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ABSTRACT 

Many natural disasters which occurred recently emphasize the importance of a 

system which can be used to identify changes in weather conditions. Consequently, 

several public organizations in Sri Lanka are planning to establish a Climate 

Observatory system based on open-source technologies. This research develops a 

Complex Event Processing based system to detect weather anomalies and events of 

interest to enrich a Climate Observatory system with real-time monitoring and 

detection capabilities. 

Event Processing is, tracking and processing streams of data about the events that 

happen in the physical environment. Complex Event Processing (CEP) combines 

data from several sources to infer events and complex patterns among events in real-

time. One of the key characteristic of the weather data analysis and detection is that it 

needs to deal with real-time data that are generated by a multitude of sensors. While 

several techniques are used to detect weather anomalies and events, CEP is a more 

suitable approach, as it is the principle technology for real-time moving data 

processing.  

One of the objectives of this research is to demonstrate how CEP can be applied in 

weather anomalies and events detection. This research presents a novel weather 

anomalies and events detection solution based on Siddhi complex event processor. 

Siddhi provides the runtime to perform CEP, which is able to identify meaningful 

patterns, relationships and data abstractions from unrelated events and alert users 

about the detected patterns.  

This study first analyzes the features of the existing weather detection systems and 

identifies the significant meteorological variables, weather sensors and use cases. 

The proposed solution modifies the input data before processing with Siddhi. This 

pre-processing step consists of two sub-systems. One sub-system pre-processes the 

weather sensor data. The other sub-system is used to convert radar images to 2D 

matrixes since Siddhi is unable to process stream of images. It applies Siddhi CEP 
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engine for weather detection with appropriate stream definitions and query 

definitions. Partitions are used to process queries to gain better performance.  

The proposed solution focuses on four use cases. First use case compares 

meteorological variables (i.e., sensor data) to predefined thresholds to identify 

impeding weather events. Second use case identifies weather stations with defects 

and suggests alternative values to replace them. Remaining two use cases find 

anomalies in the sensed data and identifies weather situations around a given 

location. These use cases provides the basic capabilities of a typical weather 

monitoring center such as the proposed Climate Observatory system for Sri Lanka, as 

they provide elementary real time, weather monitoring and detection functionalities.  

The performance evaluation shows that Siddhi performs well in the specified use 

cases even with high input rates and large number of meteorological variables. It 

further identifies future enhancements to the system. The research also identified 

several limitations in CEP engines, particularly Siddhi, while applying them to 

weather anomalies and events detection. 

 

Keywords: Complex Event Processing, Siddhi, Weather Anomalies and Events 

Detection, Weather Alerts, Pre-processing, Climate Observatory System, Radar, 

Geo-dashboard 
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1. INTRODUCTION 

Throughout the year we hear about the sudden changes in weather. These sudden 

changes cause many disasters. Sometimes fishermen were unable to return home due 

to strong winds and innocent lives are often lost from lightning and floods. These 

incidents also cause economic losses to the country. Therefore, everybody in the 

country is in need of an effective solution for getting informed about the sudden 

changes in weather. 

People are interested in knowing the current state of the atmosphere of a given 

location and time, and they use several meteorological variables to measure the state. 

Typical meteorological variables for weather monitoring include temperature, air 

pressure, humidity, wind speed, and wind direction. Several mechanisms are used to 

measure these variables. For example, a rain gauge is used to measure the rainfall 

and a hydrometer is used to measure humidity. These meteorological variables are 

useful in determining both short and long term changes in the atmosphere. When 

these meteorological variables are used to determine atmospheric conditions at a 

specific place at a specific point in time (ranging from minutes to weeks), it is called 

weather analysis. When their statistical properties are used to measure long-term 

(ranging from months to decades) changes in atmospheric conditions, it is called 

climate analysis. Detection of weather conditions is of prime importance, as it 

directly affects day-to-day life. However, this is quite challenging as it requires real-

time data gathering, transmission, and processing. Further it is important to identify 

anomalies in the sensor data reported values of the weather stations. Typically these 

anomalies can be either missing or incorrect sensor readings. 

Complex Event Processing (CEP) based systems receive events from multiple 

independent simple event streams of different event sources. Complex event 

detection (aka. event pattern matching) is the core functionality of such a system. 

The user needs to provide event pattern rules in order to detect specific events. These 

event pattern rules can be defined in a SQL-like event processing language [1]. The 

CEP engine listens to incoming events and detects event patterns matching with the 
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specified queries, and then sends alerts to relevant systems. Most CEP engines can 

analyse and detect thousands of events per second. Therefore, CEP technology 

derives intelligence from real-time event data analysis. The ability to analyse large 

streams of incoming events in real-time and detect relevant events makes them a 

suitable alternative for modern weather detection. 

1.1. Motivation 

The weather is vastly becoming integrated with the Sri Lankan life style, thus the 

ability to detect severe weather events and issue relevant notifications is very much 

important. There were several incidents where people faced difficulties with sudden 

changes of weather. As a result, the need for an accurate, trustworthy and real-time 

weather detection system is highly important.  

To address these emerging needs, there is an interest to develop a National Climate 

Observatory System for Sri Lanka under the Coordinating Secretariat for Science 

Technology & Innovation (COSTI) initiative. The information available through this 

Climate Observatory will be available in appropriate forms to the public. The 

Climate Observatory is to be built primarily based on open-source technologies with 

the participation of a number of partner organizations [2]. As part of this initiative 

relevant stakeholders are planning to build an archive of Meteorological variables 

collected from many existing and new weather stations that are (to be) positioned 

across the country. As these meteorological variables are collected in real-time, it 

also provides an opportunity to perform real-time weather detection. Moreover, such 

early detection can be used to trigger more complicated weather algorithms that are 

required for more accurate detection, better forecasting and warning of complicated 

weather events. Therefore, it is important to be able to develop a solution to detect 

changing weather conditions in real-time, and be able to alert the relevant 

stakeholders on time. However, the proposed solution should be built on proven open 

source technologies to reduce the development time and cost, while increasing the 

accuracy and reliability. 
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Figure 1.1 illustrates the workflow of a typical Climate/Weather Observatory. 

Meteorological variables are collected by sensors attached to the weather stations and 

the collected data are transmitted to the Observatory using a suitable network, e.g., 

leased line, 3G/4G, or a satellite link.  

The monitoring phase focuses on data pre-processing and identifying weather 

circumstances. This phase monitors the input sensory data and looks for abnormal 

values. While it is relatively easier to detect weather phenomena such as increased 

temperature or heavy rain, further processing is required to detect more complicated 

events such as storms and tornados. Therefore, when detection of an abnormal 

weather condition is triggered, more complicated weather detection algorithms are 

run to determine further details of the event. For example, high wind conditions can 

lead to a tornado. So, if high wind conditions are identified during the monitoring 

phase, a tornado detection algorithm is executed for further confirmation. Therefore, 

while the monitoring phase can issue weather alerts in real-time, it is also used as the 

initial decision maker to initiate more complicated and resource consuming (e.g., 

need more computing power, memory and storage) weather detection algorithms 

during the third phase.  

 

 

 

 

  

 

Figure 1.1 Workflow of a typical climate/weather observatory. 

  

Weather sensors 

Monitoring 

phase 

Weather detection 

algorithms 



  

4 

 

1.2. Problem Statement 

The main objective of this research is to provide the monitoring capabilities (as seen 

in Figure 1.1) to a typical Climate/Weather Observatory. This is to be achieved by 

developing a complex event processing based weather anomalies and events 

detection system that is scalable in terms of the functionality, number of sensors, and 

meteorological variables. The proposed weather monitoring and detection system 

acts as an early warning system, as well as a trigger for the execution of complicated 

and resource consuming weather detection algorithms. The system should also be 

capable of providing solutions for common use cases found in weather detection and 

warning.  

1.3. Research Contributions 

This thesis demonstrates the application of Complex Event Processing (CEP) to 

weather anomalies and events detection systems. It applies an existing CEP engine, 

namely Siddhi, rather than recreating the basic CEP functionalities that are readily 

available. Siddhi is selected as it is an open source CEP engine, which is considered 

as one of the high performing CEP engines around and capable of processing 

millions of events per second. Through this research we have identified a suitable 

subset of meteorological variables to receive continuous streams of sensor readings. 

These raw data streams may contain erroneous/faulty data or some of the periodic 

data samples may be missing. Therefore, pre-processing algorithms are introduced to 

clean the incoming data streams. These incoming streams are fed into Siddhi CEP 

engine. The users of the system can specify necessary queries in order to identify 

uncertain changes in meteorological variables such as temperature, wind speed, 

pressure and humidity. Siddhi CEP engine is capable of processing these queries and 

matches them with the input data streams to identify relevant patterns. Once an 

interesting anomaly or an event is detected, the system generates an alert(s) and 

sends those as notifications to the relevant sub-systems (i.e., third phase of a 

typical Climate/Weather Observatory) for further processing and issuing warnings.  
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This research also suggests several changes to CEP engines, particularly Siddhi, to 

make it more suitable for real-time weather detection systems in different viewpoints 

such that we can detect more complicated weather patterns and achieve high 

performance with necessary changes of weather data representations in CEP.  

1.4. Outline 

Chapter 2 presents the literature review. It discusses about CEP, existing weather 

detection systems and meteorological variables. Chapter 3 presents the research 

methodology. It presents the high-level architecture, use cases and the details of the 

proposed system. Chapter 4 presents the performance analysis and evaluation. 

Finally, concluding remarks, problems encountered and the future work are 

discussed in Chapter 5. 
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Input steam 
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2. LITERATURE REVIEW 

2.1. Complex Event Processing 

Tracking and processing streams of information about the things that happen is 

called event processing. In Complex Event Processing (CEP), it combines data from 

several sources to infer events or patterns. The goal is to recognize meaningful 

events and provide a response to them with a minimum latency. Figure 2.1 shows the 

high-level architecture of the event-based applications where it receives events as an 

input stream, it processes them and generates an output stream. For example, assume 

the system receives events from temperature and smoke sensors. There can be 

predefined event patterns in order to identify a fire in advance so the system can alert 

necessary places to avoid difficult situations. CEP identifies complex patterns of 

unrelated events, event correlation and abstraction, event hierarchies and 

relationships between events. These relationships can be categorized as causality, 

membership, timing and event driven processes [3]. 

