

University of Moratuwa

Department of Computer Science and Engineering

CS 4202 –Research and Development Project

Final Year Project Report

Cloud-Based Driver Monitoring and Vehicle

Diagnostic with OBD2 Telematics

External Supervisor

Mr. Afkham Azeez

Internal Supervisor

Dr. H. M. N. Dilum Bandara

Group Members:

Malintha Amarasinghe 100029X

Sasikala Kottegoda 100266U

Asiri Liyana Arachchi 100297N

Shashika Muramudalige 100346P

ii

ABSTRACT

The usage of vehicles all over the worlds has drastically increased during the last decade. Over

60 million passenger cars have been manufactured in the year of 2012. This rapid increase of

vehicles has led to many concerns for a range of people and organizations where most of these

concerns are common to all parties. For example, all parties (i.e., drivers, insurance companies,

fleet vehicle managements, low enforcements authorities, etc.) are concerned about reckless

driving and driver anomalies whereas drivers as individuals and people who are willing to

purchase and sell cars are concerned also about the condition of the vehicle.

OBD (On Board diagnostics) is a standard which allows accessing the status of sensors of a

vehicle via a port referred to as the OBD port. Few of those sensors can be stated as speed,

engine rpm, coolant temperature, fuel rate and oxygen. OBD-II, is latest version of OBD and

is implemented in almost all high-end vehicles which are manufactured lately. Several adapters

are commercially available to read data from the OBD-II port. ELM-327, which is used in the

project, is one such adapter where the data which are read from the port are transmitted via

Bluetooth upon pairing.

Given the potential benefits of vehicular data analysis and the availability of technologies such

as OBD, several vehicle monitoring and intelligent transport systems have been proposed. But,

in almost all the systems proposed, there has been either simple or no processing of the data

gathered from the Engine Control Unit (ECU) prior to displaying and are restricted to

monitoring. Also they, hardly include a backend; therefore, are limited by the computationa l

power of the smart phone. Hence, it is hard to predict any undesired outcome, such as an

accident or a failure of sensor since they require real time and long-term analysis of data

regarding the driving habits and the vehicle condition.

The proposed system is similar to the above described systems from the aspect that it uses

OBD-II protocol and an Android app as the device of mediation. In addition, it comes with a

set of complex analyses to perform reckless driving detection, driving anomaly detection,

vehicle sensor failure prediction, high-fuel consumption and high-coolant temperature alert

generation and trip detail summarization. The analyses are performed both in real time as well

throughout a long period of time. While some of these analyses are performed within the app,

more complex and resource consuming ones are performed in the back end. The results of these

analyses are made visible through two interfaces. The drivers themselves are able to get the

iii

results through the Android app in the form of notifications. Alerts generated both in the back

end as well as the app due to undesirable situations are sent to the drivers. Also results of long

term analyses are displayed through a web interface. The web interface enables stake holders

such as organizations insurance companies and fleet vehicle management systems and

authorities to view results of a desired set of people.

iv

ACKNOLEDGEMENT

A successful project is never something that could be achieved alone. Kampana would have

been a dream for a group of four final year students if not for the help and guidance received

from many other parties.

The inception is the most important part of and project. Therefore, we would first like to thank

Mr. Afkham Azeez, Director of Architecture, WSO2 Inc., for providing us the idea for this

project and for guiding us all along. Next we would like to express our sincere gratitude to Dr.

H. M. N. Dilum Bandara for giving us a big hand from the first day of the project right until

the end. There are not enough words to how thankful we are, for giving us an immense support

by bearing our mistakes, correcting us when we were wrong and guiding us along the correct

path. We would also like to convey our hearties gratitude to Dr. Sanjiva

Weerawarana, Founder, Chairman & CEO; WSO2, Inc., for his valuable ideas and for taking

time to advise us despite his busy schedule. Also our sincere thanks goes to Dr. Chathura De

Silva for lending us his OBD2 adaptor and for providing instructions as to how to continue

with the work.

We would further be grateful to all the academic staff members, especially Dr. Malaka Walpola

for providing us the opportunity to conduct the project and for encouraging towards this.

It is also necessary to thank all the people who helped us in collecting data, since without them,

the project could not proceed.

Finally, we would like to thank all our friends, family members and others who have helped us

even by a single word, since sometimes, even those little words encouraged us and motivated

us a lot.

5

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOLEDGEMENT ... iv

LIST OF FIGURES ..7

1. INTRODUCTION .. 10

1.1. Background.. 10

1.2. Problem Statement ... 11

1.3. Proposed Solution .. 11

2. LITERATURE SURVEY.. 13

2.1. On-Board Diagnostics (OBD) ... 13

2.1.1. OBD2 scanners .. 14

2.1.2. OBD2 PIDs ... 15

2.1.3. OBD2 diagnostic trouble codes ... 18

2.1.4. Pin diagram ... 19

2.1.5. Protocol types .. 20

2.1.6. Adaptor types... 21

2.1.7. OBD2 readable apps... 24

2.1.8. Simulators ... 25

2.2 Related Work using OBD-II... 26

2.3. Communication Methods .. 26

2.3.1 Bluetooth.. 26

2.3.2. 3G/4G ... 27

2.4. GPS... 28

2.5. Real-Time Processing ... 28

2.5.1. Databases or CEP? ... 29

2.5.2. Complex event processing .. 30

2.5.3. Complex event processors .. 31

2.5.4. Comparison of complex event processors .. 31

2.5.5. WSO2 CEP in detail... 32

2.6. Business Activity Monitoring .. 33

2.6.1. WSO2 BAM .. 36

2.7. Identification of Driver Patterns .. 38

6

2.8. Identification of Impending Sensor Failures ... 40

2.8.1. Impending Oxygen Sensor Failure... 41

2.8.2. Impending MAF sensor failure .. 44

3. IMPLEMENTATION ... 46

3.1 Use Cases ... 46

3.1.1 Analysis of driver behaviour .. 46

3.1.2 Analysis of vehicle condition ... 47

3.1.3. Summarization of trip details .. 48

3.2 Data Collection and Fabrication ... 48

3.2.1. Data collection ... 48

3.2.2. Data fabrication ... 49

3.2.3. Vehicle simulation ... 51

3.3 Implementation ... 53

3.3.1 Architecture .. 53

3.3.2 Android app.. 56

3.3.3 Driver behavior ... 60

3.3.4 Vehicle condition .. 65

3.3.5 Other features ... 69

4. RESULTS .. 71

4.1. Android App .. 71

4.2. Driver Behavior.. 72

4.2.1 Reckless driving.. 72

4.2.2. Anomaly.. 73

4.3 Vehicle Condition ... 74

4.3.1. Oxygen sensor ... 74

4.3.2. MAF sensor ... 76

4.3.3. Fuel economy and coolant temperature monitoring... 77

4.4. Other Features .. 78

4.4.1. Trip logs .. 78

5. CONCLUSIONS AND FUTURE WORK .. 80

6. REFERENCES ... 81

7

LIST OF FIGURES

Figure 2.1. A handheld OBD2 scanner (Actron PocketScan)

Figure 2.2. An OBD2 data logger

Figure 2.3. Reading data using an OBD Bluetooth adaptor and a mobile phone

Figure 2.4. Bit combination of a PID

Figure 2.5. Bit combination of a DTC

Figure 2.6. Pin diagram of OBD2 port

Figure 2.7. ELM327 Bluetooth, USB and WiFi adaptors

Figure 2.8. Connectivity of the ELM327 adaptor with the vehicle and applications

Figure 2.9. Torque app

Figure 2.10. ELM 327 Terminal app

Figure 2.11. OBDSim GUI plugin

Figure 2.12. The process of CEP

Figure 2.13. The event flow of CEP

Figure 2.14. WSO2 BAM Architecture

Figure 2.15. A membership function - The contours show the map of boundaries of fuzzy output number

in a scale of 0-10, which is used to infer the driving patterns from stop-n-go to highway driving

Figure 2.16. Signal trajectory of a stop&go region for the vehicle speed

Figure 2.17. Signal trajectory of a stop&go region for the accelerator pedal pressure

Figure 2.18. Signal trajectory of a stop&go region for the brake pedal pressure

Figure 2.19. Locations of the oxygen sensors

Figure 2.20. Oxygen sensor switching voltage

Figure 2.21. Oxygen sensor waveforms

Figure 2.22. Response time comparison of good and bad oxygen sensors

Figure 2.23. Mass Air Flow

Figure 3.1. Min max variation of a healthy O2 Sensor

8

Figure 3.2. The Desired change in voltages

Figure 3.3. Min max variation of a failing O2 Sensor

Figure 3.4. The Engine RPM vs the MAF value of the collected dataset

Figure 3.5. Engine rpm vs. MAF value when the sensor is somewhat failed

Figure 3.6. Data simulator

Figure 3.7. The overview of the proposed system

Figure 3.8. The architecture of the system

Figure 3.9. The dashboard of the Android app

Figure 3.10. PID configuration file

Figure 3.11. The architecture of the Android App

Figure 3.12. Acceleration Transition Diagram

Figure 3.13. Regression lines for min and max voltages for O2 sensor

Figure 3.14. Gradients of regressions performed for MAF and RPM

Figure 3.15. Final regression line for gradients between MAF and RPM

Figure 4.1. App dashboards

Figure 4.2. App PID and log screen

Figure 4.3. App enable feature screen

Figure 4.4. Reckless driving web portal

Figure 4.5. Driving anomaly web portal

Figure 4.6. Driving anomaly app notifications

Figure 4.7. Oxygen sensor web portal

Figure 4.8. MAF sensor web portal

Figure 4.9. MAF and O2 sensor notifications

Figure 4.10. App notifications for coolant and fuel rate

Figure 4.11. Trip log list

Figure 4.12. Descriptive view of a single trip log

9

LIST OF TABLES

Table 2.1. Modes of operations of OBD2 PIDs

Table 2.2. A list of Standard OBD2 PIDs

Table 2.3. Commonly available DTCs

Table 2.4. Pin numbers and meanings of OBD2 port

Table 2.5. Standard OBD2 protocols

Table 2.6. Example list of AT commands available for ELM327

Table 2.7. Available protocol numbers in ELM327

Table 2.8. A comparison of WSO2 and Oracle BAMs

Table 2.9. PIDs that can be used for reading oxygen sensor

Table 4.1. Results of prediction for o2 sensor.

10

1. INTRODUCTION

1.1. Background

A motor vehicle has become an integral part of a modern family. The usage of vehicles in Sri

Lanka has drastically increased during the last decade. Approximately 30,000 new motor cars are

being registered each year and the number keeps increasing [1]. This rapid increase of vehicles has

led to many concerns not only for the drivers but also to the authorities responsible for law

enforcement, insurance, and transportation infrastructure planning and maintenance. Thus, if we

could provide a way to collect vehicle data and analyze them, it could provide many benefits such

as the following to all stakeholders:

● For drivers

○ Self-evaluation of ones driving habits, e.g., how green the driver is?

○ Reduced insurance premium for drivers with good driving habits

○ Ability to monitor health status of the vehicle such as engine faults and emission

status

○ Identify unusual driving behaviors

● For cooperates

○ Insurance companies could reward good drivers by reducing their premium and

introduce pay-as-you-drive in Sri Lanka

○ Monitoring and management of fleet vehicles by tracking them and notifying

unusual behaviors of drivers

● Authorities

○ Law enforcement such as police could better control the traffic and detect unusua l

driving behaviors

○ Organizations responsible for transportation infrastructure planning and

maintenance can get long-term statistics related to vehicle flow, maintenance

requirements, and planning for new and upgraded infrastructure

Given the potential benefits of vehicular data analysis, several vehicle monitoring and intelligent

transport systems have been proposed [2, 3, 4]. The vehicle diagnosis program proposed by Kim

et al. [2] provides a diagnosis of different kinds of vehicle malfunctions within the navigat ion

11

system. The information collected through the OBD-II port [5] are displayed in a human readable

way. To see this information the driver has to select the ‘vehicle information’ menu of the

navigation pane. Much of this information is displayed on the dashboard by default. Besides, a

driver cannot be staring into the navigation pane while driving since it will distract the driver.

Quite a lot of research work has been in the area of vehicle monitoring through a server [3, 4, 6,

7]. The main focus of most of the researches is on tracking the vehicles [4, 6, 7] whereas fault

detection has also been a concern many times [3, 7]. But there has not been a single system which

considers all the aspects that would be of concern to people who are dealing with vehicles. Also,

in almost all the systems proposed, there has been either simple or no processing of the data

gathered from the Engine Control Unit (ECU), but plainly displaying. Hence, it is hard to predict

any undesired outcome, such as accidents through dangerous driving and failure of components

through long-term analysis of sensors depending on the present situation and long-term behavior

of the driver and the vehicle.

1.2. Problem Statement

The rapid increase of vehicle usage has led to many concerns not only for the drivers but also to

the authorities responsible for law enforcement, insurance, and transportation infrastruc ture

planning and maintenance. Though many researches have been carried out to address some of the

problems of concern, not many have actually considered the major aspect, which is to collect data

related to the driver and the vehicle for a very long time and to predict the future behaviors such

as potential for accidents and failure of components and to reason certain behaviors such as an

accident or a fuel inefficiency.

