Backup Slides

Building Low-Diameter Peer-to-Peer Networks

Theorem III. 1

1) For any $t=\Omega(N)$, w.h.p. $\left|V_{t}\right|=\Theta(N)$
2) If $t / N \rightarrow \infty$ then w.h.p. $\left|V_{t}\right|=N \pm o(N)$.
\square Proof

- Consider a node v that arrives at $\tau \leq t$
- $\mathrm{P}\{v$ stays in system after $t\}=\mathrm{P}(X \geq t-\tau)$
\square Where X is the departure time
- $\mathrm{P}(X \geq t-\tau)=1-\mathrm{P}(X \leq t-\tau)=1-F_{x}(t-\tau)$
- $\quad 1-\left(1-e^{\mu(t-\tau)}\right)=e^{\mu(t-\tau)}=e^{(t-\tau) / N}$
- Let $p(t)$ be the probability that a node arriving during $[0, t]$ stay in system after t
- $p(t)=P\{$ arriving by $\tau\} \times P\{$ stay in system at $t\}$

$$
p(t)=\frac{1}{t} \int_{0}^{t} e^{-(t-\tau) / N} d \tau=\frac{1}{t} N\left(1-e^{-t / N}\right)
$$

Theorem III. 1 (cont.)

$\square E[$ no of peers in system at $t]=E\left[\mid V_{t}\right]=\lambda p(t) t$
$\square=p(t) t=N\left(1-e^{-t / N}\right)$
$\square t=\Omega(N), t \geq a N$

- After some initial time t that is sufficient to have N arrivals
$\square E\left[\mid V_{l}\right]=N\left(1-e^{-a}\right), \Theta(N)$
\square When $t / N \rightarrow \infty$
- $E\left[\left|V_{t}\right|\right]=N-o(N)=N+o(N)$
\square We can now use a tail bound for Poisson distribution to show that for $t=\Omega(N)$

$$
\operatorname{Pr}\left(\left|\left|V_{t}\right|-E\left[\left|V_{t}\right|\right]\right| \leq \sqrt{b N \log N}\right) \geq 1-\frac{1}{N^{c}}
$$

Corollary 4.2.3. Let X_{1}, \ldots, X_{n} be independent Poisson trials such that $\operatorname{Prob}\left[X_{i}=1\right]=p_{i}$. Let $X=$ $\sum_{i \in[n]} X_{i}$ and $\mu=\mathbf{E}[X]$. For $0<\delta<1$,

$$
\operatorname{Prob}[|X-\mu| \geq \delta \cdot \mu] \leq 2 \cdot e^{-\mu \cdot \delta^{2} / 3}
$$

Theorem III. 2

Theorem III.2: Suppose that the ratio between arrival and departure rates in the network changed at time τ from N to N^{\prime}. Suppose that there were M nodes in the network at time τ, then if $\frac{(t-\tau)}{N^{\prime}} \rightarrow \infty$ w.h.p. G_{t} has $N^{\prime} \pm o\left(N^{\prime}\right)$ nodes.
\square Proof

- Suppose M nodes were in system at τ
- $E[$ no of peer at $t]=M \times P\{$ a peers remains at t that were there by $\tau\}+$ no of new pears remain at t that arrived at τ
\square Because of memoryless property Part 1 is like starting at τ

$$
M e^{-\frac{(t-\tau)}{N^{\prime}}}+N^{\prime}\left(1-e^{-\frac{t-\tau}{N^{\prime}}}\right)=N^{\prime}+\left(M-N^{\prime}\right) e^{-\frac{(t-\tau)}{N^{\prime}}}
$$

- As $(t-\tau) / N \rightarrow \infty$

■ $=N^{\prime} \pm o\left(M-N^{\prime}\right)$

Lemma III. 1

Lemma III.1: Let $C>3 D+1$; then at any time $t \geq a \log N$
(for some fixed constant $a>0$), w.h.p. there are

$$
\left(1-\frac{2 D+1}{C-D}\right) \min [t, N](1-o(1))
$$

\square Assume $t \geq N$
\square No of new nodes arriving in $[t-N, t]$

- For a Poisson process no of arrivals by $\Delta t=\lambda \Delta t+\mathrm{o}(\Delta t)$
- $=(t-(t-N))+\mathrm{o}(t-(t-N))=N+o(N)=N(1+o(1))$
\square Hence, no of new connections to cache nodes $=D N(1+\mathrm{o}(1))$
$\square E[$ no of connections arriving in a unit time] $=1+o(1)$
\square System has $N+o(N)$ nodes at any time, Theorem III. 1
\square Therefore, $E[$ no of peers leaving at unit time $]=1+o(1)$

Lemma III. 1 (cont.)