 

 

 

Figure 2.1 Event-based applications [4]. 

Figure 2.2 illustrates a high-level overview about event processing. There are several 

terms, which are required to know in order to understand the concept behind the 

CEP. Events, Event Processing Agent (EPA) and Event Condition Action (ECA) are 

two of them. Events can be real world or virtual. Event processing is applied to the 

subject system. These events can be simple events or complex events; complex 

events are combinations of simple events. The events can be arranged as event 

stream or event clouds. CEP deals with event clouds, but the event processing engine 

is important in both types of events. EPA filters the events and provides them to the 

event processing engine. The pattern/rule is defined using an SQL-like event query 

language. This can be categorized into three styles: composition operators, data 
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stream query languages and production rules. Composition operators are conjunction, 

sequence and negation. These composition operators and nesting of expressions are 

used to compose single events and express complex events. Data stream query 

languages are based on SQL. Production rules specify actions to be taken when 

certain event patterns are matched. Event processing engine processes the events and 

notifies the users. ECA defines the actions to be taken automatically on the subject 

system, if the conditions are satisfied. The derived events and composite events are 

generated at the processing time [5]. 

 

Figure 2.2 Overview of CEP [5]. 

Event 

An event is a message or a multiple data component, which is used to define 

activities happening or have just happened in the physical environment [5]. 

Event Pattern 

Event pattern defines the relationship between events. It can be a temporal 

relationship (e.g., “A happens before B”), causal relationship (e.g., “B happens 



  

8 

 

because of A happened”), independent relationship (e.g., “there is no relationship 

between A and B”) or an aggregative relationship (e.g., “when events A happen that 

means event B also happened”) [3]. 

Logical operators (conjunction, disjunction or negation) and set operators (union, 

disjoint) are used to build an event pattern. Queries are used to define these event 

patterns by an Event Processing Language [3] which can be expressed as ECA (event 

condition rules) or as SQL-like continuous queries [6]. 

Time Window 

The time window is used to identify the absence of events. The width of the window 

is specified using the number of events or the time period of an event(s). When width 

of window is specified in terms of the number of events it is referred to as sliding 

window. When time period of events are specified it is referred to as time window. In 

sliding window the window will gradually moves with the event notifications and the 

time window will process events by moving the window in event blocks [7]. Sliding 

windows are used to handle infinite data streams. It defines a lease time for events to 

consider the most recent set of events [6]. The time information of an event has three 

types, event occurred time, detection time and the processed time [5]. 

Event Pattern Rules 

CEP defines correlation between events by identifying patterns. The rules are 

expressed by event processing languages based on event algebras. Event pattern rules 

define the event pattern and the corresponding actions. Event patterns specify certain 

situations of events and event actions are executed when the event pattern is fulfilled 

[6], [8], [9], [10].  

The incoming events are processed with three different event pattern rules as shown 

in Figure 2.3. Filtering will reduce the incoming events with a guarded pattern. It 

filters data to detect specific conditions using simple or complex filters. First, it 

blocks C, E, F, H and I events since guarded pattern has defined to do so. The 

aggregating phase will create a combination of events from multiple sources. Further, 
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it groups and aggregates data to produce high-level statistics and computes new data 

elements or transforms the data format and structure of the events. There are two 

aggregators they combine A, B, D and G, J events separately. Finally, there is the 

detecting phase of the event patterns. The unusual situations of events are caught by 

the detectors and they raise alerts [3]. In order to apply CEP, these functionalities are 

applied in a proper manner in real-time data analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Flow of events [3]. 

2.2. Siddhi CEP Engine 

CEP is used to detect complex conditions from specific set of low-level factors. 

There are several CEP engines in the market. These will provide the runtime to 

perform the CEP. Siddhi is one of the open source CEP engines which can process 

millions of events per second. Siddhi is implemented as a Java library. It allows 

initiating multiple instances and each Siddhi engine is single threaded. This CEP 

engine supports partitioning which allows the users to isolate the processing into 

small parts and speeds up the execution. Figure 2.4 shows the high-level architecture 

of Siddhi CEP [11]. 
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Siddhi Architecture 

Siddhi receives events through the input adapters and converts them to a common 

data model called tuples. The query is converted into a runtime version and deployed 

in Siddhi core where all the processing is done. Input events are placed in the input 

queues for processing; the input events which are matched with the input queries are 

placed in the output queues [12]. 

Siddhi core contains processors; the main components of processors are executors 

and event generators. Executors are generated by the query parser and express the 

query conditions to do the evaluation. These executors are arranged as a tree 

structure and evaluates in depth first search order. There can be many executors in a 

processor but only one gets executed at a time [12]  

Siddhi uses a pipeline architecture where it breaks the execution into different stages 

using processors. It uses a publication-subscription model to move the data through 

this pipeline. Siddhi can implement multiple streams using a single input event queue 

by multiplexing them. This has improved Siddhi’s performance since it does not 

need to monitor the intermediate events [12].  

 

Figure 2.4 Siddhi high-level architecture [12]. 
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These events consist of (name, value) pairs. Siddhi uses tuple data to represent 

events. Figure 2.5 shows a sample tuple. User has to define streams and data which 

belong to those streams. Users use event query language, similar to SQL, to define 

the queries to be applied on the incoming events [12]. 

 

 

Figure 2.5 Example tuple. 

Siddhi Query Processing 

Siddhi supports four types of queries: filtering, event windows, ordering (sequences 

and event patterns), (aggregation, join and split) events. These different query 

notations can be used to define required queries. Filter queries are used to filter the 

events by different conditions (>, <, =, <=, >=, !=, contains, and, or, not). Pattern 

queries identify event patterns like A, B, C. An alert is triggered when it receives 

these events with the given order. It is possible to have different events in between 

the given event pattern. “Every” operator is used in Siddhi to continuously monitor 

for a given pattern. The processing of these pattern queries is handled by the Pattern 

Processor [12].  

Sequence queries are defined to fire an event when series of conditions happened one 

after another in a consecutive manner. Sequence processors execute the sequence 

queries. Currently active Executors receive the input event and check whether it can 

be matched with the specified conditions. If they are matched, it will send “true” and 

the Processor spawns a new Executor for the next state. When it is the last state the 

Processor will generate the output event based on the output definition. Siddhi sends 

the input event only to the corresponding Executor and further Siddhi eliminates 

duplicate states. These strategies help to improve the performance of Siddhi [12]. 

Siddhi supports sliding-window and batch-window based queries. These queries can 

be divided into time-based and length-based event queries. Sliding-window based 

queries keep track of the events received within a given amount of time from the 

current time. It helps to consider events within a limited amount of time. The length-

Stream id Data 1  Data 2 Data 3 



  

12 

 

sliding-windows keeps track of a specific number of events arrived recently. The 

batch-windows are similar to the sliding-windows except they perform processing as 

event batches. Siddhi implements windows within event queues by assigning a time 

window to the stream [12]. 

Siddhi supports avg., sum, count, max, min functions in aggregation queries. 

Aggregation processor will apply these on the collection of events through the 

window queue. In order to implement join queries it moves data from several 

incoming event queues to a different queue after joining (outgoing event queue). 

Joining processor will check whether the input events are matched with the join 

condition, if so send them to the next queue else keeps them to match with the future 

events [4]. 

Figure 2.6 illustrates a sample query. It joins two sensors, Sensor A and Sensor B 

considering the unusual situations of temperature and wind speed. Here the events 

arriving only to the unidirectional stream trigger the join. 

From SensorA as b join 

SensorB p unidirectional 

on temperature>40 and windSpeed>50 

 select SensorId, LocationId 

insert into suspectStream 

 

 

Figure 2.6 Sample query. 

  

Sensor A 

Sensor B 

Join  
Sensor ID & 

Location Id 

Temperature > 40   

Wind Speed > 50 
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Applications of Siddhi 

Los Angeles Smart Grid Demonstration Project uses Siddhi. It forecasts electricity 

demand, respond to peak load events, and help to improve the sustainable use of 

energy [4].  

“Grand challenge” solution is explained in [13]. It presents how to map grand 

challenge queries into Siddhi event processing language. It further explains about 

implementing queries using the engine. This system deals with real-time data 

collected from sensors worn by players in a football game. It analyses the running 

speed of players, calculates the ball possession, calculates the activity in different 

regions of the ground, detects the hits to goal and provides running updates. 

Figure 2.7 shows that if the system needs to match the sequence Q1, Q2+, Q1 where 

Q1 and Q2 are conditions. The sequence matches when the condition Q1 is followed 

by several occurrences of Q2 and another occurrence of Q1. It will listen to the Q1 

when an event satisfies it, the system will create a new instance and start to listen to 

Q2. Likewise when it received the first event it creates a copy of the state machine 

and waits for a matching event. These sequences use regular expressions such as “+” 

and “*” [13].  

 

Figure 2.7 Sequence state machine [13]. 

2.3. The Linked Environments for Atmospheric Discovery (LEAD) 

The Linked Environments for Atmospheric Discovery (LEAD) [14] is used by the 

meteorological higher education and research communities like US National Weather 
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Service. One of its objectives is to improve our understanding and ability to detect 

and analyze the mesoscale atmospheric situations. LEAD allows users to query the 

observational data, simulate and predict using numerical atmospheric models like the 

Weather Research Forecast (WRF), adjust data by combining observation. Further, it 

enables to analyze and mine the observational data and identify the relationships 

among them. Finally, visualize and evaluate the data and model the output using 

tools. The web services framework in LEAD supports automatic configuration, 

dynamic responses, automatic initiation of the processes and optimization to the data 

collection which are required with remote observing technologies. LEAD supports 

different kind of tools in order to achieve these capabilities using the service oriented 

architecture [15]. For example, when someone wants to understand why some of the 

severe thunderstorms produce a succession of mesocyclones and multiple tornadoes, 

user needs to follow some steps. First, the web-based LEAD portal will allow 

accessing the required Doppler radar data. It needs to filter the data where the 

thunderstorms were present and process them. The user can apply a data mining 

engine to these data sets to identify all cyclic versus non-cyclic storms and the 

existence of tornadoes with the surrounding environmental conditions. People can 

use LEAD algorithms and models to examine the probability of cyclic storm 

behaviour [14]. 