1.3. Proposed Solution

To address these limitations, we propose a cloud-based system, which is capable of collecting,

storing and analyzing vehicular data for a long period of time. Vehicular Data will be collected

using an OBD2 to Bluetooth interface and will be sent to backend cloud servers using a smartphone

via 3G/4G connection. The backend of the proposed vehicular data analysis system is based on

Complex Event Processing (CEP) and Business Activity Monitoring (BAM). Through this

solution the stakeholders will be able to get discounts on insurance premiums through better

12

driving habits and manage and monitor their vehicles and drivers thus ultimately saving money

and time.

Among the important individual vehicular data that needs to be collected, are the driving speed,

engine RPM, fuel consumption, emission status, and coolant temperature. There is a standard

interface in vehicles manufactured after 1996 [8] for this purpose, which is called OBD-II (On

Board Diagnostics) [9], that sends data from the Engine Control Unit (ECU).

An OBD-II to Bluetooth adaptor is plugged into the OBD2 port so that the data coming from ECU

can be sent to a mobile app via Bluetooth, from which the gathered data will be sent to the server

through a 3G/4G network. The mobile app will also gather data from its inbuilt GPS and

accelerometer sensors. The GPS data will be useful for tracking vehicles and traffic prediction.

For detecting rapid brakes, accelerometer could be more accurate than using the derivative of speed

parameter of the OBD2 port. Afterwards, data will be processed by a Complex Event Processor

(CEP) and a Business Activity Monitor (BAM).

1.4 Outline

Section 2 contains a detailed literature survey on this project. It discusses about the fundamenta ls,

related work, existing products and communication methods related to OBD2. The survey also

includes a discussion about complex event processing and business activity monitoring. Further,

it contains a survey on the main use cases which are driver behavior and vehicle condition analysis.

Section 3 focuses more on the implementation details of the main use cases. It describes how data

collection and fabrication was done and how they were simulated. This section also contains the

main architecture of the system highlighting the main components which are the OBD2 adapter,

android app, CEP, BAM and the web portal. Further it discusses how they have been used to detect

reckless driving, driver anomalies and vehicle sensor failures.

Section 4 consists of main outcomes of the project including screenshots of the android app and

the web portal. Section 5 comprises of the conclusion and future work of the project.

13

2. LITERATURE SURVEY

Due to the advancements in the automotive industry and the concern about driver safety and traffic,

several researches, studies and projects have been carried out in this area. A number of related

tools and technologies have been identified as required for developing the proposed solution are

explained in the following sections. The first is the OBD-II adapter which is discussed under

Section 2.1 that is required to read data from the ECU. In Section 2.2, a brief description of similar

work related to OBD-II that has been carried out is included. Next, in Section 2.3 data

communication methods are discussed since it is the primary way of getting data into a smartphone

and sending them to the backend. In Section 2.4 an introduction about GPS is included which is

the primary way of obtaining the location of the vehicle. The backend processors, CEP and BAM

are then explained in Section 2.5 and 2.6, respectively. Section 2.7 includes several researches that

have been done in order to identify facts that can represent driving patterns. In Section 2.8, two

common impending vehicle sensor failures are discussed which are impending oxygen sensor

failure and impending MAF sensor failure. Finally, in Section 2.9 several existing methods of

vehicular traffic estimation are discussed.

2.1. On-Board Diagnostics (OBD)

Comparing to the other technologies that are used in our day-to-day life, automotive engines have

not changed a lot. The same basic principles that drove the first car engines are still used today.

However, modern automotive engines have evolved to meet today’s power, efficiency and

emission standards. To achieve that, sensors are being used in each sub-system of the vehicle,

which continuously monitor the states and are used as a feedback to control the inputs for the

engine to gain the maximum in means of power, efficiency and emission standards. All the sensors

are connected to the Powertrain Control Module (PCM); an electronic control unit which is

considered as the “brain” of a modern vehicle.

There is a special circuit integrated to the PCM, which is designed to monitor emission control

systems and key engine components. It is called On-Board Diagnostics (OBD) [8, 9] which refers

to a vehicle’s self-diagnostic and reporting capability. The diagnostic data can be read through a

14

port which is located in the passenger compartment. In modern vehicles, the port is called “OBD2

port”.

If the OBD system detects a problem, the system turns on a warning lamp (MIL) on the vehicle’s

dashboard while storing related important information about the detected malfunction in the

memory. The stored data can be retrieved via a standardized series of Diagnostic Trouble Codes

(DTCs) [10] through the OBD2 port and will be very effective in accurately finding and fixing the

problem.

Another key reason for the technology to become prominent is that it enables modern vehicles to

integrate with various other systems. It allows an external device to access the vehicle’s Electro nic

Controller Unit (ECU) via a standardized digital communications port to receive real-time vehicle

data such as vehicle speed and engine RPM (i.e., number of revolutions of the crankshaft per

minute) which are called OBD2 PIDs (On-Board Diagnostics Parameter IDs) [11]. Before OBD2

was introduced, there were several predecessors, which are ALDL (Assembly Line Diagnost ic

Link) and OBD1. OBD2 is an improvement over OBD1 in both capability and standardization. In

1996, the OBD2 specification was made mandatory for all cars manufactured in the United States

to be sold in the United States [12]. After that it has been become popular among most vehicle

manufacturers and almost all new vehicles supports OBD2 [13].

2.1.1. OBD2 scanners

There are various types of OBD2 scanners available for automotive technicians.

Figure 2.1. A handheld OBD2 scanner (Actron

PocketScan) [14].

 Figure 2.2. An OBD2 data logger (TEXA OBD

log) [15].

15

Handheld scanners (see Figure 2.1) are the most common because of their ease of use. The termina l

of the device can be connected to the OBD2 port and then both real-time data (Parameter IDs) and

stored data (Diagnostic Trouble Codes) can be read through the device’s screen. Data loggers (see

Figure 2.2) are designed to be semi-permanently connected to the vehicle. These smaller and often

screenless devices stay with the vehicle silently logging all of the information that the vehicle's

OBD2 port provides. Those devices are used to monitor vehicles for a long period of time.

Data can also be read using a PC or a mobile phone through an OBD2 adaptor (see Figure 2.3). It

is the cheapest among the included ways, if one already has a PC or a mobile phone. There are

various types of OBD2 adaptors and software tools available. Those will be discussed in Sections

2.1.6 and 2.1.7 in detail.

Figure 2.3. Reading data using an OBD2 Bluetooth adaptor and a mobile phone [16].

Torque [16] is a popular mobile app for Android devices which can be connected to an OBD2

Bluetooth adaptor (see Figure 2.3) via Bluetooth. The adaptor should be plugged into the OBD2

port and paired to the mobile phone via Bluetooth. After a successful connection, many of the

supported real time engine parameters by the PCM can be seen via the app’s GUI.

2.1.2. OBD2 PIDs

OBD-II PIDs (On-Board Diagnostics Parameter IDs) are codes used to request data from a vehicle.

There is a standard set of PIDs which is defined by SAE standard J/1979. Other than that,

manufacturers define their own PIDs. Figure 2.4 illustrates the bit combination of a PID.

16

Figure 2.4. Bit combination of a PID [5].

According to Figure 2.4, mode of operation is followed by the PID [5]. PIDs operate in several

modes of operations. The latest OBD-II standard, SAE J1979, defines ten such modes of operations

[11] which are given in Table 2.1.

Table 2.1. Modes of operations of OBD2 PIDs [11].

Mode

(hex)

Description

01 Show current data

02 Show freeze frame data

03 Show stored Diagnostic Trouble Codes

04 Clear Diagnostic Trouble Codes and stored values

05 Test results, oxygen sensor monitoring (non CAN only)

06 Test results, other component/system monitoring (Test results, oxygen sensor

monitoring for CAN only)

07 Show pending Diagnostic Trouble Codes (detected during current or last driving

cycle)

17

08 Control operation of On-Board component/system

09 Request vehicle information

0A Permanent Diagnostic Trouble Codes (DTCs) (Cleared DTCs)

To receive real-time vehicle data, Mode 01 should be used. Table 2.2 includes a set of PIDs which

can be used in Mode 01.

Table 2.2. A list of standard OBD2 PIDs [11].

PID

(hex)

Description Output

bytes

Equation Range & Unit

00 PIDs supported (01 - 20) 4 - -

04 Engine Load 1 A*100/255 0-100 %

05 Engine Coolant Temperature 1 A - 40 -40 - 215 °C

0C Engine RPM 2 ((A*256)+B)/4 0 - 16,383.75 rpm

0D Vehicle Speed 1 A 0 - 255 km/h

52 Ethanol fuel percentage 1 A*100/255 0 - 100 %

5C Engine oil temperature 1 A - 40 -40 - 210 °C

5E Engine Fuel Rate 2 ((A*256)+B)*0

.05

0 - 3212.75 L/h

‘A’ denotes the least significant byte of the output. ‘B’ denotes the next least significant byte.

18

2.1.3. OBD2 diagnostic trouble codes

OBD2 Diagnostic Trouble Codes (DTCs) are stored by the On-Board Diagnostic system in

response to a problem found in the vehicle. These codes identify a particular problem area and are

intended to provide a guide to locate where a fault might be occurring and rapidly identify the

cause of the malfunctions within the vehicle. DTCs consist of a five-digit alphanumeric code. They

were earlier interpreted through the blinking pattern of the “Check Engine” (MIL) light. Now the

system supports gaining DTCs through OBD2 ports using modes of operations. Mode 03 and 04

can be used to show and clear stored DTCs respectively (see Table 2.1) [11].

Following diagram illustrates the bit combination of a DTC [10].

Figure 2.5. Bit combination of a DTC [5].

The list of all the standard DTCs is well defined in SAE J2012 [10]. Some of the common DTCs

which occur in vehicles can be listed as:

Table 2.3. Commonly available DTCs [10].

DTC Meaning

P0101 MAF Sensor Performance Issue

19

P0138, P0139 O2 Sensor Circuit High Voltage/Slow Response (Bank 1 Sensor 2)

P0171, P0174, P0175 Rich or Lean Conditions of Air/Fuel ratio

P0301-P0308 Cylinder 1-8 Misfire Detected

P0420 Catalyst System Efficiency Below Threshold (Bank 1)

2.1.4. Pin diagram

The OBD-II specification provides for a standardized hardware interface—the female 16-pin (2x8)

J1962 connector. Unlike the OBD-I connector, which may have been placed anywhere the vehicle,

the OBD-II connector is located on the driver's side of the passenger compartment and required to

be within two feet (0.61 m) of the steering wheel (unless an exemption is applied for by the

manufacturer, in which case it is still somewhere within reach of the driver).

Figure 2.6 shows the pin-out of the connector as defined in SAE J1962 [17]. Pin numbers and their

roles are listed in Table 2.4.

Figure 2.6. Pin diagram of OBD2 port [17].

Table 2.4. Pin numbers and meanings of OBD2 port [17].

Pin No Description Pin No Description

1 Vendor option 9 Vendor option

2 J1850 Bus+ 10 J1850 Bus-

3 Vendor option 11 Vendor option

20

4 Chassis Ground 12 Vendor option

5 Signal Ground 13 Vendor option

6 CAN High J-2284 14 CAN Low J-2284

7 ISO 9141-2 K-LINE Tx/Rx 15 ISO 9141-2 L-LINE Tx/Rx

8 Vendor option 16 +12v Battery power

2.1.5. Protocol types

There are five protocols in use with the modern OBD-II interface which are:

● ISO15765 (CAN-BUS)

● ISO14230 (KWP2000)

● ISO9141-2

● SAE J1850 VPW

● SAE J1850 PWM

Often it is possible to confirm the protocol in use based on which pins are present on the J1962

connector. Many vehicles implement CAN protocol after 2006 [18]. By model year 2008, all

vehicles sold in the US must use the CAN bus [19].

Table 2.5. Standard OBD2 protocols [19].

Name Data rate Data pins Companies who use it

ISO 15765 CAN 250/500

KBaud

6, 14 US Vehicles

ISO 14230

KWP2000

1.2 - 10.4

kBaud

7, 15 European 2003+

21

ISO 9141-2 10.4 kBaud 7, 15 European, Chrysler(2000-2004)

SAE J1850 VPW 10/41.6 KB/s 2 General Motors

SAE J1850 PWM 41.6KB/s 2, 10 Ford

 2.1.6. Adaptor types

One of the key reasons that OBD2 has recently become an enabling technology for in-vehic le

applications is due to the appearance of different types of OBD-II adaptors. These connectors

enable an easier way of connecting between external devices and the vehicle’s Electronic Control

Unit (ECU). Following are some of the commercially available adaptors.

2.1.6.1. Automatic link

The adaptor costs about $100 and comes along with first party apps for Android and iOS based

phone and tablets.

2.1.6.2. Mojio

Mojio [20] costs about $150. It is a cellular and GPS device that connects to the OBD2 port. It has

the capability to directly transmit ECU data along with GPS data to the server. So there is no need

of intermediate device such as a mobile phone to transmit data. The users are provided with a

proprietary app which can also communicate with the device and read data such as DTCs.

2.1.6.3. Craven OBDII connector

Unlike Automatic, the Craven adapter [24] utilizes the third-party apps such as Torque (Android)

or DashCommand (iOS) and less expensive. It is available in both Bluetooth and WiFi models.

But this does not provide other built in modules such as GPS modules or Accelerometers.

2.1.6.4. ELM327 based adaptors

This is the least expensive option available which is in the price range $7-20 depending on the

manufacturer and the terminal type.

22

Figure 2.7. ELM327 Bluetooth, USB and WiFi adaptors [22].

