
DETECTION OF WEATHER ANOMALIES AND EVENTS

OF INTEREST USING COMPLEX EVENT PROCESSING

K. A. G. Udeshani

138239G

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

October 2015

DETECTION OF WEATHER ANOMALIES AND EVENTS

OF INTEREST USING COMPLEX EVENT PROCESSING

K. A. G. Udeshani

138239G

Dissertation submitted in partial fulfilment of the requirements for the degree

Master of Science in Computer Science specializing in Software Architecture

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

October 2015

ii

DECLARATION OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this thesis/dissertation does not incorporate

any material previously submitted for a Degree or Diploma in any other University

or institute of higher learning and to the best of my knowledge and belief, it does not

contain any material previously published or written by another person except where

the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis/dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles or books).

……………………………………… ………………………………………..

K. A. G. Udeshani Date

The above candidate has carried out research for the Masters Dissertation under my

supervision.

………………………………………… ………………………………………..

Dr. H.M.N. Dilum Bandara Date

iii

ACKNOWLEDGEMENTS

I would like to express deep gratitude to my supervisor, Dr. H. M. N. Dilum

Bandara, for his valuable support, encouragement, supervision and useful

suggestions throughout this research work. His continued guidance enabled me to

complete my work successfully.

Finally, I wish to express my gratitude to my family and friends for the given ideas

and support to complete the work successfully.

iv

ABSTRACT

Many natural disasters which occurred recently emphasize the importance of a

system which can be used to identify changes in weather conditions. Consequently,

several public organizations in Sri Lanka are planning to establish a Climate

Observatory system based on open-source technologies. This research develops a

Complex Event Processing based system to detect weather anomalies and events of

interest to enrich a Climate Observatory system with real-time monitoring and

detection capabilities.

Event Processing is, tracking and processing streams of data about the events that

happen in the physical environment. Complex Event Processing (CEP) combines

data from several sources to infer events and complex patterns among events in real-

time. One of the key characteristic of the weather data analysis and detection is that it

needs to deal with real-time data that are generated by a multitude of sensors. While

several techniques are used to detect weather anomalies and events, CEP is a more

suitable approach, as it is the principle technology for real-time moving data

processing.

One of the objectives of this research is to demonstrate how CEP can be applied in

weather anomalies and events detection. This research presents a novel weather

anomalies and events detection solution based on Siddhi complex event processor.

Siddhi provides the runtime to perform CEP, which is able to identify meaningful

patterns, relationships and data abstractions from unrelated events and alert users

about the detected patterns.

This study first analyzes the features of the existing weather detection systems and

identifies the significant meteorological variables, weather sensors and use cases.

The proposed solution modifies the input data before processing with Siddhi. This

pre-processing step consists of two sub-systems. One sub-system pre-processes the

weather sensor data. The other sub-system is used to convert radar images to 2D

matrixes since Siddhi is unable to process stream of images. It applies Siddhi CEP

v

engine for weather detection with appropriate stream definitions and query

definitions. Partitions are used to process queries to gain better performance.

The proposed solution focuses on four use cases. First use case compares

meteorological variables (i.e., sensor data) to predefined thresholds to identify

impeding weather events. Second use case identifies weather stations with defects

and suggests alternative values to replace them. Remaining two use cases find

anomalies in the sensed data and identifies weather situations around a given

location. These use cases provides the basic capabilities of a typical weather

monitoring center such as the proposed Climate Observatory system for Sri Lanka, as

they provide elementary real time, weather monitoring and detection functionalities.

The performance evaluation shows that Siddhi performs well in the specified use

cases even with high input rates and large number of meteorological variables. It

further identifies future enhancements to the system. The research also identified

several limitations in CEP engines, particularly Siddhi, while applying them to

weather anomalies and events detection.

Keywords: Complex Event Processing, Siddhi, Weather Anomalies and Events

Detection, Weather Alerts, Pre-processing, Climate Observatory System, Radar,

Geo-dashboard

vi

TABLE OF CONTENTS

List of Figures .. x

List of Tables ... xii

List of Abbreviations .. xiii

1. Introduction .. 1

1.1. Motivation ... 2

1.2. Problem Statement .. 4

1.3. Research Contributions ... 4

1.4. Outline ... 5

2. Literature review .. 6

2.1. Complex Event Processing.. 6

2.2. Siddhi CEP Engine .. 9

2.3. The Linked Environments for Atmospheric Discovery (LEAD) 13

2.4. LEAD Cyber Infrastructure Model ... 15

2.5. Collaborative Adaptive Sensing of the Atmosphere (CASA) 16

2.6. CASA and LEAD. ... 17

2.7. Warning Decision Support System – Integrated Information (WDSS-II) .. 18

2.8. Calder System ... 20

2.9. Weather Detection ... 23

2.9.1. Introduction .. 23

2.9.2. Weather Detection Sensors .. 24

2.9.3. Meteorological Variables ... 26

2.9.4. MADIS (Meteorological Assimilation Data Ingest System) 26

2.9.5. Weather Detection Algorithms in LEAD .. 28

vii

2.9.6. Non-precipitation Weather Event .. 28

2.9.7. Characteristics of Radar Images .. 30

3. Research methodology ... 32

3.1. High-Level Architecture ... 32

3.2. Development Environment ... 33

3.3. MADIS Meteorological Variable Based Weather Detection 33

3.3.1. Meteorological Variables ... 33

3.3.2. Weather Sensors ... 34

3.3.3. Data Pre-processing ... 34

3.3.4. Stream Definition ... 35

3.4. Radar Image Based Weather Detection .. 36

3.4.1. Image Pre-processing ... 36

3.4.2. Stream Definition ... 37

3.5. Use Cases .. 38

3.5.1. Comparing Sensor Data with Predefined Thresholds 39

Comparing Meteorological Variables with Scalar Values 39

Identifying Suspicious Pixels of Radar Images ... 40

Building Queries with Multiple Meteorological Variables 40

3.5.2. Identifying Weather Stations with Defects and Suggest Alternative

Values ………………………………………………………………………...40

3.5.3. Identifying Anomalies in Weather Data .. 42

3.5.4. Identifying Nearby Weather Situation of a Given Location 42

3.6. Summary ... 42

4. Performance evaluation.. 44

4.1. Emulation Setup .. 44

4.1.1. System Setup .. 44

viii

4.1.2. Test Data .. 45

4.2. Comparing Sensor Data with Predefined Thresholds 46

4.2.1. Comparing Meteorological Variables with Scalar Values 46

4.2.2. Identifying Suspicious Pixels of Radar Images 48

4.2.3. Building Queries with Multiple Meteorological Variables 48

4.3. Identifying Weather Stations with Defects and Suggest Alternative

Values…………………………………………………………………………….49

4.4. Identifying Anomalies in Weather Data .. 50

4.5. Identifying Nearby Weather Situation of a Given Location 50

4.6. Detection Time with Different Workloads.. 51

4.6.1. Increasing Number of Queries ... 51

12,852... 51

256,000... 51

4.6.2. Increasing Number of Weather Stations .. 51

4.6.3. Increasing Input Product Count ... 52

4.6.4. Increasing Input Event Rate ... 53

4.7. Detection Delay ... 53

4.8. Calder vs Siddhi .. 53

4.9. Summary ... 53

5. CONCLUSIONS .. 55

5.1. Summary ... 55

5.2. Problems .. 56

5.3. Future Work .. 56

5.3.1. Storm Cell Identification and Tracking .. 57

5.3.2. Geo-dashboard in Siddhi ... 58

6. References .. 60

ix

Appendix A: Storm cell segments ... 64

x

LIST OF FIGURES

Figure 1.1 Workflow of a typical Climate/Weather Observatory 3

Figure 2.1 Event-based applications 6

Figure 2.2 Overview of CEP .. 7

Figure 2.3 Flow of events .. 9

Figure 2.4 Siddhi high-level architecture ... 10

Figure 2.5 Example tuple. ... 11

Figure 2.6 Sample query. .. 12

Figure 2.7 Sequence state machine .. 13

Figure 2.8 Provenance information model ... 15

Figure 2.9 Key components of the LEAD-CI architecture 16

Figure 2.10 CASA and LEAD interaction. ... 18

Figure 2.11 Creation of diagnostic products using automated algorithms in real-

time ... 20

Figure 2.12 Calder architectural components ... 21

Figure 2.13 Calder architecture .. 22

Figure 2.14 Application of Calder in LEAD .. 23

Figure 2.15 Road weather maintenance system. ... 25

Figure 2.16 Components of MADIS. .. 26

Figure 2.17 Weather station display ... 27

Figure 2.18 MADIS Meteorological Surface Text/XML Viewer. 27

Figure 2.19 Sample radar image. ... 30

Figure 3.1 The proposed architecture. ... 32

Figure 3.2 Pre-processing steps. .. 35

Figure 3.3 Reflectivity matrix. .. 37

Figure 3.4 MATLAB program. ... 37

Figure 4.1 Evaluation Setup. ... 45

Figure 4.2 The top snowfall totals from Winter Storm Juno 45

Figure 4.3 Temperature data.. 46

Figure 4.4 Image based weather detection. ... 48

Figure 4.5 Nearby weather stations. .. 49

xi

Figure 4.6 Comparison of the detection time with the query count. 51

 Figure 4.7 Comparison of reading and detection time with the input event count. 52

xii

LIST OF TABLES

Table 2.1 CASA applications .. 17

Table 2.2 Non-precipitation warning products. ... 29

Table 2.3 Beaufort classification of wind speed (aka Beaufort Wind Scale). 29

Table 3.1 Weather stream definition. ... 36

Table 3.2 Radar stream definition. ... 38

Table 4.1 Test results. .. 47

Table 4.2 Total event count. ... 47

Table 4.3 Test results. .. 49

Table 4.4 Test results. .. 49

Table 4.5 Test results. .. 50

Table 4.6 Test results ... 50

Table 4.7 Comparison of the detection time with the query count. 51

Table 4.8 Comparison of reading time and the detection time with the input event

count………. ………………………………………………………………………...52

xiii

LIST OF ABBREVIATIONS

API Application Programming Interface

APA Action Planning Agent

ARPS Advanced Regional Prediction System

CASA Collaborative Adaptive Sensing of the Atmosphere

CEP Complex Event Processing

COSTI Coordinating Secretariat for Science Technology & Innovation

DA Diagnosis Agent

DCAS Distributed Collaborative Adaptive Sensing

DR Demand Response

EPA Event Processing Agents

ECA Event Condition Action

EDA Event Driven Architecture

EPN Event Processing Network

GDS Grid Data Service

HI Heat Index

LDM Local Data Manager

LEAD Linked Environments for Atmospheric Discovery

LEAD – CI Linked Environments for Atmospheric Discovery Cyber

infrastructure

MADIS Meteorological Assimilation Data 37 Ingest System

MDA Mesocyclone Detection Algorithm

MOS Model Output Statistics

NSSL The National Severe Storm Laboratory

NWS National Weather Service

RT Reflective Threshold

SCIT Storm Cell Identification and Tracking

xiv

SOA Service Oriented Architecture

SPA Sensor Processing Agent

SQL Structured Query Language

SSN Semantic Sensor Network

VCP Volume Coverage Patterns

WRF Weather Research Forecast

WDSS-II The Warning Decision Support System – Integrated Information

XML Extensible Markup Language

1

1. INTRODUCTION

Throughout the year we hear about the sudden changes in weather. These sudden

changes cause many disasters. Sometimes fishermen were unable to return home due

to strong winds and innocent lives are often lost from lightning and floods. These

incidents also cause economic losses to the country. Therefore, everybody in the

country is in need of an effective solution for getting informed about the sudden

changes in weather.

People are interested in knowing the current state of the atmosphere of a given

location and time, and they use several meteorological variables to measure the state.