\square Consider reconnections
$\square E[$ no of reconnections to cache nodes in unit time] $=$

- \# of nodes leaving $\times P\{$ neighbor leaving $\} \times P\{$ reconnection $\}+\#$ of nodes leaving $\times P\{$ preferred connection leaving $\} \times P\{$ reconnecting $\}$

$$
\sum_{v \in V}\left((1+o(1)) \frac{d(v)}{N} \frac{D}{d(v)}+(1+o(1)) \frac{1}{N}\right)=(D+1)(1+o(1))
$$

- Above is an upper bound as we assume a peer leave in every time unit
- $E[$ no of nodes leaving during time interval $] \leq N+o(N)$
\square Total no of reconnections to cache nodes in $[t-N, t]$
$\square=(t-(t-N))(D+1)(1+\mathrm{o}(1))=N(D+1)(1+\mathrm{o}(1))$
\square Let $u_{1}, u_{2}, \ldots, u_{l}$ be the nodes that left the network
\square Let $X_{v, u i}=1$ when v makes a reconnection when u_{i} left network

Lemma III. 1 (cont.)

\square Actual no of reconnections $=E\left[\sum_{i=1}^{\ell} \sum_{v} X_{v, u_{i}}\right] \leq N(D+1)(1+o(1))$
\square Maximum no of new \& reconnections to cache nodes

- $D N(1+\mathrm{o}(1))+(D+1) N(1+\mathrm{o}(1))=(2 D+1) N(1+\mathrm{o}(1))$
\square Each cache node is capable of accepting $C-D$ connections
\square No cache nodes need in $[t-N, t]=\{(2 D+1) N(1+\mathrm{o}(1)\} /(C-D)$
\square All these nodes will become c-nodes
\square We have $N+o(N)$ nodes in network at any time
\square So, no of remaining d-nodes

$$
N(1+o(1))-\frac{(2 D+1) N(1+o(1))}{C-D}=\left(1-\frac{2 D+1}{C-D}\right) N(1+o(1))
$$

- For above to satisfy our requirement $2 D+1<C-D \Rightarrow C>3 D+1$

Lemma III. 2

Lemma III.2: Suppose that the cache is occupied at time t by node v. Let $Z(v)$ be the set of nodes that occupied the cache in v 's slot during the interval $[t-c \log N, t]$. For any $\delta>0$ and sufficiently large constant c, w.h.p. $|Z(v)|$ is in the range $\frac{(2 D+1) c}{(C-D) K} \log N(1 \pm \delta)$.
$\square Z(v)$ - Set of nodes that occupied v 's slot in $[t-c \log N, t]$
\square From Lemma III. $1 E$ [total no of connections to cache nodes]
■ $(2 D+1)(c \log N)(1+o(1))$
$\square E[$ no of connections to a cache node $]=E[X]$

- $(2 D+1)(c \log N)(1+o(1)) / K$
\square No of cache nodes needed $=\frac{(2 D+1)(c \log N)(1+o(1))}{K(C-D)}$

$$
=\frac{(2 D+1)(c \log N)(1+o(1))}{K(C-D)}=\frac{(2 D+1)(c \log N)(1 \pm \delta)}{K(C-D)}=d \log N
$$

Lemma III. 2 (cont.)

$\square E[X]=(2 \mathrm{D}+1)(c \log N)(1+o(1)) / K$, with high probability
For any $\delta>0$ we have the following large deviation bounds (also known as Chernoff bounds):

$$
\begin{equation*}
\operatorname{Pr}(X>(1+\delta) \mu)<\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu} \tag{2.5}
\end{equation*}
$$

For $0<\delta<1$ we have the following bounds:

$$
\begin{align*}
& \operatorname{Pr}(X<(1-\delta) \mu) \leq e^{-\mu \delta^{2} / 2} \tag{2.6}\\
& \operatorname{Pr}(X>(1+\delta) \mu) \leq e^{-\mu \delta^{2} / 3} \tag{2.7}
\end{align*}
$$

\square For sufficiently large $E[X]=\mu$ above probability is low

- For sufficiently large $c>0$

Lemma III. 3

Lemma III.3: Assume that $C>3 D+1$. At any time $t \geq$ $c \log N$, with probability $1-O\left(\log ^{2} N / N\right)$ the algorithm finds a replacement d-node by examining only $O(\log N)$ nodes.
\square Let $v_{1}, v_{2}, \ldots, v_{k}$ be the set of cache nodes at time t
\square From Lemma $|I I .2| v_{i} \mid=d \log n$

