Backup Slhides

Building Low-Diameter Peer-to-Peer
Networks



Theorem I1I.1

1) Forany t = Q(N) ,w.h.p. |V;| = O(N)
2) Ift/N — oo then w.hop. |Vi| = N £ o(N).
Proof
m Consider a node v that arrives at t <t
m P{vstays in system afterr} =P(X>¢-1)
Where X is the departure time
" PX >i-0)=1-PX<ir-0)=1-F(t—1)
B 1 — (1 —etlr=D) = gt 1) = p(t=0/N
m Let p(7) be the probability that a node arriving during [0, 7] stay
in system after ¢

m p(r)=P{ arriving by t } x P{ stay in system at ¢ }

1 /! : 1 ,
o(t) = = —(t=7T)/Njr — =N (1 = e—t/D
p(t) = t/n e dr = tﬁ. (1 c )



Theorem III.1 (cont.)

E[ no of peers in system at ¢ | = E[IV/]] = Ap(?)t
=p)t=N(1 - e™)
t=CQ(N), t>aN

m After some initial time ¢ that is sufficient to have N arrivals
E[IlVI] = N(1 — e9), O(N)
When ¢/N 2 oo
E[IVI] =N —o(N) = N + o(N)
We can now use a tail bound for Poisson distribution to
show that for r = Q(N) 1

Ne

Corollary 4.2.3. Let X;..... X, be independent Poisson trials such that Prob[X; = 1] = p;. Let X =
Yictm Xiand p=E[X]. For0< 0 <1,

Pr (|IVal - EIVl]l < VONTog N ) > 1 -

Prob[|X —pu| > 8-pul <2 e 3,



Theorem I11.2

Theorem [11.2: Suppose that the ratio between arrival and
departure rates in the network changed at time 7 from N to
N'’. Suppose that there were M nodes in the network at time
7, then if L5720 — o0 wh.p. G has N’ & o(N') nodes.

Proof

®m Suppose M nodes were in system at t

m E[ no of peer atr ] = M x P{ a peers remains at r that were there
by t} + no of new pears remain at ¢ that arrived at t

Because of memoryless property Part 1 is like starting at ¢

Me="%" + N'(1— =5 )= N’ + (M = N')e= "5

m As(t-7)/N > o
m =N +oM-N)



LLemma III.1

Lemmalll.l1: LetC > 31 + 1;thenatanytimet > alog N
(for some fixed constant ¢ > (), w.h.p. there are

(1 - fff;) minft, N](1 — o(1)

Assume >N

No of new nodes arriving in [t — N, 1]
= For a Poisson process no of arrivals by Ar =X Ar + o(At)
B =0(-(t-N)+o(t—-({-N)=N+o0o(N)=N(1+o0o(1))
Hence, no of new connections to cache nodes = DN(1 + o(1))
E[ no of connections arriving in a unit time] =1 + o(1)
System has N + o(N) nodes at any time, Theorem IIl.1

Therefore, E[ no of peers leaving at unittime | =1 + o(1)




Lemma III.1 (cont.)

Consider reconnections

E[ no of reconnections to cache nodes in unit time] =

= # of nodes leaving x P{ neighbor leaving} x P{ reconnection } + # of
nodes leaving x P{ preferred connection leaving } x P{ reconnecting }

> ((1 + u@)%% +(1 +ﬂ{1})i) =D+ 1)1 +o(l))

o= N

= Above is an upper bound as we assume a peer leave in every time unit
= E[ no of nodes leaving during time interval ] <N + o(N)

Total no of reconnections to cache nodes in [t — N, 1]
=(t—(r-N)D + D)(1 +0(1)) =ND + 1)(1 +0o(1))

Let u,, u,, ..., u; be the nodes that left the network

Let X, , = 1 when v makes a reconnection when u; left network



Lemma III.1 (cont.)

