Radar Networking in Collaborative Adaptive Sensing of the Atmosphere (CASA):
State of the Art & Research Challenges

Dilum Bandara & Anura Jayasumana
Electrical & Computer Engineering,
Colorado State University, Fort Collins, CO.
dilumb@engr.colostate.edu

Michael Zink
Electrical & Computer Engineering,
University of Massachusetts,
Amherst, MA.
Collaborative Adaptive Sensing of the Atmosphere (CASA)

- Collaborating & adapting radars
 - Improved sensing, detection, & forecasting
- Aggregates distributed groups of resources as & when needed
 - 10,000 radars to cover U.S.
 - High data rate – 800 Mbps
 - Heterogeneous, dynamic, & distributed
 - Real-time – 30 sec heart beat
CASA Test Beds

- **Oklahoma test bed**
 - 7,000 km² · 40 km range, 30 km spacing
 - Connected to the Internet
 - Data pull – 30 sec heart beat
 - Being moved to Dallas-Fort Worth

- **Puerto Rico student test bed**
 - Solar powered
 - Wireless connections
CASA Applications & End Users

<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
<th>No of Radars</th>
<th>Data Type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflectivity</td>
<td>Reflectivity of clouds</td>
<td>1</td>
<td>Reflectivity</td>
</tr>
<tr>
<td>Velocity</td>
<td>Wind velocity</td>
<td>2-3</td>
<td>Doppler velocity, reflectivity</td>
</tr>
<tr>
<td>Network-Based Reflectivity</td>
<td>Reflectivity of clouds detected using multiple radars</td>
<td>3+</td>
<td>Reflectivity</td>
</tr>
<tr>
<td>Retrieval (NBRR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nowcasting</td>
<td>Short term (10-30 min) high resolution forecasts of active weather events</td>
<td>1-3</td>
<td>Reflectivity</td>
</tr>
<tr>
<td>Tornado tracking</td>
<td>Detect & track a tornado as it forms & moves</td>
<td>2+</td>
<td>Doppler velocity, reflectivity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>End user</th>
<th>Description</th>
<th>Applications</th>
<th>Rule Trigger</th>
<th>AOI</th>
<th>Sampling Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Weather Service (NWS)</td>
<td>Responsible for issuing warnings</td>
<td>Reflectivity</td>
<td>Periodic</td>
<td>Counties under jurisdiction</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Velocity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NBRR, nowcasting, QPE</td>
<td>High reflectivity</td>
<td>Area of active weather</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tornado tracking</td>
<td>Rotating wind, ground spotters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Managers (EMs)</td>
<td>Siren blowing, helping first responders, act as spotters</td>
<td>Reflectivity</td>
<td>Periodic</td>
<td>Counties under jurisdiction</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Velocity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NBRR, nowcasting, QPE</td>
<td>High reflectivity</td>
<td>Area of active weather</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tornado tracking</td>
<td>Rotating wind, ground spotters</td>
<td></td>
<td>1 min</td>
</tr>
<tr>
<td>Researchers</td>
<td>To understand physical properties of weather events, test new algorithms</td>
<td>Reflectivity</td>
<td>Periodic</td>
<td>Area of active weather</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Velocity</td>
<td>High wind</td>
<td></td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NBRR, nowcasting, QPE</td>
<td>High reflectivity</td>
<td></td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tornado tracking</td>
<td>Rotating wind</td>
<td></td>
<td>30 sec</td>
</tr>
</tbody>
</table>

- Same data accessed by multiple applications & end users
Data Transfer & Fusion

Data Transfer & Data Fusion

Streaming
- TRABOL – End-to-end
- AWON – Multicasting
- Modeling data fusion latency
- Integrating Other Sensors

Pull
- Sensor-specific names
 - Proxy-based
 - P2P-based
 - Data Intensive Clouds
- Data-specific names
 - NDN-based

Archive
Streaming – TCP friendly Rate Adaptation Based On Loss (TRABOL)

- **Target Rate (TR)**
 - Users prefer to receive all relevant data
- **Minimum Rate (MR)**
 - Most important data
- **TCP & UDP inadequate**
- **TRABOL**
 - Application-layer solution
 - Application-aware packet drop
 - Enhance quality of received data

Multicasting – Application-Aware Overlay Networks (AWON)

- API for application-aware service deployment
 - Application-aware
 - Packet marking
 - Data delivery under varying network conditions

Measurements on PlanetLab

60% reduction in link capacity
Data Fusion – Peer-to-Peer Collaboration Framework

- Radars depend on each other’s data to correct/detect errors
 - Subscribe to neighbors
- Best peer selection
 - Peers with relevant data
 - Peers with lowest data delivery time
 - Computation + transmission

40% cross traffic
Data Fusion – Data Intensive (DI) Clouds

- Infrequent peak demands
- Cloud computing is a good fit
- Enable data-intensive experiments/workflows from start to finish
 - Radars, weather stations, & cameras
 - Virtualized access to sensors
 - Developed under GENI ViSE project
 - Processing & storing in Amazon cloud

Data Fusion – Integrating Infrasound Sensors

- Tornados & their precursors produce infrasound (< 20 Hz)
- Increase accuracy of detection, warning time, & localization

Geographic location & weather event specific names
- Content dependent names
 - `/Anaheim/Reflectivity/10:30/`

Decouple data, security, & access from sensor
- Decouple identity, security, & access from end point

Load balancing, resilience, & security
- Better reliability & security

Pull based
- Users determine how resources are used
- On demand data generation

High temporal & spatial locality
- Exploit temporal & spatial locality

Diagram:
- **AOI**
- **r**
- **R**

/`AOI/application/time`

Graph:
- Data pulled from a radar within 6 min (MB)
- Cache size (MB)
- LFU
- LRU
- Oldest
Research Opportunities & Challenges

• Integrating diverse sensors
 – CASA, solid state, long-range, special purpose, & mobile radars
 – Micro weather stations, pressure sensors, wind profilers, etc.
 – How to transfer & process?
 • Different data types, generation patterns, processing, & bandwidth requirements

• Aggregating distributed groups of resources
 – As & when needed
 – Heterogeneous, distributed, dynamic, & multi-attribute resources
 – Real time & distributed resource matching, binding, & compensation

• Data intensive clouds
 – Transferring data in/out of clouds
 • On demand virtual networks across ISPs
 – Rapid resource deployment
 – Cloud-based processing strategies for weather data
 • Models to understand performance & cost benefits
Questions/Comments

dilumb@engr.colostate.edu
www.cnrl.colostate.edu/Projects/