

IoT and Big Data for Smart Transportation Systems

Dilum Bandara, PhD

Dept. of Computer Science & Engineering University of Moratuwa Dilum.Bandara@uom.lk

Manufacturing & Industrial Engineering Symposium 2016

Why?

Smart Driving – Solution Architecture

- Real-time analysis
 - Driving anomaly detection
 - Fuel fraud
 - Geo fencing
 - Vehicle fault detection

- Historical analysis
 - Driver profiling
 - Driver coaching
 - Predicting sensor failure
 - Case analysis

Dashboard

TOYOTA's Activites towards SMART MOBILITY SOCIETY

Toyota aims to create a smart mobility society where people feel secure and happy in transport and everyday life.

Smart Transportation Systems (Cont.)

OBD2 Based Analysis

OBD – On Board Diagnostics

- Available in many vehicles since 1996
- OBD2 In most vehicles since 2005
- Speed, RPM, Odometer, Cooleant Temperature, Padle Position, Oxygen, Mass Air Flow, etc.

App-Level Processing – Real-Time Dashboard

PIDs	
Distance Traveled Since Codes Cleared	Log
Mode: 01 PID: 0x04 Engine Load Calculated	Log
Mode: 01 PID: 0x5C Engine Oil Temperature	Log
Mode: 01 PID: 0x0C Engine RPM	Log 🖌
Mode:01_PID:0x1F Engine Run Time Since Start	Log
Mode: 01 PID: 0x05 Coolant Temp.	Log
Mode: 01 PID: 0x52 Ethanol Fuel Percentage	Log
Mode: 01 PID: 0x2F Fuel Level Input	Log
Ok	Cancel

COMPUTER SCIENCE & ENGINEERING

Fuel Economy & Coolant Temperature Monitoring

- Implemented using Siddhi Complex Event Processor on smartphone
- Minimum impact on battery level
 - Bandwidth saving due to local processing \rightarrow Reduce energy consumption

Trip Logs

Start	
Place	Time
Moratuwa	14/01/2015 09:08:54
End	
Place	Time
Colombo	14/01/2015 10:11:23
Trip Dista	nce
18.562 km	

COMPUTER SCIENCE & ENDINCERING

Backend Processing – Reckless Driving

- Hard accelerations & deceleration count above a threshold
 - Per 100 Km
 - Per 1 Hour
- Count depends on average speed of vehicle in last t seconds
- Implemented using Siddhi CEP
- Computed values stored in RDBMS

Driver Profiling

- Detection of anomalies
 - Hidden Markov Model based on acceleration profile
 - Model implemented in BAM
 - Validator implemented in CEP

Sensor Failure Prediction

- Mass Air Flow (MAF) sensor value has a linear relationship with engine RPM
- When sensor fails, gradient between MAF & RPM reduces with time
- Rate of change of gradient can predict date of failure

Fuel Consumption Prediction

- Long-distance bus fitted with a GPS unit & highprecision fuel sensor
- Could you
 - explain variability in fuel consumption
 - predict fuel consumption of a journey
 - give tips to improve fuel consumption

Dataset

- From 13 May 2015 31 August 2015
- Parameters
 - Timestamp (date and time)
 - Longitude (Min: 5.918611°N, Max: 9.835556°N)
 - Latitude (Min: 79.516667° E, Max: 81.879167° E)
 - Bearing (0° to 360°)
 - Elevation (Min: 0m, Max: 2,524m)
 - Distance traveled (km) between two samples
 - Speed (kmh-1)
 - Acceleration (kmh-2)
 - Ignition status (1 Ignition On or 0 Ignition Off)
 - Current battery voltage (Min: 0v, Max: 29v)
 - Fuel level (Min: 0L, Max: 218L)
 - Fuel consumption (L)

Bus Route

Fuel Usage

Total Fuel Consumption Summary Vs Day

17

Factors Contributing to Fuel Usage

Factors Contributing to Fuel Usage (Cont.)