Actual no of reconnections = [iz X] < N(D+1)(1+0(1))
=1 v

Maximum no of new & reconnections to cache nodes

m DN(1 +o(1)) + (D + DN(1 + o(1)) = (2D + DN(1 + o(1))

Each cache node is capable of accepting C — D connections
No cache nodes need in[t—N, t] = {(2D + 1)N(1 + o(1)}/(C - D)
All these nodes will become c-nodes
We have N + o(N) nodes in network at any time

So, no of remaining d-nodes
N{i+o(l)— 2D +1)N(1+0(1)) =(1— 2D +1

N({l+o(1
= For above to satisfy our requirement 2D+1 < C-D = C>3D+1




LLemma I11.2

Lemma [I1.2: Suppose that the cache 1s occupied at time £
by node v. Let Z(v) be the set of nodes that occupied the cache
in v’s slot during the interval [t — clog N,t]. For any 6 > 0
and sufficiently large constant ¢, w.h.p. |Z(v)| is in the range

P log N(1 £6). =

Z(v) — Set of nodes that occupied v's slot in [r—c log N, 1]
From Lemma lll.1 E[ total no of connections to cache nodes]
B 2D+ 1)(clog N)(1 +0(1))

E[ no of connections to a cache node | = E[X]

2D+ 1)(c I+o(1))/K
N( f+ X; 08nN)(; +O(n)) dod = 2D+Dclog N)(i+o(h)
o of cache nodes neede K(C—-D)

_ (2D +1)(clog N)(1+0()) _(2D+D)(clogN)1+5) _ | log N
K(C-D) K(C-D)




Lemma III.2 (cont.)

E[X] = 2D + 1)(c log N)(1+o(1))/K, with high probability

For any § > 0 we have the following large deviation bounds (also known as Chernoff

bounds):

.1 H
Pr(X > (1 +8)p) < ((1 +:)“+n) (2.5)

For 0 < § < 1 we have the following bounds:
Pr(X < (1-8)p) S e/ (2.6)

Pr(X > (1 + 6)p) < e~#8"/3 (2.7)

For sufficiently large E[X] = u above probabillity is low
For sufficiently large ¢ >0



LLemma III.3

Lemma II1.3: Assume that C'> 3D + 1. At any time ¢ >
clog N, with probability 1 — G(lclgg N /N) the algorithm finds
a replacement d-node by examining only O(log V) nodes.

Letv,v,, ..., v, be the set of cache nodes at time ¢

From Lemma lll.2 Iv,| = dlogn
= Where ,_(2D+Dd+9)
K(C-D)
Consider time interval [f — ¢ log n, 1]
P{ node doesn'’t leave by 7}
m P{ departure time > clog n} = e(cloe /N

There are K cache nodes & each will be replaced by IZ(v))l

K|Z(v,)|

P{ All cache nodes don't leave } = (e-clogN/N)

(e—clogN/N )de)gN _ e—chlogzN/N




Lemma III.3 (cont.)

__(Kecdlog? N)
N

lngzN
31'0( N )

Suppose v leave cache at ¢

Replace v by a d-node neighbor in Z(v)

Z(v) received at least Dc log N(1 + o(1))/K connections
= From Lemma lll.1
Among these no more than IZ(v)l could enter cache & become
c-nodes
So there are Dc log N(1 + o(1))/K - IZ(v)l remaining d-nodes
m Dclog N(1 +o(1))/K — dlog N = log N{Dc(1- o(1) /K — d}
= So we need to examine O(log N) nodes

[



LLemma I11.4

Lemma [11.4: At all times, each node in the network 1s con-
nected to some cache node directly or through a path in the
network.

A d-node is always connected to a c-node
Hence we only need to consider connectivity of c-nodes

A c-node is either in cache or it’'s connected to a cache node
through preferred connection

m v's preferred cache node u may become a c-node. Still v maintains a
preferred connection to u. similarly u (after leaving cache) maintains
a connection to it's preferred cache node w

m These links continue unless a node leaves

= |f a node leave, neighbor(s) that had the preferred connection initiate
another connection to a cache node



LLemma III.5

Lemma [11.5: Consider two cache nodes v andu at time £ >
clog N, for some fixed constant ¢ > (. With probability 1 —

O(log? N /N),there is a path in the network attime ¢ connecting
v and u.

Let 2 cache nodes be u & v
Z(v) — Set of nodes that occupied v's slot in [r — c log N, 1]
From Lemma lll.2 IZ(v)| =d log N

P{ node doesn'’t leave by 7}
m P{ departure time > clog n} = e(clog N/N

P{ All Z(v) nodes don't leave by} = (e-clogN/N)dlogN pcdlog* NIN

ofr Y,




Lemma III.5 (cont.)