Typical meteorological variables for weather monitoring include temperature, air

pressure, humidity, wind speed, and wind direction. Several mechanisms are used to

measure these variables. For example, a rain gauge is used to measure the rainfall

and a hydrometer is used to measure humidity. These meteorological variables are

useful in determining both short and long term changes in the atmosphere. When

these meteorological variables are used to determine atmospheric conditions at a

specific place at a specific point in time (ranging from minutes to weeks), it is called

weather analysis. When their statistical properties are used to measure long-term

(ranging from months to decades) changes in atmospheric conditions, it is called

climate analysis. Detection of weather conditions is of prime importance, as it

directly affects day-to-day life. However, this is quite challenging as it requires real-

time data gathering, transmission, and processing. Further it is important to identify

anomalies in the sensor data reported values of the weather stations. Typically these

anomalies can be either missing or incorrect sensor readings.

Complex Event Processing (CEP) based systems receive events from multiple

independent simple event streams of different event sources. Complex event

detection (aka. event pattern matching) is the core functionality of such a system.

The user needs to provide event pattern rules in order to detect specific events. These

event pattern rules can be defined in a SQL-like event processing language [1]. The

CEP engine listens to incoming events and detects event patterns matching with the

2

specified queries, and then sends alerts to relevant systems. Most CEP engines can

analyse and detect thousands of events per second. Therefore, CEP technology

derives intelligence from real-time event data analysis. The ability to analyse large

streams of incoming events in real-time and detect relevant events makes them a

suitable alternative for modern weather detection.

1.1. Motivation

The weather is vastly becoming integrated with the Sri Lankan life style, thus the

ability to detect severe weather events and issue relevant notifications is very much

important. There were several incidents where people faced difficulties with sudden

changes of weather. As a result, the need for an accurate, trustworthy and real-time

weather detection system is highly important.

To address these emerging needs, there is an interest to develop a National Climate

Observatory System for Sri Lanka under the Coordinating Secretariat for Science

Technology & Innovation (COSTI) initiative. The information available through this

Climate Observatory will be available in appropriate forms to the public. The

Climate Observatory is to be built primarily based on open-source technologies with

the participation of a number of partner organizations [2]. As part of this initiative

relevant stakeholders are planning to build an archive of Meteorological variables

collected from many existing and new weather stations that are (to be) positioned

across the country. As these meteorological variables are collected in real-time, it

also provides an opportunity to perform real-time weather detection. Moreover, such

early detection can be used to trigger more complicated weather algorithms that are

required for more accurate detection, better forecasting and warning of complicated

weather events. Therefore, it is important to be able to develop a solution to detect

changing weather conditions in real-time, and be able to alert the relevant

stakeholders on time. However, the proposed solution should be built on proven open

source technologies to reduce the development time and cost, while increasing the

accuracy and reliability.

3

Figure 1.1 illustrates the workflow of a typical Climate/Weather Observatory.

Meteorological variables are collected by sensors attached to the weather stations and

the collected data are transmitted to the Observatory using a suitable network, e.g.,

leased line, 3G/4G, or a satellite link.

The monitoring phase focuses on data pre-processing and identifying weather

circumstances. This phase monitors the input sensory data and looks for abnormal

values. While it is relatively easier to detect weather phenomena such as increased

temperature or heavy rain, further processing is required to detect more complicated

events such as storms and tornados. Therefore, when detection of an abnormal

weather condition is triggered, more complicated weather detection algorithms are

run to determine further details of the event. For example, high wind conditions can

lead to a tornado. So, if high wind conditions are identified during the monitoring

phase, a tornado detection algorithm is executed for further confirmation. Therefore,

while the monitoring phase can issue weather alerts in real-time, it is also used as the

initial decision maker to initiate more complicated and resource consuming (e.g.,

need more computing power, memory and storage) weather detection algorithms

during the third phase.

Figure 1.1 Workflow of a typical climate/weather observatory.

Weather sensors

Monitoring

phase

Weather detection

algorithms

4

1.2. Problem Statement

The main objective of this research is to provide the monitoring capabilities (as seen

in Figure 1.1) to a typical Climate/Weather Observatory. This is to be achieved by

developing a complex event processing based weather anomalies and events

detection system that is scalable in terms of the functionality, number of sensors, and

meteorological variables. The proposed weather monitoring and detection system

acts as an early warning system, as well as a trigger for the execution of complicated

and resource consuming weather detection algorithms. The system should also be

capable of providing solutions for common use cases found in weather detection and

warning.

1.3. Research Contributions

This thesis demonstrates the application of Complex Event Processing (CEP) to

weather anomalies and events detection systems. It applies an existing CEP engine,

namely Siddhi, rather than recreating the basic CEP functionalities that are readily

available. Siddhi is selected as it is an open source CEP engine, which is considered

as one of the high performing CEP engines around and capable of processing

millions of events per second. Through this research we have identified a suitable

subset of meteorological variables to receive continuous streams of sensor readings.

These raw data streams may contain erroneous/faulty data or some of the periodic

data samples may be missing. Therefore, pre-processing algorithms are introduced to

clean the incoming data streams. These incoming streams are fed into Siddhi CEP

engine. The users of the system can specify necessary queries in order to identify

uncertain changes in meteorological variables such as temperature, wind speed,

pressure and humidity. Siddhi CEP engine is capable of processing these queries and

matches them with the input data streams to identify relevant patterns. Once an

interesting anomaly or an event is detected, the system generates an alert(s) and

sends those as notifications to the relevant sub-systems (i.e., third phase of a

typical Climate/Weather Observatory) for further processing and issuing warnings.

5

This research also suggests several changes to CEP engines, particularly Siddhi, to

make it more suitable for real-time weather detection systems in different viewpoints

such that we can detect more complicated weather patterns and achieve high

performance with necessary changes of weather data representations in CEP.

1.4. Outline

Chapter 2 presents the literature review. It discusses about CEP, existing weather

detection systems and meteorological variables. Chapter 3 presents the research

methodology. It presents the high-level architecture, use cases and the details of the

proposed system. Chapter 4 presents the performance analysis and evaluation.

Finally, concluding remarks, problems encountered and the future work are

discussed in Chapter 5.

6

Event

Input steam

Output stream

2. LITERATURE REVIEW

2.1. Complex Event Processing

Tracking and processing streams of information about the things that happen is

called event processing. In Complex Event Processing (CEP), it combines data from

several sources to infer events or patterns. The goal is to recognize meaningful

events and provide a response to them with a minimum latency. Figure 2.1 shows the

high-level architecture of the event-based applications where it receives events as an

input stream, it processes them and generates an output stream. For example, assume

the system receives events from temperature and smoke sensors. There can be

predefined event patterns in order to identify a fire in advance so the system can alert

necessary places to avoid difficult situations. CEP identifies complex patterns of

unrelated events, event correlation and abstraction, event hierarchies and

relationships between events. These relationships can be categorized as causality,

membership, timing and event driven processes [3].

Figure 2.1 Event-based applications [4].

Figure 2.2 illustrates a high-level overview about event processing. There are several

terms, which are required to know in order to understand the concept behind the

CEP. Events, Event Processing Agent (EPA) and Event Condition Action (ECA) are

two of them. Events can be real world or virtual. Event processing is applied to the

subject system. These events can be simple events or complex events; complex

events are combinations of simple events. The events can be arranged as event

stream or event clouds. CEP deals with event clouds, but the event processing engine

is important in both types of events. EPA filters the events and provides them to the

event processing engine. The pattern/rule is defined using an SQL-like event query

language. This can be categorized into three styles: composition operators, data

7

stream query languages and production rules. Composition operators are conjunction,

sequence and negation. These composition operators and nesting of expressions are

used to compose single events and express complex events. Data stream query

languages are based on SQL. Production rules specify actions to be taken when

certain event patterns are matched. Event processing engine processes the events and

notifies the users. ECA defines the actions to be taken automatically on the subject

system, if the conditions are satisfied. The derived events and composite events are

generated at the processing time [5].

Figure 2.2 Overview of CEP [5].

Event

An event is a message or a multiple data component, which is used to define

activities happening or have just happened in the physical environment [5].

Event Pattern

Event pattern defines the relationship between events. It can be a temporal

relationship (e.g., “A happens before B”), causal relationship (e.g., “B happens

8

because of A happened”), independent relationship (e.g., “there is no relationship

between A and B”) or an aggregative relationship (e.g., “when events A happen that

means event B also happened”) [3].

Logical operators (conjunction, disjunction or negation) and set operators (union,

disjoint) are used to build an event pattern. Queries are used to define these event

patterns by an Event Processing Language [3] which can be expressed as ECA (event

condition rules) or as SQL-like continuous queries [6].

Time Window

The time window is used to identify the absence of events. The width of the window

is specified using the number of events or the time period of an event(s). When width

of window is specified in terms of the number of events it is referred to as sliding

window. When time period of events are specified it is referred to as time window. In

sliding window the window will gradually moves with the event notifications and the

time window will process events by moving the window in event blocks [7]. Sliding

windows are used to handle infinite data streams. It defines a lease time for events to

consider the most recent set of events [6]. The time information of an event has three

types, event occurred time, detection time and the processed time [5].

Event Pattern Rules

CEP defines correlation between events by identifying patterns. The rules are

expressed by event processing languages based on event algebras. Event pattern rules

define the event pattern and the corresponding actions. Event patterns specify certain

situations of events and event actions are executed when the event pattern is fulfilled

[6], [8], [9], [10].

The incoming events are processed with three different event pattern rules as shown

in Figure 2.3. Filtering will reduce the incoming events with a guarded pattern. It

filters data to detect specific conditions using simple or complex filters. First, it

blocks C, E, F, H and I events since guarded pattern has defined to do so. The

aggregating phase will create a combination of events from multiple sources. Further,

9

it groups and aggregates data to produce high-level statistics and computes new data

elements or transforms the data format and structure of the events. There are two

aggregators they combine A, B, D and G, J events separately. Finally, there is the

detecting phase of the event patterns. The unusual situations of events are caught by

the detectors and they raise alerts [3]. In order to apply CEP, these functionalities are

applied in a proper manner in real-time data analysis.

Figure 2.3 Flow of events [3].

2.2. Siddhi CEP Engine

CEP is used to detect complex conditions from specific set of low-level factors.

There are several CEP engines in the market. These will provide the runtime to

perform the CEP. Siddhi is one of the open source CEP engines which can process

millions of events per second. Siddhi is implemented as a Java library. It allows

initiating multiple instances and each Siddhi engine is single threaded. This CEP

engine supports partitioning which allows the users to isolate the processing into

small parts and speeds up the execution. Figure 2.4 shows the high-level architecture

of Siddhi CEP [11].

A

B

C

D

E

F

G

H

I

J

A

B

C

G

J

ABC

GJ

Filtering Aggregating Detecting

10

Siddhi Architecture

Siddhi receives events through the input adapters and converts them to a common

data model called tuples. The query is converted into a runtime version and deployed

in Siddhi core where all the processing is done. Input events are placed in the input

queues for processing; the input events which are matched with the input queries are

placed in the output queues [12].

Siddhi core contains processors; the main components of processors are executors

and event generators. Executors are generated by the query parser and express the

query conditions to do the evaluation. These executors are arranged as a tree

structure and evaluates in depth first search order. There can be many executors in a

processor but only one gets executed at a time [12]

Siddhi uses a pipeline architecture where it breaks the execution into different stages

using processors. It uses a publication-subscription model to move the data through

this pipeline. Siddhi can implement multiple streams using a single input event queue

by multiplexing them. This has improved Siddhi’s performance since it does not

need to monitor the intermediate events [12].

Figure 2.4 Siddhi high-level architecture [12].