The device is based on ELM327 microcontroller, which has a low power CMOS design and RS232

serial interface. Based on the terminal type, it includes an RS232 to Bluetooth, USB or WiFi

converter module inside the adaptor.

The microcontroller has the ability to detect all the 5 standard OBD2 protocols which is one of the

most important features of the adaptor. Because of that, the App developer does not need to worry

about the underlying complexity of the OBD2 protocol of the vehicle.

Figure 2.8. Connectivity of the ELM327 adaptor with the vehicle and applications [23].

Since it need to be connected to a mobile phone, only applicable types are Bluetooth and WiFi

adaptors. Among them Bluetooth adaptor was chosen since it is less expensive and typically has a

lower power consumption than the WiFi adaptor.

ELM327 device basically supports two types of commands. They are AT commands and OBD2

commands. AT commands are used configure the ELM327 device and will never be sent to ECU.

Any other command which does not start with AT will be sent to the ECU without any

23

modification. Those OBD commands to the vehicle are only allowed to contain the ASCII codes

for hexadecimal digits (0 to 9 and A to F).

Table 2.6. Example list of AT commands available for ELM327 [24].

AT Command(s) Description

ATZ Reset All

AT@1,AT@2, ATI Display device description, ID and version, .g., “ELM327 v1.3a

OBDGPSLogger”

ATh Set default protocol to h, where h is the protocol number (see Table

2.7)

ATAh Set default protocol to h. If it was not successful search through all

protocols and automatically identify the relevant protocol.

ATDP Describe the current protocol

ATTh Try protocol h

ATTAh Try protocol h with auto search

Table 2.7. Available protocol numbers in ELM327 [24].

24

Other than that, ELM327 supports protocol-specific commands such as setting protocol specific

baud rate and setting timer multiplier.

2.1.7. OBD2 readable apps

The OBD2 has been becoming popular among drivers since it gives a certain level of transparency

for the vehicle. Hence, there are several apps popular among users, which are available for various

platforms.

For Android, there are several third-party apps like Torque [16] and ELM327 Terminal [25] (see

Figures 2.9 and 2.10). The Terminal app is very primitive and is limited only to interactively test

various AT and OBD2 commands via ELM327 adaptor and it does not do any further processing.

Torque app comes along with an attractive GUI which is capable of showing OBD2 PID values in

real time using its GUI components like graphs and digital/dial meters (see Figure 2.9). It is also

capable of viewing DTCs and clear them. Similar apps are available for iOS and Windows

platforms too.

Figure 2.9. Torque app [16]. Figure 2.10. ELM 327 Terminal app [25].

25

There are also PC-based software such as ProScan [26] and OBD GPS Logger [27]. Both are more

focused on improving fuel efficiency. Moreover, ProScan tool supports real-time plotting of data,

data logging, clearing DTCs, performing fuel system and emission tests.

Main features that are lacking in the above apps are:

● Mobile apps are easier to connect and drive with but lack of computational power and

capacity to do comprehensive tests on sensors.

● PC apps do have that capability, but it is not always viable for a driver to take a PC (or a

laptop) with the vehicle.

● Do not have the capability to identify impending sensor failures.

2.1.8. Simulators

It is not always a viable option to test OBD2 readable apps in a real environment with a vehicle.

As a solution, existing apps which can simulate a vehicle with an ELM327 device plugged in, can

be used.

OBDSim [28] is one such simulator. It supports multiple platforms including Windows and Linux,

and is able to simulate multiple terminal types which are serial USB and Bluetooth connections.

The tool can be configured to replay a previous OBD2 log file dumped by OBD GPS Logger which

is gained from running a real vehicle or user can specify values for OBD2 PIDs using the GUI tool

(see Figure 2.12). The tool supports a number of AT commands which are available to configure

an ELM327 device [29].

Figure 2.11. OBDSim GUI plugin [28].

26

2.2 Related Work using OBD-II

Kim et al. [2] proposed a vehicle diagnosis program within the navigation system using the OBD-

II technology. Vehicle data that is collected through an OBD-II adapter. The data are then

wirelessly transmitted to a Bluetooth dongle from which services are provided to the driver by

displaying them in the vehicle information menu of the navigation system.

Several researches have been carried out for monitoring vehicle data collected by an OBD-II

adapter, through a server [3, 4, 6, 7]. Y. Yang et al. [3] proposed a system, consisting an ELM327,

and Android smartphone and a remote monitoring center for Hybrid vehicles. The ELM327

communicates with the ECU to gather data from which it is sent to the smartphone via Bluetooth.

The smartphone acts as the client to complete data acquisition and transmission to the server in

which data are monitored. This mainly focuses on vehicle tracking and displaying other data on a

server. W. D. Huang [4] proposed a similar solution for general vehicles.

Also, some insurance companies have implemented a policy to provide a discount on the insurance

premium for good drivers [24]. The customers get a device to be plugged into the OBD-II port,

from which all driver related data is transmitted. By monitoring these data for a fixed period of

time, the insurance companies can decide whether the usual driving pattern of a driver is risky or

not. Depending on the goodness of their driving, customers get a discount for the insurance

premium.

2.3. Communication Methods

2.3.1 Bluetooth

Bluetooth is a wireless communications system which is intended to replace cables connecting

many types of different components [30]. Ubiquitousness, low power and low cost are three

significant features of Bluetooth. Devices that are connected through Bluetooth (referred to as

pairing) are allowed to communicate wirelessly through short-range, ad hoc networks known as

piconets.

The most important factor of any communication method when deciding the usability is its data

rate. Bluetooth, has come across a number of versions in order to fulfill this requirement by

increasing the data rate in major proportions. It has started from 1 Mbps (Approximately 0.7Mbps

in practice) and evolved constantly to transmit in 3Mbps in the second version. Many devices still

27

run on this version since it is fast enough for most of the applications. It has been improved much

as to give 24 Mbps in its third version and a mode selection (out of the previous three) in the latest

version [31].

Bluetooth technology operates in the unlicensed Industrial, Scientific and Medical (ISM) band at

2.4 to 2.485 GHz, using a spread spectrum, frequency hopping, full-duplex signal at a nominal rate

of 1600 hops/sec [30]. The 2.4 GHz ISM band is available and unlicensed in most countries [30].

Though interferences are of major concern in other wireless communication techniques, Bluetooth

is said to have a higher degree of interference immunity compared to them. This is enabled by the

adaptive frequency hopping approach.

The range a device can communicate via Bluetooth depends on the vendor of the device although

a minimum range is required by the core specification. Devices are of three types depending on

their class of radio:

1. Class 3 radios – range of up to 1 meter or 3 feet

2. Class 2 radios – range of 10 meters or 33 feet – most commonly found in mobile devices

3. Class 1 radios – range of 100 meters or 300 feet – used primarily in industrial use cases

Specifications of devices of the type of class two radios are of importance in this project since, the

communication is mediated via a mobile phone.

Bluetooth technology is designed to have a very low power consumption. Since smartphone that

are coming each day to the market are capable of doing large processing, the power consumption

dedicated to Bluetooth should be considerably low. Mobile phones use radio class 2 and 2.5 mW

of power for the Bluetooth module.

2.3.2. 3G/4G

3G is an ITU specification for the third generation of wide-area mobile communicat ions

technology. 3G provides increased bandwidth, up to 384 Kbps when a device is stationary or

moving at pedestrian speed, 128 Kbps in a car, and 2 Mbps in fixed applications. 3G works over

wireless air interfaces such as GSM, TDMA, and CDMA [32]. 4G is the fourth generation of

mobile communication standard. It enables data and streaming multimedia at higher speeds and

offers at least 100 Mbit/s with high mobility and up to 1 Gbit/s with low mobility (nomadic) [33].

28

2.4. GPS

GPS is satellite navigation or sat navigation system is a system of satellites that provide

autonomous Geo-spatial positioning with global coverage. GPS allows small electronic receivers

to determine their location (longitude, latitude, and altitude) very accurately within a few meters

using time signals transmitted along a line-of sight by radio transmitters from satellites. GPS

satellites frequently broadcast, precisely timed messages, including following two parameters [34].

● Time, the message was transmitted

● Satellite position at time of message transmission

Once a message received, the receiver calculates the transmit time of the message (using time

difference) and then using speed of light it calculates the distance to the satellite. The satellites are

located medium earth orbit where between 24 and 32 satellites are located. Receiver device need

signals from at least three satellites to compute its two dimensional (latitude and longitude)

position distance or at least four satellites to compute its three dimensional (latitude, longitude and

altitude) position.

GPS is one of the data fields that cannot be collected from the OBD-II port. But it is extremely

useful for some use cases such as for vehicle tracking and estimation of vehicular traffic. There

are two ways that GPS data could be collected:

1. By using a dedicated GPS module

2. By using a smartphone

After doing some research, it was found out that a GPS module costs around Rs. 3,500.00. This

would increase the cost to implement the system. Thus, it was concluded that the solution lies

within smartphones since modern smartphones come with the facility to locate the mobile phone

using GPS. But it is a known fact that GPS drains the battery of the mobile much faster. The faster

you are travelling the greater the energy consumption [35]. Hence, a simple and a cost effective

way should be found out in-order to gather GPS data.

2.5. Real-Time Processing

“Today's IT environments generate continuous streams of data for everything from monitor ing

financial markets and network performance, to business process execution and tracking RFID

29

tagged assets” [36]. Hence, fast analyzing of large data volumes has become inevitable. Complex

Event Processing (CEP) has emerged as a method for analyzing such data where data are produced

by events [37].

2.5.1. Databases or CEP?

A white paper published by Sybase [37] states that the technology of CEP delivers the data analysis

tools traditionally provided by relational databases or even spreadsheets, but in a real-time event-

driven implementation that is capable of processing incoming data at very high rates and producing

results with near-zero latency.

If we consider a scenario of storing a large amount of data in a relational database in a high

frequency and getting them analyzed in real time, there are two approaches that could be taken.

According to the approach that is taken, databases are of two types as follows.

1. Passive Databases

2. Active databases

Passive databases are the ones that which store, manage and process data in a timely (scheduled)

manner [38]. In passive databases, queries which are run periodically will have to be written for

analyzing. These queries may read from various tables and produce a new tuple which may be

inserted into a resultant table. Hence, the analysis will be done offline but not in response to the

incoming events [37].

In spite of having to write the triggers manually, active databases allow analyses to be done in

response to incoming events [38]. The complexity added in writing the triggers is a major drawback

of this approach. Also the vulnerabilities caused by the added complexity, and the high time

complexity caused by inefficient code add up reasons for not considering this approach as a method

for real-time analyses.

In contrast, Complex Event Processors (CEPs) are ones that are already built and optimized for

analyzing large volumes of data in response to events [39]. This reduces the time consumed for

implementing the analyses by preventing us from rewriting the triggers. Being optimized for time

and space consumption and being secure are the added benefits of using a CEP.

30

2.5.2. Complex event processing

According to Luckham who is considered as the first person to have directed the first project to

pave the way to a generic CEP language and execution model [41], Event processing is the

technology of processing a set of events in-order to derive useful information in the events [40].

CEP is the processing of events when, events come from a large number of sources and are if

complex inter-relations while surfing through them for patterns that create opportunities or threats

in real time.

According to Leavitt [41], CEP systems collect data from numerous sources about raw events

within a company’s operations on an ongoing basis (see Figure 2.6). Then use algorithms and rules

are used to determine in real time the interconnected trends and patterns that combine them into

complex events. They then send the findings to the appropriate business user.

Figure 2.12. The process of CEP [41].

The most important fact about CEP is that it is an event driven model [40]. Rizvi [38] states that

an ‘Occurrence of Significance’ is considered an event. Thus the generation of data from the OBD2

adapter can be seen as a generation of an event. Each event may carry only a little piece of

information, but when each event is aggregated to its context, useful patterns, which derive greater

knowledge may occur [40]. For example, though each speed reading might not provide any useful

information about a driver, a speed pattern derived by the collection of speed data for a long period

of time might define the driver’s behavior and might even uniquely define a driver.

31

2.5.3. Complex event processors

Following are some of the complex event processors that are used widely.

2.5.3.1. TIBCO

The TIBCO CEP platform is a high-performance system for rapidly building applications that

analyze and act on real-time streaming data following the stream-base architecture [42]. The

company claims that the product possesses the following capabilities [42]:

● Rapid time from development to deployment via the industry's first and only graphical

event-flow language

● Extreme performance with a low-latency, high-throughput event server and the broadest

connectivity to real-time and historical data

● Rapid, on-the-fly processing of complex data streams and fast time to prototype, test, and

deploy real-time applications

2.5.3.2. Oracle CEP

Oracle CEP, is a low latency, Java-based middleware framework for event-driven applications. It

is a light-weight application server which connects to high volume data feeds and has a CEP engine

to match events based on user defined rules [43]. Oracle CEP has the capability of deploying user

Java code (POJOs) which contain the business logic.

2.5.3.3. WSO2 CEP

WSO2 CEP is built with the aim of recognizing the events with significant importance within a

large set of events and to perform certain actions on them in real time. It is also claimed that the

CEP is highly efficient in performance and is massively scalable [44].

2.5.4. Comparison of complex event processors

Since all the CEPs appeared to be performing in the way that is needed in the research, it was

needed to compare between them to identify the most suitable CEP.

Suhothayan et al. provides a brief description of a comparison of five CEP engines: TelegraphC Q,

SASE, Cayuga, Esper and Siddhi [45] which are used as the core processing engines inside the

32

commercially available complex event processors. In brief, it explains how the technology of CEP

evolved.