- Where $d=\frac{(2 D+1)(1 \pm \delta)}{K(C-D)}$
\square Consider time interval $[t-c \log n, t]$
$\square P\{$ node doesn't leave by $t\}$
- $P\{$ departure time $\geq c \log n\}=e^{-(c \log N / N}$
\square There are K cache nodes \& each will be replaced by $\left|Z\left(v_{i}\right)\right|$
$\square P\{$ All cache nodes don't leave $\}=\left(e^{-c \log N / N}\right)^{K\left|Z\left(v_{i}\right)\right|}$

$$
\left(e^{-c \log N / N}\right)^{K d \log N}=e^{-K c d \log ^{2} N / N}
$$

Lemma III. 3 (cont.)

$$
e^{-\frac{\left(K c \log \log ^{2} N\right)}{N}} \geq 1-O\left(\frac{\log ^{2} N}{N}\right)
$$

\square Suppose v leave cache at t
\square Replace v by a d-node neighbor in $Z(v)$
$\square \mathrm{Z}(\mathrm{v})$ received at least $D c \log N(1+\mathrm{o}(1)) / K$ connections

- From Lemma III. 1
\square Among these no more than $\mathrm{Z}(\mathrm{v}) \mid$ could enter cache \& become c-nodes
\square So there are $\operatorname{Dc} \log N(1+\mathrm{o}(1)) / K-|\mathrm{Z}(\mathrm{v})|$ remaining d-nodes
■ $D c \log N(1+\mathrm{o}(1)) / K-d \log N=\log N\{D c(1-o(1)) / K-d\}$
- So we need to examine $O(\log N)$ nodes

Lemma III. 4

Lemma III.4: At all times, each node in the network is connected to some cache node directly or through a path in the network.
\square A d-node is always connected to a c-node
\square Hence we only need to consider connectivity of c-nodes
\square A c-node is either in cache or it's connected to a cache node through preferred connection

- v's preferred cache node u may become a c-node. Still v maintains a preferred connection to u. similarly u (after leaving cache) maintains a connection to it's preferred cache node w
- These links continue unless a node leaves
- If a node leave, neighbor(s) that had the preferred connection initiate another connection to a cache node

Lemma III. 5

Lemma III.5: Consider two cache nodes v and u at time $t \geq$ $c \log N$, for some fixed constant $c>0$. With probability $1-$ $O\left(\log ^{2} N / N\right)$, there is a path in the network at time t connecting v and u.
\square Let 2 cache nodes be $u \& v$
$\square Z(v)$ - Set of nodes that occupied v 's slot in $[t-c \log N, t]$
\square From Lemma III. $2|Z(v)|=d \log N$
$\square P\{$ node doesn't leave by $t\}$

- $P\{$ departure time $\geq c \log n\}=e^{-(c \log N) / N}$
$\square P\{$ All $Z(v)$ nodes don't leave by $t\}=\left(e^{-c \log N / N}\right)^{d \log N}=e^{-c d \log ^{2} N / N}$

$$
\geq 1-O\left(\log ^{2} N / N\right)
$$

Lemma III. 5 (cont.)

\square Because of preferred connections

- If no node in $Z(v)$ leave, all of them are connected to v, same for u
- Hence, $P\{Z(v)$ is connected to a cache node $\} \geq 1-O\left(\log ^{2} N / N\right)$
$\square P\{$ A new node not connecting $Z(u) \& Z(v)\}=1-(D / K)^{2}$
- $P\{$ connecting to a $Z(u)\}=P\{$ connecting to a $Z(v)\}=D / K$
- $P\{$ connecting to a $Z(u) \& Z(v)\}=(D / K)^{2}$
\square No of new nodes during $[t-c \log N, t]=c \log N$
$\square P\{$ All new nodes don't connect to $Z(u) \& Z(v)\}=\left(1-D^{2} / K^{2}\right)^{\log N}$
- $=O\left(1 / N^{c}\right)$
\square Hence there is a path between $u \& v$

Theorem III. 3

Theorem III.3: There is a constant c such that at any given time $t>c \log N$

$$
\operatorname{Pr}\left(G_{t} \text { is connected }\right) \geq 1-O\left(\frac{\log ^{2} N}{N}\right)
$$

