

#### Radar Networking in Collaborative Adaptive Sensing of the Atmosphere (CASA): State of the Art & Research Challenges

Dilum Bandara & Anura Jayasumana Electrical & Computer Engineering, Colorado State University, Fort Collins, CO. dilumb@engr.colostate.edu

Michael Zink Electrical & Computer Engineering, University of Massachusetts, Amherst, MA.



University of Massachusetts Amherst



University of Oklahoma



Colorado State University



Puerto Rico Mayaguez

CASA is primarily supported by the Engineering Research Centers Program of the National Science Foundation under NSF award number 0313747.



## Collaborative Adaptive Sensing of the Atmosphere (CASA)





- Collaborating & adapting radars
  - Improved sensing, detection, & forecasting
- Aggregates distributed groups of resources as & when needed
  - 10,000 radars to cover U.S.
  - High data rate 800 Mbps
  - Heterogeneous, dynamic, & distributed
  - Real-time 30 sec heart beat



# **CASA Test Beds**



- Oklahoma test bed
  - 7,000 km<sup>2</sup>, 40 km range, 30 km spacing
  - Connected to the Internet
  - Data pull 30 sec heart beat
  - Being moved to Dallas-Fort Worth
- Puerto Rico student test bed
  - Solar powered
  - Wireless connections

# **CASA Applications & End Users**

| Application                | Description                                           | No of Radars | Data Type(s)                   |  |
|----------------------------|-------------------------------------------------------|--------------|--------------------------------|--|
| Reflectivity               | Reflectivity of clouds                                | 1            | Reflectivity                   |  |
| Velocity                   | Wind velocity                                         | 2-3          | Doppler velocity, reflectivity |  |
| Network-Based Reflectivity | Reflectivity of clouds detected using multiple radars | 3+           | Reflectivity                   |  |
| Retrieval (NBRR)           |                                                       |              |                                |  |
| Nowcasting                 | Short term (10-30 min) high resolution forecasts of   | 1-3          | Reflectivity                   |  |
| -                          | active weather events                                 |              | _                              |  |
| Tornado tracking           | Detect & track a tornado as it forms & moves          | 2+           | Doppler velocity, reflectivity |  |

| End user         | Description             | Applications          | Rule Trigger                   | AOI                         | Sampling<br>Interval |
|------------------|-------------------------|-----------------------|--------------------------------|-----------------------------|----------------------|
| National Weather | Responsible for issuing | Reflectivity          | Periodic                       | Counties under jurisdiction | 1 min                |
| Service (NWS)    | warnings                | Velocity              |                                |                             |                      |
|                  |                         | NBRR, nowcasting, QPE | High reflectivity              | Area of active weather      |                      |
|                  |                         | Tornado tracking      | Rotating wind, ground spotters | -                           |                      |
| Emergency        | Siren blowing, helping  | Reflectivity          | Periodic                       | Counties under jurisdiction | 1 min                |
| Managers (EMs)   | · ·                     | Velocity              |                                |                             |                      |
|                  |                         | NBRR, nowcasting, QPE | High reflectivity              | Area of active weather      | 2 min                |
|                  |                         | Tornado tracking      | Rotating wind, ground spotters |                             | 1 min                |
| Researchers      | To understand physical  | Reflectivity          | Periodic                       | Area of active weather      | 1 min                |
|                  | properties of weather   | Velocity              | High wind                      |                             | 30 sec               |
|                  | events, test new        | NBRR, nowcasting,     | High reflectivity              |                             | 1 min                |
|                  | algorithms              | QPE                   |                                |                             |                      |
|                  |                         | Tornado tracking      | Rotating wind                  |                             | 30 sec               |

• Same data accessed by multiple applications & end users



## Streaming – TCP friendly Rate Adaptation Based On Loss (TRABOL)



- Target Rate (TR)
  - Users prefer to receive all relevant data
- Minimum Rate (MR)
  - Most important data
- TCP & UDP inadequate
- TRABOL
  - Application-layer solution
  - Application-aware packet drop
  - Enhance quality of received data

T. Banka et al., "Radar networking: Considerations for data transfer protocols and network characteristics," 21<sup>st</sup> Int. Conf. on IIPS for Meteorology, Oceanography, and Hydrology, Jan. 2005.



