
Backup Slides

Building Low-Diameter Peer-to-Peer 

Networks



Theorem III.1

� Proof

� Consider a node v that arrives at τ ≤ t

� P{v stays in system after t } = P(X ≥ t - τ)

� Where X is the departure time

� P(X ≥ t – τ) = 1 – P(X ≤ t – τ) = 1 – Fx(t – τ)

� 1 – (1 – eµ(t – τ)) = eµ(t – τ) = e(t – τ)/N

� Let p(t) be the probability that a node arriving during [0, t] stay 

in system after t

� p(t) = P{ arriving by τ } × P{ stay in system at t }



Theorem III.1 (cont.)

� E[ no of peers in system at t ] = E[|Vt|] = λp(t)t

� = p(t)t = N(1 – e-t/N)

� t = Ω(N), t ≥ aN

� After some initial time t that is sufficient to have N arrivals

� E[|Vt|] = N(1 – e-a), Θ(N)

� When t/N �  ∞

� E[|Vt|] = N – o(N) = N + o(N)

� We can now use a tail bound for Poisson distribution to 

show that for t = Ω(N)

� Use



Theorem III.2

� Proof

� Suppose M nodes were in system at τ

� E[ no of peer at t ] = M × P{ a peers remains at t that were there 

by τ } + no of new pears remain at t that arrived at τ

� Because of memoryless property Part 1 is like starting at τ

� As (t - τ)/N � ∞

� = N′ ± o(M – N′) 



Lemma III.1

� Assume t ≥ N

� No of new nodes arriving in [t – N, t]

� For a Poisson process no of arrivals by ∆t = λ ∆t + o(∆t )

� = (t – (t – N)) + o(t – (t – N)) = N + o(N) = N(1 + o(1))

� Hence, no of new connections to cache nodes = DN(1 + o(1))

� E[ no of connections arriving in a unit time] = 1 + o(1)

� System has N + o(N) nodes at any time, Theorem III.1

� Therefore, E[ no of peers leaving at unit time ] = 1 + o(1)



� Consider reconnections

� E[ no of reconnections to cache nodes in unit time] = 

� # of nodes leaving × P{ neighbor leaving} × P{ reconnection } + # of 

nodes leaving × P{ preferred connection leaving } × P{ reconnecting }

� Above is an upper bound as we assume a peer leave in every time unit

� E[ no of nodes leaving during time interval ] ≤ N + o(N)

� Total no of reconnections to cache nodes in [t – N, t]

� = (t – (t - N))(D + 1)(1 + o(1)) = N(D + 1)(1 + o(1))

� Let u1, u2, …, ul be the nodes that left the network

� Let Xv,ui = 1 when v makes a reconnection when ui left network

Lemma III.1 (cont.)



Lemma III.1 (cont.)

� Actual no of reconnections =  

� Maximum no of new & reconnections to cache nodes

� DN(1 + o(1)) + (D + 1)N(1 + o(1)) = (2D + 1)N(1 + o(1))

� Each cache node is capable of accepting C – D connections

� No cache nodes need in [t – N, t] = {(2D + 1)N(1 + o(1)}/(C - D)

� All these nodes will become c-nodes

� We have N + o(N) nodes in network at any time

� So, no of remaining d-nodes

� For above to satisfy our requirement 2D+1 < C - D  ⇒ C > 3D+1
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Lemma III.2

� Z(v) – Set of nodes that occupied v’s slot in [t – c log N, t]

� From Lemma III.1 E[ total no of connections to cache nodes]

� (2D + 1)(c log N)(1 + o(1))

� E[ no of connections to a cache node ] = E[X]

� (2D + 1)(c log N)(1+o(1))/K

� No of cache nodes needed  
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Lemma III.2 (cont.)

� E[X] = (2D + 1)(c log N)(1+o(1))/K, with high probability

� For sufficiently large E[X] = µ above probability is low

� For sufficiently large c > 0



Lemma III.3

� Let v1, v2, …, vk be the set of cache nodes at time t

� From Lemma III.2 |vi| = d log n

� Where

� Consider time interval [t – c log n, t]

� P{ node doesn’t leave by t }

� P{ departure time ≥ c log n} = e-(c log N)/N

� There are K cache nodes & each will be replaced by |Z(vi)|

� P{ All cache nodes don’t leave } = 
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Lemma III.3 (cont.)

