SLAs.

The provider has to manage placement, instantiation and migration of the VMs

on its PMs. A reveneue maximization objective is formulated considering the

following - Availability SLA (Availability Model is built), maximum number of

VM migrations and VMs deployed on external cloud (decreases revenue). A

hill climbing heuristic search algorithm is proposed to solve this constrained

optimization problem.

14

2.4 Application Performance Modeling

A performance model models the relationship between the performance of an

application and the parameters that determine performance such as allocated

resources and workload. Given a particular quantity of workload and a speci�c

resource allocation, the model would predict what performance will be exhibited

by the application. Performance is represented using an appropriate performance

metric, some of the common ones being mean response time and throughput.

Performance models enable us to make accurate scaling decisions in a

production system as they enable us �nd how performance would vary across

di�erent resource allocations for a particular level of observed workload.

Performance modeling has been studied in both virtualized and non-virtualized

environments. Approaches based on machine learning have been the most

common. Simple regression based techniques were used in the past and recent

work have shown that more sophisticated models are necessary to model the

complex relationship between di�erent types of resources and performance.

The work [29] focuses on dynamic workload performance prediction and

resource allocation. The modelling technique proposed is as follows:

1. A basic set of applications which represent the diversity of applications

(CPU intensive, memory intensive, etc.) in a datacenter are chosen.

2. Performance models are built for these primitive applications using Support

Vector Regression (SVR).

3. During operation, for a new workload encountered estimates are derived for

the probabilities that this workload is similar to each of the primitive set

of apps using Support Vector Clustering (SVC).

4. The performance model of the new workload is derived as a weighted

summation of the models built in (2), the weights being the probability

estimates derived in (3).

15

5. An optimization problem which minimizes the total cost of resources

with respect to allocated resources, under the constraint that the realized

performance is equal to the expected performance is solved, and an

approximate solution is obtained.

The �rst two tasks are done o�ine beforehand, and the rest take place periodically

online. We found the modeling technique attractive. The choice of primitive

applications did not seem to be very methodical however. The resources

considered seems to be number of CPU threads and memory, but the optimization

formulation is general.

The distribution of application response time given allocated resources is

learned in [30]. Following is the model considered:

p(t|a) =
∑
i,j,k

p(t|a, i, j, k).p(i, j, k|a) (2.1)

where the symbols denote the following: t - response time, a - resource allocation,

i, j, k - utilization (consumed resources/allocated resources) values of the three

application tiers. All these are discretized values, discretized using �xed-with

binning. The paper focuses only on CPU allocation. Parameters of the two

probability distributions on the right of equation 2.1 are learned using training

data. Some of the apparent drawbacks of the approach are the following:

• Only CPU is considered.

• Model is too simplistic. More variables could be taken into account in the

model.

• Discretization reduces model e�ectiveness. Only four values for the

allocation variable a are considered (25%, 40%, 70%, 100%) in the

experimentation.

• Contention for resources is not explicitly addressed in model.

A more powerful and widely applicable model may be built by considering

multiple resources and their interdependencies, and by using discrete distributions

with a large number of bins. We address these gaps in our performance model.

16

In [31] the authors address the problem of predicting performance metrics of

database queries. They evaluate several statistical machine learning algorithms

for this prediction problem and show that Kernal Canonical Correlation Analysis

(KCCA) performs well on the task. KCCA is a technique used to correlate points

in two sets of data, the datasets in this case being database query feature vectors

and performance metrics of the corresponding queries. The key idea is to project

both sets of points to spaces with same dimensionality such that the distances

between corresponding point pairs in the two sets in the projection space are

similar. Prediction involves given a point in one of the sets, projecting the point

to its projection space, �nding a corresponding point in the projection space

of the other set, and then mapping it back to its original space. We initially

considered KCCA as a candidate for our performance model, but later opted

for other methods as it was unsuitable to the performance metric we considered

(response time distributions).

In [32] the authors claim that it is di�cult to capture the complex relationship

between performance and resource allocation using a single global model. They

demonstrate that �tting di�erent models to di�erent parts of the input space can

produce accurate predictions. The authors consider CPU, memory, and storage

I/O as resource types. The approach is validated using the RUBiS [33] and

�lebench [34] applications. They further use these models to recommend VM

instances suitable from a cloud provider such as Amazon EC2 or Rackspace for

a given workload.

Performance models are applicable directly to the VM instance

recommendation problem as well, where the user wants to choose a static

VM size to suit his application. The work discussed above [32, 29] also evaluate

the strengths of their models in terms of how well the recommendations are.

2.5 Cost Model

Our approach uses an analytical model to compare di�erent possible scaling

actions. In this section we discuss relevant models proposed by prior work.

17

Table 2.1: Components of cost function in [35].
Symbol Description
Wr Penalty for SLA violation
Wc Cost of leasing a machine per hour
Wf Cost of recon�guring application
RSLA SLA given response time
R Maximum response time observed
Mi Number of machines used in the ith interval

The cost model proposed in [35] is a linear combination of the following:

• Penalty for violation of SLA bounds (e.g., extent by which desired

performance is violated, such as increase in response time)

• Cost of leasing a machine

• Cost of recon�guring the application (de�ned as a change in number of

machines used before and after recon�guration. This is a penalty term

which discourages horizontal scaling).

Equation 2.2 shows the model.

Cost = Wr × (RSLA −R) +Wc ×Mk +Wf × ||Mk −Mk−1|| (2.2)

where the symbols used are described in Table 4.2.

The recon�guration term is de�ned as the change in number of machines used

before and after recon�guration, and is used to penalize horizontal scaling. We

observed that the proposed recon�guration cost in this model is too simple to be

realistic. This simplistic model motivated our cost model, although we handle

SLA ful�llment in a di�erent manner and our recon�guration cost also takes into

account VM migration.

2.5.1 Cost of VM migration

Moving to a VM in a physical cost di�erent than the one in which the application

is running is one of the scaling actions we consider in our model. Moving a VM

18

from a source host to a destination cost is termed VM migration. Migrating a

VM between hosts can be done in one of two ways:

• O�ine migration: The running VM is stopped, its image is copied to the

destination host, and resumed there.

• Online/live migration: Copying the VM image (part of it) while the VM is

operational.

O�ine migration completely disrupts the application since the machine is

shutdown until resumption in the destination, while live migration does some

of the copying while the VM is running. Several hypervisors used today such as

xen [36] and vmware [37] support live migration.

Live migration operates in two phases. During the Pre-copy phase while the

VM is running, its memory pages are copied over to the destination iteratively.

The reason for copying the pages iteratively is because of the possibility for some

of the already transferred pages to become invalid because of the corresponding

pages getting modi�ed in the source VM. An invalid page is termed a dirty

page. After the pre-copy phase has progressed for some time (as determined

by heuristics such as number of iterations/number of remaining dirty pages),

the running VM is stopped and the remaining dirty pages are copied to the

destination.

During the pre-copy phase, bandwidth is shared by the application as well as

the migration procedure. During copy phase, the service is entirely down, and

the complete bandwidth is used for migration. We discuss below prior work that

address the performance penalty incurred due to live VM migration.

In [38] the authors discuss the impact of vertical scaling and VM migration

on performance. Although they do not provide an analytical cost model, they

provide a set of observations which can be useful in devising one. Their

observations with regard to live migration are as follows:

• If there are no resource constraints, the duration of migration for an

application varies linearly with the active memory of the VM. The migration

duration varies across applications with same memory footprint.

19

• Live migration requires spare CPU resources on the source server. If

spare CPU is not available, it impacts the duration of migration and the

performance of the VM being migrated.

• The amount of CPU required for live migration increases with an increase

in the number of active pages of the VM being migrated.

• A co-located VM impacts a VM being migrated by taking away resources

from the physical server. The co-located VM does not su�er from CPU

contention but may su�er from cache contention based on its cache usage

pattern.

In [39] the authors conclude based on their experiments that although

migration overhead is acceptable, it cannot be disregarded when strict SLAs

need to be adhered.