\square From Lemma III. 4 \& III. 5 all the nodes are connected w.h.p
\square Hence, graph G_{t} is connected w.h.p
\square This theorem doesn't depend on the state of the network at time $t-c \log N$
\square Hence, show that network can rapidly recover
Corollary III.1: There is a constant c such that if the network is disconnected at time t

$$
\operatorname{Pr}\left(\mathrm{G}_{\mathrm{t}+\mathrm{c} \log \mathrm{~N}} \text { is connected }\right) \geq 1-O\left(\frac{\log ^{2} N}{N}\right)
$$

Theorem III. 4

Theorem III.4: At any given time t such that $t / N \rightarrow \infty$, if the graph is not connected then it has a connected component of size $N(1-o(1))$.
\square By Lemma III. 4 all nodes are connected to some cache node
\square From Theorem III.3, $P\{$ that network may not be connected \}

- $O\left(\log ^{2} N / N\right)$
- This is the probability that some cache node has fewer than $d \log N$ neighbors
$\square E[$ No of disconnected cache nodes $]=K O\left(\left(\log ^{2} N\right) / N\right)$
\square No of connected nodes $=N(1+\mathrm{o}(1))-K O\left(\left(\log ^{2} N\right) / N\right)$
■ $=N(1+\mathrm{o}(1))$

Theorem III. 4 (cont.)

$\square P\{$ A new node is not connected to both $Z(u) \& Z(v)\}$

- $1-D^{2} / K^{2}$
$\square P\{$ All new nodes don't connect $Z(u) \& Z(v)\}$
- $\left(1-D^{2} / K^{2}\right)^{c \log N}$
\square Possible no of connections between cache nodes
- $K(K-1) / 2=\left(K^{2}-K\right) / 2$
\square Graph is disconnected if one of these pairs is disconnected
- Each pair is independent
- $P\{$ graph disconnected $\}=\left(K^{2}-K\right)\left(1-D^{2} / K^{2}\right)^{\operatorname{cog} N / 2}$
\square Hence, $\mathrm{P}\{$ graph is connected $\}=1-\left(K^{2}-K\right)\left(1-D^{2} / K^{2}\right)^{\operatorname{cog} N / 2}$
- $=1-1 / N^{c}$

Theorem III. 5

> Theorem III.5: For any t, such that $t / N \rightarrow \infty$, w.h.p., the largest connected component of G_{t} has diameter $O(\log N)$. In particular, if the network is connected (which has probability $1-O\left(\log ^{2} N / N\right)$), then w.h.p., its diameter is $O(\log N)$.
\square A d-node is always connected to a c-node
\square Hence, it's sufficient to consider connectivity of c-nodes
\square Let f be a constant
\square A cache node is called good, if it receives $r \geq f$ connections

- All r connections are reconnection requests
- All r connections are not preferred connections
- r connections result for departure of r different nodes

Theorem III. 5 (cont.)

Color edges (links) of the graph using A, B_{1}, B_{2}

- Randomly pick $f / 2$ of the reconnection links of a good cache node \& color them as B_{1}
- Color another $f / 2$ of reconnection links of a good cache node as B_{2}
- Color all other links with A

Theorem III. 5 (cont.)

\square Theorem III. 3 gives the probability that the network is connected using only A colored links

- $1-O\left(\log ^{2} N / N\right)$
- Proof uses preferred connections \& newly joined nodes
\square Theorem III.4, size of the connected network is $N(1+o(1))$
$\square A$ connections could grow arbitrary long
- Reconnections $\left(B_{1}, B_{2}\right)$ allow a way to reduce the distance to a cache node

Lemma III. 6

Lemma III.6: Assume that node v enters the cache at time t, where $t / N \rightarrow \infty$. Then, for a sufficiently large choice of the constant C, the probability that v leaves the cache as a good node is at least $\gamma>1 / 2$. Further, the f recolored edges of a good cache node are distributed uniformly at random among the nodes currently in the network. Furthermore, the probability that a c-node is good is independent of other c-nodes.
$\square E[$ no of connections to v from a new node $]=D / K$
$\square E[$ no of reconnections due to departure of a node] =

$$
\sum_{u \in V} \frac{d(u)}{|V|} \frac{D}{d(u)} \frac{1}{K}=\frac{D}{K}<1
$$

- This imply all reconnections are for departure of different nodes
- Each connection has a constant probability of being triggered by a unique node leaving the network

Lemma III. 6 (cont.)