Because of preferred connections
If no node in Z(v) leave, all of them are connected to v, same for u

= Hence, P{ Z(v) is connected to a cache node } 21—0(10gz %j

P{ A new node not connecting Z(u) & Z(v) } = 1 - (D/K)?
= P{ connecting to a Z(u) } = P{ connecting to a Z(v) } = D/IK
= P{ connecting to a Z(u) & Z(v) } = (D/K)?
No of new nodes during [t —clog N, ] = clog N -
P { All new nodes don’t connect to Z(u) & Z(v) } = (1—D%(z)0g
= = O(1/N°)
Hence there is a path between u & v




Theorem 111.3

Theorem 111.3: There 1s a constant ¢ such that at any given
time ¢ > clog N

2,
Pr(G}y is connected) > 1 = O (lngwﬁ) .

From Lemma lll.4 & IlI.5 all the nodes are connected w.h.p
Hence, graph G, is connected w.h.p

This theorem doesn’t depend on the state of the network at
timer—clog N

Hence, show that network can rapidly recover

Corollary [11.1: There is a constant ¢ such that if the network

1s disconnected at time ¢
lng2 N
N '

Pr(Giqclogn 1s connected) > 1 — O (



Theorem I11.4

Theorem [11.4: At any given time { such that t/N — o0, if
the graph is not connected then it has a connected component of

size N(1 — o(1)).

By Lemma I1l.4 all nodes are connected to some cache
node

From Theorem Ill.3, P{ that network may not be connected}
= O(log?>N/N)

= This is the probability that some cache node has fewer than d log N
neighbors

E[No of disconnected cache nodes] = K O({log* N)/N)

No of connected nodes = N(1 + o(1)) — K O(dog? N)/N)
5 =N +o(1))



Theorem I11.4 (cont.)

P{ A new node is not connected to both Z(u) & Z(v)}
= | - D?*K?

P{ All new nodes don’t connect Z(u) & Z(v)}
m (1 - D?K?)clogN
Possible no of connections between cache nodes
K(K - D2 =(K2-K)/2
Graph is disconnected if one of these pairs is disconnected

Each pair is independent
P{ graph disconnected } = (K? — K)(1 — D*/K?)¢ e N/2

Hence, P{ graph is connected } = 1 - (K?> — K)(1 — D?*/K?)c1ogN/2
=1-1/N



Theorem I11.5

Theorem I11.5: For any ¢, such that £/N — oo, w.h.p., the
largest connected component of G has diameter O(log N). In
particular, 1f the network 1s connected (which has probability
1 — O(log? N/N)), then w.h.p., its diameter is O(log N).

A d-node is always connected to a c-node

Hence, it's sufficient to consider connectivity of c-nodes
Let fbe a constant

A cache node is called good, if it receives r > fconnections
= All r connections are reconnection requests
= All r connections are not preferred connections
= r connections result for departure of r different nodes



Theorem III.5 (cont.)

Color edges (links) of the graph using A, B,, B,
= Randomly pick //, of the reconnection links of a good cache node &
color them as B,
= Color another //, of reconnection links of a good cache node as B,

m Color all other links with A




Theorem III.5 (cont.)

Theorem [l1.3 gives the probability that the network is
connected using only A colored links

m 1-00og>?N/N)

= Proof uses preferred connections & newly joined nodes
Theorem lll.4, size of the connected network is N(1 + o(1))

A connections could grow arbitrary long

= Reconnections (B,, B,) allow a way to reduce the distance to a
cache node



LLemma II1.6

Lemma [I1.6: Assume that node v enters the cache at time £,
where t/N — 00. Then, for a sufficiently large choice of the
constant (', the probability that v leaves the cache as a good
node is at least v > 1/2. Further, the f recolored edges of a
good cache node are distributed uniformly at random among the
nodes currently in the network. Furthermore, the probability that
a c-node is good is independent of other c-nodes.

E[ no of connections to v from a new node | = D/K

E[ no of reconnections due to departure of a node | =

ZOVidw K K

= This imply all reconnections are for departure of different nodes

= Each connection has a constant probability of being triggered by a
unique node leaving the network



Lemma III.6 (cont.)