� Suppose v leave cache at t

� Replace v by a d-node neighbor in Z(v)

� Z(v) received at least Dc log N(1 + o(1))/K connections

� From Lemma III.1

� Among these no more than |Z(v)| could enter cache & become 

c-nodes

� So there are Dc log N(1 + o(1))/K - |Z(v)| remaining d-nodes

� Dc log N(1 + o(1))/K – d log N = log N{Dc(1- o(1) )/K – d}

� So we need to examine O(log N) nodes 



Lemma III.4

� A d-node is always connected to a c-node

� Hence we only need to consider connectivity of c-nodes

� A c-node is either in cache or it’s connected to a cache node 

through preferred connection

� v’s preferred cache node u may become a c-node. Still v maintains a 

preferred connection to u. similarly u (after leaving cache) maintains 

a connection to it’s preferred cache node w

� These links continue unless a node leaves

� If a node leave, neighbor(s) that had the preferred connection initiate 

another connection to a cache node



Lemma III.5

� Let 2 cache nodes be u & v

� Z(v) – Set of nodes that occupied v’s slot in [t – c log N, t]

� From Lemma III.2 |Z(v)| = d log N

� P{ node doesn’t leave by t }

� P{ departure time ≥ c log n} = e-(c log N)/N

� P{ All Z(v) nodes don’t leave by t } = ( )
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Lemma III.5 (cont.)

� Because of preferred connections

� If no node in Z(v) leave, all of them are connected to v, same for u

� Hence, P{ Z(v) is connected to a cache node }

� P{ A new node not connecting Z(u) & Z(v) } = 1 - (D/K)2

� P{ connecting to a Z(u) } = P{ connecting to a Z(v) } = D/K

� P{ connecting to a Z(u) & Z(v) } = (D/K)2

� No of new nodes during [t – c log N, t] = c log N

� P { All new nodes don’t connect to Z(u) & Z(v) } =

� = O(1/Nc)

� Hence there is a path between u & v
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Theorem III.3

� From Lemma III.4 & III.5 all the nodes are connected w.h.p

� Hence, graph Gt is connected w.h.p

� This theorem doesn’t depend on the state of the network at 

time t – c log N

� Hence, show that network can rapidly recover



Theorem III.4

� By Lemma III.4 all nodes are connected to some cache 

node

� From Theorem III.3, P{ that network may not be connected}

� O(log2N/N)

� This is the probability that some cache node has fewer than d log N

neighbors

� E[No of disconnected cache nodes] = K O((log2 N)/N)

� No of connected nodes = N(1 + o(1)) – K O((log2 N)/N)

� = N(1 + o(1)) 



Theorem III.4 (cont.)

� P{ A new node is not connected to both Z(u) & Z(v)}

� 1 – D2/K2

� P{ All new nodes don’t connect Z(u) & Z(v)}

� (1 – D2/K2)c log N

� Possible no of connections between cache nodes

� K(K – 1)/2 = (K2 – K)/2

� Graph is disconnected if one of these pairs is disconnected

� Each pair is independent 

� P{ graph disconnected } = (K2 – K)(1 – D2/K2)c log N/2

� Hence, P{ graph is connected } = 1 - (K2 – K)(1 – D2/K2)c log N/2

� = 1 – 1/Nc



Theorem III.5

� A d-node is always connected to a c-node

� Hence, it’s sufficient to consider connectivity of c-nodes

� Let f be a constant

� A cache node is called good, if it receives r ≥ f connections

� All r connections are reconnection requests

� All r connections are not preferred connections

� r connections result for departure of r different nodes



Theorem III.5 (cont.)

� Color edges (links) of the graph using A, B1, B2

� Randomly pick f/2 of the reconnection links of a good cache node & 

color them as B1

� Color another f/2 of reconnection links of a good cache node as B2

� Color all other links with A



Theorem III.5 (cont.)

� Theorem III.3 gives the probability that the network is 

connected using only A colored links

� 1 – O(log2 N / N)

� Proof uses preferred connections & newly joined nodes

� Theorem III.4, size of the connected network is N(1 + o(1))

� A connections could grow arbitrary long

� Reconnections (B1, B2) allow a way to reduce the distance to a 

cache node



Lemma III.6

� E[ no of connections to v from a new node ] = D/K

� E[ no of reconnections due to departure of a node ] = 

� This imply all reconnections are for departure of different nodes

� Each connection has a constant probability of  being triggered by a 

unique node leaving the network
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Lemma III.6 (cont.)

� E[conn. from a new node] = E[conn. from an old node]

� A cache node can accept C – D new/reconnections

� ½ of the connections are from old nodes

� In minimum it will accept (C – D)/2 reconnections 

� If C is sufficiently large, it could easily handle r ≥ f 

reconnections

� In minimum, with probability ½, a cache node could node becomes 

a good node

� If C is large, probability would further increase 

� Hence v would leave the cache as a good node with probability ≥ ½



Lemma III.6 (cont.)