TelegraphCQ can be considered the first in the family. It was built as a system to process

continuous queries by extending the architecture of PostgreSQL [46], and later, Truviso did some

more modifications in order to support historical queries as well. However, none of these methods

were able to suffice the expected speed [45]. Later products, i.e., SASE, Cayuga and Esper came

up by using variants of Nondeterministic finite automata on which, later, the presently

commercially available products were built upon.

Suhothayan et al. [45] states that, in a study carried out by Diao et al., SASE performs much better

that TelegraphCQ due to its NFA based architecture and algorithms that are used to yield a higher

scalability. But SASE had a major limitation of not being able to handle complex event types

where the outputs of some queries should be used as inputs to some others. Cayuga was a system

which addressed this problem. It also supported higher scalability and concurrency. Esper was a

much more advanced complex event processing engine, thus ended up being the most widely used

open source CEP engine and is used as the core of many more CEP solutions [45].

In the study carried out by Suhothayan et al. [45], Esper and Siddhi were compared by providing

exactly the same conditions. In the cases of simple filtering and averaging over time windows

Siddhi performs 20-30% better (faster) than Esper, and in the case of pattern matching, Siddhi

performs 10 times faster than Esper. Since Siddhi was performing extraordinarily, it was concluded

to use WSO2 CEP which uses Siddhi as its inner core.

2.5.5. WSO2 CEP in detail

WSO2 CEP is an open source product developed by WSO2 Inc. in order to cater the need to listen

to events and to detect patterns in real time without having to store them [44]. It runs WSO2 Siddhi

at the core which does all the processing such as filtering, averaging and pattern matching. WSO2

CEP comes with the following features:

● Extremely high performance

● Powerful and Extensible Query Language for processing

● Support for rich event model (Support for metadata and various data types)

● Massive Scalability

33

● High Availability

● Tight integration with WSO2 Business Activity Monitor

● Many more

There are three main aspects that should be of concern when working with WSO2 CEP [44].

● Event Publishing

● Event Processing

● Output

Figure 2.13 shows the flow of events through the server.

Figure 2.13. Event flow of WSO2 CEP [44].

In order to publish data to the CEP correctly, ‘Input Event Adapters’ and ‘Event Builders’ should

be created and configured properly. Additionally, Event Streams, that define which attributes and

elements need to be captured from the incoming message (via various transport protocols such as

Http, jms, Thrift, etc.) should be created.

Mainly, the processing of WSO2 CEP happens through execution plans. An execution plan is a set

of queries and related input and output streams. It holds the processing logic.

WSO2 CEP uses ‘Output Adapters’ to send events to sinks. Implementations, such as to send as a

SOAP message and to store in a database that are needed most of the time are by default provided.

2.6. Business Activity Monitoring

Business activity monitoring refers to aggregating, analyzing and presenting information about

business activities. This definition is paramount when designing a solution to address a business

activity monitoring use case. Aggregation refers to the collection of data, analysis to the

34

manipulation of data to extract information, and presentation refers to representing this data

visually or in other ways such as alerts.

In the use case of Vehicular Data Analysis and Real Time Processing, the information which is

the vehicular data generated by the OBD2 adapter should be aggregated, analyzed and presented

in order to meet the project requirements. Also with the enormous amount of data received from

the adapter it requires a way to handle data quickly and efficiently. For example, to determine the

reckless driving behavior of a driver, calculated acceleration of the vehicle is used. The system

should be capable of stating whether the driving pattern is reckless or not and how frequently the

driver tends to perform reckless driving just by looking at the summarized data over a period of

time. This involves executing a number of processes over big data to get an outcome which exactly

what BAM is all about. Thus, a tool which can perform BAM functionalities is an ideal approach

for the task.

An evaluation of business activity monitoring tools is given in [47]. In the study, authors have

considered available BAM tools in the category of both proprietary and open source. Specifica lly

regarding proprietary tools, Oracle and IBM and, regarding open source tools WSO2BAM and

Chroniker.

In order to evaluate the products they have defined six main key aspects.

1. Installation: so it is possible to conclude about the difficulties of this process.

2. Integration: so it is possible to conclude how easy it is to access existent and heterogeneous

data.

3. Dashboards: so it is possible to conclude the existent variety and difficulty in the creation

of dashboards and in what way they can help managers.

4. Alerts: so it is possible to conclude and difficulty in the creation of alerts and in what way

they can help preventing some problems.

5. Cost: so it is possible to conclude if a higher cost means more functionalities, flexibi lity

and versatility.

6. Support: so it is possible to conclude if documentation and help are specific of a given type

of tool (proprietary or open source).

35

Table 2.8 shows a summary of the main aspects regarding the evaluation of BAM tools.

Table 2.8. A comparison of WSO2 and Oracle BAMs [47].

Characteristic Oracle BAM WSO2 BAM IBM

Business

Monitor

Chroniker

Level of difficulty of

installation

Medium Medium Difficult Medium

Integration with existing

data / Configuration data

sources

Good and easy Good and easy Difficult Not Available

Variety and difficulty of

creation of dashboards

Much variety

Easy creation

Much variety

Difficult

creation

Much

variety

Difficult

creation

Much variety

Difficult

creation

Variety and difficulty of

creation of alerts

Much variety

Easy creation

Some variety

Difficult

creation

Not

Available

Not much

variety

Difficult

creation

Cost High Low or none

(Open Source)

Higher than

Oracle

BAM

Low or none

(Open Source)

Support Very good Almost

inexistent

Not

Available

Low

36

Since the project depends a lot on how the analyzed data are presented, other than using BAM

inbuilt dashboards it is proposed to go for more advanced tool for that particular task. There are a

lot of tools which provide functionality to rapidly create visually appealing and engaging web

components such as dashboards, microsites, gadgets and also which provide server-side

capabilities out-of-the-box. Thus the above mentioned aspect of difficulty level in the creation of

dashboards does not affect much on choosing a BAM.

Opposed to WSO2 BAM, using Oracle BAM leads to lower performance of other applications

after the installation of oracle environment. Therefore, they strongly advise to use computers with

high resources for receiving effective results.

With all this being said, the best choice for an organization depend on several factors, of which we

point out the availability for investment in the product, the necessity for training and the need for

support. For example, smaller organizations or projects might prefer open source solutions as it

includes low-cost, high control which is considered to be the main benefit for some customers.

They also give the ability to users to change the source code.

According to above all facts WSO2 BAM can be considered as the most viable selection for the

project not only because, it is promising in producing desired results but also being open source

and free.

2.6.1. WSO2 BAM

The WSO2 BAM architecture reflects the natural flow of aggregating, analyzing and presenting

information about business activities in its very design.

37

Figure 2.14. WSO2 BAM Architecture [48].

WSO2 BAM architecture can be broken down into four main modules:

1. Data Agents

2. The Data Receiver

3. The Analyzer Engine

4. The Dashboard and Reports

Data that need to be monitored goes through these modules in order. The data flow is as follows;

1. Data will be sent from the data agent to the BAM server,

2. The Data Receiver will process and store the received data in the Cassandra data store.

3. Then, the Analyzer Engine will start to analyze this data according to defined analytic

queries. This will usually follow a pattern of retrieving the data from the data store,

performing some sort of data operation such as an addition and storing it back in a data

store. This data store can be different from the Cassandra data store. The data operations

will happen locally if the Analyzer Engine is not pointed to a Hadoop cluster.

4. Finally, the dashboard or reports will query the data store for the analyzed data and show

it in the UI.

https://docs.wso2.com/display/BAM241/Data+Agents
https://docs.wso2.com/display/BAM241/Aggregating+Data
https://docs.wso2.com/display/BAM241/Analysing+Data
https://docs.wso2.com/display/BAM241/Presenting+Data

38

2.7. Identification of Driver Patterns

Due to the high concern of fuel efficiency and safe driving, identifying driver patterns has been a

principal research area. Liaw [49] proposed a solution to the problem of identifying driving

patterns by using fuzzy logic as the base technique. There, the main focus has been on classifying

the region a driver usually drives in where regions are considered to be of five main categories

such as stop-n-go, urban, suburban, rural and highway. The analysis starts off with breaking up a

trip into several Driving Pulses (DPs) where a driving pulse represents an active driving period

between contiguous stops. Each of these DPs are characterized by its average speed and the

running distance. A mature membership function as shown in Figure 2.15 defines driving patterns

according to a set of trained fuzzy rules, therefore allowing each input DP to be classified into a

region as a degree of association.

Figure 2.15. A membership function - The contours show the map of boundaries of fuzzy output number in a scale

of 0-10, which is used to infer the driving patterns from stop-n-go to highway driving [49].

Finally the results of the sequential DPs created by a trip are aggregated to produce an overall driving

pattern.

Research carried out by Wahab et al. [50] suggests that the driving pattern can uniquely define a driver,

thus enabling us to use it as a biometric. Biometric authentication is an area consisted of a number of

technologies that uses one’s physiological and behavioural attributes to uniquely identify a person.

Physiological attributes are considered to be stable features such as the fingerprint and iris. Behavioural

attributes, though considered as a biometric (hence, unique to each person), can change depending on the

psychological status of a person. In their research, two main characteristics, namely the accelerator pedal

pressure and the brake pedal pressure have been used as the biometrics. Similar to the previous study, the

39

researchers started with partitioning the trip data into chunks of data that are within two stops (referred to

as a stop&go region) since only an insignificant amount of information is present while a vehicle is not on

the move. Figures 2.16 - 2.18 show the associated vehicle speed, accelerator pedal pressure and brake pedal

pressure signals of a vehicle for a particular stop&go region.

Figure 2.16. Signal trajectory of a stop&go region for the vehicle speed [50].

Figure 2.17. Signal trajectory of a stop&go region for the accelerator pedal pressure [50].

Figure 2.18. Signal trajectory of a stop&go region for the brake pedal pressure [50].

Driver characteristics have a greater impact on the dynamics of the data (acceleration and brake

pedal pressures) rather than the single data items. Thus, the features were further broken down as

the acceleration pedal pressure, brake pedal pressure, rate of change of the pressure of the

acceleration pedal and the rate of change of the pressure on the brake pedal. Then the driver

40

recognition task was carried out using Gaussian Mixture Model (GMM) and Evolving Fuzzy

Neural Network (EFuNN) where EFuNN performed better than GMM.

2.8. Identification of Impending Sensor Failures

Modern computerized engine control systems rely on inputs from a variety of sensors to regulate

engine performance, emissions and other important functions.

The Powertrain Control Module (PCM) has the ability to control the emissions while deliver ing

the torque to the vehicle requested by the driver. When a driver pushes the accelerator, the throttle

valve opens, which regulates the airflow into the engine. The intake manifold is the main air

passage from the throttle valve to the engine cylinders. The amount of fuel needed for the

combustion in each engine cylinder is a direct function of the throttle position and the mass of air

through the intake manifold. This mass of air is measured by the Mass Air Flow (MAF) sensor.

The Manifold Absolute Pressure (MAP) sensor measures the intake manifold pressure, which is

also used to measure the amount of air going into the cylinder as a second method. After the

combustion happens, oxygen sensors can measure the amount of oxygen left in the exhaust gas,

which in turn can be used to calculate the air/fuel ratio. To minimize the emissions, this ratio

should be around 14.7 which is called the stoichiometric ratio [51]. Exhaust gases are then passed

through the catalytic converters in which most of the remaining hydrocarbons (HC), carbon

monoxide (CO) and nitrogen oxides (NOx) are oxidized to nitrogen (N2), carbon dioxide (CO2)

and water (H2O).

To keep the consistency of the flow, the sensors must provide accurate information. Otherwise

problems in driving, increased fuel consumption and emission failures can result. OBD2 system

already has the capability to detect malfunctions of the vehicle sensors and turns the “MIL” light

on to indicate to the driver. It is indicated after the emissions are exceeded 1.5 times the applicable

standard [51]. The corresponding sub-system(s) and the specific sensor(s) for the failure are

available via a standardized series of DTCs.

However, there are several limitations of existing OBD systems:

● The DTCs are set only after the particular sensor is failed.

41

● OBD2 systems can detect when components are functioning within their operating range,

but are limited with the ability to determine whether they are functioning accurately within

the range [51].

In other words, the existing OBD systems cannot detect impending sensor failures. An oxygen

sensor which begins to fail, starts giving incorrect readings which cannot be identified by the

OBD2 system. This would result in an incorrect air/fuel ratio and hence would reduce the

efficiency of the engine. The combustion would also produce a significant amount of pollutants

which will go through the catalytic converter. Since the amount of pollutants is high, the converter

will drastically degrade which is very expensive to replace.

In this project the following main impending sensor failures will be focused:

● Impending oxygen sensor failure

● Impending MAF sensor failure

2.8.1. Impending Oxygen Sensor Failure

The Oxygen sensor is used to monitor the residual oxygen in the exhaust gases whose output is

calibrated to measure the air/fuel ratio in the engine cylinders [51]. It is proportional to the amount

of oxygen in the exhaust gases. As seen in Figure 2.19 Oxygen sensors are placed before and after

the catalytic converter.

Figure 2.19. Locations of the oxygen sensors [52].

42

Upstream Pre-Cat sensor is used for regulating the fuel supply. Downstream Post-Cat sensor

monitors the efficiency of the catalytic converter.