COMPUTER SCIENCE & ENGINEERING

Factors Contributing to Fuel Usage (Cont.)

Total Fuel Usage VS No of Harsh Acc/ Deacc

Date

Factors Contributing to Fuel Usage (Cont.)

Predicting Fuel Consumption – **Random Forrest**

22

Predicting Fuel Consumption – Gradient Boosting & Neural Network

Fuel Usage Prediction

COMPUTER SCIENCE & ENGINEERING

Driver Feedback to Promote Fuel Efficient Driving

Fuel Usage in Urban and Rural Areas - Colored According to Their Clusters

Clus ter No	Mean Speed (kmh¹)	Mean Accelera-tion (kmh ⁻²)	Mean Elevation Change (m)	ls Idling (Mode)	Hour (Mode)	Weather Condition (mode)	Mean Fuel Usage (kmL ⁻¹)	Fuel Efficiency
1	6.86	-14.56	-0.020	0	17.00	Clear	11.44	Efficient
2	0	0	0	1	00.00	Partly Cloudy	5.28	Inefficient
3	45.89	-5.53	6.360	0	23.00	Mist	214.86	Efficient
4	45.99	-109.83	-7.379	0	23.00	Mist	167.25	Efficient
5	28.35	-6,818.00	5.025	0	00.00	Mist	71.88	Efficient
6	61.12	273.00	-0.960	0	00.00	Partly Cloudy	29.57	Inefficient
7	62.77	252.54	-0.050	0	00.00	Partly Cloudy	556.30	Efficient

25

On Going Work

- Dashboard design
- Driver profiling
 - Beyond acceleration profile
 - Correlating with location, time, traffic, & weather
 - Usage-Based Insurance (UBI)
- Quantifying passenger comfort
- Case analysis
 - Traffic, weather
- Driver feedback
 - Real-time & long-term
- Process re-engineering

Comfort Level

Publications

- S. Wickramanayake and H.M.N.D. Bandara, "Real-Time Monitoring and Driver Feedback to Promote Fuel Efficient Driving," Under review.
- M. Amarasinghe, S. Muramudalige, S. Kottegoda, A. L. Arachchi, and H. M. N. Dilum Bandara, "Cloud-Based Driver Monitoring and Vehicle Diagnostic with OBD2 Telematics," Intl. J. of Handheld Computing Research (IJHCR), to appear.
- S. Wickramanayake and H.M.N.D. Bandara, "Poster: Enhancing Fuel Economy of Fleet Vehicles Through Real-Time Driver Monitoring and Feedback," in Proc. 1st Asian Students Symposium on Emerging Technologies (ASSET 2016), June 2016.
- S. Muramudalige and H.M.N.D. Bandara, "Demo: Cloud-Based Vehicular Data Analytics Platform," in Proc. 1st Asian Students Symposium on Emerging Technologies (ASSET 2016), June 2016.
- S. Wickramanayake and H.M.N.D. Bandara, "Fuel Consumption Prediction of Fleet Vehicles Using Machine Leaning: A Comparative Study," In Proc. 2nd Moratuwa Engineering Research Conference (MERCon 2016), Apr. 2016.
- M. Amarasinghe, S. Kottegoda, A. L. Arachchi, S. Muramudalige, H.M.N.D. Bandara, and A. Azeez, "Cloud-Based Driver Monitoring and Vehicle Diagnostic with OBD2 Telematics," In Proc. Intl. Conf. on Advances in ICT for Emerging Regions (ICTer), Aug. 2015.

Acknowledgement

Students

- Sandareka Wickramanayake (MSc)
- Shashika Muramudalige (MSc, BSc)
- Asiri Liyana Arachchi (BSc)
- Malintha Amarasinghe (BSc)
- Sasikala Kottegoda (BSc)
- Research partners
 - Mr. Nishal Samarasekera (Dept. of TLM)
- Data
 - Nimbus Venture (Pvt) Ltd.
 - Many other drivers who help us collected data

Dilum.Bandara@uom.lk