Casa Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere

Resource and Query Aware, P2P-Based Multi-Attribute Resource Discovery

H. M. N. Dilum Bandara and Anura P. Jayasumana

Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA. {dilumb, anura}@engr.ColoState.edu

University of Massachusetts Amherst

University of Oklahoma

Colorado State Universit

Puerto Rico Mayaguez

Abstract

Distributed, multi-attribute Resource Discovery (RD) is a fundamental requirement in collaborative P2P, grid, & cloud computing. We present an efficient & load balanced, P2P-based multi-attribute RD solution that consists of 5 heuristics, which can be executed independently & distributedly. 1st heuristic maintains a minimum number of nodes in a ring-like overlay consequently reducing the cost of resolving range queries. 2nd & 3rd heuristics dynamically balance the moderate key & query load by transferring keys to neighbors & by adding new neighbors when existing ones are insufficient. Last 2 heuristics, namely fragmentation & replication, form cliques of nodes that are placed orthogonal to the overlay ring to dynamically balance the highly skewed key & query **loads** while reducing the query cost. By applying these heuristics in the presented order, a RD solution that better responds to real-world resource & query characteristics is developed.

Problem Statement

- Overlay ring-based resource discovery
 - Pros Scalable & performance guarantees
 - Cons High query (O(N)) & advertising cost, & unbalanced load
 - Conventional solutions Domain of attributes $D_i \gg N$
- Real-world resources & queries [1-3]
 - Domain of some attributes is small $D_i \ll N$
 - Queries with large range of attribute values
 - Not useful to advertise even attributes with large D_i at high resolutions
 - Effectively, $D_i \ll N$
- Problem

minimize Nsubject to I_{Cap}^r, Q_{Cap}^r

N – No of nodes I_{Cap}^{r} – Index capacity of a node Q_{Cap}^{r} – Query capacity of a node

System Model

Heuristic 1 – Prune Nodes With Lower Contribution

Remove nodes with lower contribution to query resolution

- a) Remove $c \rightarrow$ Reduce query cost $Q_{Out}^c = 0$
 - Can b or d accept any resources indexed at c?
 - *d* is preferred as no changes are required to overlay network
- b) Remove *a*, *b*, or $d \rightarrow \text{Reduce query cost} \quad Q_{Out}^i < Q_{Thr}^i$
 - Can neighbors accept resource index & query load?
 - Successor is preferred

Heuristics 2 & 3 – Key Transfer

When nodes are already contributing but overloaded

- Heuristic 2
 - Node *i* is overloaded
 - Adjust address range
 - Move keys/resources to successor or predecessor
 - Can it accept?
 - Successor is preferred
 - Minor changes to overlay

- Heuristic 3
 - Node *i* is overloaded & successor & predecessor not willing to accept load
 - Add new successor or predecessor
 - Load must not exceed capacity of a node
 - Successor is preferred
 - Some changes to overlay

Heuristics 4 & 5 – Replication & Fragmentation

• Heuristics 2 & 3 will fail if load is too much for a node

- Heuristic 4
 - Query load is too high
 - Add new node & replicate index
 - Don't increase query cost
 - More changes to overlay

- Heuristic 5
 - Resource index is too large
 - Add new node & fragment index
 - Rarely increase query cost
 - More changes to overlay

In practice, nodes can index many resources & answer many queries/second → Cliques are not large

Simulation Setup

- Compared with a Chord network with same number of nodes
 - Our solution is always better than any solution that add all the nodes to overlay
- Workloads derived from real-world resource & query traces

Workload	Resources	Queries
File sharing	100,000 copies of 10,000 distinct files, ~Zipf's(0.7).	Case 1 – ~Zipf's(0.5), Case 2 – ~Zipf's(1.0). Query arrival ~exponential(2 min).
CPU speed	CPU speed of 100,000 randomly sampled nodes from SETI@home. Can be approximated by ~N(2.36, 0.28) [1, 3].	Pulse-like queries derived from PlanetLab. Use empirical CDF to generate ranges of attribute values. Query arrival ~exponential(2 min).
CPU free	A synthetic dataset of 100,000 CPU free values derived using linearly-interpolated empirical CDF from PlanetLab.	Pulse-like queries derived from PlanetLab. Use empirical CDF to generate range of attribute values. Query arrival ~exponential(2 min).
PlanetLab	527 node PlanetLab trace with 12 static & 12 dynamic attributes. Also used 250, 750, & 1000 node traces generated using [5-6].	Synthetic trace generated using empirical CDFs derived from set of attributes in a query, their popularity, [I _i , u _i], & m [7]. ~exponential(10 sec).

Performance Analysis – Single-Attribute

Performance Analysis – Multi-Attribute

- Each heuristic addresses a specific problem
- More efficient & load balanced solution when all 5 heuristics are combined
 - Work with both single & multiple attributes

Summary & Future Work

- 5 heuristics for
 - Efficient P2P-based multi-attribute resource discovery
 - Better load distribution & meet node capacity constraints
- Heuristics rely on local statistics to capture complex characteristics of real-world resources & queries
 - Support both single-attribute & multi-attribute resources
- Currently extending solution to
 - Also balance load due to
 - Frequent advertising of dynamic resources
 - Messages forwarded by overlay nodes
 - Support resource matching & binding

Related Publications

- 1. H. M. N. D. Bandara and A. P. Jayasumana, "Characteristics of multi-attribute resources/queries and implications on P2P resource discovery," In Proc. Int. Conf. on Computer Systems and Applications (AICCSA '11), Dec. 2011.
- H. M. N. D. Bandara and A. P. Jayasumana, "Evaluation of P2P resource discovery architectures using real-life multi-attribute resource and query characteristics," In Proc. IEEE Consumer Communications and Networking Conf. (CCNC '12), Jan. 2012.
- 3. H. M. N. D. Bandara and A. P. Jayasumana, "Multi-attribute resource and query characteristics of real-world systems and implications on peer-to-peer-based resource discovery," In review.
- 4. H. M. N. D. Bandara and A. P. Jayasumana, "Collaborative applications over peerto-peer systems – Challenges and solutions," Peer-to-Peer Networking and Applications, Springer New York, 2012, DOI: 10.1007/s12083-012-0157-3.
- 5. H. M. N. D. Bandara and A. P. Jayasumana, "On characteristics and modeling of P2P resources with correlated static and dynamic attributes," In Proc. IEEE Global Communications Conference (GLOBECOM '11), Dec. 2011.
- 6. H. M. N. D. Bandara, "Enhancing collaborative peer-to-peer systems using resource aggregation and caching: A real-world, multi-attribute resource and query aware approach," PhD Dissertation, Colorado State University, Fall 2012.

www.cnrl.colostate.edu/Projects/CP2P/