As illustrated in Figure 2.20, an oxygen sensor will typically generate up to about 0.9 volts when

the fuel mixture is “rich” (i.e., the air/fuel ratio is less than the stoichiometric ratio) and there is

little unburned oxygen in the exhaust. When the mixture is “lean” (i.e., the air/fuel ratio is greater

than the stoichiometric ratio), the sensor output voltage will drop down to about 0.2 volts or less.

When the air/fuel mixture is balanced or at the equilibrium point of about 14.7 to one, the sensor

will read around 0.45 volts [52].

Figure 2.20. Oxygen sensor switching voltage [52].

When the PCM receives a rich signal (high voltage) from the O2 sensor, it leans the fuel mixture

to reduce the sensor's feedback voltage. When the O2 sensor reading goes lean (low voltage), the

computer reverses again making the fuel mixture go rich. This constant flip-flopping back and

forth of the fuel mixture occurs with different speeds depending on the fuel system. It keeps the

air/fuel ratio steady at the stoichiometric ratio [52].

Graphs shown in Figure 2.21 indicate oxygen sensor waveforms operated under different

conditions.

43

Figure 2.21. Oxygen sensor waveforms [52].

Graph 1 indicates a good O2 sensor which produces an oscillating waveform that makes voltage

transitions from near minimum (0.1V) to near maximum (0.9V). This performance of the O2

sensor gradually tends to degrade with age as contaminants of the exhaust gas such as lead and

silicon accumulate on the sensor tip which will decrease the output voltage range. Graph 4

indicates the waveform of a degraded oxygen sensor.

The PCM monitors the cross counts (the number of times the oxygen sensor crosses the center

line) and the response time as shown in Figure 2.22 [5]. The reduced cross counts, and longer

response time beyond a certain threshold would essentially cause the PCM to enable a fault code

and illuminate the “MIL” light (e.g., graph 4 of Figure 2.21).

Figure 2.22. Response time comparison of good and bad oxygen sensors [5].

Before the PCM identifies, the sensor may have operated for a long time being slightly biased to

rich or lean outputs as indicated in graphs 2 and 3 respectively. It would increase emissions and

44

fuel consumption of the vehicle unnoticingly for a long period of time. Those rich or lean bias

conditions can be monitored by reading the oxygen sensor values via the OBD2 port. PIDs shown

in Table 2.9 can be used [11] for this purpose.

Table 2.9. PIDs that can be used for reading oxygen sensor [5].

PID (hex) Description Output bytes Equation Range & Unit

13 Oxygen sensors present 1 - -

14 - 17 Bank 1, Sensor 1:4 Oxygen

sensor voltages

2 A/200 0-1.275 (Volts)

18 - 1B Bank 2, Sensor 1:4 Oxygen

sensor voltage

2 A/200 0-1.275 (Volts)

2.8.2. Impending MAF sensor failure

Mass Air Flow Meter (MAF) is an air flow sensor, also known as a MAF sensor, and is an integra l

component of the computer controlled engine system found on most modern cars. Generally

located in the plastic housing between the engine and the air filter, the MAF sensor measures the

volume and density of air entering the engine [53]. It is an electronic sensor that sends a signal to

the PCM, which then uses the measurements to help calculate fuel delivery and spark timing. In

most applications, the MAF sensor utilizes an electrically charged wire to determine the amount

of air flow entering the air intake. This wire produces an electrical voltage, based on airflow, and

sends it to the PCM, which then uses the information to adjust spark timing, fuel delivery and

spark advance. A fault in the MAF sensor can cause a rough idle, poor fuel economy and possibly

even stalling.

One of the more commonly overlooked maintenance items is the air filter, which can have a direct

effect on the MAF sensor. The air filter is engineered to filter out impurities in the air before it

enters the engine, thus reducing excess wear and tear on the engine. A dirty air filter will not only

allow impurities to enter the engine, but it can also allow dirt to accumulate in the MAF sensor,

which can reduce its effectiveness.

45

Engines require a precisely controlled air and fuel mixture, and spark timing in order to function

properly, in which the MAF sensor plays an important part. Keeping a car and all its related

components in excellent working condition is necessary in order to maximize fuel economy and

maintain power, performance and reliability

As mentioned previously, MAF sensors will malfunction over time, because a layer of dirt and

grime builds up on the sensor wire. The grime coating insulates like a sweater, then the ECU gets

it as a less air going than the standard. So it will lead a lean condition and illuminate the Service

Engine Soon or Check Engine light to indicate to the driver that the car requires service.

Figure 2.23. Mass Air Flow [53].

Figure 2.23 illustrates Mass Air Flow (MAF) sensor and several possible voltage outputs vs. time.

LL and HL are respectively the Low Limit and the High Limit of the output of the sensor that is

operated under normal conditions. LL may be established at about 1.1 Volts, and HL at about 4.5

Volts, and a typical or average voltage level at about 2.8 Volts. For example, sensor output plot

612A, illustrates that initially, at time0, the MAF sensor is indicating that the engine is aspirating

a lower level of airflow such as at idle or low engine RPMs. Thereafter, the MAF sensor indicates

an airflow that peaks around time 4-5 (e.g., indicating a higher engine RPM), and then finally

reduces down just below a median or average level and final level at time 9 (e.g., indicating just

under a mid-range RPM).

Sensor output plot 612B and 612C illustrate possible failed MAF sensor outputs not remaining

between exemplary High limit HL and Low limit LL. Sensor output plot 612D illustrates a possible

MAF sensor output which remains steady at a low level, while remaining between exemplary high

and low limits, HL and LL respectively.

46

3. IMPLEMENTATION

3.1 Use Cases

The project was carried to suffice a number of use cases which could mainly be divided into two

categories: analyzing driver behavior and analyzing vehicle condition. Each of these use cases are

described in the following sections.

3.1.1 Analysis of driver behavior

Analyzing driver behavior is a much needed use cases for organizations such as Insurance

companies, Fleet vehicle management systems and law enforcement authorities. Driver behaviors

analyzes were done in two major aspects which are namely, reckless driving detection and driver

anomaly detection.

3.1.1.1 Reckless Driving Detection

Reckless Driving detection is certainly something that is needed not only by some organizat ions

but also by the whole society. It is a fact that reckless driving causes hundreds of deaths all over

the year each minute. Law enforcement authorities need reckless driving detection methods to

implement new laws. To prevent these road accidents. Fleet vehicle management systems need is

detected to provide a better service to their customers through being capable of guarantying the

safety of the passenger by being able to identify and recognize reckless drivers. Insurance

companies pay several millions of dollars for damages caused by reckless driving. Therefore, a

system which could detect would be beneficial for them to minimize payments in such cases. Even,

most of the drivers do not want be driving recklessly. It happens because there are no systems for

detecting reckless driving. Thus it was decided that reckless driving detection is a feature the

system could provide.

3.1.1.2 Driving Anomaly Detection

The driving pattern is a something that is unique for a person. Therefore, an anomaly in the driving

pattern most of the time indicates that either the driver has changed. Also it could indicate a

significant change in the mental/physical status of the driver where, being drunk is the most

common reason. Therefore, driving anomaly detection is required by insurance companies to

identify whether the owner of the vehicle is the person who drove the vehicle that claims for a

47

damage. Therefore, the use case of detecting anomalous driving has become one of the most

essential use cases.

3.1.2 Analysis of vehicle condition

Once a vehicle is bought, it is sold to many people at many times. Since all these users might not

use the vehicle in a good way, it is best if a person could know the condition of a vehicle before

purchasing. Currently available systems are only capable of detecting faulty conditions once the

fault arises. Hence, a system which could perform a detailed analysis to predict such failures is

much more beneficial for a buyer. Also, it is beneficial for the sellers from the sense that they

could emphasize and prove the good condition of the vehicle they are planning to sell. Also, for

the owner knowing the condition of the vehicle is important since it makes him feel comfortable

if a failures is not to occur in the near future. The following sub sections discuss each of the use

cases which are related to detecting the vehicle status and that the system addresses.

3.1.2.1 Sensor Failure Detection

Since all the modern vehicle models are computerized, the ECU completely relies on the outputs

of various sensors such as the speed, rpm, coolant temperature, mass air flow rate, oxygen, etc. A

malfunction in one of these sensors could have a huge impact on the ECU. Even though there exist

systems that scan the OBD port to check whether there is a malfunction in any sensor, there is no

system to predict the failure date of a sensor before it fails. The system needed to have this

capability so that the vehicle owners could be prepared beforehand and act accordingly.

Among the factors that decide the fuel consumption of a vehicle, are the oxygen and the mass air

flow. Also it is a known fact that every person wants his/ her vehicle to uses fuel efficient ly.

Therefore, it was decided to analyze and predict the failure of oxygen and mass flow rate sensors.

3.1.2.2 Alerting of High Fuel Consumption

The fuel consumption of a vehicle is one of the biggest concerns of an owner. The fuel

consumption mostly rises up due to bad driving habits which happens without the knowledge of

the driver. Therefore, a system that could alert the driver in high fuel consumption situations is

needed by people.

48

3.1.2.3 Alerting of High Coolant Temperature

The coolant temperature of a vehicle, is one of the sensors that indicates the engine temperature.

A higher coolant temperature indicates a higher engine temperature, therefore should be monitored

frequently. Even though the coolant temperature is displayed in the dashboard of the vehicle, it is

ignored by people due to many reasons where the most common can be seen as not paying special

attention for the value of the dashboard, forgetting even the value is observed and not knowing the

optimum range of operation. Therefore, a system which could alert the driver when the coolant

temperature rises above its optimum range is of high importance for vehicle owners.

3.1.3. Summarization of trip details

The condition of a vehicle is highly dependent on the distance and the duration it runs, the type of

the roads it runs on and the surrounding it is in. For example, once, a vehicle is driven in a dusty

area, the air filters of the vehicle will have to be serviced earlier than what was expected. Also, the

fuel consumption on a trip that was run in countryside is typically higher compared to others.

Hence, providing a trip summary for each trip including the distance travelled, start and the

destination, distance travelled, average fuel rate throughout the trip, the time of the day at which

the trip started, etc. is important.

3.2 Data Collection and Fabrication

Data Collection was a main task of the project. Data was collected from various users to get a variety of

data. Since the original data did not have necessary characteristics for some use cases, data had to be

fabricated.

3.2.1. Data collection

Data was collected from various users owning different vehicles. Since the use case of driver

anomalies required a large set of data to be collected from a single user, data was continuous ly

connected from one user. This large set of data was collected from a Toyota ‘Axio’ vehicle whereas

other sets were collected from vehicles of models ‘Toyota Aqua’ and ‘Honda Fit’. Initially, a

commercially available named ‘Torque Pro’ developed by Ian Hawkins was used for data

collection. Once our Android app, which is a part of the project was built, it was used for data

collection.

49

3.2.2. Data fabrication

Data fabrication was specifically needed for depicting a data set with a failing sensor. Since

analyzing and predicting sensor failures needed data with failure as the input and since such a

dataset could not be found, a normal data should have been fabricated to indicate a failure. Each

of the following section describes how data was fabricated depicting an Oxygen sensor failure and

a MAF sensor failure respectively.

3.2.2.1 Oxygen Sensor Failure

In Section 2.8.1, it was described that an oxygen sensor will typically generate up to about 0.9

volts when the fuel mixture is “rich” and will drop down to about 0.2 volts or less that, when the

mixture is “lean” whereas when the air/fuel mixture is balanced or at the equilibrium point of about

14.7 to one, the sensor will read around 0.45 volts [52]. Fig 3.1 depicts the min max variation of

the Oxygen sensor that was present in the collected data set.

Fig. 3.1. Min max variation of a healthy O2 Sensor.

Once the sensor starts failing, the output voltage in rich state drops down and the output voltage

in the lean state rises up (i.e., the amplitude reduces once the sensor starts failing). Therefore, the

desired min max variation of the output voltages was as in Fig 3.2 and the original data set was

superimposed with it to get the data set with failing Oxygen sensor voltages as shown in Fig 3.3.

50

Fig. 3.2. The Desired change in voltages .

Fig. 3.3. Min max variation of a failing O2 Sensor

3.2.2.2 MAF Sensor Failure

For a known engine displacement, the engine airflow can be calculated at 100% VE (volumetric

efficiency) in sea-level-standard-day cubic feet per minute (scfm) as in eqn. 1.

100% VE AIRFLOW (scfm) = DISPLACEMENT (ci) x RPM / 3456 (1)

Therefore it can be seen that the Mass Air Flow has a linear relationship with the engine rpm.

Therefore, the output of a healthy MAF sensor changes linearly with the engine rpm. The

relationship was seen in the collected data set in higher rpms is as seen in Fig. 3.4.

51

Fig. 3.4 The Engine RPM vs the MAF value of the collected dataset

The gradient of the line between the engine rpm and MAF value reduces with time once the

sensor starts failing. Therefore, the dataset needed to be changed in order to depict this

difference. The data changed to indicate a somewhat failed sensor is shown in fig. 3.5.

Fig 3.5. Engine rpm vs. MAF value when the sensor is somewhat failed

3.2.3. Vehicle simulation

The flow of data starts from the car engine to the smartphone. Therefore, the system needs to be

connected and communicating with the PCM (Powertrain Control Module) throughout project.

Since this is not a practical situation, the first component that was developed was a simulator to

simulate the PCM.

The simulator consists of two components as follows.

1. CSV Reader

52

2. Communicator

3.2.3.1 CSV Reader

The actual datasets that were collected from various sources were stored in .csv files where each

trip is stored as a separate file. The simulator is developed with the capability of reading a given

.csv file. The user interface of the simulator is shown in fig 3.6.