11

These events consist of (name, value) pairs. Siddhi uses tuple data to represent

events. Figure 2.5 shows a sample tuple. User has to define streams and data which

belong to those streams. Users use event query language, similar to SQL, to define

the queries to be applied on the incoming events [12].

Figure 2.5 Example tuple.

Siddhi Query Processing

Siddhi supports four types of queries: filtering, event windows, ordering (sequences

and event patterns), (aggregation, join and split) events. These different query

notations can be used to define required queries. Filter queries are used to filter the

events by different conditions (>, <, =, <=, >=, !=, contains, and, or, not). Pattern

queries identify event patterns like A, B, C. An alert is triggered when it receives

these events with the given order. It is possible to have different events in between

the given event pattern. “Every” operator is used in Siddhi to continuously monitor

for a given pattern. The processing of these pattern queries is handled by the Pattern

Processor [12].

Sequence queries are defined to fire an event when series of conditions happened one

after another in a consecutive manner. Sequence processors execute the sequence

queries. Currently active Executors receive the input event and check whether it can

be matched with the specified conditions. If they are matched, it will send “true” and

the Processor spawns a new Executor for the next state. When it is the last state the

Processor will generate the output event based on the output definition. Siddhi sends

the input event only to the corresponding Executor and further Siddhi eliminates

duplicate states. These strategies help to improve the performance of Siddhi [12].

Siddhi supports sliding-window and batch-window based queries. These queries can

be divided into time-based and length-based event queries. Sliding-window based

queries keep track of the events received within a given amount of time from the

current time. It helps to consider events within a limited amount of time. The length-

Stream id Data 1 Data 2 Data 3

12

sliding-windows keeps track of a specific number of events arrived recently. The

batch-windows are similar to the sliding-windows except they perform processing as

event batches. Siddhi implements windows within event queues by assigning a time

window to the stream [12].

Siddhi supports avg., sum, count, max, min functions in aggregation queries.

Aggregation processor will apply these on the collection of events through the

window queue. In order to implement join queries it moves data from several

incoming event queues to a different queue after joining (outgoing event queue).

Joining processor will check whether the input events are matched with the join

condition, if so send them to the next queue else keeps them to match with the future

events [4].

Figure 2.6 illustrates a sample query. It joins two sensors, Sensor A and Sensor B

considering the unusual situations of temperature and wind speed. Here the events

arriving only to the unidirectional stream trigger the join.

From SensorA as b join

SensorB p unidirectional

on temperature>40 and windSpeed>50

 select SensorId, LocationId

insert into suspectStream

Figure 2.6 Sample query.

Sensor A

Sensor B

Join
Sensor ID &

Location Id

Temperature > 40

Wind Speed > 50

13

Applications of Siddhi

Los Angeles Smart Grid Demonstration Project uses Siddhi. It forecasts electricity

demand, respond to peak load events, and help to improve the sustainable use of

energy [4].

“Grand challenge” solution is explained in [13]. It presents how to map grand

challenge queries into Siddhi event processing language. It further explains about

implementing queries using the engine. This system deals with real-time data

collected from sensors worn by players in a football game. It analyses the running

speed of players, calculates the ball possession, calculates the activity in different

regions of the ground, detects the hits to goal and provides running updates.

Figure 2.7 shows that if the system needs to match the sequence Q1, Q2+, Q1 where

Q1 and Q2 are conditions. The sequence matches when the condition Q1 is followed

by several occurrences of Q2 and another occurrence of Q1. It will listen to the Q1

when an event satisfies it, the system will create a new instance and start to listen to

Q2. Likewise when it received the first event it creates a copy of the state machine

and waits for a matching event. These sequences use regular expressions such as “+”

and “*” [13].

Figure 2.7 Sequence state machine [13].

2.3. The Linked Environments for Atmospheric Discovery (LEAD)

The Linked Environments for Atmospheric Discovery (LEAD) [14] is used by the

meteorological higher education and research communities like US National Weather

14

Service. One of its objectives is to improve our understanding and ability to detect

and analyze the mesoscale atmospheric situations. LEAD allows users to query the

observational data, simulate and predict using numerical atmospheric models like the

Weather Research Forecast (WRF), adjust data by combining observation. Further, it

enables to analyze and mine the observational data and identify the relationships

among them. Finally, visualize and evaluate the data and model the output using

tools. The web services framework in LEAD supports automatic configuration,

dynamic responses, automatic initiation of the processes and optimization to the data

collection which are required with remote observing technologies. LEAD supports

different kind of tools in order to achieve these capabilities using the service oriented

architecture [15]. For example, when someone wants to understand why some of the

severe thunderstorms produce a succession of mesocyclones and multiple tornadoes,

user needs to follow some steps. First, the web-based LEAD portal will allow

accessing the required Doppler radar data. It needs to filter the data where the

thunderstorms were present and process them. The user can apply a data mining

engine to these data sets to identify all cyclic versus non-cyclic storms and the

existence of tornadoes with the surrounding environmental conditions. People can

use LEAD algorithms and models to examine the probability of cyclic storm

behaviour [14].

LEAD Architecture

Complex event processing enables real-time response to the weather in LEAD and

plays a key role. LEAD uses the Calder as the SQL-based event processing system.

LEAD uses SOA concepts at both the application and middleware level. The

distributed SOA provides a secure access to complex weather forecasting models for

meteorology researchers and students. Scientists can set up a weather forecast over a

region and submit a workflow that will run in the future, where a SQL-based CEP

query detects severe storm conditions. Vijayakumar and Plale [16] further explain

about the information model for the provenance service. It contains streams and

queries as its primary entities. The streams can be base streams or derived streams.

15

The information model shown in Figure 2.8 has six main entities. It shows different

kinds of relationships among them. It shows how to append the storm information to

the provenance model when someone wants to enable the prediction for different

stormy conditions. It considers the size (radius) and the location (latitude and the

longitude of the centre) to establish the correlation between the storm and the queries

[16].

Figure 2.8 Provenance information model [16].

2.4. LEAD Cyber Infrastructure Model

One of the key research objectives of LEAD project is to present advances in cyber

infrastructure (LEAD-CI) for meteorology research and education [17]. The LEAD-

CI model presents a model for bridging between the physical environment and e-

Science workflow systems through event processing systems.

The main purpose of LEAD-CI is to address the meteorology research challenges

and process meteorological data and model output independent of format and

physical location. It proposes a model to connect the physical environment and e-

16

Science workflow systems. Further, it proposes efficient stream mining algorithms

[17].

The temporal component of severe weather events such as severe storms and

tornadoes was ignored. This assumption simplifies the mining algorithms because no

need to track each and every state of the weather events over time. LEAD-CI makes

events processing just another web service to connect the real-time observational

data in to a SOA. Figure 2.9 represents the key components of the LEAD-CI

architecture. The Calder stream service is the event processing component of the

LEAD-CI project [17].

Figure 2.9 Key components of the LEAD-CI architecture [17] [18].

2.5. Collaborative Adaptive Sensing of the Atmosphere (CASA)

CASA is a Distributed Collaborative Adaptive Sensing (DCAS) system [19]. It uses

the DCAS architecture to detect and predict hazardous weather using a dense

network of short ranged and low powered radars [19]. CASA consists of a

heterogeneous set of radars and small sensors such as pressure sensors, rain gauges

and micro weather stations. CASA supports several applications as shown in Table

2.1. These applications use one or more data type from one or more radars [20].

17

Table 2.1 CASA applications [20].

Application Description No of

Radars

Data types

Reflectivity Reflectivity of clouds 1 Reflectivity

Velocity Wind velocity 2-3 Doppler velocity,

reflectivity

Network-based

Reflectivity

Retrieval (NBRR)

Reflectivity of clouds detected using

multiple radars

3+ Reflectivity

Nowcasting Short term forecasts of active weather

events

1-3 Reflectivity

Quantitative

Precipitation

Estimation (QPE)

Estimating current precipitation using

the intensity of rain and water droplet

size

1-3 Reflectivity,

differential phase,

correlation

coefficient

Tornado Tracking Detect and track a tornado as it forms

and moves

2+ Doppler velocity,

reflectivity

Researchers can tell whether a tornado is likely to form using the measurements such

as the atmospheric stability, temperature and humidity such that high instability and

high humidity can lead to a tornado. CASA uses event-specific queries in a specific

area of interest; for example, a location with rotating wind can lead to a tornado [20].

The CASA DCAS system includes radars and algorithms which are used for weather

detection and user interfaces. IP1 is a prototype of this system which is located in

Southwestern Oklahoma. The IP1’s goal is to detect a tornado within 60 seconds and

track their centroids. Reflective Threshold (RT) and Storm Cell Identification and

Tracking (SCIT) are the detection algorithms which are used in this project. These

algorithms are used to extract meteorological features of radar data [19].

2.6. CASA and LEAD.

CASA and LEAD are two complementary projects. They are used together to

develop a hardware and software framework which enables real-time multiscale

forecasting. It allows meteorologists to directly interact with instruments. Dynamic

workflow adaptivity, dynamic resource allocation, continuous feature detection and

data mining and model adaptivity are the main goals of this project [18].

18

Figure 2.10 explains the interaction between CASA and LEAD. CASA links radars

with meteorological command and control (MC&C) module. LEAD contains a

modelling loop and it executes forecast models and responses to weather conditions.

The data storage tools are required to automate data staging and data collection.

Monitoring tools are used to enhance the reliability and fault tolerance [18].

Figure 2.10 CASA and LEAD interaction [18].

This system has several features such as distributed, collaborative and adaptive

(DCAS). Distributed refers to the use of many small and inexpensive radars.

Collaborative is the coordination of beams from multiple radars to achieve greater

sensitivity. Adaptive refers the ability to dynamically reconfigure the radars [18].

2.7. Warning Decision Support System – Integrated Information (WDSS-II)

This system is developed to test newly developed severe weather detection

algorithms. It uses data from WSR-88D radars. There are four main categories of

WDSS-II software components. First component reads the available data streams and

prepare them for further use. The second component allows developers to access and

19

manipulate the various data through an Application Program Interface (API). The

third component contains meteorological algorithms and applications to analyze the

data and provide information for forecasters. The final component can be used to

view raw input data and algorithm output [21].

WDSS-II supports severe weather forecaster requirements and provides tools for the

analysis and diagnosis of several conditions such as rotation, hail, wind speed,

lightning and precipitation. It provides automated algorithms that operate on data

from multiple radars [21].

Figure 2.11 shows the creation of diagnostic products using automated algorithm in

real-time. The ellipses show the real-time applications and rectangles shows the

diagnostics products which can be used in weather analyses. Level II is the high

resolution Doppler radar data. National Lightning Detection Network (NLDN)

provides lighting flash data. The incoming data from these sources are process as

NetCDF or XML files to create the diagnostics products using some automated

algorithms. The CASA project uses WDSS-II software’s linear buffer

publish/subscribe mechanism to distribute radar data among various feature detection

[22].

20

Figure 2.11 Creation of diagnostic products using automated algorithms in real-time [22].

2.8. Calder System

The Calder [23] [24]is a distributed events processing system with a centralized

service to accept query requests, optimizes and deploys the queries. This stream

processing system provides access to stream data for different applications and it

follows the Service Oriented Architecture (SOA).

Figure 2.12 presents the architectural components of the Calder. The Calder is

composed with data management and query management sub-systems. These two

sub-systems communicate through the pub-sub system. The data management sub-

system comprises of four services. The Calder architecture is illustrated in Figure

2.13. Grid Data Service (GDS) is used to submit continuous queries. Query planner

service selects an execution plan for the query by decomposing the query into

fragments and distributes it to the query execution engines on different

21

computational hosts [25]. The query planner transforms the SQL query into an

intermediate representation. The stream rowset service is a buffer between timely

streams and programs. It contains a ring buffer of event data per active query in the

etwork so there can be thousands of ring buffers active simultaneously. The input

streams enter into the system through a pub-sub system. The arriving events are

analysed with the depth first traversal of the query tree through the query operators

such as select, project and join. The resulting streams are stored in the ring buffer.