� E[ no of connections form old node u to v] = 

� This needs to be divided by K ???

� Each node leaves independently with identical ~ exp(µ)

� Each node in the network has equal probability of connecting to v

� Independent of node degree

� A cache node stays in cache until it accept C connections

� This behavior is independent of other cache nodes

� Hence, whether a given cache node becomes a good node is 

independent of others
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Lemma III.7

� Given a node v

� Let Г0(v) be an arbitrary cluster of d log N c-nodes

� v ∈ Г0(v)

� This cluster has a diameter of O(log N) using only A edges

� Let Гi(v) be all c-nodes in Gt that are connected to Гi-1(v) 

using B1 links & not in 
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Lemma III.7 (cont.)

� Let W = Гi(v) & w = |W|

� Let z be a c-node such that 

� Need to be a good cache node

� P{ z is connected to W using B1 edges } 

� P{z being a good node} × P{selecting a node} × no of connections 

used × no of nodes to connect to

U U 
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Lemma III.7 (cont.)

� Let Y = |Гi(v)| be number of nodes (like z) that are outside W 

& connected to W by B1

�

� Let w1, w2, … be an enumeration of nodes in W

� Let N(wi) be set of neighbors of wi that are connected by B1

� N(wi) are not independent, so use martingale based analysis

� Define exposure martingale such that Z0, Z1, … such that

� Z0 = E[Y], Zi = E[Y | N(w1), N(w2), …, N(wi)]

� Above reflects no of outside c-nodes connected, given subset of 

nodes in W by B1 links
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Lemma III.7 (cont.)

� Degree of all nodes are bounded by C

� |Zi – Zi-1| < C

� At least 1 connection is already inside

� Using Azuma’s inequality

� This imply that Y is concentrated around ½ of mean w.h.p



Lemma III.7 (cont.)

� fw/8 ≈ E[Y]/2

� Therefore, Y ∈ [ E[Y] – E[Y]/2, E[Y] + E[Y]/2 ] w.h.p

�

� , ≥ is because |Y| could be above the given range 

� For above to be satisfied f ≥ 4
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Theorem III.5 (cont.)

� Let u & v be any 2 c-nodes in the network

� Let Г0(v) & Г0(u) be the clusters they form by connecting c-

nodes using A colored links

� Each has a diameter of O(log N)

� Our goal is to show that distance between any 2 c-nodes is 

O(log n)

� Expand the cluster by connecting nodes using B1

� Then show that 2 cluster would overlap 



Theorem III.5 (cont.)

� From Lemma III.7 |Гi(v)| ≥ |Гi-1(v)|, w.h.p

� |Г1(v)| ≥ 2|Г0(v)|

� |Г2(v)| ≥ 2|Г1(v)| ≥ 4|Г0(v)| 

� |Г3(v)| ≥ 2|Г2(v)| ≥ 8|Г0(v)| 

� ….

� |Гn(v)| ≥ 2|Гn-1(v)| ≥ 2n|Г0(v)|

� Apply Lemma III.7 O(log N) times, i.e., c log N times

� |Гc log N(v)| ≥ 2c log N|Г0(v)|

� P{ that |Гi(v)| is not 2× as |Гi-1(v)| } ≤ 1/N5

� P{ that a c log N hop neighborhood does not satisfy 2× requirement} 

� ≤ (c log N)(1/N5) = O(log N/N5)

� If at least 1 of the circles are not 2× as previous one our goal fails

� P{ 2× requirement hold for a d log n neighborhood} = 1 – O((log N)/N5)



Theorem III.5 (cont.)

� From Lemma III.7 it can be shown that

� Where w is |Гi–1(v)|

� If |Г0(v)| = d log N

� |Гc log N(v)| ≥ 2c log N|Г0(v)| = 2c log N d log N ≈ N1/2 log N

� P{ that 2 nodes are connected using B1 links} = f/(2N)

� Only ½ of the connections are considered

� P{ that 2 nodes are disconnected using B1 links} = 1 - f/(2N)

� P{ that all nodes in Гc log N(v) & Гc log N(u) are disconnected}

Therefore, with probability 1 – O(log N/N5) any 2 c-nodes are connected 

by a path length O(log N)
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Lemma IV.1

� Let H be a complete bipartite network

� Graph with 2 disjoint sets of vertices

� Elements in 2 sets are directly connected

� Each element in 1 set connect to every element in another

� P2P network could have sub graph of type H

� Between D d-nodes & D c-nodes

� Could occur when D new nodes join D cache nodes that become 

c-nodes



Lemma IV.1 (cont.)