Fig 3.6. Data simulator

3.2.3.2 Communicator

Communicator acts as a vehicle where an OBD2 adapter is connected. Once the CSV Reader

reads a line in the file, it is separated into single data values. Each of these data values are sent

via Bluetooth to the Android App upon request using the OBD2 protocol. The communicator

supports both OBD2 and AT command requests by the app.

53

3.3 Implementation

3.3.1 Architecture

The proposed system is capable of collecting, storing and analyzing vehicular data for a long period

of time. Vehicular data are collected using an OBD-II to Bluetooth interface and are sent to

backend cloud servers using a smartphone via 3G/4G connection as shown in Fig. 3.1.

Fig. 3.7. The overview of the proposed system

Fig. 3.2 shows the solution architecture which is designed in a scalable and an extensible manner

so that the system can be extended to have a rich set of functionalities supporting numerous

vehicles and servers as needed.

54

Fig. 3.8. The architecture of the system

The Android app is one of the key elements of the system since it does the duty of a data transmit ter

between the vehicle and the backend servers while performing the task of the view layer (see Fig.

3) as well. The three core tasks it is responsible of is as follows.

1. Receiving Data from the OBD2 Adapter

2. Monitoring Real Time Data

3. Selective Transmission of Data to the Backend

Each of these tasks are described in Section 3.3.2. The user is given the freedom of choosing

whether data is transmitted to the backend or not. If it is not allowed, the analyses performed by

the whole system are limited to the ones that are done within the app. For major analyses, the user

needs to enable data transmission to the backend. Once it is allowed, data is transmitted to CEP

and BAM through the data connection of the phone.

55

Fig. 3.9. The dashboard of the Android app

Complex event processing can be regarded as a service that receives and matches lower-leve l

events and generates higher-level events in real time. Simply, it is a component that responds to

event streams in an event driven manner. Complex event processing is required to happen at two

stages within system depending on the weight of the processing. A portion of the processing is

handled by the Android app before transmitting data to the backend server allowing less

consumption of the bandwidth. The library, WSO2 Siddhi [4] which is the core processing engine

of WSO2 CEP is used in the processing done in within the Android app. Here, data from the

engine, are received as event streams (e.g., speed stream consisting of time stamp and speed, fuel

stream, coolant temperature stream, etc.). The Siddhi engine decides the importance of the received

streams and depending on the information they provide, it decides two things. For simple use cases

such as coolant temperature monitoring it makes the app generate an alert. For complex use cases,

it transmits the filtered streams to the backend servers. WSO2 CEP, the other portion of CEP, is

run on the backend since it has the freedom to work with a large database performing complex

processing. The CEP at the backend is responsible for detecting unusual patterns and generating

alerts in real time.

The system is capable of performing long term analyses too. By identifying patterns, it should be

able to predict undesirable outcomes such as failures of sensors in advance. This is allowed by

using WSO2 BAM as the long term analyzer at the backend which is capable of collecting, storing

56

and analyzing data. It receives events published by the app and stores them in a Cassandra database

where analyses are performed regularly to identify gradual changes in them.

Where some of the result of analyses are notified to the user in the form of alerts, all the results of

the analyses performed in the backend are displayed in a web portal as shown in Fig. 4. This way,

drivers themselves could monitor their driving behaviors and changes in the vehicle condition and

other organizations could monitor their customers’ behaviors and conditions of the vehicles that

are owned.

3.3.2 Android app

The Android app, which is the key component which enable data transmission between the OBD-

II adaptor and the backend servers, plays three major roles throughout the process.

1) Receiving Data from the OBD2 Adapter:

The app is capable of connecting to the ELM-327 adaptor via Bluetooth and communicating with

the vehicle using OBD-II Parameter IDs (PIDs), each providing some information about the

vehicle, in order to receive vehicular data. The received data are logged inside the app or displayed

in the user interface using graphs and meters which can be added dynamically. The architecture of

the app has also given extensibility for adding PIDs which are not in the app.

2) Monitoring the vehicle:

The app consists of a real time data processor which is based on WSO2 Siddhi [4] which has a

capability to act according to a predefined set of queries and has been ultimately used to monitor

the vehicle using OBD-II data. For example, queries are added to alert the driver if the vehicle is

running with a high fuel consumption rate or a high coolant temperature for a considerably long

period of time and to summarize trip details in real time. Siddhi supports adding queries

dynamically hence giving extensibility to support future monitoring task as well. Alerts are

generated when unusual behaviors are detected and the results are shown in the app to the driver.

3) Selective Transmission of Data to the Backend:

A user has to pay for each megabyte that is consumed. Therefore, the network bandwidth usage

of the app is an important fact to consider. Hence, the app is implemented in such a way that

57

only useful data are transmitted over a 3G/4G network where irrelevant data are dropped. Also

data streaming is reduced where possible in order to minimize battery consumption. The Siddhi

module assists the app for both these tasks.

The app consists of a Bluetooth command service which connects with the OBD2 Bluetooth

adapter with the serial UUID. Once it is connected to adapter first it configures the adapter using

the AT commands to return data in a more convenient format into the app using ATE0 (ECHO

OFF), ATS0 (NO SPACE) and ATH0 (HEADERS OFF) commands sent by the app. Once it is

done the adapter is also configured to auto select the protocol of the vehicle using the ATSP0

command. Once that command is sent the adapter starts searching for the protocol of vehicle from

the known 5 standard OBD2 protocols. Then the app send the following OBD2 commands 0100,

0120, 0140 and 0160 to identify the supported PIDs by the vehicle among the PIDs from 0x00 to

0x80.

Since there are many standard PIDs, it is not practical to implement them separately. The app

addresses that problem by keeping a configuration file for PIDs it supports and auto generates the

logics to retrieve the PID data from the OBD2 adapter and it will be automatically available for

the all the other functionality of the app including displaying and logging. A sample configura t ion

file is as shown in fig 3.4. The app uses the Expr java library [54] to evaluate expressions

dynamically and calculate the actual values from the raw bytes retrieved from the adapter. This

method gives the extensibility to the app for adding a new PID with a less effort.

58

Fig. 3.10. PID configuration file

Once the actual PID values are calculated they are transformed to a common message format.

Because of that there is a low coupling between the OBD2 client, PIDs and other components of

the system which rely on PIDs. The major components that communicated via the common

message format is illustrated in the architecture diagram of the App shown in fig 3.5.

59

Fig. 3.11. The architecture of the Android App

Display manager is responsible for retrieve data through the common format and publishing them

to the app's dashboard. The dashboard consists of graphs and dial meters which can be added

dynamically. Those gadgets and the Display manager communicates though a pub-sub pattern.

When a gadget is added to the dashboard, it gets registered to the display manager with the PID it

needs to be displayed. When the required PID value is received, Display manager publishes it to

the gadgets which are subscribed to the corresponding PID.

Trip logs component stores current trip details in once a trip is over. It includes a configured

lightweight SQLite database. The stored trip log details include total distance, average fuel

efficiency and total time.

60

For the notifications sent from the server side sensor analytics and app side monitoring tasks are

connected with the Android system notifications. Because of that the alerts are readily available to

the user and the user can be alerted even when the user is driving the vehicle using message tones

and custom vibrations.

The app includes a Siddhi engine which does the real time sensor monitoring within the app and

preprocessing data before sending to the backend servers. All the processing is done via the Siddhi

queries defined in Siddhi Query Language. Siddhi Manager consists of the Siddhi engine and a set

of Monitors that examines PIDs in real time. Implemented monitors includes fuel rate monitor,

coolant temperature monitor, MAF and O2 sensor monitor. Once the pre-processing is done by the

monitors, data is transmitted to the backend servers if further analysis is needed.

PIDs can also be logged within the app. The PIDs which needs to be logged, logging frequency

and the path of the log file can be configured by the user.

3.3.3 Driver behavior

Driver monitoring was basically done in two forms. Reckless driving monitoring, which is mostly

wanted by most of the organizations such as Insurance companies and low enforcement authorit ies

is one of the displays the recklessness of the drivers driving pattern within a certain period of time

such as 20 hours, one week/month and three months. The second, is driving anomaly detection

which is important somewhat for the above organizations but more important to drivers themselves

to get alerted when he’s deviated due to stressed, drunk, distractions, etc. The implementation of

these two use cases are described in the Sections 3.3.3.1 and 3.3.3.2 respectively.

3.3.3.1 Reckless Driving Detection

Since many of the literature stated that the sudden variation of the longitudinal acceleration is a

good measurement to detect reckless driving, it was decided to be used in this use case.

The speed of the vehicle can be read in real time from the OBD2 adapter. Since it is the

acceleration/deceleration that is in concern, the Siddhi engine transforms speed streams into

acceleration/deceleration streams by considering consecutive speed readings using the following

Siddhi query. A sample Siddhi query is shown below.

61

Calculated acceleration/deceleration is compared with a threshold and detected whether it is

reckless or not. The threshold used in the system, which is 4.5m/s2 is recommended by the

American Association of State Highway and Transportation Officials. The binary number 1 and 0

are assigned to the points which have an acceleration/deceleration higher than the threshold and to

normal points respectively. And the total number of 1’s are counted over a predefined period of

time (e.g., 2 minutes). The calculated number of counts are then classified according to the driving

cycle (i.e., traffic, normal and highway) of the trip. The driving cycle is determined by the average

speed of the vehicle throughout 10 minutes. The count, together with the class is sent to the

backend server periodically as two separate streams for acceleration and deceleration.

Data are published to acceleration and deceleration streams via an http input adaptor. WSO2 BAM

by default provides many different input and output adaptors which can be associated with event

streams [47]. Http adaptor is one such adaptor which enables events to be published to streams

through a rest call. Once data is published to these event streams, data is written into a Cassandra

column family with the name of the event stream. A script is written in to read data in these column

families and to write into either another column family or a SQL table with some modificat ion.

The script is written in HiveQl. Therefore, a hive table should be first created and data should be

loaded into that from the Cassandra column space in order for performing analyzes. The Hive

query which was written to create and load data into ‘accelcounttable’ from the column family for

which the input events are published is shown below.

62

According to the driving cycle for which the input dataset belongs to, the acceleration count data

should be written to separate tables. The query to find the total acceleration count within two

minutes with the class label ‘A’ is shown below. Once the acceleration count is summed, it is

written to a Hive separate table which corresponds to a summarized SQL table.

As a measure of recklessness, the average high acceleration/deceleration count per hour is

displayed. This summarization happens through the following query.

This way data received from the app are summarized by WSO2 BAM as hourly, weekly, monthly

and every three months and stored in an SQL database.

3.3.3.2 Driving Anomaly Detection

It was found after some research that it is not the speed pattern but the acceleration pattern that is

unique for each person but the acceleration pattern. A Markov Model was used to determine the

difference between the current pattern and the existing pattern of a driver vehicle combination.

Identifying driving anomalies happens in three stages.

1. Pre-processing

2. Creating and updating the model

3. Determining Anomalies

As in the use case of reckless driving detection, since it is the acceleration that is of concern, the

Siddhi engine transforms the speed streams into acceleration streams. This happens through the

following query.

63

Then, these acceleration streams are a converted to acceleration transition streams which consist

of the timestamp, previous acceleration and the current acceleration. The Siddhi query which

converts the acceleration streams into a streams with previous acceleration and current acceleration

(known as the ‘accel_trans_stream’) is shown below.

These acceleration transition streams are transmitted to the backend twice: once to the CEP in real

time for calculating whether the readings are in accordance with the normal pattern, and next to

the BAM daily for updating the model.

A Markov Model has states and probabilities associated to transitions between these states. Since

the model used for the use case of reckless driving is implemented as a Markov Model, acceleration

values are considered as states and the probability of changing from one acceleration to another is

defined as the transition probability. The transition diagram for this is shown in fig 3.6.

Fig. 3.12. Acceleration Transition Diagram

The BAM processes the events (acceleration transition streams) received from the app and stores

the model in an SQL table using the following hive query.

64

The first of the above two queries sum up the number of times a particular transition has occurred

and the second calculates the number of total acceleration transitions that are available for a user.

Therefore, a particular transition probability can be calculated by diving the number of times that

transition has occurred by the total number of transitions. These two tables are updated daily with

new data from the user. Therefore, the more accelerations the BAM receives, the more accurate

the model becomes.

Determining anomalies happens almost real time. Anomaly is detected by calculating the

probability of the Markov Chain resulted by the acceleration readings within the past five minutes.

But a single transition that has zero probability results in zero probability of the chain. Also there

is a need to multiply each probability. The above problem is avoided and the calculation is

simplified by considering property emphasized by (1).

𝑦 = √𝑎 ∗ 𝑏 ∗ 𝑐3 → lg(𝑦) =
lg(𝑎)+lg(𝑏)+lg (𝑐)

3
 (1)

Therefore, rather than calculating the probability of the Markov Chain, the average acceleration

transition probability is calculated for the detection of anomalous driving. Whenever the CEP

receives an event stream (acceleration transition stream), it calculates the average transition

probability for 5 minutes using a sliding window on the timestamp with the aid of the transition

table stored in the database by BAM. The script written inside WSO2 CEP is shown below.

65

The averaged probability of each chain of accelerations is calculated and once it drops down a

predefined threshold, an alert is sent to the driver.