The stream registry service captures domain specific metadata in streams which is

registered with the Calder system [23].

Figure 2.12 Calder architectural components [23] [24].

Single instance of Calder system can spawn multiple internal services and query

processor engines to handle the workload [24]. Calder supports SQL-like continuous

queries with normal constructs and it supports special constructs like EXEC, START

and EXPIRE. Exec is to execute the user defined functions, START is to specify the

start time of query and EXPIRE is to specify the end time of a query [23]. Query 1 is

a sample filtering and mining query. It is applied on NexRad Level II Doppler radar

data to detect the vortex pattern where the intensity value exceeds a specific

threshold then it will issue a response trigger [25].

22

SELECT * FROM NexRad Level II

WHERE southBound >= "28.00"

and eastBound <= "-89.00"

and northBound <= "31.00"

and westBound >= "-91.00"

EXEC_FUNC MDA_Algorithm

 START "2006-03-24T00:00:00.000-05:00"

EXPIRE "2006-03-25T00:00:00.000-05:00";

Query 1 Sample query

Query processing engine accepts queries and converts them to the compiled code and

it runs at each computational host in the network.

Figure 2.13 Calder architecture [25].

Calder system is applied in LEAD which is a meteoroidal forecasting model. In

LEAD the incoming data is extracted as XML events. Calder converts these XML

events into the internal C format for processing and the results are converted back to

XML [25].

MDA algorithm is a feature detection algorithm, which is used to identify candidate

mesocyclone features. ADaM classifier is used to determine a true mesocyclone

feature and Calder generates a WS-Notification message to the forecast simulations

[25]. In one of its projects the WS-Messenger is a publisher-subscriber system which

is used to establish the communication between the Calder components and the

23

provenance service. It uses a database to catalogue the subscriptions. So it is possible

to restore the WS - Messenger server from crashes [16]. Figure 2.14 shows how the

Calder is applied in the LEAD project, which is very much related to the proposed

technique.

Figure 2.14 Application of Calder in LEAD [25] .

2.9. Weather Detection

2.9.1. Introduction

Weather is the state of the atmosphere at a particular place and time, where it

concerns hot or cold, dryness, cloudiness and rain. Common weather phenomena on

earth include wind, rain, snow, dust storms and cloud. Less common events are

tornadoes, hurricane, typhoons and ice storms like natural disasters. These weather

conditions occur due to air pressure differences between different places [26].

Different kinds of techniques are used to detect sudden changes in weather which can

cause major disasters. Early detections of such situations help humans in several

aspects. This section describes some weather detection algorithms, meteorological

variables, weather detection sensors, and data sources in order to provide the

background knowledge of weather detection technologies

24

Tornado Detection

Particular patterns of Doppler weather radar data are used to detect tornadoes. These

radars measure the velocity and the radial direction of the winds in a storm to spot

the rotations of it [27] .

Mesocyclones Detection

The rotating updraft or downdraft structures inside severe thunderstorms are called

mesocyclones. This is usually 2-6 miles in diameter which is much larger than a

tornado [27]. Over 90% of mesocyclones are accompanied by severe weather such as

tornadoes or large hail hence it is important to detect mesocyclones. The

mesocyclone signatures appear as couplets of incoming and outgoing velocities in

radars. Mesocyclones use a velocity signature known as a Rankine Vortex for the

detection process. The national severe storm laboratory mesocyclone detection

algorithm (NSSL – MDA) is one such algorithm which identifies a broader spectrum

of mesocyclones and has an improved probability of mesocyclone feature detection.

[17].

Storm Detection

A threshold value is used in storm detection. The data points with intensities higher

than the specified threshold are identified for further processing. Lightning detectors

indicate electrical activity and weather radar indicates precipitation to detect storms.

LEAD project uses a flexible storm detection algorithm based on user defined

thresholds [26].

2.9.2. Weather Detection Sensors

There are many weather detection sensors which can be used to detect changes in

meteorological variables. Figure 2.15 shows the road weather maintenance system

where the different kinds of weather detection sensors are used to collect data and

pass them to the Weather Monitoring Station. Several authorities will acquire that

information and provide alerts to relevant agencies about difficult situations. These

applications help people in their day-to-day life and reduce the possibility of

25

accidents. The following list describes the available weather detection sensors in the

road weather maintenance system [28].

Figure 2.15 Road weather maintenance system [28].

Weather detection sensors [28]:

1. Ice sensor – It senses the ice conditions by measuring ice crystals and water

droplets.

2. Precipitation Gauge – This measures the precipitation and visibility

conditions.

3. Water droplet measurer – This measures water droplet size, diameter and

concentration.

4. Visibility meter – This measures cloud, precipitation and visibility conditions

5. Thermal Radiation Sensor – This detects thermal radiative emissions from

cloud water and ice crystals.

6. Snow Gauge – This detects and determines the snowfall rate.

7. GPS water vapor sensor – This analyzes water vapor content in the

atmosphere.

26

2.9.3. Meteorological Variables

Several meteorological variables have been introduced in different projects.

Precipitation, wind, temperature and cloud cover are used in [29]. Reflectivity,

differential phase, correlation coefficient and Doppler velocity are introduced in [20].

Relative humidity is used to predict rain in [30]. Wind speed, wind direction, dry

bulb temperature, wet bulb temperature, relative humidity, dew point, pressure,

visibility and amount of cloud with some daily meteorological variables such as gust

of wind, mean temperature, maximum temperature, precipitation, mean humidity,

mean pressure, sunshine, radiation and evaporation are used in [31].

2.9.4. MADIS (Meteorological Assimilation Data Ingest System)

MADIS works as a meteorological observational database and a data delivery system

covering the globe. Figure 2.16 shows the overall architecture of MADIS.

Figure 2.16 Components of MADIS [32].

NOAA data sources and non-NOAA providers ingest data to the MADIS. It decodes

these observational data and converts to a common format. Finally, the

meteorological community can access these data from MADIS observational

database [32].

It is possible to receive real-time data from MADIS. It is recommended to use

Text/XML viewer accounts since the system needs data on demand. If it is required a

continuous data feed then data can be accessed via ftp or LDM (Unidata’s Local

Data Manager) to gain a high performance [32].

27

The API of the MADIS allows users to easily access to the observations and quality

control information. The geographic coverage of this data set is over North and

Central America and Hawaii. Figure 2.17 shows the distribution of the weather

stations. These files contain data from 15 minutes before a given hour and 44

minutes after the hour. So the data are segmented into hourly files. User can specify

the missing value indication as a blank or a numeric value (-99999). User needs to

specify station and observation types, quality control (QC) choices, domain and time

boundaries as seen in Figure 2.18 [32].

Figure 2.17 Weather station display [32].

Figure 2.18 MADIS Meteorological Surface Text/XML Viewer.

28

2.9.5. Weather Detection Algorithms in LEAD

Mesocyclone Detection Algorithm (MDA)

The National Severe Storm Laboratory (NSSL) MDA is an automated mesocyclone

signature detection algorithm. The designed Mesocyclone Detection Algorithm uses

this velocity signature, which represents incoming and outgoing radial velocity [17].

Storm Detection Algorithm (SDA)

This algorithm is similar to an image thresholding algorithm. The data points with

intensities higher than a provided threshold are retained. This SDA uses the region

growing technique and build 3D volumes from these retained pixels. The volumes

that meet the minimum size criteria are kept since storms must have a minimum size

and spatial volume. This algorithm provides the spatial location, maximum

reflectivity, size and depths of the storm as the output [17]

This MDA and the SDA can be used together to identify storms and tornadoes.

2.9.6. Non-precipitation Weather Event

A meteorological phenomenon such as wind, extreme heat or cold is defined as a

non-precipitation weather event. These products issued by the US National Weather

Service (NWS) weather forecast offices are described in [33]. The multi-tiered

concept of the NWS non-precipitation weather warning program explains the

awareness of the event. It has three concepts Outlook, Watch and Warning/Advisory.

An Outlook indicates that a hazardous non-precipitation weather event may develop.

A Watch indicates that the risk of a hazardous non-precipitation weather event has

increased, but unable to provide any certain information. A Warning indicates that an

event is occurring or has a high probability of occurrence. When a warning is issued

there is a threat to people and their property. An advisory is used for less serious

conditions [33]. We can use the proposed system to generate warnings since they

indicate the events which are currently occurring. Table 2.2 describes the non-

precipitation weather warning types.

29

Table 2.2 Non-precipitation warning products.

Warning Description

Dust Storm

Warning

Widespread or localized blowing dust reducing visibilities to ¼ mile or less.

Sustained winds of 25 mph or greater are usually required.

Excessive

Heat

Warning

Heat Index (HI) values forecast to meet or exceed locally defined warning criteria for

at least two days (Typical values: 1) Maximum daytime HI>=105°F north to110°F

south and 2) Minimum night time lows >=75°F).

Extreme

Cold

Warning

Operational in Alaska only. When forecast to occur for at least three consecutive

days: Shelter temperature of -50˚F or colder and air temperature remains below -40˚F

up to the 700-mb level.

Freeze

Warning

Minimum shelter temperature is forecasted to be 32°F or less during the locally

defined growing season.

Hard Freeze

Warning

Minimum shelter temperature is forecasted to be 28°F or less (slightly lower or higher

based on local criteria) during the locally defined growing season.

High Wind

Warning

Wind speeds forecast to meet or exceed locally defined warning criteria. (Typical

values are sustained wind speeds of 40 mph or greater lasting for 1 hour or longer, or

winds of 58 mph or greater for any duration).

 Wind Alerts

Different types of scales are used to define weather alerts depending on the wind

speed and the nature of the area. Saffir-Simpson hurricane category scale is used to

describe the hurricanes in the Atlantic Ocean and Northern Pacific Ocean of the

International Date Line. Enhanced Fujita Scale is used to describe the tornadoes in

the United States and Canada. Beaufort wind force scale is to classify the wind alerts.

Table 2.3 shows a sample classification [33].

Table 2.3 Beaufort classification of wind speed (aka Beaufort Wind Scale).

Wind Speed

(mps)

Beaufort Number Alert

11.2 – 17.4 6-7 Wind warning

17.5 – 24.6 8-9 High wind warning

24.7 – 33 10-11 High wind warning

33.1 – 49.2 12-13 High wind warning

Over 49.2 14-16 Extreme wind

warning

30

Temperature Alerts

Excessive Heat Warnings are issued when it achieves the specific criteria which vary

among the countries. This specific criteria depends on the climate variability and the

effect of excessive heat on the local population. If the maximum daytime temperature

is above 41 oC to 43 oC and the minimum night time temperatures is above 24 oC

then it is considered as a typical Heat Index (HI) value. It considers this extreme HI

values for at least two days to issue a temperature alert [33].

2.9.7. Characteristics of Radar Images

An individual block in a radar image is called a pixel, bin or gate. The radar uses

range and azimuth for measuring location on the radar. Range means the distance in

nautical miles (a nautical mile is equal to 1.15 regular miles) from the radar site.

Azimuth means the angle between the radial that points to the true north and the

radial that points to the pixel of interest. A colored pixel which is called an echo or

return represents the detected data. An echo can be a large group of pixels. These

characteristics are visualized in Figure 2.19 [34].

Figure 2.19 Sample radar image.

31

Base Reflectivity

Base reflectivity is a radar product which displays the amount of energy that has

returned to the radar. This is measured in dBZ (i.e., decibels relative to reflectivity

Z). The scale defines the strength of returns to the radar with colors. The base

reflectivity shows echoes when the radar energy bounces back to it [34].