� Conditions for formation of a complete bipartite network 

1. There is a set (S) of D cache nodes each having degree D at time t – D

� These are new nodes in cache & yet to accept connections

2. There are no deletions in the network during the interval [t – D, t]

3. A set (T) of D new nodes arrive during interval [t – D, t]

4. All incoming nodes of T choose to connect to D cache nodes in S

� Each of the above events could happen with constant 

probability (> 0)

� Independent of N

� Network could form a type H graph

D = 4



Lemma IV.2

� From Lemma IV.1 it’s possible to have a complete bipartite 

network H

� Let sub graph F of type H occur at t – N

� F will be isolated if

� All its 2D nodes stay in system by t

� All c-nodes loose neighbors other than 

new d-nodes
� At most D(C - D) such nodes are connected

� c-nodes don’t try to reconnect

D = 4



Lemma IV.2 (cont.)

� P{ all 2D nodes survive interval [t – N, t] }  = (e-N/N)2D = e-2D

� P{ a neighbor retains after interval [t – N, t] } = e-N/N = e-1

� P{ a neighbor leave after interval [t – N, t] } = 1 – e-1

� P{ all neighbors leave after interval [t – N, t] } = (1 – e-1)D(C – D)

� P{ Reconnection} = D/d(v)

� Maximum P{ Reconnection } = D/(D + 1)

� Has a minimum of D connections as they are connected to D new 

nodes

� P{No reconnection } = 1 - D/(D + 1)

� P{No reconnection for loss of all neighbors}= (1- D/(D + 1))
D(C–D)
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Theorem IV.1

� Let S be set of new nodes arrived between [t – N, t – N/2]

� Let v ∈ S be a node that arrived at t’

� From Lemma IV.1 & IV.2, there is a nonzero probability that 

v ∈ F

� F is a complete bipartite network

� From Lemma IV.2, F has a constant probability of being isolated at t

� Let indicator variable Xv denote whether v is in F or not
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Theorem IV.1 (cont.)

� Let c be the constant probability of a node belonging to S

� E[Xv] = 1 × c + 0 × (1 – c) = c

� |S| = N/2

� Length of time interval is N/2

�

� There could be many more sub graphs ≥ cN/2

� Ω(N)
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Diameter vs. size

G. Pandurangan, “Protocol for building low-diameter P2P networks”
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A Scalable, Commodity, Data 
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New Gnutella

(Stutzbach, 2005)

Gnutella V0.6



Clos network



Fat tree



Routing table (cont.)

� Central entity assigns routing table for each switch

� Pod switches

� k/2 prefixes for subnets in same pod

� Only in top aggregation layer switches

� k/2 suffixes for hosts in other pods/subnets

� Output port is (ID – 2 + switch)mod (k/2) + k/2

� Core switches

� k, /16 entries for each pod



Routing table fill up algorithms



Fault tolerance

� Redundant links allow routing around a failure

� Need to keep track of state of each link

� Could withstand

� Between lower-upper layer switches in a pod

� Outgoing inter-pod & intra-pod – skip the link

� Intra-pod using top layer – source skip top layer switch if possible

� Inter-pod coming into top layer – ask the core switch to change � core 

layer ask top-layer of sender to change

� Between upper & core layer switches

� Outgoing inter-pod – select another core switch

� Incoming inter-pod – core switch ask sending pods top layer to change 

� Failure between lower layer & PCs can’t be handle without 

redundant switches/ports

� Flow scheduling make these problems easy to handle



Flow classifier heuristic



Power & heat

� Last 3 switches have all 10 Gbps ports



Other



Comparison of 2 papers

� 2 different application domains

� Both focus on scalable topology construction & 

maintenance without high bandwidth links

� Multiple paths to a destination

� How to connect to peers such that effective bandwidth is high

� Paper 1 shows this for a static network

� Lower diameter & bounded node degree is important

� Ability to reach majority of peers, no hot spots

� P2P is an alternative for some of the data center 

applications – e.g., BOINC, MOINC



Properties of a Poisson process

� A counting process {Nt, t ≥ 0} is a Poisson process if

� N0 = 0

� {Nt, t ≥ 0} has stationary independent increment

� Nt1-Ns1 is independent from Nt2-Ns2

� Memoryless

� P{N∆t = 1} = λ∆t + o(∆t)

� P{N∆t = 2} = o(∆t)

� Inter arrival times are independently & identically distributed set 

of exponentially distributed random variables

� o(∆t) is such that 
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Ο, Θ, & Ω