A migration cost model based on available bandwidth, dirtying rate and VM

memory size is proposed in [40]. This work develops analytical models for the

SLA penalty incurred due to migration, and also presents a migration scheme

that minimizes this SLA penalty cost by determining optimal values for the

following parameters- Amount of bandwidth to use for copying during pre-copy,

when to stop VM and initiate copy phase. They compare the performance of

their proposed migration scheme with Xen's migration using the developed cost

model. The following modeling assumptions are made - constant request rate,

requests follow a queuing model with constant request and service distributions,

probability of a pre-copied page getting dirty is modeled using a Bernoulli

distribution. We use the analytical expression developed in this work for the

probability that response time exceeds a certain threshold in our model.

2.5.2 Income Model

We consider a pro�t maximization objective in our approach in addition to

performace satisfaction. In this section we brie�y review some relevant models

proposed in the literature.

20

Figure 2.1: Utility models.

Assuming the target performance to be keeping the response time under

a speci�c response time delay TSLA with high probability, in [41, 42] revenue

schemes with the following properties are proposed:

• Smaller the response time, higher the revenue.

• Strongly discourage response time falling below Tsla by setting utility to be

negative.

In [41] the following model is considered

P (1− r

TSLA
) (2.3)

where P is a constant and r is the mean response time observed (see

Figure 2.1(b)). In [42] a piecewise constant function is used to de�ne utility

(see Figure 2.1(a)), a multiple of which is de�ned to be revenue. The purpose

of these revenue models is more towards discouraging large response time than

re�ecting actual revenue. We use the model in equation 2.3 for our experiments.

2.6 Simulation Tools

Several simulation tools have been developed in the past for validating cloud

resource management algorithms. We discuss a few such simulators below,

highlighting some of their main features, primarily the models of task execution.

21

2.6.1 CloudSim [43]

Cloudsim assumes provisioned VMs to be predictable and stable in performance.

The basic unit of workload in Cloudsim is called a cloudlet. Workload is de�ned

by a sequence of cloudlets. The time required to execute a given cloudlet on a

VM solely depends on the cloudlet's length (in MI (Millions of Instructions))

and VM's processing power (in MIPS (Millions of Instructions per second)).

A cloudlet is de�ned by a set of The execution time of cloudlets (a task) is

calculated as follows:

Execution Time =
rl

capacity × cores
(2.4)

where,

- rl is total number of instructions the cloudlet needs to execute on a processor

- cores is the number of cores (processing elements) required by the cloudlet

- capacity of a host with np processing elements is given by

If cloudlets are scheduled in space-shared policy,

capacity =

np∑
i

cap(i)

np
(2.5)

If cloudlets are scheduled in time-shared policy,

capacity =

∑np
i

cap(i)
np

max(
∑cloudlets

i cores(i), np)
(2.6)

cap(i) is the processing strength of individual elements and cores(i) is the number

of cores required by cloudlet i.

2.6.2 DynamicCloudSim [44]

DynamicCloudSim introduces external bandwidth and �le I/O as additional

performance characteristics of tasks, VMs and hosts. It takes into account all

performance requirements of tasks for determining how long it takes to execute

the task on a given VM.

22

Execution Time is de�ned to be:

Time =
Cloudlet Length
Assigned MIPS

(2.7)

where the quantities invovled are computed as follows:

Cloudlet Length = mi+ io+ bw

ioT ime =
io

iops

bwT ime =
bw

bwps

miT ime =
mi

min(mips, cores× mips
cpus

)

(2.8)

Assuming the larger of the above three to be bwT ime,

Assigned MIPS = bwps+mi× iops

io
+ io× bwps

bw
(2.9)

The symbols used indicate the following:

mi, io, bw - CPU, IO and networking requirements of a cloudlet.

mips, iops, bwps - Capabilities of the VM to process each type of resource

requirement.

2.6.3 CloudSim extension for Three-Tier Applications

In [45] the authors propose an analytical performance model of 3-tier applications.

Workload is represented in terms of user sessions unlike in CloudSim and

DynamicCloudSim where the basic unit of workload is a cloudlet. Each session

incurs performance load on the application and database servers. Sessions make

use of CPU time and RAM on the application servers and CPU, RAM, disk I/O

on the database servers (disk operations on application servers assumed to be

negligible).

A session generates variable workload over time unlike jobs. A session is

formally de�ned using the following variables.

23

• Ideal session duration: Session duration given all resources for its execution

are available

• Data Item: Represents an entity stored on disk (e.g., �les, portions of

database records). Assume �nite number of data items d1, d2, ..., dn.

• Step size

• CPU load of application server vas(t)

• Memory load of application server mas(t)

• CPU load of database server vdb(t, dk)

• Memory load of database server mdb(t, dk)

• Disk I/O load ddb(t, dk)

The last 5 are step (piecewise constant) functions.

Within each step, a session has constant resource requirement in terms of

CPU, RAM, I/O. Behavior of a session within a step is represented using one

cloudlet executed by AS server and several cloudlets on the DB servers. Each

DB cloudlet is associated with the data item it uses. The step functions de�ne

the corresponding cloudlets' CPU, RAM, I/O resource requirements.

A session is represented with 2 equal sized queues - one for AS server and one

for DB servers. Elements of queue correspond to steps.

De�ning the resource consumption of sessions that make up workload involves

averaging monitored performance data from actual executions. Performance logs

can be used for this purpose.

Execution time for a single cloudlet is computed as follows:

Estimated CPU Time =
Cloudlet Length
capacity× cores

Estimated IO Time =
CLoudlet IO Length

IO capacity× Number of HDDs used by cloudlet

where IO capacity =
IOPS of hard disk

number of cloudlets using it

Estimated Execution Time = min(Estimated CPU Time, Estimated IO Time).
(2.10)

A survey of the above as well as other simulation tools revealed the following

major obstacles in using them for our purposes:

24

• The workload characterization parameter in our experiments is the number

of active user sessions. Most simulators do not provide a way of modeling

session based workload. The closest we came across that facilitates this was

the third of the simulators discussed above [45].

• Task execution is based on analytical models. For this reason it was di�cult

to get the performance observations reported by the simulator to agree with

the actual performance numbers observed in hardware.

We opted to build our own simulator for these reasons.

Our work also addresses some of the shortcomings in previous work such as

assumptions of constant workload and consideration of only controllable resource

types such as CPU and memory. Our framework also accomodates those resource

dimensions which are di�cult to partition such as IO and networking and

attempts to exploit them to the bene�t of both the cloud provider as well as

the client.

25

Chapter 3

PROPOSED FRAMEWORK

We assume that the cloud operator makes available a resource candidate pool

to each client application (see Figure 3.1). The candidate pool can be a set of

Virtual or Physical machines. This will be a relatively small fraction of the whole

cloud infrastructure for privacy and security reasons. An application can assess

the options made available to it and choose to make use of a subset.

Figure 3.2 shows an overview of our proposed scheme. Given the workload,

the application performance model is used to predict the performance o�ered

by each resource candidate. The cost model assigns a numerical cost to each

candidate as well as the current con�guration considering the speci�cations of

the resource candidates, their prices and the performance predictions. The

recon�guration algorithm makes use of the cost values to make recon�guration

decisions. This recon�guration scheme runs periodically to maintain required

level of performance.

The individual components are detailed in the following sections. In the rest

of this thesis, we will consider the case where the application is hosted on a single

machine which can move around (migrate) or expand (vertically scale). The

multi-VM (horizontal scaling) situation can be easily accomodated, but we defer

this and the relevant experimental validation for future work.

Figure 3.1: Resource candidate pool made available to an application.

26

Figure 3.2: Solution overview.

3.1 Application Performance Model

The performance of an application at a given point in time depends on the type

and quantitiy of workload and the hardware resources available to the application

to serve this workload. Capturing the complex relationship between these

in�uencing factors and application performance allows us to make more accurate

scaling decisions to suit requirements. Given a particular resource con�guration

R and workload characterization parameter w, an application performance model

predicts the performance of the application Perf (R,w).

An apparent choice to building such a model is through learning, by observing

the performance of the application in an o�ine experimental environment when

subjected to di�erent levels of workload intensity and resource availabilities.

Although o�ine training can be expensive in terms of time and money, an

accurate performance model produces signi�cant performance and cost bene�ts

at production time. Training can also be adjusted to work online, at the expense

of suboptimal decisions during the beginning. Performance predictions made by

the model are used by the cost model to assess di�erent resource con�gurations.