E[conn. from a new node] = E[conn. from an old node]

A cache node can accept C — D new/reconnections
= 2 of the connections are from old nodes
= [n minimum it will accept (C — D)/2 reconnections

If C is sufficiently large, it could easily handle r > f
reconnections

= |n minimum, with probability 12, a cache node could node becomes
a good node

m |f Cis large, probability would further increase
= Hence v would leave the cache as a good node with probability > 2



Lemma III.6 (cont.)

dw) D D

E[ no of connections form old node « to v] = N 4w N

This needs to be divided by K ???

Each node leaves independently with identical ~ exp(u)

Each node in the network has equal probability of connecting to v
Independent of node degree

A cache node stays in cache until it accept C connections

= This behavior is independent of other cache nodes

= Hence, whether a given cache node becomes a good node is
independent of others




LLemma I111.7

Given a node v

Let I'y(v) be an arbitrary cluster of d log N c-nodes

ve ['H(v)

This cluster has a diameter of O(log N) using only A edges

Let I',(v) be all c-nodes in G, that are connected to I'. ;(v)

using B, links & not in OF.(v)




Lemma I1I1.7 (cont.)

Lemma I11.7: If |I';—1(v)] = o(N)
Pri|li(v)] 2 2[Tica ()]} 2 1 = =5

Let W=T.(v) &w =W
Let z be a c-node such that z¢ WU(UF (V)j
j=0

= Need to be a good cache node

P{ zis connected to W using B, edges }

= P{zbeing a good node} x P{selecting a node} x no of connections
used x no of nodes to connect to

1 1 f o _fw
"2 N(l+o0()) 2 YTUN (1+o)




Lemma I1I1.7 (cont.)

Let Y = IT',(v)l be number of nodes (like z) that are outside W
& connected to Wby B,

BV 1= 3 L2 (14 00) = L2 (14 01)

V1

Let w,, w,, ... be an enumeration of nodes in W

Let N(w,) be set of neighbors of w, that are connected by B,
N(w,) are not independent, so use martingale based analysis
Define exposure martingale such that Z,, Z,, ... such that

= Above reflects no of outside c-nodes connected, given subset of
nodes in W by B, links



Lemma I1I1.7 (cont.)

Degree of all nodes are bounded by C
Z -7 ,1<C
= At least 1 connection is already inside
Using Azuma’s inequality
Then Azuma’s inequality gives for all t > 0 and any A > 0,

|

Pr(|X: — Xo| > A) < 2¢ *EL vy

pr,u{uf Byl > LY cf} < 2ot < L

This imply that Y is concentrated around 2 of mean w.h.p



Lemma II1.7 (cont.)

P{\Y—E[Y]\sﬁ%}z1_%vs

fwl8 = E[Y]/2
Therefore, Y e [ E[Y] - E[Y]/2, E[Y] + E[Y]/2 ] w.h.p

Ye []r} (1+0(1))_f§v’]1v(1+0(1))+fgq

'y /", 2is because 1Yl could be above the given range
2

For above to be satisfied f>4



Theorem III.5 (cont.)

Let u & v be any 2 c-nodes in the network

Let I'y(v) & T'y(u) be the clusters they form by connecting c-
nodes using A colored links
= Each has a diameter of O(log N)

Our goal is to show that distance between any 2 c-nodes is
O(log n)

= Expand the cluster by connecting nodes using B1

= Then show that 2 cluster would overlap



Theorem III.5 (cont.)

From Lemma lIl.7 IT;(w)| > IT,_,(v)I, w.h.p
IC, ()| > 2IT, ()

IC,(v)l > 2T, (v)| > 41T ,(v)

IC5(v)l > 2I0,(v) > 8T, (V)

IC, (v)I >2I, ;(v)I =2 (v)I
Apply Lemma lll.7 O(log N) times, i.e., c log N times
BT, o y(W)I = 2608 M)
P{ that I[,(v)| is not 2x as IT, ()| } < 1/N?
= P{that a c log N hop neighborhood does not satisfy 2x requirement}
m <(clog N)(1/N°) = O(log N/N°)
If at least 1 of the circles are not 2x as previous one our goal fails
= P{ 2x requirement hold for a d log n neighborhood} = 1 — O((log N)/N°)



Theorem III.5 (cont.)