LEAD Architecture 

Complex event processing enables real-time response to the weather in LEAD and 

plays a key role. LEAD uses the Calder as the SQL-based event processing system. 

LEAD uses SOA concepts at both the application and middleware level. The 

distributed SOA provides a secure access to complex weather forecasting models for 

meteorology researchers and students. Scientists can set up a weather forecast over a 

region and submit a workflow that will run in the future, where a SQL-based CEP 

query detects severe storm conditions. Vijayakumar and Plale [16] further explain 

about the information model for the provenance service. It contains streams and 

queries as its primary entities. The streams can be base streams or derived streams.  
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The information model shown in Figure 2.8 has six main entities. It shows different 

kinds of relationships among them. It shows how to append the storm information to 

the provenance model when someone wants to enable the prediction for different 

stormy conditions. It considers the size (radius) and the location (latitude and the 

longitude of the centre) to establish the correlation between the storm and the queries 

[16]. 

Figure 2.8 Provenance information model [16]. 

2.4. LEAD Cyber Infrastructure Model 

One of the key research objectives of LEAD project is to present advances in cyber 

infrastructure (LEAD-CI) for meteorology research and education [17]. The LEAD-

CI model presents a model for bridging between the physical environment and e-

Science workflow systems through event processing systems.  

The main purpose of LEAD-CI is to address the meteorology research challenges 

and process meteorological data and model output independent of format and 

physical location. It proposes a model to connect the physical environment and e-
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Science workflow systems. Further, it proposes efficient stream mining algorithms 

[17].  

The temporal component of severe weather events such as severe storms and 

tornadoes was ignored. This assumption simplifies the mining algorithms because no 

need to track each and every state of the weather events over time. LEAD-CI makes 

events processing just another web service to connect the real-time observational 

data in to a SOA. Figure 2.9 represents the key components of the LEAD-CI 

architecture. The Calder stream service is the event processing component of the 

LEAD-CI project [17]. 

 

Figure 2.9 Key components of the LEAD-CI architecture [17] [18]. 

2.5. Collaborative Adaptive Sensing of the Atmosphere (CASA) 

CASA is a Distributed Collaborative Adaptive Sensing (DCAS) system [19]. It uses 

the DCAS architecture to detect and predict hazardous weather using a dense 

network of short ranged and low powered radars [19]. CASA consists of a 

heterogeneous set of radars and small sensors such as pressure sensors, rain gauges 

and micro weather stations. CASA supports several applications as shown in Table 

2.1. These applications use one or more data type from one or more radars [20]. 
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Table 2.1 CASA applications [20]. 

Application Description No of 

Radars 

Data types 

Reflectivity Reflectivity of clouds 1 Reflectivity 

Velocity Wind velocity 2-3 Doppler velocity, 

reflectivity 

Network-based 

Reflectivity 

Retrieval (NBRR) 

Reflectivity of clouds detected using 

multiple radars 

3+ Reflectivity 

Nowcasting Short term forecasts of active weather 

events 

1-3 Reflectivity 

Quantitative 

Precipitation 

Estimation (QPE) 

Estimating current precipitation using 

the intensity of rain and water droplet 

size 

1-3 Reflectivity, 

differential phase, 

correlation 

coefficient 

Tornado Tracking Detect and track a tornado as it forms 

and moves  

2+ Doppler velocity, 

reflectivity 

Researchers can tell whether a tornado is likely to form using the measurements such 

as the atmospheric stability, temperature and humidity such that high instability and 

high humidity can lead to a tornado. CASA uses event-specific queries in a specific 

area of interest; for example, a location with rotating wind can lead to a tornado [20]. 

The CASA DCAS system includes radars and algorithms which are used for weather 

detection and user interfaces. IP1 is a prototype of this system which is located in 

Southwestern Oklahoma. The IP1’s goal is to detect a tornado within 60 seconds and 

track their centroids. Reflective Threshold (RT) and Storm Cell Identification and 

Tracking (SCIT) are the detection algorithms which are used in this project. These 

algorithms are used to extract meteorological features of radar data [19]. 

2.6. CASA and LEAD. 

CASA and LEAD are two complementary projects. They are used together to 

develop a hardware and software framework which enables real-time multiscale 

forecasting. It allows meteorologists to directly interact with instruments. Dynamic 

workflow adaptivity, dynamic resource allocation, continuous feature detection and 

data mining and model adaptivity are the main goals of this project [18]. 
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Figure 2.10 explains the interaction between CASA and LEAD. CASA links radars 

with meteorological command and control (MC&C) module. LEAD contains a 

modelling loop and it executes forecast models and responses to weather conditions. 

The data storage tools are required to automate data staging and data collection. 

Monitoring tools are used to enhance the reliability and fault tolerance [18].  

 

Figure 2.10 CASA and LEAD interaction [18]. 

This system has several features such as distributed, collaborative and adaptive 

(DCAS). Distributed refers to the use of many small and inexpensive radars. 

Collaborative is the coordination of beams from multiple radars to achieve greater 

sensitivity. Adaptive refers the ability to dynamically reconfigure the radars [18].  

2.7. Warning Decision Support System – Integrated Information (WDSS-II) 

This system is developed to test newly developed severe weather detection 

algorithms. It uses data from WSR-88D radars. There are four main categories of 

WDSS-II software components. First component reads the available data streams and 

prepare them for further use. The second component allows developers to access and 
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manipulate the various data through an Application Program Interface (API). The 

third component contains meteorological algorithms and applications to analyze the 

data and provide information for forecasters. The final component can be used to 

view raw input data and algorithm output [21]. 

WDSS-II supports severe weather forecaster requirements and provides tools for the 

analysis and diagnosis of several conditions such as rotation, hail, wind speed, 

lightning and precipitation. It provides automated algorithms that operate on data 

from multiple radars [21].  

Figure 2.11 shows the creation of diagnostic products using automated algorithm in 

real-time. The ellipses show the real-time applications and rectangles shows the 

diagnostics products which can be used in weather analyses. Level II is the high 

resolution Doppler radar data. National Lightning Detection Network (NLDN) 

provides lighting flash data. The incoming data from these sources are process as 

NetCDF or XML files to create the diagnostics products using some automated 

algorithms. The CASA project uses WDSS-II software’s linear buffer 

publish/subscribe mechanism to distribute radar data among various feature detection 

[22]. 
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Figure 2.11 Creation of diagnostic products using automated algorithms in real-time [22]. 

2.8. Calder System 

The Calder [23] [24]is a distributed events processing system with a centralized 

service to accept query requests, optimizes and deploys the queries. This stream 

processing system provides access to stream data for different applications and it 

follows the Service Oriented Architecture (SOA). 

Figure 2.12 presents the architectural components of the Calder. The Calder is 

composed with data management and query management sub-systems. These two 

sub-systems communicate through the pub-sub system. The data management sub-

system comprises of four services. The Calder architecture is illustrated in Figure 

2.13. Grid Data Service (GDS) is used to submit continuous queries. Query planner 

service selects an execution plan for the query by decomposing the query into 

fragments and distributes it to the query execution engines on different 
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computational hosts [25]. The query planner transforms the SQL query into an 

intermediate representation. The stream rowset service is a buffer between timely 

streams and programs. It contains a ring buffer of event data per active query in the 

etwork so there can be thousands of ring buffers active simultaneously. The input 

streams enter into the system through a pub-sub system. The arriving events are 

analysed with the depth first traversal of the query tree through the query operators 

such as select, project and join. The resulting streams are stored in the ring buffer. 

The stream registry service captures domain specific metadata in streams which is 

registered with the Calder system [23].  

 

Figure 2.12 Calder architectural components [23] [24]. 

Single instance of Calder system can spawn multiple internal services and query 

processor engines to handle the workload [24]. Calder supports SQL-like continuous 

queries with normal constructs and it supports special constructs like EXEC, START 

and EXPIRE. Exec is to execute the user defined functions, START is to specify the 

start time of query and EXPIRE is to specify the end time of a query [23]. Query 1 is 

a sample filtering and mining query. It is applied on NexRad Level II Doppler radar 

data to detect the vortex pattern where the intensity value exceeds a specific 

threshold then it will issue a response trigger [25].   
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SELECT * FROM NexRad Level II 

WHERE southBound >= "28.00" 

and eastBound <= "-89.00" 

and northBound <= "31.00" 

and westBound >= "-91.00" 

EXEC_FUNC MDA_Algorithm 

  START "2006-03-24T00:00:00.000-05:00" 

EXPIRE "2006-03-25T00:00:00.000-05:00"; 

Query 1 Sample query 

Query processing engine accepts queries and converts them to the compiled code and 

it runs at each computational host in the network.  

 

Figure 2.13 Calder architecture [25]. 

Calder system is applied in LEAD which is a meteoroidal forecasting model. In 

LEAD the incoming data is extracted as XML events. Calder converts these XML 

events into the internal C format for processing and the results are converted back to 

XML [25]. 

MDA algorithm is a feature detection algorithm, which is used to identify candidate 

mesocyclone features. ADaM classifier is used to determine a true mesocyclone 

feature and Calder generates a WS-Notification message to the forecast simulations 

[25]. In one of its projects the WS-Messenger is a publisher-subscriber system which 

is used to establish the communication between the Calder components and the 
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provenance service. It uses a database to catalogue the subscriptions. So it is possible 

to restore the WS - Messenger server from crashes [16]. Figure 2.14 shows how the 

Calder is applied in the LEAD project, which is very much related to the proposed 

technique. 