27

Table 3.1: List of symbols.
Symbol Description

Cost(R) The estimated cost of adopting resource con�guration R

Costres(R) Cost of leasing resources R

Costrec(R) Cost associated with recon�guring to a resource con�guration R

Income(P, T) Income obtained when application is running with performance P for T

period of time

g Monetary loss associated with a particular response time value exceeding

TSLA

n Number of active users

Perf (R,w) Predicted performance of the application when provided resources R and

subjected to workload w

Perf SLA Level of performance demanded by SLA

P (r > r0) Probability that response time exceeds r0

r A particular respone time value

R,Ri A particular resource candidate/con�guration

Rcurr Current con�guration

Ropt Optimal con�guration among options made available to application

T Time period ahead during which we analyze the cost/pro�ts

Tmig Time taken for pre-copy phase of migration

Tdown Downtime during migration

TSLA Target SLA response time

w Workload intensity

λ Request arrival rate

3.2 Cost Model

The cost model governs the relationship between a resource

allocation/recon�guration decision and the associated penalty/cost incurred by

the application host. It comprises of the following components:

• Resource Cost (Costres) � Cost of leasing speci�ed resources.

• Recon�guration Cost (Costrec) � Captures the service degradation or

downtime due to recon�guration actions.

• Income � The monetary income associated with providing a particular

level of service.

28

Using these components, we formulate two types of models. The �rst corresponds

to satisfying a performance target speci�ed by a Service Level Agreement (SLA).

This encompasses a wide range of applications such as mail servers, search engines,

etc.

• Attempt to satisfy SLA requirement at minimal cost

Cost(R) = Costres(R) ∗ T + Costrec(R) (3.1)

From an income perspective, while the above cost model is suitable in a

situation where the application host earns a particular income for respecting

an SLA, consider an application for which di�erent levels of service have di�erent

associated incomes. For an e-commerce website such as ebay, we could assume

that income is correlated to perceived performance - better performance facilitates

faster purchases. In this case we are interested in maximing pro�ts to the

application host.

• Maximize pro�t (equivalently, minimize cost)

Cost(R) = Costres(R) ∗ T + Costrec(R)− Income(Perf(R,w), T) (3.2)

where the symbols used are described in Table 3.1.

Together these components decide whether the bene�ts of moving into a new

con�guration outweigh the momentary �xed cost incurred due to recon�guration.

3.3 Recon�guration Algorithm

As the workload changes, we decide whether a scaling decision needs to be

triggered based on the following optimization objective. For SLA satisfaction,

we consider the objective

minRCost(R) subject to Perf(R,wl) > PerfSLA (3.3)

29

whereas for pro�t maximization, we consider the same objective with the

constraint dropped:

minRCost(R) (3.4)

If there exists a con�guration (Ropt) with a lower operating cost than the

current one (Rcurr), we move to the new con�guration.

To avoid system instability we introduce cooldown periods during which the

operating con�guration cannot change. These periods are set to expire at a rate

proportional to the tradeo� between operating in the con�gurations Rcurr and

Ropt as in equation 3.5.

Scale Up Timer + = (Target SLA con�dence− Current con�dence) (3.5)

This makes sure that we do not reside in unfavorable con�gurations for too long

and that we do not make frequent recon�gurations.

3.4 Speci�c Choices of Models

In the previous section we described a framework for dynamic resource

recon�guration in the cloud. Our approach is modular in that one may plug

in speci�c choices for each of the components depending on the application

and requirements. Now we discuss particular choices for these components and

evaluate the recon�guration scheme for these choices.

3.4.1 Application Performance Model

We discuss our performance model for a web server application, and use response

time as a performance indicator. While most prior work have considered mean

and percentile response time values as well as throughput as metrics [32],

we consider the response time Cumulative Distribution Function (CDF) as a

performance metric for reasons we describe below. Workload is characterized by

the number of active user sessions.

30

The application is deployed in an experimental VM. Performance statistics

of the application are collected across di�erent VM con�gurations and di�erent

levels of workload intensity (we refer to these experiments as emulation

experiments in the following discussion). The ranges of these parameters

are chosen such that they encapsulate the typical production system scenario:

The VM con�gurations can be those o�ered by the cloud provider, or the

options available in a private cloud. Minimum and maximum workload may

be determined based on client knowledge of estimates.

The number of such di�erent scenarios can easily be quite large in practice,

which makes it time consuming to evaluate each individual con�guration.

However, sophisticated sampling techniques could be used to choose a manageable

subset which provides reasonably good estimates for parts of the problem space

which were not considered. For simplicity, we collect statistics for uniformly

sampled con�gurations between the minimum and maximum values for each of

the resource types as well as workload.

Figure 3.3: Mean response time observed for the RUBiS application in di�erent
VM con�gurations.

Figure 3.3 shows the mean response time curves observed for the RUBiS

application in several VM con�gurations. We observe the following behavior

31

Figure 3.4: The con�gurations with highest prediction error when a single global
model is �t to the data.

consistently in each case. As we increase the number of users, performance

stays good until the point where one of the resources becomes a bottleneck,

at which point the performance starts degrading rapidly. In e�ect, we may

consider two regions, corresponding to (a) neither of the resources types is fully

utilized and (b) at least one of the resource types is fully utilized, in which the

performance behavior is consistent within a region but not across. We further

made the observation that the response time distributions in the former region

were unimodal, whereas it was bimodal in the latter. We observed that this was

because requests with modest requirements such as requesting for the home page

can still be served fairly quickly when the server is over-utilized, whereas requests

involving complex queries were penalized severely. These observations also shows

why mean response time is not a very appropriate performance metric in that it

fails to capture some crucial aspects of performance.

32

Figure 3.4 shows VM con�gurations and number of users for which the largest

performance prediction errors were observed when we �t a single global nearest

neighbor model. Performance predictions were made using a linear interpolation

of all nearby con�gurations in the training database, and the predictions with

kl-divergence [46] error metric > 0.1 were plot. We observe from the plot that

the largest errors are associated with regions where one of the resources is starting

to become a bottleneck, and then beyond that to some extent.

The above observations motivated us to �t di�erent models to the two regions.

This idea of �tting di�erent models to di�erent parts of the input space was also

advocated by [32] where they analyze the bene�t of this approach compared

to using a single global model. Within each region, we consider a simple

instance-based model for making performance predictions. For a given workload

and resource con�guration, we predict the response time distribution to be a

linear interpolation of nearby con�gurations.

This simple predictor works quite well. Considering uniformly sampled points

from the emulation database to comprise the test set, and a KL-divergence error

metric which measures the distance between true and predicted distributions, we

observe a mean score of 0.026 for data points in the �rst region. The �t was

not as good in the second region, where we observe a mean score of 0.1. This is

because the second mode of the bi-modal distributions observed for con�gurations

in this region moves further to the right as the number of users increases, and this

cannot be easily captured by superposing neighboring distributions (whose modes

happen to be located quite far away). Capturing this behavior would involve a

horizontal shifting or stretching of the neighboring distributions. However, our

concern is mainly about modeling accuracy in the former region, since it is where

we want to be operating most of the time when the recon�guration algorithm is

operational.

33

3.4.2 Recon�guration Cost

In the following we overload the term migration and use it to mean moving

from a particular VM operating con�guration to another. This may involve

VM migration (in the usual sense) and/or vertical scaling. Live migration refers

moving a VM to a di�erent host while it is running, and it takes place in three

main stages - the pre-copy phase, stop-and-copy phase and resume phase. During

the pre-copy phase, memory pages of the VM are copied to the destination while

it is running. This takes place in multiple iterations as some of the already copied

pages can become invalid (dirty) and they need to be re-copied. After su�cient

data has been copied over (as determined by the particular migration algorithm),

the VM is stopped and the remaining dirty pages are copied, after which the VM

is resumed at the destination.

Let TSLA be the target SLA time. Let Tmig be the time taken for the pre-copy

stage of migration. Let Tdown be the downtime. For virtualization platforms

which do not support live migration, we can consider Tmig to be 0 and Tdown to

be the total copy time. Assume that Tdown includes the time period taken by a

VM to either resume after migration or reboot after vertically scaling. Consider

an operating time horizon T into the future. We evaluate the operating cost

during the timespan T ′ = Tmig + Tdown + T in the following.