$\square E$ [conn. from a new node] $=E$ [conn. from an old node]
\square A cache node can accept $C-D$ new/reconnections

- $1 / 2$ of the connections are from old nodes
- In minimum it will accept $(C-D) / 2$ reconnections
\square If C is sufficiently large, it could easily handle $r \geq f$ reconnections
- In minimum, with probability $1 / 2$, a cache node could node becomes a good node
- If C is large, probability would further increase
- Hence v would leave the cache as a good node with probability $\geq 1 / 2$

Lemma III. 6 (cont.)

$\square E[$ no of connections form old node u to $v]=\frac{d(u)}{N} \frac{D}{d(u)}=\frac{D}{N}$

- This needs to be divided by K ???
- Each node leaves independently with identical $\sim \exp (\mu)$
- Each node in the network has equal probability of connecting to v
- Independent of node degree
\square A cache node stays in cache until it accept C connections
- This behavior is independent of other cache nodes
- Hence, whether a given cache node becomes a good node is independent of others

Lemma III. 7

\square Given a node v
\square Let $\Gamma_{0}(v)$ be an arbitrary cluster of $d \log N c$-nodes
$\square v \in \Gamma_{0}(v)$
\square This cluster has a diameter of $O(\log N)$ using only A edges
\square Let $\Gamma_{\mathrm{i}}(v)$ be all c-nodes in G_{t} that are connected to $\Gamma_{\mathrm{i}-1}(v)$ using B_{1} links \& not in $\bigcup_{j=0}^{i-1} \Gamma_{j}(v)$

Lemma III. 7 (cont.)

Lemma III.7: If $\left|\Gamma_{i-1}(v)\right|=o(N)$

$$
\operatorname{Pr}\left\{\left|\Gamma_{i}(v)\right| \geq 2\left|\Gamma_{i-1}(v)\right|\right\} \geq 1-\frac{1}{N^{5}} .
$$

\square Let $W=\Gamma_{\mathrm{i}}(v) \& w=|W|$
\square Let z be a c-node such that $\quad z \notin W \bigcup\left(\bigcup_{j=0}^{i-1} \Gamma_{j}(v)\right)$

- Need to be a good cache node
$\square P\left\{z\right.$ is connected to W using B_{l} edges $\}$
- $P\{z$ being a good node $\} \times P\{$ selecting a node $\} \times$ no of connections used \times no of nodes to connect to

$$
\geq \frac{1}{2} \frac{1}{N(1+o(1))} \frac{f}{2} w=\frac{f w}{4 N}(1+o(1))
$$

Lemma III. 7 (cont.)

\square Let $Y=\left|\Gamma_{\mathrm{i}}(v)\right|$ be number of nodes (like z) that are outside W \& connected to W by B_{1}
$\square E[Y]=\sum_{|V|} \frac{f w}{4 N}(1+o(1))=\frac{f w}{4}(1+o(1))$
\square Let w_{1}, w_{2}, \ldots be an enumeration of nodes in W
\square Let $N\left(w_{i}\right)$ be set of neighbors of w_{i} that are connected by B_{1}
$\square N\left(w_{i}\right)$ are not independent, so use martingale based analysis
\square Define exposure martingale such that Z_{0}, Z_{1}, \ldots such that
$\square Z_{0}=E[Y], Z_{\mathrm{i}}=E\left[Y \mid N\left(w_{1}\right), N\left(w_{2}\right), \ldots, N\left(w_{\mathrm{i}}\right)\right]$

- Above reflects no of outside c-nodes connected, given subset of nodes in W by B_{1} links

Lemma III. 7 (cont.)

\square Degree of all nodes are bounded by C
$\square\left|Z_{i}-Z_{i-1}\right|<C$

- At least 1 connection is already inside
\square Using Azuma's inequality
Then Azuma's inequality gives for all $t \geq 0$ and any $\boldsymbol{\lambda}>0$,

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|\boldsymbol{X}_{t}-\boldsymbol{X}_{0}\right| \geq \lambda\right) \leq 2 e^{-\frac{\lambda^{2}}{2 \sum_{k=1}^{2} \sigma_{\hat{L}}}} \\
& \operatorname{Pr}\left\{|Y-E[Y]| \geq \frac{f}{8} \frac{\sqrt{w}}{C} C \sqrt{w}\right\} \leq 2 e^{-\left(f^{2} / 128 C^{2}\right) w} \leq \frac{1}{N^{5}}
\end{aligned}
$$

\square This imply that Y is concentrated around $1 / 2$ of mean w.h.p

Lemma III. 7 (cont.)