From Lemma lll.7 it can be shown that T (v) |2ﬂ
= Wherewis Il'_;(v)l 2
If II'y(v)I =dlog N
B Lo NI = 2608 NT (V) = 2¢ 18N d log N = N2 log N

P{ that 2 nodes are connected using B, links} = f/(2N)
= Only 2 of the connections are considered

P{ that 2 nodes are disconnected using B, links} =1 - f/(2N)
P{thatall nodes in I, y(v) & I, ., »(w) are disconnected}

(l_fj(x/ﬁlogN)z :(l_ijlogzN
2N 2N

Therefore, with probability 1 — O(log N/N°) any 2 c-nodes are connected
by a path length O(log N)



LLemma V.1

LemmalV1: Atanytimet > ¢, where cis a sufficiently large
tixed constant, there 1s a constant probability (i.e., independent
of V) that there exists a subgraph of type H in (5.

Let H be a complete bipartite network
= Graph with 2 disjoint sets of vertices
= Elements in 2 sets are directly connected
= Each element in 1 set connect to every element in another

P2P network could have sub graph of type H

m Between D d-nodes & D c-nodes

= Could occur when D new nodes join D cache nodes that become
c-nodes



Lemma IV.1 (cont.)

Conditions for formation of a complete bipartite network

1. There is a set (S) of D cache nodes each having degree D at time r— D
These are new nodes in cache & yet to accept connections

2. There are no deletions in the network during the interval [t - D, ¢]

3. A set (T) of D new nodes arrive during interval [ - D, ¢]

4. All incoming nodes of T choose to connect to D cache nodes in §

Each of the above events could happen with constant
probability (> 0) S, Y
= Independent of N | -

Network could form a type H graph

c—nodes



LLemmalV.2

Lemma [V.2: Consider the network G4, fort > N.Thereis a
constant probability that there exists a small (i.e., constant size)

1solated component.

From Lemma IV.1 it's possible to have a complete bipartite

network H
Let sub graph F of type H occur att— N

F will be isolated if D=4
= All its 2D nodes stay in system by ¢ " .

= All c-nodes loose neighbors other than

new d-nodes
At most D(C - D) such nodes are connected

= c-nodes don’t try to reconnect

c—nodes



Lemma IV.2 (cont.)

P{ all 2D nodes survive interval [t — N, t] } = (eMN)?P = ¢2P
P{ a neighbor retains after interval [t N, t] } = eVN=¢"

P{ a neighbor leave afterinterval [t-N, t] } =1 -¢!

P{ all neighbors leave after interval [t— N, 7] } = (1 —e!)P(C=D)
P{ Reconnection} = D/d(v)

Maximum P{ Reconnection } = D/(D + 1)

= Has a minimum of D connections as they are connected to D new
nodes

P{No reconnection } =1-D/(D + 1)
P{No reconnection for loss of all neighbors}= (1- Y/, | )?)

(1= -7, ST =en)



Theorem IV.1

Theorem [V.1: The expected number of small isolated com-
ponents in the network at any time¢ > N is {2(/N), when there
are no preferred connections.

Let S be set of new nodes arrived between [t — N, t — N/2]
Let v € S be a node that arrived at ¢’

From Lemma IV.1 & IV.2, there is a nonzero probability that
ve F

= Fis a complete bipartite network

= From Lemma IV.2, F has a constant probability of being isolated at ¢

Let indicator variable X, denote whether v is in F or not

E{ZXV}:E[X1]+E[X2]+...+E[X|S|]

ve S



Theorem IV.1 (cont.)

Let ¢ be the constant probability of a node belonging to S
E[X]=1xc+0x(-¢c)=c

E{ZX} =E[X,]+E[X,]+..+E[X 4]=c|S|
veS

IS| = N/2
= Length of time interval is N/2

E{ZX} =cN /2
ves

There could be many more sub graphs > cN/2
= Q(N)



Diameter vs. size
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A Scalable, Commodity, Data
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New Gnutella

Ultra Peer
Leaf Peer

/ (Stutzbach, 2005)

Gnutella V0.6



Clos network

Clos Nehwocks (Gemeroliastion of Beves Nehuse ks)
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Routing table (cont.)