As workload increases, if the current VM con�guration is no longer able to

satisfy the SLA requirement due to insu�cient resources, a migration action to

a VM with more resources may be considered. There will initially be a service

interruption during the migration period, but the bene�t gained by migrating to

a better VM might compensate for this interruption.

Assume that there is a monetary loss (g) associated with a response time value

exceeding TSLA. This could be, for instance, a monetary penalty associated with

the server host violating promised QoS, or a qualitative penalty that captures

the fact that large response times will cause user dissatisfaction/churn, etc. We

34

de�ne the cost of recon�guration as:

E[Number of user requests which experience a response time greater than TSLA during

the T ′ time period that follows]× g (3.6)

We assume that user requests are distributed according to a Poisson process with

arrival rate λ and the the number of users n is constant over the duration T ′

which is a reasonable assumption since T ′ is in the range of a few minutes.

If we continue to operate in the current con�guration, the above quantity is

Costrec(Rcurr) = [P (r > TSLA)(nλT
′)]× g (3.7)

where P is the response time distribution for current con�guration serving the

workload over the T ′ time period and r is a particular response time observation.

This is computed from CDF predictions made by our application performance

model.

If we choose to migrate,

• During the pre-copy phase which lasts for Tmig time, let the perceived

response time disribution be P ′

• During the down time Tdown, service is down

• Response times will be distributed according to distribution P ′′ during the

time T in which the new VM is serving load

The cost of a new con�guration R is then

Costrec(R) = [P ′(r > TSLA) · (nλTmig) + (nλTdown) + P ′′(r > TSLA) · (nλT)]× g

(3.8)

We use the analytical model proposed in [40] to capture P ′(r > TSLA). P ′′ is

predicted by the application performance model.

The main factors that in�uence Tmig and Tdown have been identi�ed as the

size of VM memory, memory page dirtying rate and the bandwidth available

35

for migration [47]. Although analytical models for migration behavior based on

these factors have been proposed, dirtying rate of an application as well as the

networking performance of cloud VMs can vary signi�cantly over time, which

makes it di�cult to use these models. Based on empirical observations made by

previous studies [39, 48], we found that migration and down times can reach up

to 100s and 3s, respectively. We use values sampled from the vicinity of these

values for Tmig and Tdown. Since we consider the worst case scenario, this provides

a lower bound on the performance achievable by our approach. We use VM boot

time values reported in [49].

3.4.3 Income Model

The client may use any suitable income model based on his requirements. Linear

functions and piecewise constant functions are naive choices. For instance,

consider a model [41] such as

I × (1− r

TSLA
) (3.9)

where I is a constant representing monetary income for ideal performance and r

is the mean response time. This is a straight line with negative slope hitting the

time axis at TSLA and the income axis at I.

36

Chapter 4

PERFORMANCE ANALYSIS

We �rst describe the experimental setup in Section 4.1. The simulation setup is

discussed in Section 4.2. Performance validation using the simulator is described

in Section 4.3.

4.1 Experimental Setup

4.1.1 Hardware and Software Setup

Hardware experiments were performed on the Xen 4.3 virtualization platform

running on a machine with Intel i7-4710U CPU (4 cores, 8 threads, 2GHz

base frequency), and 16GB RAM. The libvirt 0.9.1 virtualization API [50] was

used for VM creation and management. Performance data was collected for

VM con�gurations with CPU and memory varying through 1-4 and 1-12GB,

respectively.

4.1.2 Application Setup

The RUBiS auction site web application [33] was used as a prototypical

application in our experiments. We used the RUBiS PHP incarnation.

Application and Database servers were setup on the same VM for simplicity and

to avoid network e�ects. The RUBiS browsing mix was used for our experimental

purposes. We used the database dump provided in the RUBiS website as the

database. We found the RUBiS setup guide blog post [51] useful for setting up

RUBiS.

Apache version 2.4.7 was used as the web-server. The MaxClients and

ServerLimit parameters in Apache were set to su�ciently high values to make

sure that the capacity of server VM is not constrained by these parameters. The

37

max-connections parameter (maximum number of concurrent sessions) in MySQL

was similarly set to a large value.

4.1.3 Workload Emulation

A scalable workload emulator was required to emulate the range of users that we

required. The RUBiS Client Emulator is a thread-based Java application which

uses one thread per user. As a result the tool did not scale very well, and we had

di�culties emulating even a modest number of users properly.

A more scalable option was the RAIN workload generation toolkit [52]. It is

customizable to suit any given application and has a more �exible design in that

it employs a shared thread pool to emulate users. A RUBiS extension was under

development at the time of this work, but was incomplete. (The same authors

seem to have completed it recently [53]).

Next we attempted to use httperf [54], a high performance sequential emulator

implemented in C and widely used by several previous work for workload

emulation. The authors of [55] do a study on the accuracy of results produced

by the RUBiS Client emulator. Sessions produced by the Client emulator are

captured in a �le and replayed using httperf. The results reported by both tools

are then compared. They make the observation that the java library used for

networking purposes in the client emulator is causing inaccuracies in the results

reported. The authors modify httperf to log response time values of requests and

to take session inter arrival times as input. The patch is publicly made available

in [56].

We encountered di�culties in using the httperf builds from most repositories

in emulating a large number of users. Increasing the �le descriptor limit in these

sources and building causes httperf to crash with glibc bu�er over�ow errors.

This was most likely due to mismatch in the value of FD_SETSIZE between

httperf and glibc. The patch [57] works around this issue. We used this patch

along with some features of patch [56] such as logging response time values for

our experimentation.

38

The RUBiS Client Emulator was used to generate request sessions, which were

logged into a �le. The log replay feature was used to replay logs with di�erent

numbers of users. A single Intel Core i5 machine was able to emulate upto 6000

users using this version. The emulator machine was running Ubuntu 12.04, and we

followed the instructions in [58] to set the system limit parameters appropriately.

We were able to emulate upto 10,000 users with two machines.

4.1.4 Collecting Performance Data

Each VM con�guration was subjected to a load of constant number of sessions.

The number of users was varied from 1,000 to 10,000 in steps of 1,000. Each

experiment lasted for a duration of 400s with a steady state of 300s (Ramp-up

+ Ramp-down = 100s). The sysstat package [59] (version 8.0.3) was used to

collect performance data from the server VM. We modi�ed the httperf patch to

log response time values of individual requests.

Figure 4.1 shows performance statistics collected for a particular VM

con�guration across di�erent number of users. A uniform increase in utilization

is observed for CPU, memory and network as we uniformly increase the number

of users to the point where one of the resources becomes a bottleneck. Figure 4.2

shows response distributions and the corresponding cumulative distributions

observed for certain con�gurations. These plots show the behavior of distributions

starting to become bi-modal as one of the resource types become a bottleneck.

4.1.5 Workload

To evaluate the performance of our alorithm against a realistic workload, we use

the widely used World Cup '98 workload trace [60]. It comprises user requests

logged over a period of 92 days. We pre-process the trace logs so that the

statistical nature of the workload match the RUBiS application. The workload

generated in this fashion for the whole span of 92 days is depicted in Figure 4.3.

The plot shows the number of active sessions against time. We discuss the

39

Figure 4.1: Performance Statistics collected for di�erent number of active users
under a particular VM con�guration.

PDF: 2000 users PDF: 3000 users PDF: 4000 users

CDF: 2000 users CDF: 3000 users CDF: 4000 users

Figure 4.2: Response time distributions observed for di�erent number of active
users under a particular VM con�gurations.

40

performance of our proposed scheme for the cases of a single day's workload

as well as the complete workload.

Figure 4.3: Sessions generated from World Cup '98 trace.

4.2 Simulation Setup

Simulation models of hardware systems provide a convenient means of anayzing

the performance of algorithms. Several simulators have been built to aid cloud

research in the past, but we found them unsuitable to our purpose for the following

reasons. Most of these simulators are based on analytical models for VM task

execution and servicing workloads. With analytical models it is di�cult to re�ect

the performance behavior exhibited by hardware in the simulation model. For

instance, it is di�cult to embed behavior such as caching, whose in�uence is

evident from our hardware emulation experiments. As a result, we would �nd

our performance prediction model producing results that do not align well with

the task execution model of these simulators.

For these reasons we built a discrete event simulator to validate our proposed

scaling framework. We use the performance observations recorded from our

hardware experiments to model the request servicing behavior in the simulator.