 

Figure 2.14 Application of Calder in LEAD [25] . 

2.9. Weather Detection 

2.9.1. Introduction  

Weather is the state of the atmosphere at a particular place and time, where it 

concerns hot or cold, dryness, cloudiness and rain. Common weather phenomena on 

earth include wind, rain, snow, dust storms and cloud. Less common events are 

tornadoes, hurricane, typhoons and ice storms like natural disasters. These weather 

conditions occur due to air pressure differences between different places [26]. 

Different kinds of techniques are used to detect sudden changes in weather which can 

cause major disasters. Early detections of such situations help humans in several 

aspects. This section describes some weather detection algorithms, meteorological 

variables, weather detection sensors, and data sources in order to provide the 

background knowledge of weather detection technologies  
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Tornado Detection  

Particular patterns of Doppler weather radar data are used to detect tornadoes. These 

radars measure the velocity and the radial direction of the winds in a storm to spot 

the rotations of it [27] .  

Mesocyclones Detection  

The rotating updraft or downdraft structures inside severe thunderstorms are called 

mesocyclones. This is usually 2-6 miles in diameter which is much larger than a 

tornado [27]. Over 90% of mesocyclones are accompanied by severe weather such as 

tornadoes or large hail hence it is important to detect mesocyclones. The 

mesocyclone signatures appear as couplets of incoming and outgoing velocities in 

radars. Mesocyclones use a velocity signature known as a Rankine Vortex for the 

detection process. The national severe storm laboratory mesocyclone detection 

algorithm (NSSL – MDA) is one such algorithm which identifies a broader spectrum 

of mesocyclones and has an improved probability of mesocyclone feature detection. 

[17].  

Storm Detection  

A threshold value is used in storm detection. The data points with intensities higher 

than the specified threshold are identified for further processing. Lightning detectors 

indicate electrical activity and weather radar indicates precipitation to detect storms. 

LEAD project uses a flexible storm detection algorithm based on user defined 

thresholds [26].  

2.9.2. Weather Detection Sensors  

There are many weather detection sensors which can be used to detect changes in 

meteorological variables. Figure 2.15 shows the road weather maintenance system 

where the different kinds of weather detection sensors are used to collect data and 

pass them to the Weather Monitoring Station. Several authorities will acquire that 

information and provide alerts to relevant agencies about difficult situations. These 

applications help people in their day-to-day life and reduce the possibility of 
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accidents. The following list describes the available weather detection sensors in the 

road weather maintenance system [28].  

Figure 2.15 Road weather maintenance system [28]. 

Weather detection sensors [28]: 

1. Ice sensor – It senses the ice conditions by measuring ice crystals and water 

droplets. 

2. Precipitation Gauge – This measures the precipitation and visibility 

conditions.  

3. Water droplet measurer – This measures water droplet size, diameter and 

concentration.  

4. Visibility meter – This measures cloud, precipitation and visibility conditions  

5. Thermal Radiation Sensor – This detects thermal radiative emissions from 

cloud water and ice crystals. 

6. Snow Gauge – This detects and determines the snowfall rate.  

7. GPS water vapor sensor – This analyzes water vapor content in the 

atmosphere. 
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2.9.3. Meteorological Variables 

Several meteorological variables have been introduced in different projects. 

Precipitation, wind, temperature and cloud cover are used in [29]. Reflectivity, 

differential phase, correlation coefficient and Doppler velocity are introduced in [20]. 

Relative humidity is used to predict rain in [30]. Wind speed, wind direction, dry 

bulb temperature, wet bulb temperature, relative humidity, dew point, pressure, 

visibility and amount of cloud with some daily meteorological variables such as gust 

of wind, mean temperature, maximum temperature, precipitation, mean humidity, 

mean pressure, sunshine, radiation and evaporation are used in [31].  

2.9.4. MADIS (Meteorological Assimilation Data Ingest System) 

MADIS works as a meteorological observational database and a data delivery system 

covering the globe. Figure 2.16 shows the overall architecture of MADIS. 

 

Figure 2.16 Components of MADIS [32]. 

NOAA data sources and non-NOAA providers ingest data to the MADIS. It decodes 

these observational data and converts to a common format. Finally, the 

meteorological community can access these data from MADIS observational 

database [32]. 

It is possible to receive real-time data from MADIS. It is recommended to use 

Text/XML viewer accounts since the system needs data on demand. If it is required a 

continuous data feed then data can be accessed via ftp or LDM (Unidata’s Local 

Data Manager) to gain a high performance [32]. 
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The API of the MADIS allows users to easily access to the observations and quality 

control information. The geographic coverage of this data set is over North and 

Central America and Hawaii. Figure 2.17 shows the distribution of the weather 

stations. These files contain data from 15 minutes before a given hour and 44 

minutes after the hour. So the data are segmented into hourly files. User can specify 

the missing value indication as a blank or a numeric value (-99999). User needs to 

specify station and observation types, quality control (QC) choices, domain and time 

boundaries as seen in Figure 2.18 [32]. 

 

Figure 2.17 Weather station display [32]. 

 

Figure 2.18 MADIS Meteorological Surface Text/XML Viewer. 
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2.9.5. Weather Detection Algorithms in LEAD 

Mesocyclone Detection Algorithm (MDA) 

The National Severe Storm Laboratory (NSSL) MDA is an automated mesocyclone 

signature detection algorithm. The designed Mesocyclone Detection Algorithm uses 

this velocity signature, which represents incoming and outgoing radial velocity [17].  

Storm Detection Algorithm (SDA) 

This algorithm is similar to an image thresholding algorithm. The data points with 

intensities higher than a provided threshold are retained. This SDA uses the region 

growing technique and build 3D volumes from these retained pixels. The volumes 

that meet the minimum size criteria are kept since storms must have a minimum size 

and spatial volume. This algorithm provides the spatial location, maximum 

reflectivity, size and depths of the storm as the output [17] 

This MDA and the SDA can be used together to identify storms and tornadoes. 

2.9.6. Non-precipitation Weather Event 

A meteorological phenomenon such as wind, extreme heat or cold is defined as a 

non-precipitation weather event. These products issued by the US National Weather 

Service (NWS) weather forecast offices are described in [33]. The multi-tiered 

concept of the NWS non-precipitation weather warning program explains the 

awareness of the event. It has three concepts Outlook, Watch and Warning/Advisory. 

An Outlook indicates that a hazardous non-precipitation weather event may develop. 

A Watch indicates that the risk of a hazardous non-precipitation weather event has 

increased, but unable to provide any certain information. A Warning indicates that an 

event is occurring or has a high probability of occurrence. When a warning is issued 

there is a threat to people and their property. An advisory is used for less serious 

conditions [33]. We can use the proposed system to generate warnings since they 

indicate the events which are currently occurring. Table 2.2 describes the non-

precipitation weather warning types. 
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Table 2.2 Non-precipitation warning products. 

Warning Description 

Dust Storm 

Warning 

Widespread or localized blowing dust reducing visibilities to ¼ mile or less. 

Sustained winds of 25 mph or greater are usually required. 

Excessive 

Heat 

Warning  

Heat Index (HI) values forecast to meet or exceed locally defined warning criteria for 

at least two days (Typical values: 1) Maximum daytime HI>=105°F north to110°F 

south and 2) Minimum night time lows >=75°F).  

Extreme 

Cold 

Warning  

Operational in Alaska only. When forecast to occur for at least three consecutive 

days: Shelter temperature of -50˚F or colder and air temperature remains below -40˚F 

up to the 700-mb level.  

Freeze 

Warning  

Minimum shelter temperature is forecasted to be 32°F or less during the locally 

defined growing season. 

Hard Freeze 

Warning  

Minimum shelter temperature is forecasted to be 28°F or less (slightly lower or higher 

based on local criteria) during the locally defined growing season.  

High Wind 

Warning  

Wind speeds forecast to meet or exceed locally defined warning criteria. (Typical 

values are sustained wind speeds of 40 mph or greater lasting for 1 hour or longer, or 

winds of 58 mph or greater for any duration).  

 Wind Alerts 

Different types of scales are used to define weather alerts depending on the wind 

speed and the nature of the area. Saffir-Simpson hurricane category scale is used to 

describe the hurricanes in the Atlantic Ocean and Northern Pacific Ocean of the 

International Date Line. Enhanced Fujita Scale is used to describe the tornadoes in 

the United States and Canada. Beaufort wind force scale is to classify the wind alerts. 

Table 2.3 shows a sample classification [33]. 

Table 2.3 Beaufort classification of wind speed (aka Beaufort Wind Scale). 

Wind Speed 

(mps) 

Beaufort Number Alert 

11.2 – 17.4 6-7 Wind warning 

17.5 – 24.6 8-9 High wind warning 

24.7 – 33 10-11 High wind warning 

33.1 – 49.2 12-13 High wind warning 

Over 49.2 14-16 Extreme wind 

warning 
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Temperature Alerts 

Excessive Heat Warnings are issued when it achieves the specific criteria which vary 

among the countries. This specific criteria depends on the climate variability and the 

effect of excessive heat on the local population. If the maximum daytime temperature 

is above 41 oC to 43 oC and the minimum night time temperatures is above 24 oC 

then it is considered as a typical Heat Index (HI) value. It considers this extreme HI 

values for at least two days to issue a temperature alert [33]. 

2.9.7. Characteristics of Radar Images 

An individual block in a radar image is called a pixel, bin or gate. The radar uses 

range and azimuth for measuring location on the radar. Range means the distance in 

nautical miles (a nautical mile is equal to 1.15 regular miles) from the radar site. 

Azimuth means the angle between the radial that points to the true north and the 

radial that points to the pixel of interest. A colored pixel which is called an echo or 

return represents the detected data. An echo can be a large group of pixels. These 

characteristics are visualized in Figure 2.19 [34]. 