$$
P\{|Y-E[Y]| \leq f w / 8\} \geq 1-1 / N^{5}
$$

$\square f w / 8 \approx E[Y] / 2$
\square Therefore, $Y \in[E[Y]-E[Y] / 2, E[Y]+E[Y] / 2]$ w.h.p
${ }^{\square} Y \in\left[\frac{f w}{4}(1+o(1))-\frac{f w}{8}, \frac{f w}{4}(1+o(1))+\frac{f w}{8}\right]$
$\square|Y| \geq \frac{f w}{2}, \geq$ is because $|Y|$ could be above the given range
\square For above to be satisfied $f \geq 4$

Theorem III. 5 (cont.)

\square Let $u \& v$ be any $2 c$-nodes in the network
\square Let $\Gamma_{0}(v) \& \Gamma_{0}(u)$ be the clusters they form by connecting c nodes using A colored links

- Each has a diameter of $O(\log N)$
\square Our goal is to show that distance between any $2 c$-nodes is $O(\log n)$
- Expand the cluster by connecting nodes using B1
- Then show that 2 cluster would overlap

Theorem III. 5 (cont.)

\square From Lemma III. $7\left|\Gamma_{i}(v)\right| \geq\left|\Gamma_{i-1}(v)\right|$, w.h.p

- $\left|\Gamma_{1}(v)\right| \geq 2\left|\Gamma_{0}(v)\right|$
- $\left|\Gamma_{2}(v)\right| \geq 2\left|\Gamma_{1}(v)\right| \geq 4\left|\Gamma_{0}(v)\right|$
- $\left|\Gamma_{3}(v)\right| \geq 2\left|\Gamma_{2}(v)\right| \geq 8\left|\Gamma_{0}(v)\right|$
- $\left|\Gamma_{n}(v)\right| \geq 2\left|\Gamma_{n-1}(v)\right| \geq 2^{n}\left|\Gamma_{0}(v)\right|$
\square Apply Lemma III. $7 O(\log N)$ times, i.e., $c \log N$ times
- | $\Gamma_{c \log N}(v) \mid \geq 2^{c \log N\left|\Gamma_{0}(v)\right|}$
$\square P\left\{\right.$ that $\left|\Gamma_{i}(v)\right|$ is not $2 \times$ as $\left.\left|\Gamma_{i-1}(v)\right|\right\} \leq 1 / N^{5}$
- $P\{$ that a $c \log N$ hop neighborhood does not satisfy $2 \times$ requirement $\}$
- $\leq(c \log N)\left(1 / N^{5}\right)=O\left(\log N / N^{5}\right)$
- If at least 1 of the circles are not $2 \times$ as previous one our goal fails
- $P\{2 \times$ requirement hold for a $d \log n$ neighborhood $\}=1-O\left((\log N) / N^{5}\right)$

Theorem III. 5 (cont.)

\square From Lemma III. 7 it can be shown that $\left|\Gamma_{i}(v)\right| \geq \frac{f w}{2}$

- Where w is $\left|\Gamma_{\mathrm{i}-1}(v)\right|$
\square If $\left|\Gamma_{0}(v)\right|=d \log N$

$\square P\left\{\right.$ that 2 nodes are connected using B_{l} links $\}=f /(2 N)$
- Only $1 / 2$ of the connections are considered
$\square P\left\{\right.$ that 2 nodes are disconnected using B_{l} links $\}=1-f /(2 N)$
$\square P\left\{\right.$ that all nodes in $\Gamma_{c \log N}(v) \& \Gamma_{c \log N}(u)$ are disconnected $\}$

$$
\left(1-\frac{f}{2 N}\right)^{(\sqrt{N} \log N)^{2}}=\left(1-\frac{f}{2 N}\right)^{N \log ^{2} N}
$$

Therefore, with probability $1-O\left(\log N / N^{5}\right)$ any $2 c$-nodes are connected by a path length $O(\log N)$

Lemma IV. 1

Lemma IV.1: At any time $t \geq c$, where c is a sufficiently large fixed constant, there is a constant probability (i.e., independent of N) that there exists a subgraph of type H in G_{t}.
\square Let H be a complete bipartite network

- Graph with 2 disjoint sets of vertices

- Elements in 2 sets are directly connected
- Each element in 1 set connect to every element in another
\square P2P network could have sub graph of type H
- Between $D d$-nodes \& $D c$-nodes
- Could occur when D new nodes join D cache nodes that become c-nodes

Lemma IV. 1 (cont.)