We split the simulation duration into distinct intervals, for each of which

41

performance statistics are computed using the above data. These statistics

are then aggregated to compute the overall statistics for the simulation. Note

that, while the complete set of performance observations made during emulation

experiments are used to build the simulator, only a subset (25%) is used to

train the performance model. This assures that the simulation results are not

misleading.

Components of the simulator are modeled as follows:

• Users: A variable keeps track of the number of users at any given moment.

• Workload Pattern: A desired workload variation pattern can be modeled

by appropriately varying this variable. For instance, to model simple

ramp-up, steady load, and then ramp-down, the variable is increased at

required rate until ramp-up time, kept unchanged for steady duration, and

decreased for ramp-down time.

• Web-server VM: A VM is modeled by a speci�c set of values for

CPU, memory, IO latency and networking performance. The application

hosted VM will have particular values for these parameters until change is

demanded by a scaling algorithm.

• Recording Performance Statistics: Performance over time will be

recorded in the following form - (t1, N1, R1), (t2, N2, R2), (t3, N3, R3), ...

where each (ti, Ni, Ri) indicates that an average of Ni users were served

by the application with Ri resources during interval ti.

The intervals are chosen such that:

1. There is no signi�cant deviation of number of users from Ni, and

similarly the resources from R (i.e., Number of users ∈ (Ni−δ,Ni+δ))

2. Our training database has the response time distribution for (Ni, Ri)

As shown in Figure 4.4 for each of these time intervals ti, we have a

corresponding response time distribution disti. The assumption made here

42

Figure 4.4: Collecting performance statistics in the simulator.

is that the response time distribution of requests does not vary much for

small changes in number of users/resources.

• Overall Performance Statistics: The overall statistics for the simulation

are computed using the statistics for each interval as follows. Assuming that

user requests are distributed according to a Poisson process, the expected

number of requests made by N users in time period T = NλT , where λ

denotes the arrival rate.

Over the whole set of response time values observed during an experiment,

probability (pk) that a particular response time value r came from

distribution distk is given by

Nkλtk∑
iNiλti

=
Nktk∑
iNiti

(4.1)

The overall respose time distribution is then computed as

∑
i

pi × disti (4.2)

43

which is a weighted summation of the distributions disti, the weights being

proportional to the number of requests which presumably came from those

distributions.

Distributions corresponding to periods of migration are also calculated as

described in Section 3.3 and taken into account in this computation.

To further validate the computation of this overall response time

distribution, we do the following. We derive Nkλtk samples from

distribution distk for each k and compute the distribution of the collection

of all sampled values. This is done several times, and we use the KL-distance

metric to verify that the distributions obtained from di�erent simulations

are not very di�erent from one another.

4.3 Performance Validation

We compare the performance of our recon�guration scheme against the following

schemes that are o�ered by cloud providers: Static Provisioning and Rule Based

Scaling. The Rule Based Scaling mechanism we consider is the following: for

each type of resource, if utilization stays higher than a given threshold for a given

inertial period, a scale up action is triggered. To scale up, we instantiate new

VMs which are of the same type as those in the auto-scaling group.

Parameters of the Rule-based system are set as per the recommendations made

by Net�ix in [9]. The simulator computes response time distributions assuming

that incoming workload is evenly split between the VMs in the auto-scaling group.

The cooldown parameters in our recon�guration algorithm are set identical to the

rule-based system.

4.3.1 VM sizes from Amazon EC2

We �rst consider the case where the available VM sizes are those o�ered by

Amazon web services. Instances with a maximum of 4 CPUs and 16 GB memory

are considered (shown in Table 4.1) as these were the largest values considered

for VMs during performance data collection. Note that prices depend on not

44

Table 4.1: VM types from Amazon EC2 considered and their prices. These prices
vary over time and the �gures below are as of Apr 01, 2015.

VM size Cost
CPU cores, Memory(GB) $/hr

(1,1) 0.013
(1,2) 0.026
(2,4) 0.052
(2,7.5) 0.14
(4,7.5) 0.28
(2,3.75) 0.116
(4,15) 0.232

just the amount of CPU and memory but also other factors such as the type of

storage. We assume that all these VM sizes are made available as options to

the application at all times. The RUBiS application is used for this experiment.

Since RUBiS is largely insensitive to IO latency, we assume that the application

performance is independent of VM IO performance. Networking performance is

omitted as well. The following performance target is considered: Keep response

time under 20 ms with 0.9 probability.

Figure 4.5 demonstrates the performance of the proposed approach as well as

the rule-based approach with di�erent VM sizes for a particular day's worldcup

workload. The di�erent cases considered for rule-based scaling correspond to

di�erent types of VMs used in scaling group. For a particular type chosen, the

scaling algorithm adds/removes VMs of the same type to the scaling group. The

corresponding expense �gures and con�dence level at which each scaling scheme

keeps the response time under the target are shown in Table 4.2 under Workload

1.

Figure 4.6 shows the response time CDFs observed for the complete worldcup

workload for the various schemes. The corresponding �gures are displayed in

Table 4.2 under Workload 2.

We observe that when a small VM size is used for rule-based scaling,

the scaling decisions need to be quite frequent for demanding performance

requirements, and less so as the VM size increases. The downside of using

45

Figure 4.5: Comparison of scaling schemes for a particular day's worldcup
workload.

46

Figure 4.6: Comparison of CDFs for rule-based and proposed scaling schemes -
RUBiS application, entire worldcup workload.

Table 4.2: Performance comparison of rule-based scaling with di�erent VM types
against the proposed scheme.

Workload 1 Workload 2

VM type
(CPUs,Mem(GB))

Lease
Cost($)

P(r < 20ms) %
Lease
Cost($)

P(r < 20ms) %

Rule-based scaling with di�erent VM types
(1,1) 0.70 76.8 49.63 81.20
(1,2) 1.08 81.0 79.58 83.07
(2,4) 1.40 83.9 111.74 80.13
(2,7.5) 3.52 83.5 290.89 80.52
(4,7.5) 5.70 89.4 480.96 88.30
(4,15) 6.72 89.8 564.62 89.36

Proposed scaling scheme
- 2.32 88.5 443.79 89.35

a larger VM size is an increase in the mean lease cost. As the resonse time

distributions and con�dence probabilities show, although rule-based scaling can

achieve the required performance target with speci�c instance type choices, in

practice we do not know in advance which choice to pick. Our approach is able

to maintain a proper balance between cost and performance. A point to note

47

here is that the proposed scheme achieves this performance with a single VM.

Better con�gurations can be achieved when horizontal scaling is also considered.

The advantages of using a performance model are readily observed. Whereas

a rule-based system can identify if a resource bottleneck occurs and increase it,

it does not know precisely by what amount to increase the resources. But a

performance model knows exactly what amount of resources of each type are

required to maintain service to the required level of satisfaction. Although a

better set of parameters for the rule-based system may yield a cost bene�t, �nding

a good set of parameters for a given application can be often hard in practice. The

proposed scheme falls a little short of the performance target (88.5%, 89.35%),

which is due to workload peaks for which even the largest VM considered does not

satisfy the performance target. This level of performance was achieved despite

migration and downtime in�uences.

4.3.2 A private cloud scenario

Next we consider a private cloud scenario where VM sizes with CPU varying from

1 to 4 and memory from 1 to 16 GB in steps of a unit can be instantiated. In this

experiment we model our proposed scenario of a small pool of resources being

made available to an application among all vacant options: We assume that a

random subset of these VM sizes are made avaialble as options to applications at

any given time. We assume a pricing model that linearly varies with the amount

of each resource type.

Figure 4.7 shows the variation of CPU and memory as well as the

corresponding cost for a particular day's worldcup workload. The corresonding

response time CDF is shown in �gure 4.8. Following are some observations we

made with regard to how the pool of choices made available to an application

in�uences its performance based on the above information.

Since we restrict ourselves to the single VM case in this work, there was a

need for su�ciently large instances to be consistently available to the application

to maintain the required level of performance. Figure 4.8 shows that the

48

Figure 4.7: A private cloud scenario - Dynamic recon�guration of CPU and
Memory and variation of the corresponding cost.

performance target was not achieved, and this was due to the unavailability

of su�ciently large instances during certain periods of time. In the general

case, more than one instance will need to be instantiated if a su�ciently large

option is not available. This relationship between the need for large instances

and horizontal scaling needs to be taken into account both from the application's

perspective while optimizing for the best recon�guration and from the provider's

point of view considering e�cient datacenter utilization. If, for instance, the

provider wants to minimize the number of hosted instances for management

reasons, it is preferable for the provided set of options to roughly span the range

of possible resource values.