 

Figure 2.19 Sample radar image. 
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Base Reflectivity 

Base reflectivity is a radar product which displays the amount of energy that has 

returned to the radar. This is measured in dBZ (i.e., decibels relative to reflectivity 

Z). The scale defines the strength of returns to the radar with colors. The base 

reflectivity shows echoes when the radar energy bounces back to it [34].  

A reflection of a wave can be formed because of a boundary between warm, moist 

air and cool, dry air. This boundary will be seen as a very narrow line of light 

reflectivity. It is common to see storms form directly on boundaries when the 

atmosphere is unstable and thunderstorms are likely to form [34]. 

This can be used to identify precipitation in radar images. A soft computing model 

for nowcasting of Yes/No rain situations is presented in [35] using Doppler weather 

radar reflectivity imageries. 

Base Velocity 

Base velocity is a radar product, which defines the average wind speed of the 

detected particles. This can be measured in knots (kts). Base velocity can be used to 

understand the things which are happening in the atmosphere. It can be used to 

determine the amount of wind shear (i.e., change of velocity with height). It can be 

used to detect the amount of rotation present in the storms, whether it is clockwise or 

cyclonic [34]. 

Volume Coverage Patterns (VCPs) 

We can see the abbreviation VCP with a number on some radar displays. It describes 

the patterns which the radar scans the atmosphere. The radar may scan at up to 14 

different elevation angles depending on the VCP. VCP is labeled as a two or three 

digit number (1, 2 or 3 only) [34].   
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3. RESEARCH METHODOLOGY 

3.1. High-Level Architecture 

The main objective of this study is to apply CEP in weather anomalies and events 

detection. This system monitors sensor data and match them with a predefined set of 

queries. It detects unusual weather events and provides alerts for further verification. 

The high-level architecture of the proposed system is presented in Figure 3.1. The 

system is mainly divided in to two sub-parts based on the input types; meteorological 

variable based weather detection and the radar image based weather detection. 

Meteorological variable based weather detection considers certain values of 

meteorological variables extracted from MADIS [32] and compares with predefined 

scalar values. Radar image based weather detection considers reflectivity values of 

radar images and compares them with a threshold. 

 

Figure 3.1 The proposed architecture. 

The system gets two input types, surface observation datasets and radar images. 

These inputs are pre-processed separately in order to make them ready for the 

detection process. A Python program is used to pre-process surface observation 

datasets which are obtained from the MADIS. A MATLAB program is used to pre-

process the radar images and prepare a 2D matrix (240x240) to apply as input events. 
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These inputs are used as the incoming events of the CEP engine. The system creates 

Siddhi manager with specific configurations. Siddhi provides partitions as a feature 

to increase the performance of the processing. The program has used partitions to 

process the weather station information separately. There are two Siddhi managers, 

one is for MADIS meteorological variable based weather detection and the other is 

for radar image based weather detection. Siddhi CEP engine identifies event patterns 

according to the predefined queries and sends alerts to necessary weather 

applications for further analysis.  

3.2. Development Environment 

This system is developed using the Java 1.8 platform. Data pre-processing parts are 

done using Python and MATLAB environment. Siddhi version 3.1.0 is used to 

identify event patterns and act on them in real-time. It can process more than 2.5M 

events per second on single server commodity hardware. Siddhi supports a large 

number of queries via partitioning into different servers and it is horizontally scalable 

to support very large event volumes [11]. MATLAB 7.1 is used to do the image pre-

processing works. A Python 2.7.3 based program is developed to download and pre-

process MADIS data. 

3.3. MADIS Meteorological Variable Based Weather Detection 

MADIS meteorological variable based weather detection considers certain values of 

meteorological variables and compares with predefined scalar values to do the 

weather detection and warning. 

3.3.1. Meteorological Variables 

Different meteorological variables have been introduced in different projects. 

According to the literature review some of the most relevant meteorological variables 

are identified such as relative humidly, pressure, air temperature, wind direction, 

wind speed and accumulated precipitation. Our system is able to detect the 

significant changes of the selected meteorological variables using the Siddhi CEP 

engine. 
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3.3.2. Weather Sensors 

This study was made possible in part due to the data made available to the National 

Oceanic and Atmospheric Administration by several providers. Users can access 

real-time data or an online archive of saved real-time data. Text/XML viewer has 

been used since this study deals with saved real-time data and that is available only 

with surface observation datasets. The system have considered relative humidity 

(RH), air temperature (T), wind direction (DD), accumulated precipitation – 1h 

(PCP1H), wind speed (FF), Elevation (ELEV), latitude (LAT) and longitude (LON). 

A Python program is used to download the available data for a given date, time and a 

location. It saves that information in separate text files with the date and time. 

3.3.3. Data Pre-processing 

The downloaded data contained unwanted html tags and duplicates. So they were 

needed to be pre-processed before proceeding with further calculation. A Python 

program is used to remove the html tags and clear the data files. The system has 

downloaded these data into several files and needed to combine these files without 

any duplicates. Figure 3.2 explains the pre-processing steps. This stage makes the 

raw data ready for the event pattern matching process. This output file helps to 

simulate weather sensors. It contains the timestamp and the values of the selected 

meteorological variables. So the system is able to read data from this file and use in 

Siddhi as the input events. 
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Figure 3.2 Pre-processing steps. 

3.3.4. Stream Definition 

The weather stream is used to implement the MADIS meteorological variable based 

using Siddhi CEP engine. It defines the input event pattern with necessary 

information. 

define stream WeatherStream (timestamp double, wsid  

string, prov string, subPro string, rh double, 

pressure double, temp double, precip double, dd 

double, ff double, precip double, lat double, lon 

double) 

 

The attribute list of the weather stream is explained in Table 3.1. The timestamp is 

used to add the temporal aspect to data. These sensor data are available from 

different providers and weather stations. Weather station id, provider and the sub 

provider are used to distinguish the location of the data. The study has considered 

relative humidity, pressure, temperature, accumulated precipitation, wind direction 

and the wind speed as the significant meteorological variables. Further, latitude and 

longitude are used to identify the location of weather stations. 

  

Download data 

Clean the files 

Combine all  

Weather.txt

MADIS 
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Table 3.1 Weather stream definition. 

Attribute Data type Description 

Timestamp Double Reading time of the particular data 

Wsid String Weather station id 

Prov String Provider of weather data 

subPro String Sub provider of weather data 

Rh Double Relative Humidity (%) 

Pressure Double Station pressure (P) 

Temp Double  Air temperature (K) 

Precip Double  Accumulated precipitation 1 hour (m) 

Dd Double Wind direction (deg) 

Ff Double Wind speed (m/s) 

Lat Double Latitude 

Lon Double Longitude 

3.4. Radar Image Based Weather Detection 

Radar images play a major role in the weather detection field. We need to analyse 

these complex radar images in order to identify suspicious pixels on them. The 

proposed system processes these radar images and identifies precipitations pixels in a 

given radar image. It needs to pre-process these radar images and convert them to 

arrays since Siddhi is unable to process images directly. Section 3.4.1 explains a 

sample scenario of the radar image based weather detection using the proposed 

system. 

3.4.1. Image Pre-processing 

Siddhi is unable to process images hence the system needs to modify the input data. 

Siddhi manager can manipulate arrays so a 2D array will contain the radar image 

data. The radar image will be converted to a 2D array (240x240) using a MATLAB 

program. Figure 3.3 illustrates the key steps of the program and it is further 

explained in Figure 3.4 Each element of this array represents a reflectivity value. 
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(a) Input image (b) Matrix with reflectivity values 

Figure 3.3 Reflectivity matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 MATLAB program. 

3.4.2. Stream Definition 

The following radar stream is used to implement the radar image based weather 

detection using the Siddhi CEP engine. It defines the input event pattern with the 

necessary information: 

define stream RadarStream(timestamp double, matrix string) 

 

Read Image into a 

matrix 

Process the matrix 

Reflectivity 

transformation 

xxxx.txt

Radar Image 
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Table 3.2 lists the attributes of this radar stream. The timestamp is used to add the 

temporal aspect. Matrix is a 2D double array which contains the reflectivity values of 

the radar image. Siddhi allows sending any object type in the stream and it checks 

the object type at the time it is being used. The stream is defined with the type string 

since the type array is not allowed. Therefore, the system sends the array to the 

stream and uses custom functions to manipulate them. 

Table 3.2 Radar stream definition. 

Attribute Data type Description 

Timestamp Double Reading time of the particular 

data 

Matrix String 240x240 matrix which contains 

the reflectivity values of the 

radar image 

3.5. Use Cases 

We have used four use cases to cover the common scenarios found in the weather 

detection and warning system. First use case mainly compares an input value with a 

threshold value while other use cases process the location specific weather 

information. The following sub sections explain each of these use cases with more 

details. 

1. Comparing sensor data with predefined thresholds 

a. Comparing meteorological variables with scalar values. 

b. Identifying suspicious pixels of radar images. 

c. Building queries with multiple meteorological variables. 

2. Identifying weather stations with defects and suggest alternative values.  

3. Identifying anomalies in weather data. 

4. Identifying nearby weather situation in a given location.  

While several approaches have been used to implement these use cases such as 

neural networks [31], model output statistics [30] and probabilistic extreme forecast 

index [29]. However this study presents how Siddhi can be applied in weather 

anomalies and events detection to solve these use cases. Separate queries are written 
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to implement these use cases in Siddhi. Use cases 1.a, 1.c, 2, 3 and 4 are 

implemented for MADIS meteorological variable based weather detection and 1.b is 

implemented under the radar image based weather detection.  

3.5.1. Comparing Sensor Data with Predefined Thresholds 

Comparing Meteorological Variables with Scalar Values 

This use case is implemented using the basic meteorological variables such as 

relative humidity, temperature, pressure, precipitation, wind direction and speed. 

Queries were written to identify anomalies on these variables by comparing with 

scalar values which have been introduced in Chapter 2 – Section 2.9.6.  

