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P2P in Collaborative Adaptive Sensing of 

the Atmosphere (CASA)

� 2 papers – Scalable topology construction without  high bandwidth links

� Bounded node degree & lower diameter are desirable
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Current P2P systems
• Highly scalable
• Locate existing content
• Enforce fairness
• Receiver driven communication

CASA
• Data generation
• Data/resource location
• Data transfer
• Data fusion

Future P2P systems
• Generate content
• Real-time content / resource 

location
• Emphasis on performance
• QoS guarantees



A Scalable, Commodity, Data 

Center Network Architecture

M. Al-Fares, A. Loukissas, and A. Vahdat

In Proc. of the ACM SIGCOMM Conference, Seattle, WA, Aug. 2008.



Common data center architecture

� 10s of 1000s of servers in a cluster

� External traffic

� Internal traffic

� Inter-node communication bandwidth is the bottleneck  
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Building communication fabric

� Specialized hardware + protocols

� High-end switches/routers as you 
go up the hierarchy

� High cost per port

� Changes to applications

� Oversubscription to reduce cost

� Lower bisection bandwidth

� Commodity hardware

� Lower cost

� No changes to TCP/IP 
applications

� Poor bandwidth scalability
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Hierarchical tree



Fat tree

� Goals

1. Lower the cost by utilizing commodity hardware 

2. Scalable interconnection bandwidth

3. No changes to applications

� Build a fat tree (Leiserson, 1985)
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All switches are Layer 3
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Fat tree (cont.)

� All switches are k-port

� k pods

� k3/4 hosts

� (k/2)2 core switches

� k2 switches in all pods

� 1.25k2 total switches

� Servers are in k2/2 subnets

� 3k3/4 links

� (k/2)2 equal cost paths
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How can we make use of multiple paths?



Addressing

� Assume 10.0.0.0/8 IP block

� Pod switches – 10.pod.switch.1

� pod ∈ [0, k – 1]

� switch ∈ [0, k – 1], left � right, bottom � top

� Core switches – 10.k.j.i

� j, i ∈ [1, k/2], left � right

� Hosts – 10.pod.switch.ID

� ID ∈ [2, k/2 + 1], left � right
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Routing table

� 2 level routing table

� Prefix table – Reflect subnet

� Suffix table - Reflect host ID

� Allow traffic to be evenly spread & follow the same path

� k/2 + k/2 table entries

� Could implement as a TCAM

� TCAM - Ternary Content Addressable Memory

� Can store don’t care terms
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At switch 10.2.2.1

Implementation



Routing table (cont.)

� Central entity assigns routing table for each switch

� Routing table in pod switches

� k/2 prefixes for subnets in same pod

� Only in top aggregation layer switches

� k/2 suffixes for hosts in other pods/subnets

� Output port is (ID – 2 + switch)mod (k/2) + k/2

11

0

3
2

1

10.2.0.3 10.3.0.3



Dynamic routing

� It’s possible that 2 flows still use the same path

1. Flow classification – Local knowledge 

� Dynamic port reassignment of flows by switches

� Periodically reassign flows in few of the ports

2. Flow scheduling – Global knowledge

� Switches assign each flow to least loaded port

� If flow exceeds a certain threshold, notify central scheduler

� Central scheduler tracks all flows & try to reassign them into non-
conflicting paths

� Pick a non-congested path from a core switch

� Inform selected switches (lower & upper) in source pod
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Performance analysis - Implementation

� TCAM based routing table implementation on NetFPGA

� NetFPGA – IPv4 router implementation with TCAM

� Large-scale evaluations

� Prototype using Click

� Modular software router architecture

� TwoLevelTable, FlowClassifier, FlowReporter, FlowScheduler

� Build a 4-port fat tree

� Simulated 20 switches & 16 hosts using 10 machines

� Used 48-port 1 Gbps switch to interconnect 10 machines

� Each host generates traffic at 96 Mbps

� To make the comparison with hierarchical tree easy
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Performance analysis – Bandwidth