Another observation that we made is that with rapid variation in the pool

of resources, the number of recon�gurations is high (as in Figure 4.7). This is

49

Figure 4.8: A private cloud scenario - Response time CDF.

because a particular con�guration fails to remain optimal over a considerable

period of time when there is such variation. With a large number of applications

with distinct characteristics sharing the cloud, we can expect the available

resources, and hence those made available to applications, to be highly dynamic

in nature (especially those resource dimensions that are di�cult to control). This

motivates the cost model to have a term that explicitly penalizes recon�gurations

in addition to the cooldown periods in the recon�guration algorithm. We hope

to further pursue this idea rigorously in future.

4.3.3 Application a�ected by IO performance

We use the �lebench-�leserver benchmark workload [34] to assess the potential

bene�ts of our approach with respect to IO availability and performance impact.

We modify the �lebench application to log the response time values for individiual

IO requests and derive the read/write latency distributions. To change the

perceived IO latency of the application hosted VM, we run �o [61], an IO

workload generation tool, on a di�erent VM to create competing IO workload

50

Figure 4.9: Comparison of CDFs for static provisioning and proposed scaling
scheme - �lebench-�leserver application driven by simple synthetic workload.

as in [32]. Two levels of IO stress are considered - a) no competing IO and b)

�o emulating random IO with 10 workers. Performance data was collected for

�leserver workload varying from 10 to 40 threads.

The EC2 VM sizes were used for this experiment. The IO performance of

these VMs is modeled to �uctuate randomly between two levels corresponding to

the two levels of IO stress discussed above. We consider a basic workload pattern

that oscillates within the range of workload values for which performance data

was collected. We accomodate IO performance in the pricing model by pricing

a VM at its full price when there is no IO interference and half its price when

IO stress exists. The performance target considered is: 90th percentile latency <

20ms.

It was observed during performance data collection that CPU and Memory

utilizations were relatively low, and the workload was mainly bounded by IO

performance. Hence, we compare the proposed scheme with the extreme static

provisioning cases. Figure 4.9 compares the response time CDFs. Corresponding

performance and cost �gures are presented in Table 4.3. We observe that the small

VM with IO interference is unable to meet the performance target. The proposed

scheme achieves the performance target and produces cost savings of 10% relative

51

to the best static VM and 30% relative to the largest static VM according to

the aforementioned pricing policy. Although this is a very preliminary proof of

concept that our approach works well in the case of IO bound applications, it

strongly suggests that we should further explore this venue using experiments in

hardware.

Table 4.3: Di�erent schemes and corresponding performance, cost �gures.
Scheme P(latency < 20ms) Lease Cost ($)

Static (1,1) with IO interference 87% 0.16
Static (1,2) without IO interference 90% 0.62
Static (2,7.5) without IO interference 97% 3.36

Proposed 90% 0.56

4.3.4 Pro�t Maximization

We now consider pro�t maximization as the objective instead of meeting

performance targets. We consider the simple linear income model discussed

previously in equation 3.9. As for the choice of parameter I, this very much

depends on the speci�c client application. It is the monetary income attributable

to a single user request. This quantity varies across di�erent types of applications,

as well as across time for the same application. For instance [62] reports that

LinkedIn gets $1.30 in revenue for every hour and Facebook gets 6.2 cents. The

mean income observed per request for a running application till that point in

time is a reasonable choice for the parameter.

For this experiment we use a constant value of 1 cent for the constant I. The

overall pro�ts for a simulation are calculated as the following expected value

k∑
i

(niλti)I(1−
Ei[r]

TSLA
) (4.3)

where ni represents the average number of users observed during the ith interval,

ti denotes the length of the interval, and Ei is the expectation taken over the i-th

interval.

52

Table 4.4: Pro�t Maximization - Performance comparison of rule-based scaling
with di�erent VM types against the proposed scheme.

VM type
(CPUs,Mem(GB))

Pro�t ($)

Rule-based scaling with
di�erent VM types

(1,1) 384
(1,2) 233
(2,4) 250
(2,7.5) 235
(4,7.5) 204
(4,15) 175

Proposed scaling scheme
- 313

Table 4.4 shows a comparison of the income observed for rule-based scaling

with di�erent types of VMs as well as the proposed scheme. These �gures

were produced by deducting the overall VM lease cost from the expression in

equation 4.3. Rule-based scaling with the (1,1) type VM produced the most

income. The proposed scheme follows next, and is ahead of rule-based scaling

with other VM types. There is marginal di�erence between the rule-based

scaling scenarios with the other VM types. Although rule-based scaling does

not explicitly attempt to maximize income, the correlation between resource

utilization, good performance and pro�ts enables it to produce �gures comparable

with the proposed scheme.

The possibility of employing multiple VMs enables rule-based scaling to

produce better results than the proposed scheme. As mentioned in the other

performance analysis sections as well, although a particular case of rule-based

scaling does produce good results, we do not know this information in advance.

On the other hand, considering the multi-VM case in our proposed framework

can potentially yield better results.

53

Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Cloud computing has become an attractive venue to enterprises and users alike

during recent times. This growth in interest has been accompanied by the need

to address problems related to resource scaling and datacenter management.

Our novel framework enables cloud hosted user applications to dynamically

scale while consuming just the adequate amount of resources along di�erent types

of resource dimensions. We consider a scenario where the cloud operator exposes

a pool of resource options to each application, of which the application has the

choice to make use of a subset. The application recon�gures itself guided by

performance and cost models. We showed how this provides more �exibility

to applications in adopting favorable resource con�gurations and o�ers cost

advantages. As more e�cient techniques for live migration and vertical scaling

evolve, our approach becomes increasingly attractive.

We demonstrated that our approach is

• Computationally simple - Each application considers only a handful of

resource options to recon�gure itself.

• Generic - Di�erent types of models can be plugged into the application

performance, income and cost models. We perform experiments with

speci�c choices for these models and discuss performance results.

• Bene�cial to both the cloud provider as well as the user - Our scheme

naturally exploits the co-hosted application interference problem in shared

resources. Instead of determining and controlling performance interference

due to co-located applications, the applications themselves �gure out which

of the vacant resource options are suitable to meet performance needs.

54

The proposed approach achieves cost savings of more than 20% relative to

the rule-based scaling schemes for the world cup workload. Our preliminary

experiments with an application sensitive to IO performance show cost savings of

10% relative to the best static VM con�guration. It should be noted that these

�gures were achieved assuming a single operating VM. Considering the multi-VM

case can potentially lead to even better results.

We identi�ed several signi�cant next steps that can be taken from our work

that we were unable to address. We discuss these possible improvements and

other related future avenues of research in the next section.

5.2 Future Work

One of the restrictions in our current implementation of the proposed approach

is that we only consider the case where the application is hosted in a single

VM. The multiple VM case is more representative of the real situation. We can

expect to see signi�cant bene�ts in this case as the single VM case by itself o�ers

considerable advantages. The main challenges involved in doing this would be

accurately modeling the tradeo�s between horizontal and vertical scaling as well

as migration in the recon�guration cost component, and handling the exponential

increase in number of possible con�gurations.

A signi�cant next step would be to validate our approach in hardware. Testing

using a local environment would involve setting up a hardware cluster and the

virtualization platform. The simulation experiments need to be run in hardware

and the results have to be compared against the simulation results. This would

provide more credibility to the simulation results and show that our approach

works well in hardware.

We experimented with applications whose performance is primarily

determined by CPU and memory availability. We provided a basic evaluation

of an application for which I/O performance is the bottleneck. Validating our

approach for an application with networking performance impact is another

possible next step. In this case one has to take into account concerns such

55

as the following: applications sensitive to networking performance would be

a�ected signi�cantly by live migration compared to other application types, the

behavior of the recon�guration algorithm has to be investigated as more resource

dimensions are taken into account.

The proposed approach has been mostly analyzed from a user's perspective.

