
Exploiting Communities for Enhancing

Lookup Performance in Structured P2P

Systems

H. M. N. Dilum Bandara and Anura P. Jayasumana
Colorado State University

Anura.Jayasumana@ColoState.edu

http://www.nsf.gov/start.htm
http://www.nsf.gov/start.htm
http://www.nsf.gov/start.htm
http://www.nsf.gov/start.htm

Contribution

Community-aware caching scheme to enhance

lookup performance in structured P2P systems
1. Build sub-overlays among community members while preserving

overlay properties

2. Weighted least frequently used caching based on local statistics

• Enhances both communitywide (23-51%) & system-wide lookup (40%)

performance

• Works with structured P2P systems that provide alternative paths to a

given destination

• Works with any skewed popularity distribution

• Adaptive to changing popularity

• Need small caches
2

Motivation

• Many small communities are emerging within P2P systems

• Community – subset of peers that share some similarity

– Semantic

• Many BitTorrent communities – music, movies, games, Linux

distributions, private communities

– Geography

• For 60% of files shared by eDonkey peers, more than 80% of their

replicas were located in a single country [Handurukande, 2006]

– Organizational

• Peers within an AS, members of a professional organization, group of

universities

• To share resources & limit unrelated external traffic

3S. B. Handurukande et al., “Peer sharing behaviour in the eDonkey network, and implications for the design of

server-less file sharing systems,” EuroSys ‘06, Apr. 2006.

Motivation (cont.)

• Content popularity in P2P follows Zipf’s-

like distribution

• Improve lookup

– Restructure overlay based on similarity

– Cache most globally popular content

• However
1. Communities are not isolated

2. Individual communities don’t rank high in

popularity

3. Not every node can or interested in caching

4

[Ramasubramanian, 2004]

Ramasubramanian and Sirer, “Beehive: O(1) lookup performance for power-law query distributions in peer-to-peer

overlays,” USENIX NSDI ’04, 2004.

1. Communities are not isolated

Community* EX FE SP TB TS TE TR

fenopy.com (FE) 0.38

seedpeer.com (SP) 0.00 0.00

torrentbit.net (TB) 0.40 0.29 0.00

torrentscan.com (TS) 0.48 0.33 0.00 0.48

torrentsection.com (TE) 0.53 0.23 0.00 0.31 0.25

torrentreactor.net (TR) 0.10 0.08 0.00 0.06 0.09 0.06

youbittorrent.com (YB) 0.36 0.35 0.00 0.29 0.42 0.20 0.04

Content Popularity in Communities

5

EX – extratorrent.com

BitTorrent

Communities

Content Popularity in Communities (cont.)

2. Communities have different Zipf’s parameters
–  = 0.53, 0.66, 0.79, 0.98

– Aggregation of multiple Zipf’s distributions is not necessarily Zipf

– Caching on a structured P2P system with alternative paths [Rao, 2007]

6

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

+





N

n

r

n

rf

1

1

1





LffNH k

C

r

rr logloglog
1

 


W. Rao et al., “Optimal proactive caching in peer-to-peer network: analysis and application,” 6th ACM Con. on

Information and Knowledge Management, Nov. 2007.

 = 1.0  = 1.0

0

2

3

1

12 4

8

15

14

10

11

13

6

79

5

7

Structured Overlay – Chord DHT

Song.mp3

Cars.mpeg

h()

h()

n + 2i – 1, 1  i  m

Successor

11 Song.mp3

6 Cars.mpeg

O(log N) hops

I. Stoica et al., “Chord: a scalable peer-to-peer lookup service for internet applications,” ACM SIGCOMM ‘01, Aug.

2001.

Sub-Overlay Formation

• Goal – not to isolate communities or mix contents

• Each community forms a sub-overlay
– Form links/fingers to community members

• Enable nodes to identify what’s popular in their community
& cache accordingly
– Forward queries to community members hoping that they may have

already cached required contents

Chord overlay

Sub-Overlay Formation (cont.)

• Nodes have 1 or more community IDs

‒ Communities based on different similarity measures – semantic, geography

‒ Support exceptions – user in USA can be a member of a community in India

• Identify community members that are at an exponentially increasing

distances in key space

• Sample nodes pointed by links & their successors

• Long distant links (large i) are more important & easy to find
9

B

C

D

E

B Ą D Ą F = 2 hops

B Ą E Ą F = 2 hops

If E cache F’s content

B Ą E = 1 hop

F

A

No of distinct node found by

probing i-th finger & it’s successor

2(i + 2 log N – m) – 1

N – No of nodes

m – Key length

1 ≤ i ≤ mG

I

H

K

L

J

M

Caching Algorithm
• Cache based on community interest

– Queries go through community members Ą Nodes get to know what’s

popular in their community

• Local statistics are sufficient to estimate relative popularity
– Focus on community interest

– No assumption on popularity distribution

• Weighted least frequently used caching
– Evaluate demand at arrival of each query qĄ Adaptive

– Weight α determine bias towards short or long term trends

– If demandk > Dcache – Indicate node’s interest to cache by append to query q

• Query response is send to query originator & all nodes

that want a copy to cache
10

 
 

10
else1

for is If1

1

1 










 



k
i

k
i

k
i

k
i

demanddemand

kqdemanddemand

Caching Algorithm (cont.)