As an example, Query 2 defines the partitions that consider Beaufort classification of 

window speeds (see Table 2.3). Beaufort classification partitions/labels incoming 

wind speed data based on a set of thresholds. These partitions can be used to increase 

the performance of the system when it deals with a larger number of inputs. 

define partition WindSpeed by  

    range ff < 17.4 as 'WIND WARNING',  

    range ff >= 17.4 and ff <= 49.2 as 'HIGH WIND',  

    range ff > 49.2 as 'EXTREME WIND'; 

Query 2 Define partitions 

Query 3 checks the wind speed of the input events, to see whether they exceed 17.4 

meters per second. If so it creates a wind alert with weather station id and the time. 

This alert could be used to notify other systems. 

from WeatherStream [ff > 17.4]  

select wsid, timestamp  

insert into windAlerts  

partition by WindSpeed; 

Query 3 Wind alert 
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Identifying Suspicious Pixels of Radar Images 

Radar image based weather detection considers reflectivity values of radar images 

and compares them with a threshold. Section 3.4 explains more about this use case 

under the radar image based weather detection. 

Building Queries with Multiple Meteorological Variables 

Certain weather detections are based on a combination of weather circumstances, 

thus this use case considers combinations of meteorological variable values to 

identify such weather circumstances. As an example, wind speed and the wind 

direction can be used to issue wind alerts. The Query 4 represents a wind alert and it 

triggers when a high wind condition towards the North East direction is identified. 

from WeatherStream [ff > 17.4 and dd > 30 and dd < 60]  

select wsid, timestamp  

insert into windAlerts  

partition by WindSpeed; 

Query 4 Wind alert 

3.5.2. Identifying Weather Stations with Defects and Suggest Alternative Values 

When we process sensor data we may find defects which can be either missing 

values or incorrect values. Several queries are defined to check for weather stations 

with defects based on the location of the weather station. These queries compare the 

values of nearby weather stations within a circular area. These missing values 

indicate either there is a technical fault in the particular weather station or those 

missing values need to be replaced with the nearby weather station values. 

GetIsNearStation 

This function can be used to compare two locations and return whether they are 

situated with a significant distance. Distance between two weather stations is 

calculated using the latitude and longitude as Equation 3.1 [38].  

Distance = ACOS(COS(RADIANS(90-Lat1)) *COS(RADIANS(90-Lat2)) 

 + SIN(RADIANS(90-Lat1)) * SIN(RADIANS(90-Lat2))  

*COS(RADIANS(Lon1-Lon2))) * 6371      (3.1) 
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Where, Lat1, lon1 are the locations of the first weather station and Lat2, lon2 are the 

locations of the second weather station. Given the latitude and longitude of two 

weather stations it can find out whether the distance between both is within a 

specified limit using the equation 3.1. 

GetIsNearTime 

This function is used to compare the time difference between two weather stations. 

To propose alternative values it needs to compare the both reported times, but the 

timestamp is not always equal. Therefor this function is used to match the time with 

a deviation value (900 s). 

When there are missing values in a particular weather station for a time period of 

four hours, Query 5 will check nearby weather station’s temperature value. This 

system is tested with hourly data and it is better to consider at least four consecutive 

missing values hence it is used four hours as the time window. Further, it can notify 

whether there is any technical errors at the first weather station. Missing values are 

defined with -99999, so the Query 5 compares the temperature value with -99999 

and identifies whether the value is missing or not. It filters the values of nearby 

weather stations at a same time and suggest alternative values. 

from WeatherStream [temp < -90000.0] #window.time(240 min)  

as A join WeatherStream [temp > -90000.0] as B  

on sample:getIsNearStation(B.lat, B.lon, A.lat, 

A.lon) and sample:getIsNearTime(A.timestamp, 

B.timestamp) select A.wsid, B.wsid, B.temp  

   insert into tempAlerts  

  partition by WeatherStation; 

Query 5 Find missing values. 

When the user identifies that a particular weather station (e.g., D9545) does not have 

values for temperature, it can find alternative values from nearby weather stations. 

Query 6 returns the values from nearby weather stations when there is a missing 

value in the D9545. 
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from WeatherStream [temp < -90000.0 and wsid == 'D9545']  

as A join WeatherStream [temp > -90000.0] as B  

on sample:getIsNearStation(B.lat, B.lon, A.lat, 

A.lon) and sample:getIsNearTime(A.timestamp, 

B.timestamp) select B.wsid, B.temp  

    insert into missingAlerts; "); 

Query 6 Find alternative values. 

3.5.3.  Identifying Anomalies in Weather Data 

Similarly, when there is any value which deviates from the expected value for any 

meteorological variable it compares with nearby weather stations in order to identify 

anomalies. Query 7 will check whether the reported value as 100% for the relative 

humidity is acceptable by comparing with nearby weather stations. 

from WeatherStream [rh == 100.0] as A join  

WeatherStream [rh == 100.0] as B on 

sample:getIsNearStation(B.lat, B.lon, A.lat, 

A.lon) and sample:getIsNearTime(A.timestamp, 

B.timestamp) select B.wsid, B.timestamp " + 

    insert into rhAlerts; 

Query 7 Identify anomalies. 

3.5.4. Identifying Nearby Weather Situation of a Given Location 

General population are interested in knowing the current weather situation at a given 

location. Different types of wind alerts are defined in chapter 2 - Table 2.3. For an 

example, if someone wants to know whether a particular area is being issued a 

weather warning, then the system allows querying the current wind speed with the 

specific range.  

 

3.6. Summary 

This chapter mainly explained about the methodology of the proposed system. It is 

divided into two parts; MADIS meteorological variable based weather detection and 

the radar image based weather detection. It further presents four use cases which can 

be used to verify common scenarios of a weather anomalies and events detection 

system. Each use case is explained with sample queries so it helps to understand 

them properly. 
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The system has used Complex Event Processing technologies to implement these 

main use cases. Siddhi CEP engine is used with the available features. Additionally it 

consists sub modules to do the pre-processing and test data generation. These sub 

modules are developed using Python and MATLAB.  
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4. PERFORMANCE EVALUATION 

Next, we evaluate the accuracy and the performance of the proposed weather 

anomalies and events detection system. It evaluates the main use cases which are 

defined in Section 3.5. Further, it evaluates the performance of the system with 

respect to the event detection time. The system should be able to work when the 

numbers of events, weather stations, product count or the number of queries are 

increased; hence, the main concern of this section is to find out whether the proposed 

system can handle a large number of events at once and accurately, when they arrive 

at a higher input rate. 

4.1. Emulation Setup  

Emulation setup is presented in Figure 4.1. The system is being tested in a single 

computer environment. Siddhi CEP engine is being used to test the defined test cases 

with the sample weather data. The product count, query count and the input event 

rate are considered to test the system performance. 

4.1.1. System Setup 

Hardware 

This system is tested in a single computer with Intel i5 – 4200U CPU running at 1.6 - 

2.3 GHz, 4 GB of RAM, and 64-bit Windows 8 Pro. 

Software 

The system is developed using Siddhi version 3.1.0 in a Java 1.8 environment. 

Apache Ant 1.9.6 is used as the build tool. It has used MATLAB 7.1 to pre-process 

radar images and to create a large sample data file using interpolation. The Python 

2.7.3 environment is used to download and pre-process MADIS data.  
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Figure 4.1 Evaluation Setup. 

4.1.2. Test Data 

The system had considered storm ‘Juno’ for the verification [39]. The US National 

Weather Service has dropped all winter storm and blizzard warnings for Juno, which 

was pounded on 26 – 27th January 2015. Several locations in Massachusetts had 

picked a large amount of snow. Most severe coastal flooding occurred in eastern 

Massachusetts and wind speed was 50-80 mph. Figure 4.2 shows the top snowfall 

totals from Winter Storm Juno. This incident was used to test all the meteorological 

variable values.  

 

 

 

 

 

Figure 4.2 The top snowfall totals from Winter Storm Juno [39]. 

Around 500 weather stations of the Massachusetts (MA) state were considered for 

testing the use cases. These details of the test data vary with the use case so that 

information is given under each use case description. 
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The downloaded data from MADIS had been used to evaluate the results. The test 

data file contains meteorological data from multiple weather stations. The timestamp 

was used to add the temporal aspect to the input events, but some test cases have 

ignored this timestamp in order to consider the highest input event rate. Radar image 

weather detection part was verified with a sample collection of radar images from 

[40].  

4.2. Comparing Sensor Data with Predefined Thresholds 

4.2.1. Comparing Meteorological Variables with Scalar Values 

The MADIS API allows downloading weather sensor data from weather stations of 

state MA on 27th January 2015. D9545 is one of the weather stations in this area. 

The test data file contains 13,063 numbers of sensor data readings of relative 

humidity, pressure, temperature, accumulated precipitation, wind direction and the 

wind speed for that day. For an example, Figure 4.3 shows how the temperature goes 

down due to the storm Juno on 27 the January 2015 at D9545. 

 

Figure 4.3 Temperature data.  

The proposed system was able to identify that the temperature has gone down to 

262.5K at 22:58 pm (UTC). Several test cases were executed with 13,063 input 

events. Table 4.1 shows the total number of detections of the each test case. 
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Table 4.1 Test results. 

Test Case Actual value System Value 

Temperature < 263 K 2,645 2,645 

Wind speed > 17.4 (high wind) 42 42 

Relative humidity == 100.0 168 168 

This relative humidity was reported as 100.0% for multiple times from several 

weather stations. The summation of these individual event detection counts is equal 

to the total event count. Table 4.2 indicates the event detection count distribution 

among the weather stations and it concludes that the system was able to detect 

weather events successfully.  

Table 4.2 Total event count. 

Weather station ID Event detection count 

44020 2 

44013 11 

AR250 24 

AR511 24 

C0863 14 

C1532 11 

C3008 5 

C3094 3 

… … 
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4.2.2. Identifying Suspicious Pixels of Radar Images 

In order to identify suspicious bins of the radar image, it compared each element of 

the array with a threshold value. It was needed to process the matrix in a sub-

function since the Siddhi CEP engine does not support direct array manipulation 

functionalities. 