\square Conditions for formation of a complete bipartite network

1. There is a set (S) of D cache nodes each having degree D at time $t-D$

- These are new nodes in cache \& yet to accept connections

2. There are no deletions in the network during the interval $[t-D, t]$
3. A set (T) of D new nodes arrive during interval $[t-D, t]$
4. All incoming nodes of T choose to connect to D cache nodes in S
\square Each of the above events could happen with constant probability (>0)

- Independent of N
\square Network could form a type H graph

Lemma IV. 2

Lemma IV.2: Consider the network G_{t}, for $t>N$. There is a constant probability that there exists a small (i.e., constant size) isolated component.
\square From Lemma IV. 1 it's possible to have a complete bipartite network H
\square Let sub graph F of type H occur at $t-N$
$\square \mathrm{F}$ will be isolated if

- All its $2 D$ nodes stay in system by t
- All c-nodes loose neighbors other than new d-nodes
- At most $D(C-D)$ such nodes are connected
- c-nodes don't try to reconnect

Lemma IV. 2 (cont.)

$\square P\{$ all $2 D$ nodes survive interval $[t-N, t]\}=\left(e^{-N / N}\right)^{2 D}=e^{-2 D}$
$\square P\{$ a neighbor retains after interval $[t-N, t]\}=e^{-N / N}=e^{-1}$
$\square P\{$ a neighbor leave after interval $[t-N, t]\}=1-e^{-1}$
$\square P\{$ all neighbors leave after interval $[t-N, t]\}=\left(1-e^{-1}\right)^{D(C-D)}$
$\square P\{$ Reconnection $\}=D / d(v)$
\square Maximum $P\{$ Reconnection $\}=D /(D+1)$

- Has a minimum of D connections as they are connected to D new nodes
$\square P\{$ No reconnection $\}=1-D /(D+1)$
$\square P\{$ No reconnection for loss of all neighbors $\}=\left(1-D /_{(D+1)}\right)^{D(C-D)}$

$$
e^{-2 D}\left(1-e^{-1}\right)^{D(C-D)}(1-D / D+1)^{D(C-D)}=\Theta(1)
$$

Theorem IV. 1

Theorem IV.1: The expected number of small isolated components in the network at any time $t>N$ is $\Omega(N)$, when there are no preferred connections.
\square Let S be set of new nodes arrived between $[t-N, t-N / 2]$
\square Let $v \in S$ be a node that arrived at t '
\square From Lemma IV. 1 \& IV.2, there is a nonzero probability that $v \in F$

- F is a complete bipartite network
- From Lemma IV.2, F has a constant probability of being isolated at t
\square Let indicator variable X_{v} denote whether v is in F or not

$$
E\left[\sum_{v \in S} X_{v}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\ldots+E\left[X_{|S|}\right]
$$

Theorem IV. 1 (cont.)

\square Let c be the constant probability of a node belonging to S
$\square E\left[X_{v}\right]=1 \times c+0 \times(1-c)=c$

$$
E\left[\sum_{v \in S} X_{v}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\ldots+E\left[X_{|S|}\right]=c|S|
$$

$\square|S|=N / 2$

- Length of time interval is $N / 2$
$\square E\left[\sum_{v \in S} X_{v}\right]=c N / 2$
\square There could be many more sub graphs $\geq c N / 2$
- $\Omega(N)$

Diameter vs. size

G. Pandurangan, "Protocol for building low-diameter P2P networks"

Backup Slides

A Scalable, Commodity, Data
Center Network Architecture

New Gnutella

Clos network

Clos Networks (Generalization of Benes Networks)

Fat tree

Routing table (cont.)

\square Central entity assigns routing table for each switch
\square Pod switches

- $k / 2$ prefixes for subnets in same pod
\square Only in top aggregation layer switches
- $k / 2$ suffixes for hosts in other pods/subnets
\square Output port is $(I D-2+s w i t c h) \bmod (k / 2)+k / 2$
\square Core switches
- k, /16 entries for each pod

Pod 0

Routing table fill up algorithms

```
foreach pod x in [0,k-1] do
    foreach switch z in [(k/2),k-1] do
            foreach subnet i in [0,(k/2) - 1] do
                addPrefix(10.x.z.1, 10.x.i.0/24,i);
            end
            addPrefix(10.x.z.1, 0.0.0.0/0,0);
            foreach host ID i in [2,(k/2)+1] do
                addSuffix(10.x.z.1, 0.0.0.i/8,
                (i-2+z)\operatorname{mod}(k/2)+(k/2));
            end
        end
    end
```

Algorithm 1: Generating aggregation switch routing tables. Assume Function signatures addPrefix(switch, prefix, port), addSuffix(switch, suffix, port) and addSuffix adds a second-level suffix to the last-added first-level prefix.

```
foreach \(j\) in \([1,(k / 2)]\) do
    foreach \(i\) in \([1,(k / 2)]\) do
            foreach destination pod \(x\) in \([0,(k / 2)-1]\) do
                addPrefix(10.k.j.i,10.x.0.0/16, x);
            end
    end
end
```

Algorithm 2: Generating core switch routing tables.

