

Reducing Computational Time of Closed-Loop Weather Monitoring:

A Complex Event Processing & Machine Learning Based Approach

H. M. C. Chandrathilake, H. T. S. Hewawitharana, R. S. Jayawardana A. D. D. Viduranga, H.M.N. Dilum Bandara, Suresh Marru[#], and Srinath Perera^{*}

Dept. of Computer Science & Engineering, University of Moratuwa
#Indiana University, Bloomington, USA

*WSO2 Inc., Sri Lanka

Contribution

We attempt to address drawbacks of current weather forecasting approaches by pre-processing weather data using Complex Event Processing and Machine Learning

CEP based filter

ML based clustering module

Complex, weather processing module

Introduction

Weather forecasts...

Introduction

Very important and need to be **timely** and **accurate**

But weather algorithms have to process too much data

The Real Problem

1 Introduction

2

3

4

2

Data collection is,

- Static
- Fixed-Cycle
- Low Resolution

The Answer!

1

Introduction

2

3

4

5

- Identifying interesting areas if any
- Increasing the data collection resolution
- Increasing the data collection frequency

High Level Solution...

Apache Spark WSO2 Siddhi Local/Apache Airavata Machine Weather Weather **CEP Engine** Learning Algorithms Data Algorithm Streams Decision System Feedback to Weather Sensors Historical Data

Selected Case

Solution Architecture

3

4

5

2006 December, 19-20

Decatur, United States

3 - Hourly Data in GRIB* format

^{*} GRIB is a data format dedicated to handle weather data

Initial Data Coverage

Solution Architecture

High Level Solution...

Solution Architecture

4

5

CEP Filtering Layer

ENHANCED WEATHER MONITORING SYSTEM

Solution Architecture

3

4

5

Complex Event Processing

- · Monitoring data streams in real time
- Identifying complex relationships among events (data)
- We used it to monitor weather stream data

Goals

- · Anomaly detection
- Filtering

Filtering using weather indices

- Lifted Index
- Storm Relative Helicity
- Convective Inhibition

Lifted Index

LI ≥ OK : Stable atmosphere - no thunderstorms possible

OK > LI ≥ -2K : Thunderstorms possible -2K > LI ≥ -6K : Thunderstorms likely

-6K > LI : Severe thunderstorms likely

CEP Filtered Data

Solution Architecture

High level solution...

Solution Architecture

ML Clustering Layer

Solution Architecture

3

4

5

Used to

- Cluster the data points
- Get localized boundaries

2 Algorithms used

- K-means
- Gaussian Mixture Model

Apache Spark

K-Means Results

Solution Architecture

3

4

5

GMM Results

Solution Architecture

High level solution...

Solution Architecture

4

5

- GRIB data format dedicated to handle weather data
- GRIB data provided to WRF model
- Output is received in GRIB/netCDF
- Post processing to get insight

WRF Modeling System Flow Chart

3

4

5

PERFORMANCE EVALUATION

LARIDAE ENHANCED WEATHER MONITORING SYSTEM

Performance Evaluation

4

5

Using Thunderstorm Indices

- Best 4 layer Lifted Index
- Storm Relative Helicity
- Convective Inhibition

23866 Input Data Records
Execution Time: 15.75 seconds

Performance Evaluation

K-Means Algorithm: 19.299 seconds

GMM Algorithm: 63.063

Results Comparison

Performance Evaluation

1

5

Scenario 1

- Without Preprocessing
- Total Execution Time: 745 seconds

A STATE OF THE STA

Scenario 2

- Clustering using K Means
- WRF Execution Time: 165.632 seconds

Scenario 3

- Clustering using GMM
- WRF Execution Time: 73.978 seconds

Execution Time Comparison

Performance Evaluation

4

5

ML Algorithm Execution time (Seconds)

Total Execution Time (Seconds)

- Significant Time Gain
- GMM: Expensive Algorithm But Gives Better Performance in Clustering

FUTURE IMPROVEMENTS

- Proof of concept
- Identifies only the thunderstorm signatures
- Other weather indices should be added
- Better algorithm to find "k" value in GMM clustering algorithm
- Feeding streams of data from different weather data sources
- Adapting the input data collection resolution dynamically wrt the feedback from individual components

- We have built a successful prototype of the solution concept
- Statics shows a considerable improvement of the running time of WRF module when integrated with our system
- Total running time of the forecasting procedure has reduced by 75%-85% without affecting the accuracy of the results
- The solution is feasible, cost-effective and can be further extended

THANK YOU!

chamil.11@cse.mrt.ac.lk

BACKUP SLIDES

ML Clustering Layer

ENHANCED WEATHER MONITORING SYSTEM

Solution Architecture

3

4

5

Standard K-Means for Clustering

- Faster compared to other clustering algorithms
- Need to specify 'K'

Solution: Improved K-Means

Finding the 'K'

Event Details

Event	Thunderstorm Wind
Magnitude	50 kts.
State	TEXAS
County/Area	WISE
WFO	FWD
Report Source	Department of Highways
NCDC Data Source	CSV
Begin Date	2006-12-20 06:00:00.0 CST-6
Begin Location	9SSW DECATUR
Begin Lat/Lon	33.11/-97.54
End Date	2006-12-20 06:00:00.0 CST-6
End Location	9SSW DECATUR
End Lat/Lon	33.11/-97.54
Deaths Direct/Indirect	0/0 (fatality details below, when available)
Injuries Direct/Indirect	0/0
Property Damage	10.00K
Crop Damage	0.00K
Episode Narrative	An upper level low pressure system and associated Pacific front moved through North Texas in the early morning hours.
Event Narrative	A few signs were blown down along Highways 114 and 151 near the leading edge of a shallow line of thunderstorms.


```
&share
wrf core = 'ARW',
\max dom = 2,
start_date = '2008-03-24_12:00:00','2008-03-24_12:00:00',
end date = '2008-03-24 18:00:00','2008-03-24 12:00:00',
interval seconds = 21600,
io form geogrid = 2
 &geogrid
parent id = 1, 1,
parent grid ratio = 1, 3,
i parent start = 1, 31,
Figure 4.18 - namelist.wps file contents
j parent start = 1, 17,
s we = 1, 1,
e we = 74, 112,
s sn = 1, 1,
e sn = 61, 97,
geog data res = '10m', '2m',
dx = 30000,
dy = 30000,
map proj = 'lambert',
ref lat = 34.83,
ref lon = -81.03,
truelat1 = 30.0,
truelat2 = 60.0,
stand lon = -98.,
geog data path = '/mmm/users/wrfhelp/WPS GEOG/'
&ungrib
out format = 'WPS',
prefix = 'FILE',
&metgrid
fg name = 'FILE'
io form metgrid = 2,
```


What we achieved

5 Future Improvements