## Multicasting – Application-Aware Overlay Networks (AWON)



- API for application-aware service deployment
- Application-aware
  - Packet marking
  - Data delivery under varying network conditions

T. Banka, P. Lee, A.P. Jayasumana, & J. F. Kurose, "An architecture and a programming interface for application-aware data dissemination using overlay networks," COMSWARE '07, Jan. 2007.



60% reduction in link capacity

#### Data Fusion – Peer-to-Peer Collaboration Framework



- Radars depend on each other's data to correct/detect errors
  - Subscribe to neighbors
- Best peer selection
  - Peers with relevant data
  - Peers with lowest data delivery time
    - Computation + transmission

P. Lee, A.P. Jayasumana, H.M.N.D. Bandara, S. Lim, & V. Chandrasekar, "A peer-to-peer collaboration framework for multi-sensor data fusion," Journal of Network & Computer Applications, May 2012.





# Data Fusion – Data Intensive (DI) Clouds



- Infrequent peak demands
- Cloud computing is a good fit
- Enable data-intensive experiments/ workflows from start to finish
  - Radars, weather stations, & cameras
    - Virtualized access to sensors
    - Developed under GENI ViSE project
  - Processing & storing in Amazon cloud

Data Intensive Cloud Control, http://geni.cs.umass.edu/vise/dicloud.php



9

#### Data Fusion – Integrating Infrasound Sensors

- Tornados & their precursors produce infrasound (< 20 Hz)</li>
- Increase accuracy of detection, warning time, & localization



10



D. Pepyne & S. Klaiber, "Highlights from the 2011 CASA Infrasound field experiment," 92<sup>nd</sup> American Meteorological Society Annual Meeting, Jan. 2012

## Multi-User, Multi-Application, & Multi-Sensor **Data Fusion Over Named Data Networks (NDN)**

| Geographic location & weather event specific names                          | <pre>Content dependent names •/Anaheim/Reflectivity/10:30/</pre>            |  |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| Decouple data, security, & access from sensor                               | Decouple identity, security, & access from end point                        |  |  |
| Load balancing, resilience, & security                                      | Better reliability & security                                               |  |  |
| <ul><li>Pull based</li><li>Users determine how resources are used</li></ul> | Receiver driven communication <ul> <li>On demand data generation</li> </ul> |  |  |
| High temperal 8 anatial legality                                            | Evalait temperal 8 enotial legality                                         |  |  |

 $A_1$ 



temporal & spatial

 $A_6$ 

 $\bigcirc$ 

U₁

/AOI/application/time



 $A_2$ 



# **Research Opportunities & Challenges**

- Integrating diverse sensors
  - CASA, solid state, long-range, special purpose, & mobile radars
  - Micro weather stations, pressure sensors, wind profilers, etc.
  - How to transfer & process?
    - Different data types, generation patterns, processing, & bandwidth requirements
- Aggregating distributed groups of resources
  - As & when needed
  - Heterogeneous, distributed, dynamic, & multi-attribute resources
  - Real time & distributed resource matching, binding, & compensation
- Data intensive clouds
  - Transferring data in/out of clouds
    - On demand virtual networks across ISPs
  - Rapid resource deployment
  - Cloud-based processing strategies for weather data
    - Models to understand performance & cost benefits



# **Questions/Comments**

dilumb@engr.colostate.edu www.cnrl.colostate.edu/Projects/



University of

Massachusetts Amherst











Puerto Rico Mayaguez

CASA is primarily supported by the Engineering Research Centers Program of the National Science Foundation under NSF award number 0313747