� Inter-pod – flow scheduler is best, hierarchical tree is worst

� 2 level table use same outgoing path if destination ID is same

� Lack of global knowledge hinder performance of flow classification

� With global knowledge flow scheduling is the best
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* Stridx (i) = (x + i) mod 16 * Staggered Prob(psub, ppod)

* Inter-pod Incoming – Multiple pods send to different hosts in same pod, same core switch

* Same-ID Outgoing – Destination host have the same ID, congestion at aggregation layer

As a % of 
bisection 

bandwidth
(1.536 Gbps) 

of fat tree



Performance analysis (cont.)

� Overhead of central scheduler is low, relatively low resources

� Cost of conventional hierarchical design is prohibitive
15

48-port 1 Gbps at edge @ $7000
128-port 10 Gbps at aggregate & edge @ $700,000



Packaging

� Design for k = 48

� 48 switch rack

� 576 hosts in 12 racks

� 576 core switches

� 12 switches in a pod

� 2D design to reduce cable 
lengths
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576 wires going out to hosts



Critique

� Pros

� Well written

� Maintain full bandwidth for most communication patterns

� Relatively low cost

� No changes to TCP/IP applications

� Cons

� Need modification to routers

� Need a flow scheduler

� Excessive wiring – even with specially designed racks

� Configuration of many switches (Mysore, 2009)

� VM migration needs reassignment of IP address (Mysore, 2009)

� VLANs could restrict redundant links

� Authors are working on a layer 2 solution (Mysore, 2009)
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Building Low-diameter 

Peer-to-Peer Networks

Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal

IEEE Journal on Selected Areas in Communications, vol. 21, no. 6, Aug. 
2003, pp. 995-1002.



Peer-to-peer networks

� A distributed system without any central control

� Typically peers are identical in functionality

� Tit-for-tat strategy

� Tremendous scalability
� Millions of peers around the world

� Many application domains
� File sharing, IPTV, VoIP, CPU cycle sharing

� Heterogeneous peers

� Peer churn & failure
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Motivation – Gnutella protocol

� Content discovery is based on broadcasts

� Random walk with TTL

� Content discovery is not guaranteed

� Diameter of the graph could grow arbitrarily 
� Specification is open on how to & how many neighbors to maintain
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Solution

� Goals

� Construct the P2P topology such that

� It is connected

� Bounded node degree

� Logarithmic diameter

� Approach

� A centralized node to enable new & lost connections

� Distributed algorithm to maintain node connectivity

� Define set of parameters that achieve above goals
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P2P protocol

� Central host server
� Maintains K cache nodes

� New node
� Connects to D cache nodes

� Called d-node

� Cache node
� Go out of cache after getting C

connections

� Called a c-node

� Add a d-node neighbor to cache

� Maintains a preferred connection

� Node degree ∈ [D, C+1]
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K = 3, D = 2, C = 4

Cache node New node

d-node c-node

Preferred connection



P2P protocol (cont.)

� If a connection is lost
� Reconnect to a cache node 

� With probability D/d(v)

� d-nodes will always reconnect

� If preferred connection is lost
� Reconnect to a cache node

� Cache replacement rule
� v is a cache node that is ready to 

go out of cache

� v may not have any d-node 
neighbors

� Then check its predecessor 
cache nodes
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D/d(v)
v
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Assumptions

� Arrival & departure processes

� New node arrival ~ Poisson(λ)

� Time that a node stay in system ~ Exponential(µ)

� Assume most peers are using dial-up links

� Similar behavior conformed by measurements (Saroiu, 2002) & 
(Guillemin, 2008) for protocols without sharing incentives

� Size of the network N = λ/µ

� Assume λ = 1

� Let the network at time t be Gt = (Vt, Et)

24



Key theorems & lemmas

� Theorem III.1 – Size of the network N – o(N)