A reflection of a wave can be formed because of a boundary between warm, moist

air and cool, dry air. This boundary will be seen as a very narrow line of light

reflectivity. It is common to see storms form directly on boundaries when the

atmosphere is unstable and thunderstorms are likely to form [34].

This can be used to identify precipitation in radar images. A soft computing model

for nowcasting of Yes/No rain situations is presented in [35] using Doppler weather

radar reflectivity imageries.

Base Velocity

Base velocity is a radar product, which defines the average wind speed of the

detected particles. This can be measured in knots (kts). Base velocity can be used to

understand the things which are happening in the atmosphere. It can be used to

determine the amount of wind shear (i.e., change of velocity with height). It can be

used to detect the amount of rotation present in the storms, whether it is clockwise or

cyclonic [34].

Volume Coverage Patterns (VCPs)

We can see the abbreviation VCP with a number on some radar displays. It describes

the patterns which the radar scans the atmosphere. The radar may scan at up to 14

different elevation angles depending on the VCP. VCP is labeled as a two or three

digit number (1, 2 or 3 only) [34].

32

3. RESEARCH METHODOLOGY

3.1. High-Level Architecture

The main objective of this study is to apply CEP in weather anomalies and events

detection. This system monitors sensor data and match them with a predefined set of

queries. It detects unusual weather events and provides alerts for further verification.

The high-level architecture of the proposed system is presented in Figure 3.1. The

system is mainly divided in to two sub-parts based on the input types; meteorological

variable based weather detection and the radar image based weather detection.

Meteorological variable based weather detection considers certain values of

meteorological variables extracted from MADIS [32] and compares with predefined

scalar values. Radar image based weather detection considers reflectivity values of

radar images and compares them with a threshold.

Figure 3.1 The proposed architecture.

The system gets two input types, surface observation datasets and radar images.

These inputs are pre-processed separately in order to make them ready for the

detection process. A Python program is used to pre-process surface observation

datasets which are obtained from the MADIS. A MATLAB program is used to pre-

process the radar images and prepare a 2D matrix (240x240) to apply as input events.

MADIS meteorological variable based

weather detection

Weather

Sensors
Siddhi CEP Engine

Data pre-processing

(Python program)

Weather

App-

lications

Weather Detection

Radar image based weather detection

 Data pre-processing

(MATLAB program)

Siddhi CEP Engine

33

These inputs are used as the incoming events of the CEP engine. The system creates

Siddhi manager with specific configurations. Siddhi provides partitions as a feature

to increase the performance of the processing. The program has used partitions to

process the weather station information separately. There are two Siddhi managers,

one is for MADIS meteorological variable based weather detection and the other is

for radar image based weather detection. Siddhi CEP engine identifies event patterns

according to the predefined queries and sends alerts to necessary weather

applications for further analysis.

3.2. Development Environment

This system is developed using the Java 1.8 platform. Data pre-processing parts are

done using Python and MATLAB environment. Siddhi version 3.1.0 is used to

identify event patterns and act on them in real-time. It can process more than 2.5M

events per second on single server commodity hardware. Siddhi supports a large

number of queries via partitioning into different servers and it is horizontally scalable

to support very large event volumes [11]. MATLAB 7.1 is used to do the image pre-

processing works. A Python 2.7.3 based program is developed to download and pre-

process MADIS data.

3.3. MADIS Meteorological Variable Based Weather Detection

MADIS meteorological variable based weather detection considers certain values of

meteorological variables and compares with predefined scalar values to do the

weather detection and warning.

3.3.1. Meteorological Variables

Different meteorological variables have been introduced in different projects.

According to the literature review some of the most relevant meteorological variables

are identified such as relative humidly, pressure, air temperature, wind direction,

wind speed and accumulated precipitation. Our system is able to detect the

significant changes of the selected meteorological variables using the Siddhi CEP

engine.

34

3.3.2. Weather Sensors

This study was made possible in part due to the data made available to the National

Oceanic and Atmospheric Administration by several providers. Users can access

real-time data or an online archive of saved real-time data. Text/XML viewer has

been used since this study deals with saved real-time data and that is available only

with surface observation datasets. The system have considered relative humidity

(RH), air temperature (T), wind direction (DD), accumulated precipitation – 1h

(PCP1H), wind speed (FF), Elevation (ELEV), latitude (LAT) and longitude (LON).

A Python program is used to download the available data for a given date, time and a

location. It saves that information in separate text files with the date and time.

3.3.3. Data Pre-processing

The downloaded data contained unwanted html tags and duplicates. So they were

needed to be pre-processed before proceeding with further calculation. A Python

program is used to remove the html tags and clear the data files. The system has

downloaded these data into several files and needed to combine these files without

any duplicates. Figure 3.2 explains the pre-processing steps. This stage makes the

raw data ready for the event pattern matching process. This output file helps to

simulate weather sensors. It contains the timestamp and the values of the selected

meteorological variables. So the system is able to read data from this file and use in

Siddhi as the input events.

35

Figure 3.2 Pre-processing steps.

3.3.4. Stream Definition

The weather stream is used to implement the MADIS meteorological variable based

using Siddhi CEP engine. It defines the input event pattern with necessary

information.

define stream WeatherStream (timestamp double, wsid

string, prov string, subPro string, rh double,

pressure double, temp double, precip double, dd

double, ff double, precip double, lat double, lon

double)

The attribute list of the weather stream is explained in Table 3.1. The timestamp is

used to add the temporal aspect to data. These sensor data are available from

different providers and weather stations. Weather station id, provider and the sub

provider are used to distinguish the location of the data. The study has considered

relative humidity, pressure, temperature, accumulated precipitation, wind direction

and the wind speed as the significant meteorological variables. Further, latitude and

longitude are used to identify the location of weather stations.

Download data

Clean the files

Combine all

Weather.txt

MADIS

36

Table 3.1 Weather stream definition.

Attribute Data type Description

Timestamp Double Reading time of the particular data

Wsid String Weather station id

Prov String Provider of weather data

subPro String Sub provider of weather data

Rh Double Relative Humidity (%)

Pressure Double Station pressure (P)

Temp Double Air temperature (K)

Precip Double Accumulated precipitation 1 hour (m)

Dd Double Wind direction (deg)

Ff Double Wind speed (m/s)

Lat Double Latitude

Lon Double Longitude

3.4. Radar Image Based Weather Detection

Radar images play a major role in the weather detection field. We need to analyse

these complex radar images in order to identify suspicious pixels on them. The

proposed system processes these radar images and identifies precipitations pixels in a

given radar image. It needs to pre-process these radar images and convert them to

arrays since Siddhi is unable to process images directly. Section 3.4.1 explains a

sample scenario of the radar image based weather detection using the proposed

system.

3.4.1. Image Pre-processing

Siddhi is unable to process images hence the system needs to modify the input data.

Siddhi manager can manipulate arrays so a 2D array will contain the radar image

data. The radar image will be converted to a 2D array (240x240) using a MATLAB

program. Figure 3.3 illustrates the key steps of the program and it is further

explained in Figure 3.4 Each element of this array represents a reflectivity value.

37

01 102 107 99 92 102 102 94

82 0 0 88 97 102 94 92 101

106 100 100 91 87 95 0 0

0 85 89 95 104 100 95 101

101 105 105 95 95 88 0 0

0 0 85 89 95 104 102 …

(a) Input image (b) Matrix with reflectivity values

Figure 3.3 Reflectivity matrix.

Figure 3.4 MATLAB program.

3.4.2. Stream Definition

The following radar stream is used to implement the radar image based weather

detection using the Siddhi CEP engine. It defines the input event pattern with the

necessary information:

define stream RadarStream(timestamp double, matrix string)

Read Image into a

matrix

Process the matrix

Reflectivity

transformation

xxxx.txt

Radar Image

38

Table 3.2 lists the attributes of this radar stream. The timestamp is used to add the

temporal aspect. Matrix is a 2D double array which contains the reflectivity values of

the radar image. Siddhi allows sending any object type in the stream and it checks

the object type at the time it is being used. The stream is defined with the type string

since the type array is not allowed. Therefore, the system sends the array to the

stream and uses custom functions to manipulate them.

Table 3.2 Radar stream definition.

Attribute Data type Description

Timestamp Double Reading time of the particular

data

Matrix String 240x240 matrix which contains

the reflectivity values of the

radar image

3.5. Use Cases

We have used four use cases to cover the common scenarios found in the weather

detection and warning system. First use case mainly compares an input value with a

threshold value while other use cases process the location specific weather

information. The following sub sections explain each of these use cases with more

details.

1. Comparing sensor data with predefined thresholds

a. Comparing meteorological variables with scalar values.

b. Identifying suspicious pixels of radar images.

c. Building queries with multiple meteorological variables.

2. Identifying weather stations with defects and suggest alternative values.

3. Identifying anomalies in weather data.

4. Identifying nearby weather situation in a given location.

While several approaches have been used to implement these use cases such as

neural networks [31], model output statistics [30] and probabilistic extreme forecast

index [29]. However this study presents how Siddhi can be applied in weather

anomalies and events detection to solve these use cases. Separate queries are written

39

to implement these use cases in Siddhi. Use cases 1.a, 1.c, 2, 3 and 4 are

implemented for MADIS meteorological variable based weather detection and 1.b is

implemented under the radar image based weather detection.

3.5.1. Comparing Sensor Data with Predefined Thresholds

Comparing Meteorological Variables with Scalar Values

This use case is implemented using the basic meteorological variables such as

relative humidity, temperature, pressure, precipitation, wind direction and speed.

Queries were written to identify anomalies on these variables by comparing with

scalar values which have been introduced in Chapter 2 – Section 2.9.6.

As an example, Query 2 defines the partitions that consider Beaufort classification of

window speeds (see Table 2.3). Beaufort classification partitions/labels incoming

wind speed data based on a set of thresholds. These partitions can be used to increase

the performance of the system when it deals with a larger number of inputs.

define partition WindSpeed by

 range ff < 17.4 as 'WIND WARNING',

 range ff >= 17.4 and ff <= 49.2 as 'HIGH WIND',

 range ff > 49.2 as 'EXTREME WIND';

Query 2 Define partitions

Query 3 checks the wind speed of the input events, to see whether they exceed 17.4

meters per second. If so it creates a wind alert with weather station id and the time.

This alert could be used to notify other systems.

from WeatherStream [ff > 17.4]

select wsid, timestamp

insert into windAlerts

partition by WindSpeed;

Query 3 Wind alert

40

Identifying Suspicious Pixels of Radar Images

Radar image based weather detection considers reflectivity values of radar images

and compares them with a threshold. Section 3.4 explains more about this use case

under the radar image based weather detection.

Building Queries with Multiple Meteorological Variables

Certain weather detections are based on a combination of weather circumstances,

thus this use case considers combinations of meteorological variable values to

identify such weather circumstances. As an example, wind speed and the wind

direction can be used to issue wind alerts. The Query 4 represents a wind alert and it

triggers when a high wind condition towards the North East direction is identified.

from WeatherStream [ff > 17.4 and dd > 30 and dd < 60]

select wsid, timestamp

insert into windAlerts

partition by WindSpeed;

Query 4 Wind alert

3.5.2. Identifying Weather Stations with Defects and Suggest Alternative Values

When we process sensor data we may find defects which can be either missing

values or incorrect values. Several queries are defined to check for weather stations

with defects based on the location of the weather station. These queries compare the

values of nearby weather stations within a circular area. These missing values

indicate either there is a technical fault in the particular weather station or those

missing values need to be replaced with the nearby weather station values.

GetIsNearStation

This function can be used to compare two locations and return whether they are

situated with a significant distance. Distance between two weather stations is

calculated using the latitude and longitude as Equation 3.1 [38].