3.3.4 Vehicle condition

Modern computerized engine control systems rely on inputs from a variety of sensors. Among the

sensors which are present in modern computerized vehicles, Mass Air Flow sensor and Oxygen

sensor are two most important sensors that crucially determine the engine performance, emissions

and other important functions. OBD-II system may take some time to identify malfunctions so in

66

the meantime lots of wastage of fuel can result. Sensors do not fail suddenly but gradually.

Therefore, the system was developed to detect impending failures so that they can be identified

beforehand. Each of the vehicle diagnostic mechanisms that are handles in the system are described

in the following sections.

3.3.4.1. Oxygen sensor impending failure detection

As explained in section 2.8.1, a healthy O2 sensor's voltage operates within the range 0.2 V and

0.9 V with a mid-level of 0.45 V. Once it goes totally above or below 0.45 V, it is considered as a

failure. Since the sensor fails progressively a regression analysis can be performed to investigate

the current status of the sensor.

Oxygen sensor voltage can be retrieved from the adapter using the PID 14. Once it is received by

the app's OBD2 client, it is retrieved by the O2 Monitor in the Siddhi Manager. Within the O2

Monitor O2 voltage data are added to a moving window of 30 minutes defined in Siddhi and an

aggregation is done once in 30 minutes for getting the min and max voltages. A sample Siddhi

query is given below.

The data are stored within the app while the vehicle's engine is started. Once the trip is over (the

engine is turned off), the stored data are sent to BAM using the input http adapter defined in BAM.

Once sent they are stored in a Cassandra database inside BAM.

For a healthy sensor, calculated min voltage should be always below 0.45 V threshold and

calculated max voltages should be always above 0.45 V threshold. So a regression analysis can be

done to min and max voltages separately using BAM analytic scripts. Using the two regression

lines the failure date can be estimated as illustrated in the following graph.

67

Fig. 3.13. Regression lines for min and max voltages for O2 sensor

The following BAM analytic script does the regression analysis for min voltage.

After the regression analysis is done, following equations can be used to estimate the failure date

of the sensor and the current wear level.

Failure Date Min V = (0.45 – cmin)/mmin (2)

Failure Date Max V = (0.45 – cmax)/mmax (3)

Wear Level Min V (%) = ((mmin * t + cmin) - 0.1) / 0.35 *100 (4)

Wear Level Max V (%) = (0.9 - (mmax * t + cmax)) / 0.45 *100 (5)

Failure Date = Min(Failure Date Min V , Failure Date Max V) (6)

Wear Level (%) = Max(Wear Level Min V (%),Wear Level Max V (%)) (7)

68

Where cmin = intercept of min V, mmin = gradient of min V, mmax = gradient of max V,

cmax = intercept of max V

3.3.4.2. MAF sensor impending failure detection

RPM (rad/s) and MAF (gram/s) data is sent to the BAM within first 15 minutes in each trip. Then

it calculates the gradient (m) of the each trip. MAF has a strong linear relationship between RPM.

When the sensor is failing the gradient of the linear relationship reduces with the time. This

reduction of the gradient is used to detect MAF sensor impending failure detection. The regression

method is used to calculate the gradient.

m =
𝑛 ∗ ∑ (𝑅𝑃𝑀 ∗ 𝑀𝐴𝐹) − 𝑛

0 ∑ (𝑅𝑃𝑀) 𝑛
0 ∑ (𝑀𝐴𝐹)𝑛

0

𝑛 ∗ ∑ (𝑅𝑃𝑀 ∗ 𝑅𝑃𝑀) − 𝑛
0 ∑ (𝑅𝑃𝑀) 𝑛

0 ∑ (𝑅𝑃𝑀)𝑛
0

Then calculated gradient values are stored with the time. The gradient graph w.r.t the time

illustrates as follows.

Fig. 3.14. Gradients of regressions performed for MAF and RPM

Then it is used the regression analysis again to those gradient values. Then it is calculated the wear

level for the MAF sensor failure like below graph.

69

Fig. 3.15. Final regression line for gradients between MAF and RPM

According to the current situation, it will be evaluated the wear level of the MAF sensor.

3.3.4.3. Fuel Economy Monitoring

The app is capable of monitoring the fuel economy of the vehicle which done completely within

the app using the fuel rate (PID 5E) and speed (PID 0D). The app calculates the average fuel

consumption and the average speed for a given time window using the Siddhi engine. If the ratio

of average fuel consumption and the speed exceeds a certain threshold it will alert the user

immediately.

3.3.4.4. Engine Coolant Temperature Monitoring

The app retrieves the coolant temperature of the vehicle using the PID 05 periodically. The

retrieved values are monitored continuously using Siddhi to check whether it exceeds the operating

engine temperature. If it exceeds the user is alerted immediately by the app's notification system.

3.3.5 Other features

3.3.5.1 Trip Logs

Android app is capable to provide trip details to the user. The trip duration is taken as the period

when the app is start to close in one trip. It is able to provide the name of the start place and end

place with start time and end time. Google geocoding is used to get name of the place which

provide through Google map API. When the app starts, it will get the latitude and longitude through

the smart phone and do reverse geocoding mechanism to get place of the name. Same operation is

70

done with the end of the trip. All trip data are saved to the in-built sqlite database in Android app.

It is also capable to provide the trip distance and average fuel efficiency in each trip. There is a

distance calculator which calculated the distance in real time. It gets the vehicle speed in real time

and calculate the distance. There is also an average fuel efficiency calculator which gets the fuel

efficiency in real time and get the average at the end of the trip.

71

4. RESULTS

4.1. Android App

Android app is capable of connecting to the OBD2 adapter via Bluetooth and communicating with

it using the standard OBD2 protocol. It can communicate with the vehicle's ECU, obtain vehicle

PIDs and display them to the user using dashboard gadgets. Once it is connected to the adapter,

the first "adapter" indicator turns to green from red. The next "car" indicator will turn to green

once the adapter identifies the OBD2 protocol of the vehicle and it is really to send data to the

Android app. The gadgets includes graphs and dial meters which can be added dynamically. The

app can also identify the parameters which is supported by the vehicle and indicating them to the

user. As showed in figure 4.2, supported OBD2 parameters are indicated in green in the list. Any

supported parameter can be added to the dashboard to see data in real time.

Fig. 4.1. App dashboards

The app also has the capability to log PIDs in real time. PIDs which needs to be logged, logging

interval and the location of the log file can be configured by the user. In addition to the PIDs

obtained from the vehicle, the app can show and log current location taken based on network

based or GPS based which is also configurable as shown in figure 4.2.

72

The app monitors some of the engine parameters including fuel rate and coolant temperature and

examines whether they operate within the proper range. They will be discussed further in later

sections. Those monitoring tasks can be configured using the Android app as shown in figure

4.3.

 Fig. 4.2. App PID and log screen Fig. 4.3. App enable feature screen

4.2. Driver Behavior

4.2.1 Reckless driving

The system is capable of calculating rapid acceleration counts of the driver in each speed class and

displaying them in the web portal. It will also calculate and show the historical average rapid

acceleration count per hour based on each speed class.

73

Fig. 4.4. Reckless driving web portal

4.2.2. Anomaly

The system is able to detect anomalies by calculating the probability of the Markov Chain resulted

by the acceleration readings within the past five minutes. Once an anomaly is detected, it is notified

by the server via the app immediately. As indicated by figure 4.5, the average probabilities which

go below the red threshold line are identified as anomalous.

74

Fig. 4.5. Driving anomaly web portal

Fig. 4.6. Driving anomaly app notifications

4.3 Vehicle Condition

4.3.1. Oxygen sensor

BAM executes the analytic scripts once a day and performs the regression analytics to investigate

the current status of the sensor to check whether there is an impending failure. It estimates the

75

wear level and if it exceeds 50%, it will also estimate the number of weeks it would take for the

wear level to reach 0% and notifies the user immediately through the Android app's notifica t ion

system. The user can also see the status of the sensor via the web portal at any time.

Fig. 4.7. Oxygen sensor web portal

Following table summarizes the predicted failure date and the calculated wear level of the sensor

using different time spans. According to the dataset actual failure happens in 16 th, Feb 2015. Using

the results, it could be observed that the percentage error reduces as the failure date becomes closer.

Table 4.1. Results of prediction for o2 sensor.

Timespan of data Predicted Failure

Date

Prediction

Error%

Estimated Wear

Level

11/01/2015 – 20/01/2015 03/03/2015 57% 33.7%

76

20/01/2015 – 25/01/2015 20/02/2015 18% 43.1%

25/01/2015 – 30/01/2015 14/02/2015 11% 51.4%

4.3.2. MAF sensor

Through the BAM analytic scripts, a linear regression analysis is performed to estimate the wear

level of the sensor. If it is greater than 50% the user is notified immediately through the Android

app. The user can also check the current status of the sensor through the web portal any time.

Fig. 4.8. MAF sensor web portal

77

Fig. 4.9. MAF and O2 sensor notifications

4.3.3. Fuel economy and coolant temperature monitoring

Once the app detects an abnormal condition in fuel economy or coolant temperature, it

automatically gives a notification to the user.

Fig. 4.10. App notifications for coolant and fuel rate

78

4.4. Other Features

4.4.1. Trip logs

This is one of the main key feature in Android app. When the user goes to the trip logs section, the

user can see the trip logs list which sorted by the latest time. Trip log list directly shows the start

place, end place and start time. The following screen shot shows the trip logs list.

Fig. 4.11. Trip log list

User can get more details by touching on the each trip log list item. Then it shows a new window

with whole details of the selected trip. The detailed window shows start place name, start time,

end place name, end time, trip distance and average fuel efficiency. The following screenshot

shows the descriptive window of trip logs.

79

Fig. 4.12. Descriptive view of a single trip log

80

5. CONCLUSIONS AND FUTURE WORK

We implemented a platform for driver monitoring and vehicle diagnostics which integrates OBD2,

Android and backend processing technologies such as Complex Event Processing and Business

Activity Monitoring. The system is capable of identifying reckless driving habits and driver

anomalous behavior which gives a major advantage for stakeholders such as insurance companies,

law enforcement authorities and travel and transportation authorities. The system is also capable

of detecting possible sensor failures earlier and alert the driver via the mobile phone which saves

the cost of fuel and maintenance due to running the vehicle with a poor performance for a long

time.

The Android application which is available as a free download in Google Play Store has currently

achieved more than 100 downloads from different countries in just few weeks.

The main drawback of the proposed solution is its dependency on the data communication of the

mobile phone to the backend. If the driver has not allowed data transmission on the mobile phone

the system will not be useful for backend processing related use cases. The system assumes that a

driver possesses a smart phone which is capable of running an Android app. In order to overcome

this problem, a dedicated hardware device can be built, where, once the device is plugged into the

OBD2 port, data will be uploaded to the remote servers autonomously. The current set of

functionalities only consists of a limited number of feature which were identified as crucial. The

architecture is built in such a way that new functionalities can be added whenever needed.

81

6. REFERENCES

[1] Department of Motor Traffic - Sri Lanka. Statistics [Online]. Available:

http://www.motortraffic.gov.lk/web/index.php?option=com_content&view=article&id=8

4&Itemid =21&lang=en

[2] M.J. Kim, J. W. Jang and Y. S. Yu, “A Study on In-Vehicle System using OBD-II with

Navigation,” in Int. Journal Computer Science and Network Security, vol.10, no. 9, 136-

140, Sept., 2010.

[3] Y. Yang et al., “Research and Development of Hybrid Electric Vehicles CAN-Bus Data

Monitor and Diagnostic System through OBD-II and Android-Based Smartphones,” in

Advances Mechanical Engineering, Nov, 2013.

[4] W.D. Huang, Y. Zhang and J. H. Liu, “Research and Design of the Automobile OBD Data

State Monitoring System Based on the Android Phones,” in Advance Materials Research,

vols. 605-607(2013), 2301-2305, 2013.

[5] NAPA Institute of Automotive Technology, “Introduction to OBDII,”, 1998 [Online].

Avaliable: http://www.lbcc.edu/attc/documents/OBD2.pdf

[6] A. Aljaafreh et al., “Vehicular Data Acquisition System for Fleet Management

Automation,” Electrical Engineering Department, Tafila Technical University, Tafila,

2011.

[7] P. S. Ganapati et al., “Android Based Universal Vehicle Diagnostics and Tracking System,”

in International Journal of Modern Engineering & Management Research, vol. 2(1), 35-

41, Mar. 2014.

[8] OBDII: Past, Present & Future. [Online] Available:

http://www.autotap.com/techlibrary/obdii_past_present_future.asp

[9] OBD-II Background Information [Online]. Available:

http://www.obdii.com/background.html

[10] Diagnostic Trouble Code Definitions, SAE J2012, 2002.

http://www.motortraffic.gov.lk/web/index.php?option=com_content&view=article&id=84&Itemid=115&lang=en
http://www.motortraffic.gov.lk/web/index.php?option=com_content&view=article&id=84&Itemid=115&lang=en
http://www.lbcc.edu/attc/documents/OBD2.pdf
http://www.lbcc.edu/attc/documents/OBD2.pdf
http://www.autotap.com/techlibrary/obdii_past_present_future.asp
http://www.autotap.com/techlibrary/obdii_past_present_future.asp
http://www.obdii.com/background.html
http://www.obdii.com/background.html
http://www.obdii.com/background.html
http://www.obdii.com/background.html
https://law.resource.org/pub/us/cfr/ibr/005/sae.j2012.2002.pdf

82

[11] E/E Diagnostic Test Modes, SAE J1979, 2002.