Scenario: The input event consist a 240x240 matrix of double values. Threshold of 

the precipitation is ‘1’. The following query was used to look for precipitation pixels 

in the radar images [40]. 

from RadarStream [sample:getIsPrecipitation(1, matrix)]  

  select matrix  

  insert into radarAlerts; 

 

Sample of 1,008 radar images had been used in the image-based weather detection. 

Figure 3.3 in Chapter 3 shows a sample radar image. These samples contained 

precipitation pixels, therefore, the total number of detections was 1,008. It took 7,092 

ms seconds to match these input events with the query. Figure 4.4 indicates that total 

sensor data readings was same as the total weather detections. 

 

Figure 4.4 Image based weather detection. 

4.2.3. Building Queries with Multiple Meteorological Variables 

This use case was verified using the wind speed and relative humidity data. This 

winter storm was pounded with heavy snow, high winds and coastal flooding. The 

system identified that most of the weather stations in the MA were reported high 

wind conditions with a relative humidity as 100% on 27th January 2015. Table 4.3 

contains the test results. 
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Table 4.3 Test results. 

Time (UTC) Weather station Wind speed Relative humidity 

13:56  KHYA 16.4622 100 

9:52  KCQX 13.3755 100 

 

4.3. Identifying Weather Stations with Defects and Suggest Alternative Values 

The MADIS dataset had missing values for some of the meteorological variables. 

Figure 4.5 shows two nearby weather stations; FSKM3 (42.109, -72.124) and AR824 

(42.130, -72.098). FSKM3 contained missing values of relative humidity on January 

27. Whereas AR824 reported sensor readings throughout the same day. Therefore, 

this scenario was applied to find alternative values for missing relative humidity 

values of FSKM3 from AR824 weather station. Table 4.4 contains the test results. 

Further there can be a technical fault at FSKM3. 

 

 

 

 

 

 

 

 

Figure 4.5 Nearby weather stations. 

Table 4.4 Test results. 

Time FSKM3 AR824 Expected 

Value 

Actual 

Result 

0.40 -99999 51 51 51 

2.00 -99999 59 59 59 

2.05 -99999 56 56 56 

 

AR824 

FSKM3 
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4.4. Identifying Anomalies in Weather Data 

Detected high wind and heavy snow conditions can be verified with nearby weather 

station information. For this use case also we considered the weather stations from 

Massachusetts. Longitude and latitude are helpful in tracking the locations of the 

weather stations and used to find nearby weather stations and their readings at the 

same time. 

The weather station FSKM3 had reported temperature as 262K at around 13:30 PM 

on 26th January 2015. This use case was tested by comparing nearby weather station 

values. So the result was that AR824 also had reported the same value for the 

temperature at that time. Table 4.5 contains the test results of the weather station 

AR824. 

Table 4.5  Test results. 

Time (UTC) Temperature (K) 

12:45 262.0389 

14:00 262.5945 

14:55 263.15 

4.5. Identifying Nearby Weather Situation of a Given Location 

If someone wants to find out the current weather situation of Massachusetts as of 

January 27, they can query the weather data given the location information. When 

user search for the temperature values of the specific weather stations user can get 

the relevant values as in Table 4.6. Further, it can find out that the KHYA weather 

station has being issued high wind warnings at 13.56PM (UTC) (see Table 4.3). 

Table 4.6  Test results 

Time (UTC) Weather Station Reported Value (K) Result 

6:58 C5897 261.483 261.483 

6:55 D9545 263.15 263.15 

6:00 FSKM3 264.15 264.15 

6:00 VTDOT 261.26 261.26 
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4.6. Detection Time with Different Workloads 

4.6.1. Increasing Number of Queries 

This test case had been executed with a 648,350 events from 25th January 23:58 pm 

to 27th January 22:58 pm (UTC). The results are shown in Table 4.7. Timestamp was 

ignored, so that we could play the entire dataset as arriving within a very short time. 

In this case it took 13 ms to feed the data which had 648,350 samples. Figure 4.6 

depicts that the total detection time increases with the number of queries. But the 

system was able to handle the workload effectively.  

Table 4.7 Comparison of the detection time with the query count. 

 

 

 

 

 

 

Figure 4.6 Comparison of the detection time with the query count. 

4.6.2. Increasing Number of Weather Stations 

The purpose of this test case was to compare the time taken to read these data and the 

time taken to detect abnormal weather readings while increasing the weather station 

count. Table 4.8 shows the test results. It is obvious in Figure 4.7 that the reading 
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time and the detection time had increased with the increasing weather station count. 

The system was able to match the sensor readings with the predefined queries, hence 

the total number of detections were accurate. The time difference between the sensor 

reading time and the detection time was almost same such that it did not depend on 

the weather station count. 

Table 4.8 Comparison of reading time and the detection time with the input event count. 

 

 Figure 4.7 Comparison of reading and detection time with the input event count. 

4.6.3. Increasing Input Product Count 

Entire product list of MADIS was considered to find how the system performs with a 

large set of meteorological products. Queries were written to identify anomalies with 

the basic meteorological variables. Though the system performance doesn’t change 

significantly with the number of product count. 

No of input events No of 

detections 

Total reading 

time (ms) 

Total detection 

time (ms) 

Time difference 

(ms) 

415 2 1,864 1,004 860 

830 4 3,746 2,921 825 

1660 8 7,544 6,625 919 

3319 16 15,114 14,288 826 
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4.6.4. Increasing Input Event Rate 

The main concern of this test case was to increase the input event rate and check the 

performance of the system. The test data file was created using MATLAB. Hourly 

data from 25th January 23:58 pm to 27th January 22:58 pm (UTC) was used to create 

the test file. The original count of test data was 48. The MATLAB program created 

another sequence of data between the original data using interpolation.  

The test case was executed with 648,350 input events within 51.6 seconds therefore, 

the input event rate was 12,572. Total event detections were 345,424 within 50.6 

seconds and the throughput was 12,802. This concludes that Siddhi performs well 

with higher input rates and it can handle large number of data at a time. 

4.7. Detection Delay 

This test case is used to verify whether the system is able to identify the patterns with 

the minimum latency. So the reported time gap between receiving and identifying a 

specific event was 1 ms when the system has 11 parameters. 

4.8. Calder vs Siddhi 

Calder and Siddhi both are stream processing systems and they use SQL-like event 

processing languages. Siddhi can implement multiple streams using a single input 

event queue by multiplexing them. It has the ability to dynamically add new data 

formats and user defined functions. Further it sends the input event only to the 

corresponding executor and Siddhi eliminates duplicate states. Siddhi had used these 

techniques to improve its performance so it confirms the relevance of Siddhi CEP 

engine in this study. 

 

4.9. Summary 

First, we evaluated the accuracy of the four use cases. It compared meteorological 

variables with predefined thresholds to identify impending weather events, identified 

weather stations with defects and suggested alternative values, identified anomalies 
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in sensor data and identified weather situations around a given location. These use 

cases were tested with the winter storm “Juno”. The system managed to successfully 

identify sensor data. 

Second, several test cases were executed to evaluate the performance of the system. 

The event detection throughput was calculated with different number of event 

products and input counts. To increase the system’s workload, a larger number of 

queries and a larger input event rates were considered. The system performed well in 

each test case where the detection delay was around 2 ms. 
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5. CONCLUSIONS 

5.1. Summary 

The novel contribution of this thesis is to provide the monitoring phase capabilities to 

a typical Climate/Weather Observatory (see Figure 1.1) using the idea of complex 

event processing. The idea of complex event processing is relatively simple to use. It 

adds agility to a weather detection system by allowing it to detect primitive weather 

events and anomalies by simply writing a SQL-like query, add dynamic queries on 

the fly, as well as enables scalability in terms of number of methodological variables, 

weather stations, and queries. Moreover, such a system can scale to high arrival rates 

of sensor readings. 

This system was divided into two parts considering the input data, which were 

surface observational data and radar image data. The basic weather detection 

scenarios were created based on these input event types. It presented several use 

cases and demonstrated how to apply Siddhi CEP engine to solve these use cases. It 

compared meteorological variables with predefined thresholds to identify impending 

weather events, identify weather stations with defects and suggest alternative values, 

identify anomalies in sensor data and identify weather situations around a given 

location. These use cases address the basic needs of a typical weather monitoring 

center such as the proposed Climate Observatory system for Sri Lanka, as it provides 

basic real-time, weather monitoring and detection functionalities. 

The performance and accuracy of the proposed weather anomalies and events 

detection system were confirmed using a recent weather incident (winter storm 

“Juno”). The system was able to match the input events with the predefined queries 

successfully. These use cases worked effectively with the existing performance of 

Siddhi and the system was able to handle more than 10,000 events per second.  

Several approaches have been used to do weather anomalies and events detection but 

CEP can be identified as the most suitable contemporary technique to implement 

these use cases. Neural network based weather detection system [31] needs to train 

separate neural for each and every use case, but using Siddhi CEP engine we can 

easily add a new query to enhance the functionalities. Several queries can be defined 
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parallel to implement these use cases rather than doing multiple comparisons 

sequentially.  

The LEAD project was a very closely related to the research area, which uses CEP in 

weather detection. They had used Calder as the CEP engine. We used Siddhi as the 

CEP engine which is an open source CEP engine and it can be applied in weather 

anomalies and events detection easily. Calder lacks the ability to dynamically add 

new data formats and user defined functions, whereas Siddhi has the capability of 

adding user defined functions easily. The system was able to implement the use cases 

by only adding custom functions without having to change the Siddhi codebase and 

that concludes the effectiveness of the extension points of Siddhi. 

5.2. Problems Encountered 

It was required to process radar images since they were used in several weather 

detection algorithms. There were no functions to manipulate images in Siddhi thus 

the system converted these images into 2D arrays and used Siddhi extensions to 

process arrays. Currently Siddhi does not support inbuilt array manipulation 

functions such as “get the maximum value of the array” and “get number of 

rows/columns” so the system had to use traditional array manipulation functions to 

process these 2D arrays. 

This system can be used as an early weather monitoring system. In order to confirm 

these conditions further, it requires using complex and resource consuming weather 

detection algorithms as explained in Chapter 2. 