Distance = ACOS(COS(RADIANS(90-Lat1)) *COS(RADIANS(90-Lat2))

 + SIN(RADIANS(90-Lat1)) * SIN(RADIANS(90-Lat2))

*COS(RADIANS(Lon1-Lon2))) * 6371 (3.1)

41

Where, Lat1, lon1 are the locations of the first weather station and Lat2, lon2 are the

locations of the second weather station. Given the latitude and longitude of two

weather stations it can find out whether the distance between both is within a

specified limit using the equation 3.1.

GetIsNearTime

This function is used to compare the time difference between two weather stations.

To propose alternative values it needs to compare the both reported times, but the

timestamp is not always equal. Therefor this function is used to match the time with

a deviation value (900 s).

When there are missing values in a particular weather station for a time period of

four hours, Query 5 will check nearby weather station’s temperature value. This

system is tested with hourly data and it is better to consider at least four consecutive

missing values hence it is used four hours as the time window. Further, it can notify

whether there is any technical errors at the first weather station. Missing values are

defined with -99999, so the Query 5 compares the temperature value with -99999

and identifies whether the value is missing or not. It filters the values of nearby

weather stations at a same time and suggest alternative values.

from WeatherStream [temp < -90000.0] #window.time(240 min)

as A join WeatherStream [temp > -90000.0] as B

on sample:getIsNearStation(B.lat, B.lon, A.lat,

A.lon) and sample:getIsNearTime(A.timestamp,

B.timestamp) select A.wsid, B.wsid, B.temp

 insert into tempAlerts

 partition by WeatherStation;

Query 5 Find missing values.

When the user identifies that a particular weather station (e.g., D9545) does not have

values for temperature, it can find alternative values from nearby weather stations.

Query 6 returns the values from nearby weather stations when there is a missing

value in the D9545.

42

from WeatherStream [temp < -90000.0 and wsid == 'D9545']

as A join WeatherStream [temp > -90000.0] as B

on sample:getIsNearStation(B.lat, B.lon, A.lat,

A.lon) and sample:getIsNearTime(A.timestamp,

B.timestamp) select B.wsid, B.temp

 insert into missingAlerts; ");

Query 6 Find alternative values.

3.5.3. Identifying Anomalies in Weather Data

Similarly, when there is any value which deviates from the expected value for any

meteorological variable it compares with nearby weather stations in order to identify

anomalies. Query 7 will check whether the reported value as 100% for the relative

humidity is acceptable by comparing with nearby weather stations.

from WeatherStream [rh == 100.0] as A join

WeatherStream [rh == 100.0] as B on

sample:getIsNearStation(B.lat, B.lon, A.lat,

A.lon) and sample:getIsNearTime(A.timestamp,

B.timestamp) select B.wsid, B.timestamp " +

 insert into rhAlerts;

Query 7 Identify anomalies.

3.5.4. Identifying Nearby Weather Situation of a Given Location

General population are interested in knowing the current weather situation at a given

location. Different types of wind alerts are defined in chapter 2 - Table 2.3. For an

example, if someone wants to know whether a particular area is being issued a

weather warning, then the system allows querying the current wind speed with the

specific range.

3.6. Summary

This chapter mainly explained about the methodology of the proposed system. It is

divided into two parts; MADIS meteorological variable based weather detection and

the radar image based weather detection. It further presents four use cases which can

be used to verify common scenarios of a weather anomalies and events detection

system. Each use case is explained with sample queries so it helps to understand

them properly.

43

The system has used Complex Event Processing technologies to implement these

main use cases. Siddhi CEP engine is used with the available features. Additionally it

consists sub modules to do the pre-processing and test data generation. These sub

modules are developed using Python and MATLAB.

44

4. PERFORMANCE EVALUATION

Next, we evaluate the accuracy and the performance of the proposed weather

anomalies and events detection system. It evaluates the main use cases which are

defined in Section 3.5. Further, it evaluates the performance of the system with

respect to the event detection time. The system should be able to work when the

numbers of events, weather stations, product count or the number of queries are

increased; hence, the main concern of this section is to find out whether the proposed

system can handle a large number of events at once and accurately, when they arrive

at a higher input rate.

4.1. Emulation Setup

Emulation setup is presented in Figure 4.1. The system is being tested in a single

computer environment. Siddhi CEP engine is being used to test the defined test cases

with the sample weather data. The product count, query count and the input event

rate are considered to test the system performance.

4.1.1. System Setup

Hardware

This system is tested in a single computer with Intel i5 – 4200U CPU running at 1.6 -

2.3 GHz, 4 GB of RAM, and 64-bit Windows 8 Pro.

Software

The system is developed using Siddhi version 3.1.0 in a Java 1.8 environment.

Apache Ant 1.9.6 is used as the build tool. It has used MATLAB 7.1 to pre-process

radar images and to create a large sample data file using interpolation. The Python

2.7.3 environment is used to download and pre-process MADIS data.

45

o

Figure 4.1 Evaluation Setup.

4.1.2. Test Data

The system had considered storm ‘Juno’ for the verification [39]. The US National

Weather Service has dropped all winter storm and blizzard warnings for Juno, which

was pounded on 26 – 27th January 2015. Several locations in Massachusetts had

picked a large amount of snow. Most severe coastal flooding occurred in eastern

Massachusetts and wind speed was 50-80 mph. Figure 4.2 shows the top snowfall

totals from Winter Storm Juno. This incident was used to test all the meteorological

variable values.

Figure 4.2 The top snowfall totals from Winter Storm Juno [39].

Around 500 weather stations of the Massachusetts (MA) state were considered for

testing the use cases. These details of the test data vary with the use case so that

information is given under each use case description.

Weather

data

Testcase 1

Testcase 2

22

Events Alerts

.

.

.

Testcase 3

3

Text Files Siddhi

Change query count,

input event rate
Change product

count

46

The downloaded data from MADIS had been used to evaluate the results. The test

data file contains meteorological data from multiple weather stations. The timestamp

was used to add the temporal aspect to the input events, but some test cases have

ignored this timestamp in order to consider the highest input event rate. Radar image

weather detection part was verified with a sample collection of radar images from

[40].

4.2. Comparing Sensor Data with Predefined Thresholds

4.2.1. Comparing Meteorological Variables with Scalar Values

The MADIS API allows downloading weather sensor data from weather stations of

state MA on 27th January 2015. D9545 is one of the weather stations in this area.

The test data file contains 13,063 numbers of sensor data readings of relative

humidity, pressure, temperature, accumulated precipitation, wind direction and the

wind speed for that day. For an example, Figure 4.3 shows how the temperature goes

down due to the storm Juno on 27 the January 2015 at D9545.

Figure 4.3 Temperature data.

The proposed system was able to identify that the temperature has gone down to

262.5K at 22:58 pm (UTC). Several test cases were executed with 13,063 input

events. Table 4.1 shows the total number of detections of the each test case.

262

262.5

263

263.5

264

264.5

265

265.5

266

266.5

0:00 4:48 9:36 14:24 19:12 0:00 4:48

T
em

p
er

a
tu

re
 (

K
)

Time (27/01/2015)

47

Table 4.1 Test results.

Test Case Actual value System Value

Temperature < 263 K 2,645 2,645

Wind speed > 17.4 (high wind) 42 42

Relative humidity == 100.0 168 168

This relative humidity was reported as 100.0% for multiple times from several

weather stations. The summation of these individual event detection counts is equal

to the total event count. Table 4.2 indicates the event detection count distribution

among the weather stations and it concludes that the system was able to detect

weather events successfully.

Table 4.2 Total event count.

Weather station ID Event detection count

44020 2

44013 11

AR250 24

AR511 24

C0863 14

C1532 11

C3008 5

C3094 3

… …

48

4.2.2. Identifying Suspicious Pixels of Radar Images

In order to identify suspicious bins of the radar image, it compared each element of

the array with a threshold value. It was needed to process the matrix in a sub-

function since the Siddhi CEP engine does not support direct array manipulation

functionalities.

Scenario: The input event consist a 240x240 matrix of double values. Threshold of

the precipitation is ‘1’. The following query was used to look for precipitation pixels

in the radar images [40].

from RadarStream [sample:getIsPrecipitation(1, matrix)]

 select matrix

 insert into radarAlerts;

Sample of 1,008 radar images had been used in the image-based weather detection.

Figure 3.3 in Chapter 3 shows a sample radar image. These samples contained

precipitation pixels, therefore, the total number of detections was 1,008. It took 7,092

ms seconds to match these input events with the query. Figure 4.4 indicates that total

sensor data readings was same as the total weather detections.

Figure 4.4 Image based weather detection.

4.2.3. Building Queries with Multiple Meteorological Variables

This use case was verified using the wind speed and relative humidity data. This

winter storm was pounded with heavy snow, high winds and coastal flooding. The

system identified that most of the weather stations in the MA were reported high

wind conditions with a relative humidity as 100% on 27th January 2015. Table 4.3

contains the test results.

49

Table 4.3 Test results.

Time (UTC) Weather station Wind speed Relative humidity

13:56 KHYA 16.4622 100

9:52 KCQX 13.3755 100

4.3. Identifying Weather Stations with Defects and Suggest Alternative Values

The MADIS dataset had missing values for some of the meteorological variables.

Figure 4.5 shows two nearby weather stations; FSKM3 (42.109, -72.124) and AR824

(42.130, -72.098). FSKM3 contained missing values of relative humidity on January

27. Whereas AR824 reported sensor readings throughout the same day. Therefore,

this scenario was applied to find alternative values for missing relative humidity

values of FSKM3 from AR824 weather station. Table 4.4 contains the test results.

Further there can be a technical fault at FSKM3.

Figure 4.5 Nearby weather stations.

Table 4.4 Test results.

Time FSKM3 AR824 Expected

Value

Actual

Result

0.40 -99999 51 51 51

2.00 -99999 59 59 59

2.05 -99999 56 56 56

AR824

FSKM3

50

4.4. Identifying Anomalies in Weather Data

Detected high wind and heavy snow conditions can be verified with nearby weather

station information. For this use case also we considered the weather stations from

Massachusetts. Longitude and latitude are helpful in tracking the locations of the

weather stations and used to find nearby weather stations and their readings at the

same time.

The weather station FSKM3 had reported temperature as 262K at around 13:30 PM

on 26th January 2015. This use case was tested by comparing nearby weather station

values. So the result was that AR824 also had reported the same value for the

temperature at that time. Table 4.5 contains the test results of the weather station

AR824.

Table 4.5 Test results.

Time (UTC) Temperature (K)

12:45 262.0389

14:00 262.5945

14:55 263.15

4.5. Identifying Nearby Weather Situation of a Given Location

If someone wants to find out the current weather situation of Massachusetts as of

January 27, they can query the weather data given the location information. When

user search for the temperature values of the specific weather stations user can get

the relevant values as in Table 4.6. Further, it can find out that the KHYA weather

station has being issued high wind warnings at 13.56PM (UTC) (see Table 4.3).

Table 4.6 Test results

Time (UTC) Weather Station Reported Value (K) Result

6:58 C5897 261.483 261.483

6:55 D9545 263.15 263.15

6:00 FSKM3 264.15 264.15

6:00 VTDOT 261.26 261.26

51

4.6. Detection Time with Different Workloads

4.6.1. Increasing Number of Queries

This test case had been executed with a 648,350 events from 25th January 23:58 pm

to 27th January 22:58 pm (UTC). The results are shown in Table 4.7. Timestamp was

ignored, so that we could play the entire dataset as arriving within a very short time.

In this case it took 13 ms to feed the data which had 648,350 samples. Figure 4.6

depicts that the total detection time increases with the number of queries. But the

system was able to handle the workload effectively.

Table 4.7 Comparison of the detection time with the query count.

Figure 4.6 Comparison of the detection time with the query count.