[12] US Environmental Protection Agency. Do you drive a 1996 or newer car or light truck?

[Online]. Available: www.epa.gov/obd/420f02016.pdf

[13] F. Schaffer. 2013.05.12. List of OBD2 supported vehicles [Online]. Available:

http://www.blafusel.de/obd/obd2_scanned.php

[14] Actron. PocketScan Code Reader CP9125 [Online]. Available:

http://actron.com/product_detail.php?pid=16298

[15] TEXA S.p.A. OBD Log for finding intermittent faults [Online]. Available:

http://www.texa.com/products/obd- log

[16] Torque — OBD2 Performance and Diagnostics for your Vehicle [Online]. Available:

http://torque-bhp.com/

[17] Diagnostic Connector Equivalent to ISO/DIS 15031, SAE J1962, 2002.

[18] Auterra, LLC. CAN Bus Equipped Vehicles - Complete Vehicle Make, Model and Year

List [Online]. Available: http://www.auterraweb.com/aboutcan.html

[19] Vehicle OBD II Compatibility [Online]. Avaliable: https://plxdevices.com/obd/

[20] Mojio, [Online]. Available: https://www.moj.io/

[21] Bluetooth or WiFi OBDII Connector, [Online]. Available:

http://www.cravenspeed.com/obdii-connector/

[22] Torque. Bluetooth Adapters [Online]. Avaliable: https://torque-

bhp.com/wiki/Bluetooth_Adapters

[23] ELM Electronics. (2014), ELM327 OBD to RS232 Interpreter [Online]. Available:

http://elmelectronics.com/DSheets/ELM327DS.pdf

http://www.epa.gov/obd/420f02016.pdf
http://www.epa.gov/obd/420f02016.pdf
http://h/
http://www.google.com/url?q=http%3A%2F%2Fwww.w3partnership.com%2FPDFs%2Fwso2-whitepaper-wso2-sap-message-gateway-solution.pdf&sa=D&sntz=1&usg=AFQjCNH_-64bD8TBKfvjzsCjw_FUQgK6YA
http://www.google.com/url?q=http%3A%2F%2Fwww.w3partnership.com%2FPDFs%2Fwso2-whitepaper-wso2-sap-message-gateway-solution.pdf&sa=D&sntz=1&usg=AFQjCNH_-64bD8TBKfvjzsCjw_FUQgK6YA
http://www.w3partnership.com/PDFs/wso2-whitepaper-wso2-sap-message-gateway-solution.pdf
http://www.w3partnership.com/PDFs/wso2-whitepaper-wso2-sap-message-gateway-solution.pdf
http://actron.com/product_detail.php?pid=16298
http://www.texa.com/products/obd-log
http://www.texa.com/products/obd-log
http://www.myscantool.com/
http://www.myscantool.com/
http://torque-bhp.com/
http://torque-bhp.com/
https://law.resource.org/pub/us/cfr/ibr/005/sae.j1962.2002.pdf
http://www.auterraweb.com/aboutcan.html
http://www.auterraweb.com/aboutcan.html
https://plxdevices.com/obd/
https://plxdevices.com/obd/
https://www.moj.io/
https://www.moj.io/
http://www.cravenspeed.com/obdii-connector/
https://torque-bhp.com/wiki/Bluetooth_Adapters
https://torque-bhp.com/wiki/Bluetooth_Adapters
http://www.w3partnership.com/PDFs/wso2-whitepaper-wso2-sap-message-gateway-solution.pdf
http://www.w3partnership.com/PDFs/wso2-whitepaper-wso2-sap-message-gateway-solution.pdf
http://www.w3partnership.com/PDFs/wso2-whitepaper-wso2-sap-message-gateway-solution.pdf
http://www.w3partnership.com/PDFs/wso2-whitepaper-wso2-sap-message-gateway-solution.pdf
http://elmelectronics.com/DSheets/ELM327DS.pdf

83

[24] Progressive Casualty Insurance Company, Snapshot® | Progressive [Online]. Avaliable:

http://www.progressive.com/auto/snapshot/?version=default

[25] Elm 327 Terminal - Android Apps on Google Play [Online]. Available:

https://play.google.com/store/apps/details?id=Scantech.Terminal&hl=en

[26] OBD-II (OBD2) Scan Tool Software and Hardware - ProScan [Online]. Availab le :

http://www.myscantool.com/

[27] Icculus.org. OBD GPS Logger for Linux and OSX [Online]. Available:

http://icculus.org/obdgpslogger/

[28] Icculus.org. OBDSim, [Online]. Available: http://icculus.org/obdgpslogger/obdsim.html

[29] OBDSim Reference Manual, v0.16, icculus.org, 2011.

[30] What is Bluetooth Technology | Bluetooth Technology Website [Online]. Availab le :

http://www.Bluetooth.com/Pages/what- is-Bluetooth-technology.aspx

[31] Bluetooth Basics - learn.sparkfun.com [Online]. Available:

https://learn.sparkfun.com/tutorials/bluetooth-basics/common-versions

[32] What is 3G? Webopedia [Online]. Available:

http://www.webopedia.com/TERM/3/3G.html

[33] What is 4G? Webopedia [Online]. Avaliable:

http://www.webopedia.com/TERM/4/4G.html

[34] G. Blewitt, “Basics of the GPS Technique: Observation Equations§”, Dept. of Geomatics,

Univ. Newcastle, 1997

[35] What Drains The Smart-Phone Battery? | Europe News content from Electronic Design

[Online]. Available: http://electronicdesign.com/ed-europe/what-drains-smart-phone-

battery

[36] Oracle Complex Event Processing: High Availability, white paper, Oracle Corporation,

Nov, 2010

http://www.progressive.com/auto/snapshot/?version=default
http://icculus.org/obdgpslogger/
http://icculus.org/obdgpslogger/
http://icculus.org/obdgpslogger/
http://icculus.org/obdgpslogger/
http://www.myscantool.com/
http://www.myscantool.com/
http://icculus.org/obdgpslogger/
http://icculus.org/obdgpslogger/
http://icculus.org/obdgpslogger/obdsim.html
http://icculus.org/obdgpslogger/obdsim.html
http://www.bluetooth.com/Pages/what-is-bluetooth-technology.aspx
https://learn.sparkfun.com/tutorials/bluetooth-basics/common-versions
http://www.webopedia.com/TERM/3/3G.html
http://www.webopedia.com/TERM/3/3G.html
http://www.webopedia.com/TERM/4/4G.html
http://electronicdesign.com/ed-europe/what-drains-smart-phone-battery
http://electronicdesign.com/ed-europe/what-drains-smart-phone-battery

84

[37] Analyze and Act on Fast Moving Data: An Introduction to Complex Event Processing,

white paper, Sybase. Inc., 2010

[38] S. Rizvi, “Complex event processing beyond active databases: Streams and uncertainties, ”

Tech. Report, UCB/EECS-2005-26, Electrical Eng. and Comp. Sci., Univ. of California,

Dec. 2005.

[39] G. Cugola and A. Margara, “Low Latency Complex Event Processing on Parallel

Hardware,” ACM Computing Surveys (CSUR), vol. 44 (3), no. 15, Jun. 2012.

[40] D. C. Luckham, “Event Processing and the Survival of Modern Enterprise,”. in Event

Processing for Business, Hoboken, New Jersey: John Wiley & Sons, Inc., 2012, ch. 1. sec.

3.

[41] N. Leavitt, Complex-Event Processing Poised for Growth, in IEEE Computer Society, vol.

42, no. 4, 17-20, April, 2009.

[42] TIBCO [Online]. Available: http://www.tibco.com/products/event-processing/complex-

event-processing/streambase-complex-event-processing

[43] Oracle Corporation. Overview of Oracle Complex Event Processing [Online]. Available:

http://docs.oracle.com/cd/E13157_01/wlevs/docs30/get_started/overview.html

[44] WSO2 Inc. (2014), WSO2 Complex Event Processor Documentation - Complex Event

Processor 3.1.0 - WSO2 Documentation, [Online]. Available:

https://docs.wso2.com/display/CEP310/WSO2+Complex+Event+Processor+Documentati

on

[45] S. Suhothayan et al., “Siddhi: A Second Look at Complex Event Processing Architectures, ”

GCE’11, Seattle, Washington, USA, Nov. 2011.

[46] S. Sirish et al., “TelegraphCQ: an architectural status report,” In IEEE Data(base)

Engineering Bulletin - DEBU , vol. 26, no. 1, pp. 11-18, 2003.

http://ee.stanford.edu/~luckham/
http://www.tibco.com/products/event-processing/complex-event-processing/streambase-complex-event-processing
http://www.tibco.com/products/event-processing/complex-event-processing/streambase-complex-event-processing
http://docs.oracle.com/cd/E13157_01/wlevs/docs30/get_started/overview.html
https://www.google.com/url?q=https%3A%2F%2Fplxdevices.com%2Fobd%2F&sa=D&sntz=1&usg=AFQjCNH5v47YV5r5SNVEipgCtc_HAcykxA
https://www.google.com/url?q=https%3A%2F%2Fplxdevices.com%2Fobd%2F&sa=D&sntz=1&usg=AFQjCNH5v47YV5r5SNVEipgCtc_HAcykxA
https://plxdevices.com/obd/
https://plxdevices.com/obd/
https://plxdevices.com/obd/
https://plxdevices.com/obd/
https://plxdevices.com/obd/
https://plxdevices.com/obd/
https://docs.wso2.com/display/CEP310/WSO2+Complex+Event+Processor+Documentation
https://docs.wso2.com/display/CEP310/WSO2+Complex+Event+Processor+Documentation
https://www.google.com/url?q=https%3A%2F%2Fplxdevices.com%2Fobd%2F&sa=D&sntz=1&usg=AFQjCNH5v47YV5r5SNVEipgCtc_HAcykxA
https://www.google.com/url?q=https%3A%2F%2Fplxdevices.com%2Fobd%2F&sa=D&sntz=1&usg=AFQjCNH5v47YV5r5SNVEipgCtc_HAcykxA
https://plxdevices.com/obd/
https://plxdevices.com/obd/
https://plxdevices.com/obd/
https://plxdevices.com/obd/
https://www.google.com/url?q=https%3A%2F%2Fplxdevices.com%2Fobd%2F&sa=D&sntz=1&usg=AFQjCNH5v47YV5r5SNVEipgCtc_HAcykxA
https://www.google.com/url?q=https%3A%2F%2Fplxdevices.com%2Fobd%2F&sa=D&sntz=1&usg=AFQjCNH5v47YV5r5SNVEipgCtc_HAcykxA
http://65.54.113.239/Journal/12/debu-ieee-data-base-engineering-bulletin
http://65.54.113.239/Journal/12/debu-ieee-data-base-engineering-bulletin
https://plxdevices.com/obd/

85

[47] N. Sirbiladze, “An Evaluation of Business Activity Monitoring Tools,” Int. Conf.

Computing, Commun. Syst. and Informatics Manage, Bur Dubai, UAE, July, 2012,

http://ijitcs.com/volume%204_No_1/Rui+Gomes.pdf

[48] WSO2 Inc. (2014), About BAM [Online]. Available:

https://docs.wso2.com/display/BAM241/About+BAM

[49] B. Y. Liaw, “Fuzzy Logic Based Driving Pattern Recognition for Driving Cycle Analys is, ”

in Journal of Asian Electric Vehicles, vol.2, no.1, Jun, 2004.

[50] A. Wahab et al., “Driver Recognition System Using FNN and Statistical Methods,” in

Advances for In-Vehicle and Mobile Systems: Challenges for International Standards,

Springer, 2007, ch. 2, sec. X, pp.011-023.

[51] S. Ganesan, Introduction to On Board Diagnostics (II), U.S. Army Vetronics Institute, Dec,

2002. http://groups.engin.umd.umich.edu/vi/w2_workshops/OBD_ganesan_w2.pdf

[52] Oxygen Sensors: How to Diagnose and Replace [Online] Availab le :

http://www.aa1car.com/library/o2sensor.htm

[53] CARSDIRECT.COM, Inc., What a Mass Airflow Meter Does and How to Maximize Your

Car's Performance - CarsDirect [Online]. Available: http://www.carsdirect.com/car-

maintenance/what-a-mass-airflow-meter-does-and-how-to-maximize-your-cars-

performance

[54] D. Bacon, Evaluate mathematical expressions in Java [Online]. Availab le :

https://github.com/darius/expr

http://ijitcs.com/volume%204_No_1/Rui+Gomes.pdf
http://ijitcs.com/volume%204_No_1/Rui+Gomes.pdf
http://groups.engin.umd.umich.edu/vi/w2_workshops/OBD_ganesan_w2.pdf
http://groups.engin.umd.umich.edu/vi/w2_workshops/OBD_ganesan_w2.pdf
http://www.aa1car.com/library/o2sensor.htm
http://www.aa1car.com/library/o2sensor.htm
http://www.carsdirect.com/car-maintenance/what-a-mass-airflow-meter-does-and-how-to-maximize-your-cars-performance
http://www.carsdirect.com/car-maintenance/what-a-mass-airflow-meter-does-and-how-to-maximize-your-cars-performance
http://www.carsdirect.com/car-maintenance/what-a-mass-airflow-meter-does-and-how-to-maximize-your-cars-performance
http://www.carsdirect.com/car-maintenance/what-a-mass-airflow-meter-does-and-how-to-maximize-your-cars-performance