Although we have discussed that the cloud provider bene�ts from the proposed

approach, it would be interesting to investigate the provider's side of the story

objectively. One may simulate a scenario where several applications are running

on the cloud, each of them adopting the proposed dynamic recon�guration

scheme. We could analyze factors of concern to the cloud provider such as

datacenter utilization and energy impact in this situation.

An important research direction that we found to have received less focus from

the research community in the past is the design of a scalable, general-purpose

workload emulator. Some of the issues we encountered in using existing emulators

such as the RUBiS Client emulator, RAIN and httperf were discussed in

Section 4.1.3. For thread based emulators memory proved to be a bottleneck.

Although httperf is a high performance sequential emulator, it only exploits

one processing core, and there is more room to exploit in a multi-core machine.

Most prior work have considered workloads that are small which they are able to

emulate using a few machines. The solution adopted to emulating more workload

has been to use more machines for emulation. Therefore, designing a workload

emulator that is highly scalable and is general purpose would be beni�cial to the

research community.

56

References

[1] Michael Armbrust, Michael Armbrust, A Fox, A Fox, R Gri�th, R Gri�th,

AD Joseph, AD Joseph, RH, and RH. Above the clouds: A Berkeley view

of cloud computing. University of California, Berkeley, Tech. Rep. UCB,

pages 07�013, 2009.

[2] Amazon ec2 instance types. http://aws.amazon.com/ec2/

instance-types. Accessed: 2015-04-01.

[3] Amazon web services - auto scaling. http://aws.amazon.com/

autoscaling/. Accessed: 2014-10-20.

[4] Tania Lorido-Botran, Jose Miguel Alonso, and Jose A. Lozano. A Review

of Auto-scaling Techniques for Elastic Applications in Cloud Environments.

Journal of Grid Computing, (1):1�34, 2014.

[5] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou

So�a. Bubble-Up. In In Proc. of the Annual IEEE/ACM International

Symposium on Microarchitecture, page 248, 2011.

[6] Rui Han, Li Guo, Moustafa Ghanem, and Yike Guo. Lightweight resource

scaling for cloud applications. In CCGRID, pages 644�651. IEEE, 2012.

[7] Masum Z. Hasan, Edgar Magana, Alexander Clemm, Lew Tucker, and Sree

Lakshmi D. Gudreddi. Integrated and autonomic cloud resource scaling. In

NOMS, pages 1327�1334. IEEE, 2012.

[8] Michael Maurer, Ivona Brandic, and Rizos Sakellariou. Enacting slas in

clouds using rules. In Emmanuel Jeannot, Raymond Namyst, and Jean

Roman, editors, Euro-Par (1), volume 6852 of Lecture Notes in Computer

Science, pages 455�466. Springer, 2011.

[9] Auto scaling in the amazon cloud. http://techblog.netflix.com/2012/

01/auto-scaling-in-amazon-cloud.html. Accessed: 2015-03-20.

57

http://aws.amazon.com/ec2/instance-types
http://aws.amazon.com/ec2/instance-types
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/autoscaling/
http://techblog.netflix.com/2012/01/auto-scaling-in-amazon-cloud.html
http://techblog.netflix.com/2012/01/auto-scaling-in-amazon-cloud.html

[10] Peter Bodík, Rean Gri�th, Charles A. Sutton, Armando Fox, Michael I.

Jordan, and David A. Patterson. Statistical machine learning makes

automatic control practical for internet datacenters. In Workshop on Hot

Topics in Cloud Computing, HotCloud'09, San Diego, CA, USA, June 15,

2009, 2009.

[11] Enda Barrett, Enda Howley, and Jim Duggan. Applying reinforcement

learning towards automating resource allocation and application scalability

in the cloud. Concurrency and Computation: Practice and Experience,

25(12):1656�1674, 2013.

[12] Xavier Dutreilh, Sergey Kirgizov, Olga Melekhova, Jacques Malenfant,

Nicolas Rivierre, and Isis Truck. Using Reinforcement Learning for

Autonomic Resource Allocation in Clouds: towards a fully automated

work�ow. In Seventh International Conference on Autonomic and

Autonomous Systems, ICAS 2011, pages 67�74. IEEE, May 2011. MoVe

INT LIP6.

[13] Jia Rao, Xiangping Bu, Cheng-Zhong Xu, Le Yi Wang, and Gang George

Yin. Vconf: a reinforcement learning approach to virtual machines

auto-con�guration. In Simon A. Dobson, John Strassner, Manish Parashar,

and Onn Shehory, editors, ICAC, pages 137�146. ACM, 2009.

[14] Xavier Dutreilh and Sergey Kirgizov. Using reinforcement learning for

autonomic resource allocation in clouds: towards a fully automated

work�ow. International Conference on Autonomic and Autonomous Systems,

(c):67�74, 2011.

[15] Jia Rao, Xiangping Bu, Cheng zhong Xu, Leyi Wang, and George Yin. Vconf:

a reinforcement learning approach to virtual machines auto-con�guration. In

In ICAC, 2009.

58

[16] Harold C. Lim, Shivnath Babu, Je�rey S. Chase, and Sujay S. Parekh.

Automated control in cloud computing: Challenges and opportunities. In In

First Workshop on Automated Control for Datacenters and Clouds, 2009.

[17] Harold Lim, Shivnath Babu, and Je�rey S. Chase. Automated control

for elastic storage. In Manish Parashar, Renato J. Figueiredo, and Emre

Kiciman, editors, ICAC, pages 1�10. ACM, 2010.

[18] Bhuvan Urgaonkar, Prashant J. Shenoy, Abhishek Chandra, Pawan Goyal,

and Timothy Wood. Agile dynamic provisioning of multi-tier internet

applications. TAAS, 3(1), 2008.

[19] Daniel A. Villela, Prashant Pradhan, and Dan Rubenstein. Provisioning

servers in the application tier for e-commerce systems. ACM Trans. Internet

Techn., 7(1), 2007.

[20] Hien Nguyen Van, Frédéric Dang Tran, and Jean-Marc Menaud. Sla-aware

virtual resource management for cloud infrastructures. In International

Conference on Computer and Information Technology, Xiamen, China,

pages 357�362, 2009.

[21] Makhlouf Hadji and Djamal Zeghlache. Minimum cost maximum �ow

algorithm for dynamic resource allocation in clouds. In International

Conference on Cloud Computing, Honolulu, HI, USA, pages 876�882, 2012.

[22] Norman Bobro�, Andrzej Kochut, and Kirk Beaty. Dynamic placement

of virtual machines for managing sla violations. In Integrated Network

Management, pages 119�128. IEEE, 2007.

[23] Nicolo Maria Calcavecchia, Ofer Biran, Erez Hadad, and Yosef Moatti. VM

Placement Strategies for Cloud Scenarios. International Conference on Cloud

Computing, pages 852�859, June 2012.

[24] Emiliano Casalicchio, Daniel a. Menascé, and Arwa Aldhalaan. Autonomic

resource provisioning in cloud systems with availability goals. Proceedings of

59

the 2013 ACM Cloud and Autonomic Computing Conference on - CAC '13,

page 1, 2013.

[25] Xiaoqiao Meng, Canturk Isci, Je�rey Kephart, Li Zhang, Eric Bouillet, and

Dimitrios Pendarakis. E�cient resource provisioning in compute clouds via

VM multiplexing. Proceeding of the International conference on Autonomic

computing, page 11, 2010.

[26] Ajay Gulati, Ganesha Shanmuganathan, Anne M. Holler, and Irfan Ahmad.

Cloud scale resource management: Challenges and techniques. In USENIX

Workshop on Hot Topics in Cloud Computing Portland, OR, USA, 2011.

[27] David Erickson, Brandon Heller, Nick McKeown, and Mendel Rosenblum.

Using network knowledge to improve workload performance in virtualized

data centers. In International Conference on Cloud Engineering, Boston,

MA, USA, pages 185�194, 2014.

[28] Chunqiang Tang, Malgorzata Steinder, Michael Spreitzer, and Giovanni

Paci�ci. A Scalable Application Placement Controller for Enterprise Data

Centers. Proceedings of the 16th international conference on World Wide

Web - WWW '07, page 331, 2007.

[29] Ron Chiang, Jinho Hwang, Howie Huang, and Timothy Wood. Matrix:

Achieving predictable virtual machine performance in the clouds. In ICAC.

IEEE Computer Society, 2014.