4.6.2. Increasing Number of Weather Stations

The purpose of this test case was to compare the time taken to read these data and the

time taken to detect abnormal weather readings while increasing the weather station

count. Table 4.8 shows the test results. It is obvious in Figure 4.7 that the reading

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5

D
et

ec
ti

o
n

 t
im

e
(m

s)

Query count

No of queries Total detection time (ms) No of detections

1 11,906 32,000

2 12,852 256,000

3 13,719 288,000

4 14,321 288,000

5 14,872 320,000

52

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0 500 1000 1500 2000 2500 3000 3500

T
O

T
A

L
 T

IM
E

 (
M

S
)

NUMBER OF INPUT EVENTS

Total reading time (ms) Total detection time (ms)

time and the detection time had increased with the increasing weather station count.

The system was able to match the sensor readings with the predefined queries, hence

the total number of detections were accurate. The time difference between the sensor

reading time and the detection time was almost same such that it did not depend on

the weather station count.

Table 4.8 Comparison of reading time and the detection time with the input event count.

 Figure 4.7 Comparison of reading and detection time with the input event count.

4.6.3. Increasing Input Product Count

Entire product list of MADIS was considered to find how the system performs with a

large set of meteorological products. Queries were written to identify anomalies with

the basic meteorological variables. Though the system performance doesn’t change

significantly with the number of product count.

No of input events No of

detections

Total reading

time (ms)

Total detection

time (ms)

Time difference

(ms)

415 2 1,864 1,004 860

830 4 3,746 2,921 825

1660 8 7,544 6,625 919

3319 16 15,114 14,288 826

53

4.6.4. Increasing Input Event Rate

The main concern of this test case was to increase the input event rate and check the

performance of the system. The test data file was created using MATLAB. Hourly

data from 25th January 23:58 pm to 27th January 22:58 pm (UTC) was used to create

the test file. The original count of test data was 48. The MATLAB program created

another sequence of data between the original data using interpolation.

The test case was executed with 648,350 input events within 51.6 seconds therefore,

the input event rate was 12,572. Total event detections were 345,424 within 50.6

seconds and the throughput was 12,802. This concludes that Siddhi performs well

with higher input rates and it can handle large number of data at a time.

4.7. Detection Delay

This test case is used to verify whether the system is able to identify the patterns with

the minimum latency. So the reported time gap between receiving and identifying a

specific event was 1 ms when the system has 11 parameters.

4.8. Calder vs Siddhi

Calder and Siddhi both are stream processing systems and they use SQL-like event

processing languages. Siddhi can implement multiple streams using a single input

event queue by multiplexing them. It has the ability to dynamically add new data

formats and user defined functions. Further it sends the input event only to the

corresponding executor and Siddhi eliminates duplicate states. Siddhi had used these

techniques to improve its performance so it confirms the relevance of Siddhi CEP

engine in this study.

4.9. Summary

First, we evaluated the accuracy of the four use cases. It compared meteorological

variables with predefined thresholds to identify impending weather events, identified

weather stations with defects and suggested alternative values, identified anomalies

54

in sensor data and identified weather situations around a given location. These use

cases were tested with the winter storm “Juno”. The system managed to successfully

identify sensor data.

Second, several test cases were executed to evaluate the performance of the system.

The event detection throughput was calculated with different number of event

products and input counts. To increase the system’s workload, a larger number of

queries and a larger input event rates were considered. The system performed well in

each test case where the detection delay was around 2 ms.

55

5. CONCLUSIONS

5.1. Summary

The novel contribution of this thesis is to provide the monitoring phase capabilities to

a typical Climate/Weather Observatory (see Figure 1.1) using the idea of complex

event processing. The idea of complex event processing is relatively simple to use. It

adds agility to a weather detection system by allowing it to detect primitive weather

events and anomalies by simply writing a SQL-like query, add dynamic queries on

the fly, as well as enables scalability in terms of number of methodological variables,

weather stations, and queries. Moreover, such a system can scale to high arrival rates

of sensor readings.

This system was divided into two parts considering the input data, which were

surface observational data and radar image data. The basic weather detection

scenarios were created based on these input event types. It presented several use

cases and demonstrated how to apply Siddhi CEP engine to solve these use cases. It

compared meteorological variables with predefined thresholds to identify impending

weather events, identify weather stations with defects and suggest alternative values,

identify anomalies in sensor data and identify weather situations around a given

location. These use cases address the basic needs of a typical weather monitoring

center such as the proposed Climate Observatory system for Sri Lanka, as it provides

basic real-time, weather monitoring and detection functionalities.

The performance and accuracy of the proposed weather anomalies and events

detection system were confirmed using a recent weather incident (winter storm

“Juno”). The system was able to match the input events with the predefined queries

successfully. These use cases worked effectively with the existing performance of

Siddhi and the system was able to handle more than 10,000 events per second.

Several approaches have been used to do weather anomalies and events detection but

CEP can be identified as the most suitable contemporary technique to implement

these use cases. Neural network based weather detection system [31] needs to train

separate neural for each and every use case, but using Siddhi CEP engine we can

easily add a new query to enhance the functionalities. Several queries can be defined

56

parallel to implement these use cases rather than doing multiple comparisons

sequentially.

The LEAD project was a very closely related to the research area, which uses CEP in

weather detection. They had used Calder as the CEP engine. We used Siddhi as the

CEP engine which is an open source CEP engine and it can be applied in weather

anomalies and events detection easily. Calder lacks the ability to dynamically add

new data formats and user defined functions, whereas Siddhi has the capability of

adding user defined functions easily. The system was able to implement the use cases

by only adding custom functions without having to change the Siddhi codebase and

that concludes the effectiveness of the extension points of Siddhi.

5.2. Problems Encountered

It was required to process radar images since they were used in several weather

detection algorithms. There were no functions to manipulate images in Siddhi thus

the system converted these images into 2D arrays and used Siddhi extensions to

process arrays. Currently Siddhi does not support inbuilt array manipulation

functions such as “get the maximum value of the array” and “get number of

rows/columns” so the system had to use traditional array manipulation functions to

process these 2D arrays.

This system can be used as an early weather monitoring system. In order to confirm

these conditions further, it requires using complex and resource consuming weather

detection algorithms as explained in Chapter 2.

We faced several limitations when trying to use several kind of weather data

together. For an example we found lightening data from WSI weather data, but we

could not find temperature information at the same locations.

5.3. Future Work

Meteorology is a vast research area. This system has implemented four key use cases

to achieve the main goal of the study but more use cases can be defined for further

verifications.

57

5.3.1. Enhancements to CEP Engines

Some improvements have been identified, which are needed to be done not only in

Siddhi but also in other CEP engines. Currently, Siddhi needs to support type object

in stream definitions so it will be easy to send any type of object. It is required to

improve object type into specialization like arrays and implement inbuilt array

manipulation functionalities within Siddhi. Then the Siddhi can provide custom

functions for array operations such as getArrayElement (array, index), min, max, and

hasValueGreaterThan(..). Siddhi does not have in built functions to do image

processing functionalities. Currently the images are required to be converted to

arrays before apply with Siddhi.

5.3.1. Storm Cell Identification and Tracking

We can implement weather detection algorithms using CEP since Siddhi allows to

create user defined functions. Storm cell identification and tracking is such an

algorithm. This algorithm can be used to identify storm cells. It has four sub

functions: storm cell segments, storm cell centroids, storm cell tracking and storm

position forecast. A storm cell is a three dimensional region, which has reflectivity

values above a significant value [36].

Storm cell segments

This algorithm combines the individual range bins into storm segments along the

radial. Figure 5.1 (a) shows a storm segment, which is a run of contiguous range bins

(each with 1 deg x .54 nm) along a radial with reflectivity values greater than or

equal to a specified threshold.

(a) (b)

58

(c)

Figure 5.1 Storm cell Identification (a) Storm segment (b) Mass weighted center (c) Storm

centroid (* is the centroid).

Storm centroids

This algorithm groups cell segments into components, computes the components’

attributes, vertically correlates the components into cells and computes the cell’s

attributes. A centroid is the mass weighted center of a three dimensional region of

significant reflectivity as shown in Figure 5.1 (c).

Storm cell tracking

This algorithm monitors the movement of storm cells by matching storms from

current volume scan to the next volume scan.

Storm position forecast

This algorithm will predict the future centroid locations based on a history of their

movements. It computes the forecast movement using the linear least squares

extrapolation of the storm’s previous positions.

Siddhi can be used to identify the storm cell segments where it basically compares

the reflectivity values with specified threshold value (see Appendix A) [37] [41].

5.3.2. Geo-dashboard in Siddhi

Geo-dashboard is introduced by WSO2 and it can be used to process spatial data.

Users can see the movements of spatial objects in real-time with their rotations in the

space. Spatial object data is transferred as a Geojson[] object from the CEP

websocket output adapter to the web browser in the CEP geo-dashboard. Geojson

59

point is used to place a marker on the map. This point can be used to update the

location of the incoming events. They have identified several features of this geo-

dashboard such as speed alerts, proximity alerts, geo-fencing and history playback.

Proximity alerts are generated when two or more objects become close in their

proximity by a predefined value from the user as seen in Figure 5.2.

This geo-dashboard can be applied in a weather monitoring system. Movement of

rain or a wind can be simulated and it can be used to detect the sudden weather

changes in nearby by places [42].

Figure 5.2 Geo-dashboard.

60

6. REFERENCES

[1] Y. Sokha, K. Jeong, J. Jonghyun, and W. Joe, "A complex event processing

system approach to real-time road traffic event detection," Journal of

Convergence Information Technology (JCIT), vol. 8, no. 15, Oct. 2013.

[2] Coordinating Secretariat for Science Technology & Innovation, "Developing a

national climate observatory system for Sri Lanka," Nov. 2015.

[3] N. Mluseux, J. Mattioli, C. Laudy, and H.Soubaras, "Complex event processing

approach for strategic intelligence," In Proc. FUSION 2006, no 200, July 2006.

[4] S. Perera. (2011, Dec 05). A second look at complex event processing [Online].

Available: http://www.slideshare.net/hemapani/Siddhi-a-second-look-at-

complex-event-processing-implementations

[5] L. J. Fulop, G. Toth, R. Racz, J. Panczel, T. Gergely, and A. Beszedes, "Survey

on complex event processing and predictive analytics," July, 2010.

[6] J. Dunkel, "On complex event processing for sensor networks," In Proc. 9th IEEE

International Symposium on Autonomous Decentralized Systems (ISADS), pp.

249-255, Athens, Mar. 2009.

[7] Q. Zhou, Y. Simmhan and V. Prasanna, "On using semantic complex event

processing for dynamic demand response optimization," In Proc. CORR

abs/1311.6146, 2013.

[8] K. Tailor and L. Leidinger, "Ontology-Driven Complex Event Processing in

Heterogeneous Sensor Networks," In Proc. 8th Extended Semantic Web

Conference, pp. 285-299, 2011.

[9] J. P. Calbimonte, H. Jeung, O. Corcho and K. Aberer, "Semantic Sensor data

search in a large scale federated sensor network," In Proc. 4th International

Workshop on Semantic Sensor Networks, pp. 14-29, 2011.

[10] J. P. Calbimonte, H. Jeung, O. Corcho and K. Aberer, "Enabling query

technologies for the semantic sensor web," International Journal on Semantic

Web and Information Systems, pp. 43-63, 2012.

[11] WSO2 Complex Event Processor [Online].

Available: http://wso2.com/products/complex-event-processor/.

[12] S. Suhothayan , I. S. Narangoda, S. Chathuranga, K. Gajasinghe, S. Perera, and

V. Nanaykkara, "Siddhi: A second look at complex event processing

architectures," In Proc. IEEE Gateway Computing Environments Workshop

(GCE), 2011.

[13] “Implementing DEBS grand challenge using WSO2 Siddhi CEP engine,”

unpublished.