• Reevaluates what keys to

cache at arrival of a query

– Naturally adapts to varying

trends of community

interests

– Computationally efficient

• Track contents even if not

cached

– Threshold to remove least

popular ones

• Dcache – Caching threshold

– Prevents cache thrashing

– Dcache > α

11

Simulation Setup

12

• OverSim P2P simulation environment

• Sub-overlay formation & caching implemented on top of Chord overlay

• 15,000 nodes

• 10 communities of different sizes

• Different Zipf’s parameters

• Queries after system got stabilized – around 2000 sec

• 10 samples

Community C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

No of nodes

(apx.)
600 600 600 1,200 1,200 1,200 1,200 1,200 2,400 4,800

Zipf’s parameter 0.85 0.95 1.10 0.5 0.80 0.80 1.0 0.90 0.90 0.75

No of distinct

keys
40,000 30,000 30,000 40,000 40,000 40,000 50,000 50,000 50,000 50,000

Similarity with

community (x)
0.2

(C8)
0

0.1

(C7)

0.2

(C9)

0.3

(C8)

0.5

(C7)

0

0.1

(C3)

0.5

(C5)

0.3

(C5)

0.2

(C1)

0.4

(C1)

0.2

(C4)

0.3

(C10)

0.3

(C9)

Queries for rank

1 key
4,516 8,535 17,100 603 6,454 6,454 21,059 11,956 23,911 17,030

Community, Keys & Query Generation

• Peers know their group ID at initialization

• Each peer
– Maintain a key index – no capacity limit

– Maintain a cache – fixed capacity

• Generate fixed set of keys a-priory
– Peers read keys from a file & store in appropriate nodes

• Queries
– Use set of Zipf’s parameters observed form BitTorrent

13





N

n
n

rNrf

1

1

1

),,(






Hops

0 2 4 6 8 10 12 14 16

C
D

F

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Chord

Passive Caching

Caching

Community Caching

Community
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s

0

1

2

3

4

5

6

7

8

Chord

Caching

Community Caching

Performance Analysis

• Reduced path length

– Overall system – 40.5%

– More popular communities – 48-53%

– Least popular community – 23%

reduction (7% with caching)

• Performance depends on skewness

– C1, C5, & C6

• Most queries are responded within few

hops 14

Time (seconds)
2000 2500 3000 3500 4000 4500 5000

A
v
e
ra

g
e
 n

u
m

b
e

r
o
f
h
o

p
s

0

1

2

3

4

5

6

7

8

Chord

Passive Caching

Caching

Community Caching

Dcache = 0.12

α = 0.1

Cmax = 20

Performance Analysis (cont.)

• Small cache size per node

• Dcache reduce cache thrashing,

overhead ,& long-term path length

• Rapidly respond to popularity changes

• Better load distribution

– Max with Chord – 27,574

– Max with Community Caching – 1,677

15

Time (seconds)

2000 2500 3000 3500 4000 4500 5000 5500 6000

A
ve

ra
g
e
 n

u
m

b
e
r

o
f

h
o
p
s

4

5

6

7

8

Dcache = 0.11

Dcache = 0.12

Dcache = 0.13

Dcache = 0.14
Popularity inversion

Time (seconds)
2000 2500 3000 3500 4000 4500 5000

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s

4

5

6

7

8

Dcache = 0.10

Dcache = 0.11

Dcache = 0.12

Dcache = 0.13

Dcache = 0.14

Dcache = 0.15

Cache size (C
max

)
0 5 10 15 20 25

A
ve

ra
g
e

 n
u

m
b

e
r

o
f

h
o

p
s

0

2

4

6

8

Chord

Passive Caching

Caching

Community Caching

Summary

• Community-aware caching solution for structured P2P
– Allows queries to be forwarded through community members

– Enable nodes to cache resources that of interest to their community

• Properties
– Improve both communitywide & system-wide performance

– Works with any structured P2P system that provides alternative paths to
a given destination

• Preserve overlay bound O(log N)

– Independent of popularity distribution & how communities are formed

– Based on local statistics

– Adaptive

– Introduces minimum cache storage, network, & computational overhead

• Current/future work
– Analyze performance under peer churn, heterogeneous caches, &

geography based communities

– In-network community identification & formation 16

Anura.Jayasumana@ColoState.edu

www.cnrl.colostate.edu

Questions ?

http://www.nsf.gov/start.htm
http://www.nsf.gov/start.htm
http://www.nsf.gov/start.htm
http://www.nsf.gov/start.htm