Fault tolerance

\square Redundant links allow routing around a failure
\square Need to keep track of state of each link
\square Could withstand

- Between lower-upper layer switches in a pod
- Outgoing inter-pod \& intra-pod - skip the link
- Intra-pod using top layer - source skip top layer switch if possible
\square Inter-pod coming into top layer - ask the core switch to change \rightarrow core layer ask top-layer of sender to change
- Between upper \& core layer switches
\square Outgoing inter-pod - select another core switch
- Incoming inter-pod - core switch ask sending pods top layer to change
- Failure between lower layer \& PCs can't be handle without redundant switches/ports
\square Flow scheduling make these problems easy to handle

Flow classifier heuristic

```
// Call on every incoming packet
Incoming Packet (packet)
begin
    Hash source and destination IP fields of packet;
        // Have we seen this flow before?
        if seen(hash) then
            Lookup previously assigned port x;
            Send packet on port x;
        else
            Record the new flow f;
            Assign f}\mathrm{ to the least-loaded upward port }x\mathrm{ ;
            Send the packet on port }x\mathrm{ ;
        end
    end
    // Call every t seconds
    RearrangeFlows()
    begin
        for }i=0\mathrm{ to 2 do
            Find upward ports }\mp@subsup{p}{\operatorname{max}}{}\mathrm{ and }\mp@subsup{p}{\operatorname{min}}{}\mathrm{ with the largest and
            smallest aggregate outgoing traffic, respectively;
            Calculate D, the difference between }\mp@subsup{p}{\operatorname{max}}{}\mathrm{ and }\mp@subsup{p}{\operatorname{min}}{\mathrm{ ;}
            Find the largest flow }f\mathrm{ assigned to port }\mp@subsup{p}{\operatorname{max}}{}\mathrm{ whose size
            is smaller than D;
            if such a flow exists then
                Switch the output port of flow }f\mathrm{ to }\mp@subsup{p}{\operatorname{min}}{}\mathrm{ ;
            end
        end
end
```

Agorithm 3: The flow classifier heuristic. For the experiments in Section 5, t is 1 second.

Power \& heat

\square Last 3 switches have all 10 Gbps ports

Other

Comparison of 2 papers

$\square 2$ different application domains
\square Both focus on scalable topology construction \& maintenance without high bandwidth links
\square Multiple paths to a destination

- How to connect to peers such that effective bandwidth is high
- Paper 1 shows this for a static network
\square Lower diameter \& bounded node degree is important
- Ability to reach majority of peers, no hot spots
\square P2P is an alternative for some of the data center applications - e.g., BOINC, MOINC

Properties of a Poisson process

\square A counting process $\left\{N_{t}, t \geq 0\right\}$ is a Poisson process if

- $N_{0}=0$
- $\left\{N_{\mathrm{t}}, t \geq 0\right\}$ has stationary independent increment
$\square N_{t 1}-N_{s 1}$ is independent from $N_{t 2}-N_{s 2}$
\square Memoryless
- $P\left\{N_{\Delta t}=1\right\}=\lambda \Delta t+o(\Delta t)$
- $P\left\{N_{\Delta t}=2\right\}=o(\Delta t)$

$$
\lambda=\lim _{\Delta t \rightarrow 0} \frac{P\left\{N_{t+\Delta t}=N_{t}+1\right\}}{\Delta t}
$$

$$
\lim _{\Delta t \rightarrow 0} \frac{P\left\{N_{t+\Delta t}=N_{t}+2\right\}}{\Delta t}=0
$$

- Inter arrival times are independently \& identically distributed set of exponentially distributed random variables
$\square o(\Delta t)$ is such that

$$
\lim _{\Delta t \rightarrow 0} \frac{o(\Delta t)}{\Delta t}=0
$$

$\mathrm{O}, \Theta, \& \Omega$

(a)

(b)

(c)