61

[14] K. K. Droegemeier et al., "Linked environment for atmospheric discovery

(LEAD): A cyber infrastructure for mesoscale meteorology research and

education," In Proc. 20th Conf. on Interactive Information Processing Systems for

Meteorology, Oceanography and Hydrology, Seattle, Jan. 2004.

[15] K. K. Droegemeier, "Transforming the sensing and numerical prediction of high-

impact local weather through dynamic adaptation," In Proc. Phil. Trans. R. Soc.

A (2009) 367, pp. 885–904, Dec. 2008.

[16] N. N. Vijayakumar and B. Plale, "Tracking stream provenance in complex event

processing systems for workflow-driven computing," In Proc. EDA-PS

Workshop, 2007.

[17] X. Li, B. Plale, N. Vijayakumar, R. Ramachandran, S. Graves, and H. Conover,

"Real-time storm detection and weather forecast activation through data mining

and events processing," Earth Science Informatics , vol. 1, no. 2, pp. 49-57,

2008.

[18] B. Pale et al., "CASA and LEAD: Adaptive cyber infrastructure for real-time

multiscale weather forecasting," IEEE Computer, vol. 39, no. 11, pp. 56-64,

2006

[19] M. Zink, E. Lyons, D. Westbook, J. Kurose, and D. Pepyne, "Closed-loop

architecture for distributed collaborative adaptive sensing of the Atmosphere:

Meteorological Command & Control," International Journal of Sensor

Networks(IJSNet), InderScience, 2007.

[20] H. M. N. D. Bandara and A. P. Jayasumana, "Distributed, multi-user, multi-

application, and multi-sensor data fusion over named data networks," Computer

Networks, vol. 57, no. 16, pp. 3235-3248, Nov. 2013.

[21] K. Hondl, "Capabilities and components of the Warning Decision Support

System - Integrated Information (WDSS-II)," In Proc. American Meteorological

Society Annual Meeting, Long Beach, 2003.

[22] V. Lakshmanan, "The warning decision support system – integrated

information," Weather and Forecasting, vol. 22, no. 3, pp. 596-612, 2007.

[23] N. N. Vijayakumar, Y. Liu and B. Plale, "Calder query grid service: Insights and

experimental evaluations," In Proc. CCGrid Conference, 2006.

[24] N. N. Vijayakumar and B. Plale, "Towards low overhead provenance l in near

real-time stream filtering," In Proc. IPAW, 2006.

[25] N. N. Vijayakumar, B. Plale, R. Ramachandran, and X. Li, "Dynamic filtering

and mining triggers in mesoscale meteorology forecasting," In Proc. IEEE

International Geoscience and Remote Sensing Symposium (IGARSS’06), Denver,

Aug. 2006.

[26] Wikipedia contributors. (2015, Sep). Weather [Online]. Available:

62

https://en.wikipedia.org/wiki/Weather.

[27] Tornado Detection [Online]. Available:

https://www.nssl.noaa.gov/education/svrwx101/tornadoes/detection/.

[28] Weather applications - weather detection [Online]. Available:

http://fresno.ts.odu.edu/newitsd/ITS_Serv_Tech/weather_app/

weather_applications_Weather_Detection.html.

[29] F. Lalaurette, "Early detection of abnormal weather conditions using a

probabilistic extreme forecast index," Quarterly Journal of the Royal

Meteorological Society, 129, pp. 3037- 3057, Mar. 2006.

[30] H. R. Glahn and D. A. Lowry, "The use of Model Output Statistics (MOS) in

objective weather forecasting," Journal of Applied Meteorology, vol. 11, pp.

1203-1211, 1972.

[31] M. Hayati and Z. Mohebi, "Temperature forecasting based on neural network

approach," World Applied Sciences Journal, vol. 2, no. 6, pp. 613- 620, 2007

[32] National Oceanic and Atmospheric Administration. (2010): Meteorological

Assimilation Data Ingest System [Online]. Available : http://madis.noaa.gov/

[33] National Weather Service. (2011, Nov). WFO non-precipitation weather

products specification [PDF]. Available :

http://www.nws.noaa.gov/directives/sym/pd01005015curr.pdf.

[34] J. Duda, "How to use and interpret Doppler weather radar".

[35] D. Dutta et al., "Nowcasting of Yes/No rain situations at a station using soft

computing technique to the radar imagery," Indian J Radio & space phys, Apr.

2010.

[36] U.S. Department of Commerce National Oceanic and Atmospheric

Administration, 2006: Doppler Radar Meteorological Observations. Federal

Meteorological Handbook, 11.

[37] Johnson et al., "The storm cell identification and tracking algorithm: An

enhanced WSR-88 D Algorithm," Weather Forecast (USA), 1998.

[38] BlueMM. (2007, Jan). Excel formula to calculate distance between 2 latitude,

longitude (lat/lon) points (GPS positions) [Online].

Available: http://bluemm.blogspot.com/2007/01/excel-formula-to-calculate-

distance.html.

[39] L. Lam et al. (2015, Jan). Winter storm Juno hammering New England [Online].

Available:http://www.weather.com/storms/winter/news/winter-storm-juno-

blizzard-boston-nyc-new-england.

[40] [Online]. Available:

https://dl.dropbox.com/u/37693320/VisualizationExercise1/Virring.zip

63

[41] A. S. Lanpher, "Evaluation of the storm cell identification and tracking algorithm

used by the WSR--‐88D," 2012.

[42] WSO2 team. (2015, Jan 21). Geo spatial data analysis using WSO2 complex

event processor [Online].

Available: http://wso2.com/library/articles/2015/01/article-geo-spatial-data-

analysis-using-wso2-complex-event-processor-0/.

64

APPENDIX A: STORM CELL SEGMENTS

BEGIN ALGORITHM (STORM CELL SEGMENTS)

1.0 DO FOR ALL (radials of the elevation scan)

1.1 DO FOR ALL (THRESHOLDS (Reflectivity))

1.1.1 DO FOR ALL (SAMPLE VOLUMEs of the current radial)

1.1.2 IF (REFLECTIVITY FACTOR(Sample Volume) is greater than

or equal to THRESHOLD (Reflectivity))

 THEN

1.1.2.1 Begin or continue POTENTIAL CELL SEGMENT

1.1.2.2 IF (Beginning POTENTIAL CELL SEGMENT)

 THEN

1.1.2.2.1 COMPUTE (beginning RANGE(Segment))

 END IF

1.1.2.3 COMPUTE (ending RANGE(Segment))

1.1.2.4 Reset NUMBER OF DROPOUTS to zero.

1.1.3 ELSE IF (REFLECTIVITY FACTOR(Sample Volume) is greater

than or equal to (THRESHOLD (Reflectivity) -

THRESHOLD (Dropout Reflectivity Difference)) AND

(continuing POTENTIAL CELL SEGMENT))

 THEN

1.1.3.1 COMPUTE (NUMBER OF DROPOUTS)

1.1.3.2 IF (NUMBER OF DROPOUTS is greater than

 THRESHOLD (Dropout Count))

 THEN

1.1.3.2.1 End POTENTIAL CELL SEGMENT

 END IF

1.1.4 ELSE IF (Continuing POTENTIAL CELL SEGMENT)

THEN

1.1.4.1 End POTENTIAL CELL SEGMENT

 END IF

1.1.5 IF (POTENTIAL CELL SEGMENT is ended)

 THEN

1.1.5.1 COMPUTE (LENGTH(Segment))

1.1.5.2 IF (LENGTH(Segment) is greater than or equal to

THRESHOLD (Segment Length(Reflectivity

Threshold)))

THEN

1.1.5.2.1 Label POTENTIAL CELL SEGMENT a CELL SEGMENT

 END IF

 END IF

 END DO

 END DO

1.2 DO FOR ALL (THRESHOLDS(Reflectivity))

1.2.1 DO FOR ALL (CELL SEGMENTS for this THRESHOLD

(Reflectivity))

1.2.1.1 COMPUTE (maximum REFLECTIVITY FACTOR(Segment))

1.2.1.2 COMPUTE (MASS WEIGHTED LENGTH(Segment))

1.2.1.3 COMPUTE (MASS WEIGHTED LENGTH SQUARED(Segment))

1.2.1.4 COMPUTE (NUMBER OF SEGMENTS(Reflectivity Threshold))

1.2.1.5 WRITE (maximum REFLECTIVITY FACTOR(Segment))

1.2.1.6 WRITE (MASS WEIGHTED LENGTH(Segment))

1.2.1.7 WRITE (MASS WEIGHTED LENGTH SQUARED(Segment))

1.2.1.8 WRITE (beginning RANGE(Segment))

1.2.1.9 WRITE (ending RANGE(Segment))

1.2.1.10 WRITE (AZIMUTH)

1.2.1.11 WRITE (THRESHOLD (Reflectivity))

END DO

1.2.2 WRITE (NUMBER OF SEGMENTS(Reflectivity Threshold))

END DO

END DO

2.0 COMPUTE (average DELTA AZIMUTH)

3.0 WRITE (ELEVATION)

65

4.0 WRITE (average DELTA AZIMUTH)

END ALGORITHM (STORM CELL SEGMENTS)

Beginning RANGE(Segment)

RSbeg = SVbeg*SVL – SVL/2

Where,

RSbeg = The beginning RANGE(Segment), the RANGE(Slant) to the front (closest

to the radar) of the first sample volume of a cell segment, in km

SVbeg = The first sample volume of a cell segment

SVL = The length (in slant range) of a sample volume in km

Ending RANGE(Segment)

RSend = SVend*SVL + SVL/2

The ending RANGE(Segment), the RANGE(Slant) to the back of the last sample

volume of a cell segment, in km.

Where,

SVend = The last sample volume of a cell segment

Number of DROPOUTS

ND = ND + 1

The number of contiguous sample volumes with a reflectivity factor less than the

threshold (Reflectivity) by less than or equal to the threshold (Dropout reflectivity

difference)

LENGTH (Segment)

LEN = RSend – Rsbeg

Maximum REFLECTIVITY FACTOR (Segment)

DBZE𝑎𝑣𝑔𝑘 = [∑ 𝐷𝐵𝑍𝐸𝑗]/𝑅𝐴

𝑗=𝑘+𝐼𝑁𝑇(
𝑅𝐴
2

)

𝑗=𝑘−𝐼𝑁𝑇(
𝑅𝐴
2

)

𝐷𝐵𝑍𝐸𝑚𝑎𝑥 = 𝐷𝐵𝑍𝐸𝑎𝑣𝑔𝑘 if 𝐷𝐵𝑍𝐸𝑎𝑣𝑔𝑘 ≥ 𝐷𝐵𝑍𝐸𝑚𝑎𝑥

66

Where,

DBZE = The REFLECTIVITY FACTOR(Sample volume), the effective radar

reflectivity factor of a sample volume, in dBZe

DBZEavg = The average reflectivity factor of a group of sample volumes, in dBZe.

RA = The REFLECTIVITY AVERAGE FACTOR, the number of sample volumes

used for determining the maximum (average) reflectivity factor (3).

INT is a function whose magnitude is the largest integer that does not exceed the

magnitude of the argument. Index j is constrained to the interval [SVbeg, SVend].

MASS WEIGHED LENGTH (Segment)

The mass density weighted length of a cell segment, in kg/km2

MWL = ∑[(MSV𝑘)(RS)]

𝑘

Where MSV = (MWF)(PIN)

Where PIN is computed from the relation ZE = (MMF)(PIN)PIE , and ZE = 10(DBZE/10)

If DBZE > MRM, DBZE = MRM, in km.

Where RS = RANGE (Slant), the slant range to the center of a sample volume

 MWF = MASS WEIGHTED FACTOR, a factor used in computing the mass

of a sample volume (53 x 103), in (hr)(kg)/(km2m2).

 MMF = The MASS MULTIPLICATIVE FACTOR