[30] Brian J. Watson, Manish Marwah, Daniel Gmach, Yuan Chen, Martin

Arlitt, and Zhikui Wang. Probabilistic performance modeling of virtualized

resource allocation. Proceeding of the International conference on Autonomic

computing, page 99, 2010.

[31] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L. Wiener,

Armando Fox, Michael Jordan, and David Patterson. Predicting multiple

metrics for queries: Better decisions enabled by machine learning. In

60

Proceedings - International Conference on Data Engineering, pages 592�603,

2009.

[32] Sajib Kundu, Raju Rangaswami, Ajay Gulati, Ming Zhao, and Kaushik

Dutta. Modeling virtualized applications using machine learning techniques.

Proc. of the ACM SIGPLAN/SIGOPS conference on Virtual Execution

Environments, page 3, 2012.

[33] Rubis: Rice university bidding system. http://rubis.ow2.org/. Accessed:

2014-08-05.

[34] Filebench: a framework for simulating applications on �le systems. http:

//www.solarisinternals.com/wiki/index.php/FileBench. Accessed:

2015-05-20.

[35] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. E�cient autoscaling

in the cloud using predictive models for workload forecasting. In Proc. of

the International Conference on Cloud Computing, pages 500�507, 2011.

[36] Performing vm migration under xen. http://wiki.xenproject.org/wiki/

Migration. Accessed: 2015-03-16.

[37] Vmware vsphere. https://www.vmware.com/products/vsphere/

features/vmotion. Accessed: 2015-03-16.

[38] Akshat Verma, Gautam Kumar, and Ricardo Koller. The cost of

recon�guration in a cloud. In Proceedings of the 11th International

Middleware Conference Industrial track, pages 11�16. ACM, 2010.

[39] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar

Buyya. Cost of virtual machine live migration in clouds: A performance

evaluation. Lecture Notes in Computer Science, 5931 LNCS:254�265, 2009.

[40] David Breitgand, Gilad Kutiel, and Danny Raz. Cost-aware live migration

of services in the cloud. Proc. of the ACM International Systems & Storage

Conference, page 1, 2010.

61

http://rubis.ow2.org/
http://www.solarisinternals.com/wiki/index.php/FileBench
http://www.solarisinternals.com/wiki/index.php/FileBench
http://wiki.xenproject.org/wiki/Migration
http://wiki.xenproject.org/wiki/Migration
https://www.vmware.com/products/vsphere/features/vmotion
https://www.vmware.com/products/vsphere/features/vmotion

[41] Guofu Feng, Saurabh Garg, Rajkumar Buyya, and Wenzhong Li. Revenue

Maximization Using Adaptive Resource Provisioning in Cloud Computing

Environments. 2012 ACM/IEEE 13th International Conference on Grid

Computing, pages 192�200, September 2012.

[42] Li Zhang and Danilo Ardagna. Sla based pro�t optimization in web systems.

In Proceedings of the 13th international World Wide Web conference on

Alternate track papers & posters, pages 462�463. ACM, 2004.

[43] Rodrigo N. Calheiros, Rajiv Ranjan, CÃ©sar A. F. De Rose, and Rajkumar

Buyya. Cloudsim: A novel framework for modeling and simulation of cloud

computing infrastructures and services. CoRR, abs/0903.2525, 2009.

[44] Marc Bux and Ulf Leser. Dynamiccloudsim: Simulating heterogeneity in

computational clouds. In Proceedings of the 2Nd ACM SIGMOD Workshop

on Scalable Work�ow Execution Engines and Technologies, SWEET '13,

pages 1:1�1:12, New York, NY, USA, 2013. ACM.

[45] Nikolay Grozev and Rajkumar Buyya. Performance Modelling and

Simulation of Three-Tier Applications in Cloud and Multi-Cloud

Environments. The Computer Journal, pages bxt107�, 2013.

[46] Kullback-liebler divergence. https://en.wikipedia.org/wiki/

Kullback-Leibler_divergence. Accessed: 2015-06-01.

[47] Haikun Liu, Cheng-Zhong Xu, Hai Jin, Jiayu Gong, and Xiaofei Liao.

Performance and energy modeling for live migration of virtual machines.

In HPDC, pages 171�182. ACM, 2011.

[48] Felix Salfner, Peter Tr, and Andreas Polze. Downtime Analysis of

Virtual Machine Live Migration. International Conference on Dependability,

(c):100�105, 2011.

[49] Ming Mao and Marty Humphrey. A performance study on the vm startup

time in the cloud. In Rong Chang, editor, IEEE CLOUD, pages 423�430,

2012.

62

https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence

[50] libvirt virtualization api. http://libvirt.org/. Accessed: 2014-07-25.

[51] Rubis workload: Simple installation guide. http://sanifool.com/

2012/09/03/rubis-workload-simple-installation-guide. Accessed:

2014-11-10.

[52] Aaron Beitch, Brandon Liu, Timothy Yung, Rean Gri�th, Armando Fox,

and David Patterson. Rain: A workload generation toolkit for cloud

computing applications. Technical Report No. UCB/EECS-2010-14, 2010.

[53] Marco Guazzone. The rubis workload implementation for rain.

https://github.com/sguazt/rain-workload-toolkit, 2013. Accessed:

2015-01-22.

[54] David Mosberger and Tai Jin. Httperf�A Tool for Measuring Web

Server Performance. ACM SIGMETRICS Performance Evaluation Review,

26(3):31�37, December 1998.

[55] Raoufehsadat Hashemian, Diwakar Krishnamurthy, and Martin Arlitt.

Web workload generation challenges�an empirical investigation. Software:

Practice and Experience, 42(5):629�647, 2012.

[56] httperf patch. http://people.ucalgary.ca/~dkrishna/SPE. Accessed:

2014-11-21.

[57] httperf patch. https://github.com/klueska/httperf. Accessed:

2015-02-30.

[58] Linux: Increasing the number of open �le descriptors. https://cs.

uwaterloo.ca/~brecht/servers/openfiles.html. Accessed: 2015-02-22.

[59] sysstat. http://sebastien.godard.pagesperso-orange.fr. Accessed:

2014-07-11.

[60] Worldcup 98. http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

Accessed: 2014-12-10.

63

http://libvirt.org/
http://sanifool.com/2012/09/03/rubis-workload-simple-installation-guide
http://sanifool.com/2012/09/03/rubis-workload-simple-installation-guide
https://github.com/sguazt/rain-workload-toolkit
http://people.ucalgary.ca/~dkrishna/SPE
https://github.com/klueska/httperf
https://cs.uwaterloo.ca/~brecht/servers/openfiles.html
https://cs.uwaterloo.ca/~brecht/servers/openfiles.html
http://sebastien.godard.pagesperso-orange.fr
http://ita.ee.lbl.gov/html/contrib/WorldCup.html

[61] �o: Flexible i/o tester. http://freshmeat.net/projects/fio. Accessed:

2015-05-15.

[62] How linkedin gets twenty times more money per user than facebook.

http://www.businessinsider.com/linked-revenue-facebook-2012-7.

Accessed: 2015-07-12.

64

http://freshmeat.net/projects/fio
http://www.businessinsider.com/linked-revenue-facebook-2012-7

	Declaration
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Cloud Computing
	Resource Provisioning in the Cloud
	Problem Statement
	Contributions
	Organization of the Thesis

	Literature Survey
	Auto Scaling
	Rule Based Systems
	Reinforcement Learning
	Control Theory
	Queuing Theory

	VM Placement
	Application Placement and VM Provisioning
	Application Performance Modeling
	Cost Model
	Cost of VM migration
	Income Model

	Simulation Tools
	CloudSim
	DynamicCloudSim
	CloudSim extension for Three-Tier Applications

	Proposed Framework
	Application Performance Model
	Cost Model
	Reconfiguration Algorithm
	Specific Choices of Models
	Application Performance Model
	Reconfiguration Cost
	Income Model

	Performance Analysis
	Experimental Setup
	Hardware and Software Setup
	Application Setup
	Workload Emulation
	Collecting Performance Data
	Workload

	Simulation Setup
	Performance Validation
	VM sizes from Amazon EC2
	A private cloud scenario
	Application affected by IO performance
	Profit Maximization

	Conclusions and future work
	Conclusions
	Future Work

	References