We faced several limitations when trying to use several kind of weather data 

together. For an example we found lightening data from WSI weather data, but we 

could not find temperature information at the same locations.  

 

5.3. Future Work 

Meteorology is a vast research area. This system has implemented four key use cases 

to achieve the main goal of the study but more use cases can be defined for further 

verifications. 
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5.3.1. Enhancements to CEP Engines 

Some improvements have been identified, which are needed to be done not only in 

Siddhi but also in other CEP engines. Currently, Siddhi needs to support type object 

in stream definitions so it will be easy to send any type of object. It is required to 

improve object type into specialization like arrays and implement inbuilt array 

manipulation functionalities within Siddhi. Then the Siddhi can provide custom 

functions for array operations such as getArrayElement (array, index), min, max, and 

hasValueGreaterThan(..). Siddhi does not have in built functions to do image 

processing functionalities. Currently the images are required to be converted to 

arrays before apply with Siddhi. 

5.3.1. Storm Cell Identification and Tracking  

We can implement weather detection algorithms using CEP since Siddhi allows to 

create user defined functions. Storm cell identification and tracking is such an 

algorithm. This algorithm can be used to identify storm cells. It has four sub 

functions: storm cell segments, storm cell centroids, storm cell tracking and storm 

position forecast. A storm cell is a three dimensional region, which has reflectivity 

values above a significant value [36]. 

Storm cell segments  

This algorithm combines the individual range bins into storm segments along the 

radial. Figure 5.1 (a) shows a storm segment, which is a run of contiguous range bins 

(each with 1 deg x .54 nm) along a radial with reflectivity values greater than or 

equal to a specified threshold.  

(a) (b) 
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(c) 

Figure 5.1  Storm cell Identification (a) Storm segment (b) Mass weighted center (c) Storm 

centroid (* is the centroid). 

Storm centroids 

This algorithm groups cell segments into components, computes the components’ 

attributes, vertically correlates the components into cells and computes the cell’s 

attributes. A centroid is the mass weighted center of a three dimensional region of 

significant reflectivity as shown in Figure 5.1 (c).  

Storm cell tracking 

This algorithm monitors the movement of storm cells by matching storms from 

current volume scan to the next volume scan. 

Storm position forecast 

This algorithm will predict the future centroid locations based on a history of their 

movements. It computes the forecast movement using the linear least squares 

extrapolation of the storm’s previous positions. 

Siddhi can be used to identify the storm cell segments where it basically compares 

the reflectivity values with specified threshold value (see Appendix A) [37] [41]. 

5.3.2. Geo-dashboard in Siddhi 

Geo-dashboard is introduced by WSO2 and it can be used to process spatial data. 

Users can see the movements of spatial objects in real-time with their rotations in the 

space. Spatial object data is transferred as a Geojson[] object from the CEP 

websocket output adapter to the web browser in the CEP geo-dashboard. Geojson 
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point is used to place a marker on the map. This point can be used to update the 

location of the incoming events. They have identified several features of this geo-

dashboard such as speed alerts, proximity alerts, geo-fencing and history playback. 

Proximity alerts are generated when two or more objects become close in their 

proximity by a predefined value from the user as seen in Figure 5.2. 

This geo-dashboard can be applied in a weather monitoring system. Movement of 

rain or a wind can be simulated and it can be used to detect the sudden weather 

changes in nearby by places [42]. 

 

 

Figure 5.2 Geo-dashboard. 
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APPENDIX A: STORM CELL SEGMENTS 

BEGIN ALGORITHM (STORM CELL SEGMENTS) 

1.0 DO FOR ALL (radials of the elevation scan) 

1.1 DO FOR ALL (THRESHOLDS (Reflectivity)) 

1.1.1 DO FOR ALL (SAMPLE VOLUMEs of the current radial) 

1.1.2 IF (REFLECTIVITY FACTOR(Sample Volume) is greater than 

or equal to THRESHOLD (Reflectivity)) 

 THEN 

1.1.2.1 Begin or continue POTENTIAL CELL SEGMENT 

1.1.2.2 IF (Beginning POTENTIAL CELL SEGMENT) 

   THEN 

1.1.2.2.1 COMPUTE (beginning RANGE(Segment)) 

   END IF 

1.1.2.3 COMPUTE (ending RANGE(Segment)) 

1.1.2.4 Reset NUMBER OF DROPOUTS to zero. 

1.1.3 ELSE IF (REFLECTIVITY FACTOR(Sample Volume) is greater 

than or equal to (THRESHOLD (Reflectivity) - 

THRESHOLD (Dropout Reflectivity Difference)) AND 

(continuing POTENTIAL CELL SEGMENT)) 

 THEN 

1.1.3.1 COMPUTE (NUMBER OF DROPOUTS) 

1.1.3.2 IF (NUMBER OF DROPOUTS is greater than 

  THRESHOLD (Dropout Count)) 

  THEN 

1.1.3.2.1 End POTENTIAL CELL SEGMENT 

   END IF 

1.1.4 ELSE IF (Continuing POTENTIAL CELL SEGMENT) 

THEN 

1.1.4.1 End POTENTIAL CELL SEGMENT 

 END IF 

1.1.5 IF (POTENTIAL CELL SEGMENT is ended) 

  THEN 

1.1.5.1 COMPUTE (LENGTH(Segment)) 

1.1.5.2 IF (LENGTH(Segment) is greater than or equal to 

THRESHOLD (Segment Length(Reflectivity 

Threshold))) 

THEN 

1.1.5.2.1 Label POTENTIAL CELL SEGMENT a CELL SEGMENT 

   END IF 

          END IF 

       END DO 

     END DO 

1.2 DO FOR ALL (THRESHOLDS(Reflectivity)) 

1.2.1 DO FOR ALL (CELL SEGMENTS for this THRESHOLD 

(Reflectivity)) 

1.2.1.1 COMPUTE (maximum REFLECTIVITY FACTOR(Segment)) 

1.2.1.2 COMPUTE (MASS WEIGHTED LENGTH(Segment)) 

1.2.1.3 COMPUTE (MASS WEIGHTED LENGTH SQUARED(Segment)) 

1.2.1.4 COMPUTE (NUMBER OF SEGMENTS(Reflectivity Threshold)) 

1.2.1.5 WRITE (maximum REFLECTIVITY FACTOR(Segment)) 

1.2.1.6 WRITE (MASS WEIGHTED LENGTH(Segment)) 

1.2.1.7 WRITE (MASS WEIGHTED LENGTH SQUARED(Segment)) 

1.2.1.8 WRITE (beginning RANGE(Segment)) 

1.2.1.9 WRITE (ending RANGE(Segment)) 

1.2.1.10 WRITE (AZIMUTH) 

1.2.1.11 WRITE (THRESHOLD (Reflectivity)) 

END DO 

1.2.2 WRITE (NUMBER OF SEGMENTS(Reflectivity Threshold)) 

END DO 

END DO 

2.0 COMPUTE (average DELTA AZIMUTH) 

3.0 WRITE (ELEVATION) 
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4.0 WRITE (average DELTA AZIMUTH) 

END ALGORITHM (STORM CELL SEGMENTS) 

Beginning RANGE(Segment) 

RSbeg = SVbeg*SVL – SVL/2 

Where, 

RSbeg = The beginning RANGE(Segment), the RANGE(Slant) to the front (closest 

to the radar) of the first sample volume of a cell segment, in km 

SVbeg = The first sample volume of a cell segment 

SVL = The length (in slant range) of a sample volume in km 

Ending RANGE(Segment) 

RSend = SVend*SVL + SVL/2 

The ending RANGE(Segment), the RANGE(Slant) to the back of the last sample 

volume of a cell segment, in km. 

Where, 

SVend = The last sample volume of a cell segment 

Number of DROPOUTS 

ND = ND + 1 

The number of contiguous sample volumes with a reflectivity factor less than the 

threshold (Reflectivity) by less than or equal to the threshold (Dropout reflectivity 

difference) 

LENGTH (Segment) 

LEN = RSend – Rsbeg 

Maximum REFLECTIVITY FACTOR (Segment) 

DBZE𝑎𝑣𝑔𝑘 = [ ∑ 𝐷𝐵𝑍𝐸𝑗]/𝑅𝐴

𝑗=𝑘+𝐼𝑁𝑇(
𝑅𝐴
2

)

𝑗=𝑘−𝐼𝑁𝑇(
𝑅𝐴
2

)

 

𝐷𝐵𝑍𝐸𝑚𝑎𝑥 =  𝐷𝐵𝑍𝐸𝑎𝑣𝑔𝑘 if  𝐷𝐵𝑍𝐸𝑎𝑣𝑔𝑘  ≥  𝐷𝐵𝑍𝐸𝑚𝑎𝑥 
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Where, 

DBZE = The REFLECTIVITY FACTOR(Sample volume), the effective radar 

reflectivity factor of a sample volume, in dBZe 

DBZEavg = The average reflectivity factor of a group of sample volumes, in dBZe. 

RA = The REFLECTIVITY AVERAGE FACTOR, the number of sample volumes 

used for determining the maximum (average) reflectivity factor (3). 

INT is a function whose magnitude is the largest integer that does not exceed the 

magnitude of the argument. Index j is constrained to the interval [ SVbeg, SVend]. 

MASS WEIGHED LENGTH (Segment) 

The mass density weighted length of a cell segment, in kg/km2 

MWL = ∑[ (MSV𝑘)(RS)]

𝑘

 

Where MSV = (MWF)(PIN) 

Where PIN is computed from the relation ZE = (MMF)(PIN)PIE , and ZE = 10(DBZE/10) 

If DBZE > MRM, DBZE = MRM, in km. 

Where RS = RANGE (Slant), the slant range to the center of a sample volume 

 MWF = MASS WEIGHTED FACTOR, a factor used in computing the mass 

of a sample volume (53 x 103), in (hr)(kg)/(km2m2). 

 MMF = The MASS MULTIPLICATIVE FACTOR 