Central entity assigns routing table for each switch

Pod switches
m k/2 prefixes for subnets in same pod
Only in top aggregation layer switches
m k/2 suffixes for hosts in other pods/subnets
Output port is (ID — 2 + switch)mod (k/2) + k/2

Core switches

10.2.0.2 10L2.00L3

Pod 2




Routing table fill up algorithms

1
2
3
4
5
6
7
8

9
10
11

foreach pod x in [0,k — 1] do
foreach swirch z in [(k/2), %k — 1] do
foreach subnet 1 in [0, (k/2) — 1] do
addPrefix(10.zx.z.1, 10.2.2.0/24, 7).
end
addPrefix(10.z.z.1, 0.0.0.0/0, 0);
foreach host ID i in [2,(k/2) = 1] do
addSuftix(10.2.2.1, 0.0.0.7/8,
(i—2+ z)mod(k/2) + (k/2)):
end
end
end

1 foreach jin [1,(k/2)| do

2 foreach iin [1.(k/2)] do

3 foreach destination pod x in [0, (k/2) — 1| do
4 addPrefix(10.k.7.4,10.2.0.0/16, x);

5 end

6 end

7 end

Algorithm 1: Generating aggregation switch routing ta-
bles. Assume Function signatures addPrefix(switch, prefix,
port), addSuffix(switch, suffix, port) and addSuf fir adds

a

second-level suffix to the last-added first-level prefix.

Algorithm 2: Generating core switch routing tables.



Fault tolerance

Redundant links allow routing around a failure
Need to keep track of state of each link

Could withstand

= Between lower-upper layer switches in a pod
Outgoing inter-pod & intra-pod — skip the link
Intra-pod using top layer — source skip top layer switch if possible

Inter-pod coming into top layer — ask the core switch to change - core
layer ask top-layer of sender to change

= Between upper & core layer switches
Outgoing inter-pod — select another core switch
Incoming inter-pod — core switch ask sending pods top layer to change

= Failure between lower layer & PCs can’t be handle without
redundant switches/ports

Flow scheduling make these problems easy to handle



Flow classifier heuristic

f/ Call on every incoming packet
1 IncomingPacket (packet)
2 begin
3 Hash source and destination IP fields of packet:
// Have we seen this flow before?

4 if seenfhash) then

5 Lookup previously assigned port x:

6 Send packet on port x:

7 else

8 Record the new flow f;

9 Assign f to the least-loaded upward port x:
10 Send the packet on port x;

11 end

12 end

/) call every t seconds
13 RearrangeFlows ()

14 begin

15 for i=0 to 2 do

16 Find upward ports pinaz and piin with the largest and
smallest aggregate outgoing traffic, respectively:

17 Calculate D, the difference between pmaz and popin:

18 Find the largest flow f assigned to port prmaz Whose size
is smaller than [J;

19 if such a flow exists then

20 Switch the output port of flow f to prmin:

21 end

22 end

23 end

Algorithm 3: The flow classifier heuristic. For the experi-
ments in Section 5, f is | second.



Power & heat

29 mPower/Gbps (Watts)
g ® ® Heat/Gbps (BTU/hr)
-
= B -
z
=
4 -
2 -
ﬂ -
] & X L i
@ N g G“ﬂ‘f’* ﬁa,ﬁsﬂ“’ ) @ﬁ-ﬂ‘ N R
e e of 2 e g
g e ¢ ® o

Last 3 switches have all 10 Gbps ports

BTUMr/Ghps



Other




Comparison of 2 papers

2 different application domains

Both focus on scalable topology construction &
maintenance without high bandwidth links

Multiple paths to a destination

= How to connect to peers such that effective bandwidth is high
= Paper 1 shows this for a static network

Lower diameter & bounded node degree is important
= Ability to reach majority of peers, no hot spots

P2P is an alternative for some of the data center
applications — e.g., BOINC, MOINC



Properties of a Poisson process

A counting process {N,, t >0} is a Poisson process if

m Ny=0
= {N,t>0} has stationary independent increment
N,-N,, is independent from N,,-N,, _ lim p{N,, =N, +1}
Memoryless CAt—0 At
m P{N,, =1} = A7 + o(Ar) lim PN, =N,+2}_
= P{N,, =2} =o0(Ar) At —0 At

= [nter arrival times are independently & identically distributed set
of exponentially distributed random variables

Iim  o(Ar) 0
At —>0 At

o(At) Is such that
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