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Smart Driving – Solution Architecture

 Real-time analysis

 Driving anomaly detection

 Fuel fraud

 Geo fencing

 Vehicle fault detection

 Historical analysis

 Driver profiling

 Driver coaching

 Predicting sensor failure

 Case analysis
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Dashboard
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Smart Transportation Systems (Cont.)
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OBD2 Based Analysis

 OBD – On Board Diagnostics

 Available in many vehicles since 1996

 OBD2 – In most vehicles since 2005

 Speed, RPM, Odometer, Cooleant Temperature, Padle Position, 

Oxygen, Mass Air Flow, etc. 7



App-Level Processing –

Real-Time Dashboard
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Fuel Economy & Coolant 

Temperature Monitoring
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 Implemented using Siddhi Complex Event Processor on smartphone

 Minimum impact on battery level

 Bandwidth saving due to local processing  Reduce energy consumption



Trip Logs
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 Standard car  High-end Car



Backend Processing –

Reckless Driving

 Hard accelerations & deceleration count above a threshold

 Per 100 Km

 Per 1 Hour

 Count depends on average speed of vehicle in last t seconds

 Implemented using Siddhi CEP

 Computed values stored in RDBMS 11



Driver Profiling

 Detection of anomalies

 Hidden Markov Model based on acceleration profile

 Model implemented in BAM

 Validator implemented in CEP
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Sensor Failure Prediction

 Mass Air Flow (MAF) sensor value has a linear 

relationship with engine RPM

 When sensor fails, gradient between MAF & RPM 

reduces with time

 Rate of change of gradient can predict date of failure 13



Fuel Consumption Prediction

 Long-distance bus fitted with a GPS unit & high-

precision fuel sensor

 Could you

 explain variability in fuel consumption

 predict fuel consumption of a journey

 give tips to improve fuel consumption
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Dataset

 From 13 May 2015 – 31 August 2015

 Parameters

 Timestamp (date and time)

 Longitude (Min: 5.918611°N, Max: 9.835556° N)

 Latitude (Min: 79.516667° E, Max: 81.879167° E)

 Bearing (0° to 360°)

 Elevation (Min: 0m, Max: 2,524m)

 Distance traveled (km) – between two samples

 Speed (kmh-1)

 Acceleration (kmh-2)

 Ignition status (1 – Ignition On or 0 – Ignition Off)

 Current battery voltage (Min: 0v, Max: 29v)

 Fuel level (Min: 0L, Max: 218L)

 Fuel consumption (L)
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Bus Route
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Fuel Usage
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Factors Contributing to Fuel Usage
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Factors Contributing to Fuel Usage 

(Cont.)
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Factors Contributing to Fuel Usage 

(Cont.)
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Factors Contributing to Fuel Usage 

(Cont.)
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Predicting Fuel Consumption –

Random Forrest
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Actual Fuel Consumption : 84.08L

Predicted Fuel Consumption : 91.77L
Error : 9.1%



Predicting Fuel Consumption –

Gradient Boosting & Neural Network
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Driver Feedback to Promote Fuel 

Efficient Driving
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Clus
ter No

Mean 
Speed (kmh-1)

Mean 
Accelera-tion

(kmh-2)

Mean 
Elevation 

Change (m)

Is 
Idling 

(Mode)

Hour 
(Mode)

Weather 
Condition 

(mode)

Mean Fuel 
Usage (kmL-1)

Fuel 
Efficiency

1 6.86 -14.56 -0.020 0 17.00 Clear 11.44 Efficient

2 0 0 0 1 00.00 Partly Cloudy 5.28 Inefficient

3 45.89 -5.53 6.360 0 23.00 Mist 214.86 Efficient

4 45.99 -109.83 -7.379 0 23.00 Mist 167.25 Efficient

5 28.35 -6,818.00 5.025 0 00.00 Mist 71.88 Efficient

6 61.12 273.00 -0.960 0 00.00 Partly Cloudy 29.57 Inefficient

7 62.77 252.54 -0.050 0 00.00 Partly Cloudy 556.30 Efficient



On Going Work

 Dashboard design

 Driver profiling

 Beyond acceleration profile

 Correlating with location, time, traffic, & weather

 Usage-Based Insurance (UBI)

 Quantifying passenger comfort

 Case analysis

 Traffic, weather

 Driver feedback

 Real-time & long-term

 Process re-engineering 25
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