� Lemma III.1 – Bounded node degree

� A replacement d-node can be found w.h.p when C > 3D + 1

� Theorem III.3 – Gt is connected w.h.p

� Lemma III.4 – Each node is connected to a cache node

� Lemma III.5 – 2 cache nodes are connected w.h.p

� Corollary III.1 – Network rapidly recovers from 
disconnections 

� Theorem III.5 – Diameter of the network is O(log N)

� Lemma IV.1 – There is a constant probability of some 
nodes are isolated
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Bounded node degree

� A leaving cache node needs to find a replacement d-node

� Else network can’t accept new connections

� Or has to break node degree bound C + 1

� A replacement node needs to be found with high 
probability

� Lemma III.1

� Let C > 3D + 1, then at any time t ≥ a log N (a > 0) no of d-nodes in 
network (with high probability) is

� Consider interval [t – N, t]
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Bounded node degree (cont.)

� Number of new connections = DN(1 + o(1))

� E[ Number of reconnections in unit time] = 

� Number of cache nodes need in [t – N, t] 

� All these nodes will become c-nodes

� N + o(N) nodes in network at any time (Theorem III.1 )

� To satisfy our requirement C > 3D+1
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Diameter

� A d-node is always connected to a c-node

� It’s sufficient to consider connectivity of c-nodes

� Let f be a constant

� A cache node is called good, if it receives r ≥ f connections

� All r connections are reconnection requests

� All r connections are not preferred connections

� r connections result for departure of r different nodes

� Color edges (links) of the graph using A, B1, B2

� Randomly pick f/2 of the reconnection links of a good cache node & 
color them with B1

� Color another f/2 of reconnection links of a good cache node with B2

� Color all other links with A
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Diameter (cont.)

� A connections could grow arbitrary long

� Reconnections (B1, B2) can reduce distance to a cache node

� Let Г0(v) be an arbitrary cluster of d log N c-nodes, v ∈ Г0(v)

� Cluster has a diameter of O(log N) using only A edges

� Cluster expands by connecting nodes through B1 connections

� From Lemma III.7 
29

Г1(v)

Diameter = 3



Diameter (cont.)

� Let Г0(v) & Г0(u) be clusters formed by any 2 c-nodes u & v

� Goal is to show that distance between 2 c-nodes is O(log n)

� Applying Lemma III.7 O(log N) times, i.e., c log N times

� = |Гc log N(v)| ≥ 2c log N|Г0(v)|  = 2c log N d log N ≈ N1/2 log N

� P{ All nodes in Гc log N (v) & Гc log N (u) are disconnected using B1 links}
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D = 4

Why preferred connections

� There is a constant probability that 
the network may form a complete 
bipartite network (F)

� F will be isolated if

� All its 2D nodes stay in system by t

� All c-nodes loose neighbors other than 
new d-nodes

� c-nodes don’t try to reconnect

� Reconnection is guaranteed only if 
d(v) = D

� Because D/d(v)

� To ensure bounded node degree no 
reconnection every time a link is lost
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Critique

� Pros
� Provable performance

� Bounded node degree

� Logarithmic network diameter, TTL = O(log N)

� Cons
� Host server could result in a single point of failure

� No simulation/experimental results to confirm analysis

� A c-node will have lower than C + 1 connections after a while

� Node degree [D, C + 1]

� Peers that stays in network for a long time are good
candidates to have high node degree

� Super peers

� They could learn about the resources in the network
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P2P in Collaborative Adaptive Sensing of 

the Atmosphere (CASA)

� Papers focus on scalable topology construction & maintenance without high 
bandwidth links

� Multiple paths to a destination – bound their distance

� Lower diameter & bounded node degree is important

� P2P is an alternative for some data center applications – e.g., BOINC, MOINC
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Current P2P systems
• Highly scalable
• Locate existing content
• Enforce fairness
• Receiver driven communication

CASA
• Data generation
• Data/resource location
• Data transfer
• Data fusion

Future P2P systems
• Generate content
• Real-time content / resource 

location
• Emphasis on performance
• QoS guarantees
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Questions ?

Thank You…


