

University of Moratuwa

Department of Computer Science and Engineering

CS 4202 - Research and Development Project

Final Year Project Report

Schema-Independent Scientific Data Cataloging Framework

Project Group - DataMedici

S. W. S. Dhanushka (100097C)

A. L. H. S. Jayawardena (100225U)

M. K. D. S. Kumarasiri (100285C)

S. C. Nakandala (100352F)

Internal Supervisor

Dr. H. M. N. Dilum Bandara

External Supervisors

Dr. Srinath Perera

Mr. Suresh Marru

Dr. Sudhakar Pamidighantam

Coordinated By

Dr. Malaka Walpola

THIS REPORT IS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE
AWARD OF THE DEGREE OF BACHELOR OF SCIENCE OF ENGINEERING AT UNIVERSITY

OF MORATUWA, SRI LANKA.

15th of May, 2015

ii

Declaration

We, the project group DataMedici (S.W.S. Withana, A.L.H.S. Jayawardena, M.K.D.S. Kumarasir i

and S.C. Nakandala under the supervision of Dr. H.M.N. Dilum Bandara, Dr. Srinath Perera, Mr.

Suresh Marru and Dr. Sudhakar Pamidighantam) hereby declare that except where specified

reference is made to the work of others, the project “Schema-Independent Scientific Data

Cataloging Framework” is our own work and contains nothing which is the outcome of work done

in collaboration with others, except as specified in the text and Acknowledgement.

Signatures of the candidates:

1. ………………………………………….S.W.S. Dhanushka (100097C)

2. ………………………………………….A.L.H.S. Jayawardena (100225U)

3. ………………………………………….M.K.D.S. Kumarasiri (100285C)

4. ………………………………………….S.C. Nakandala (100352F)

Supervisor:

…………………………………………..

(Signature and Date)

Dr. H.M.N. Dilum Bandara

Project Coordinator:

…………………………………………..

(Signature and Date)

Dr. Malaka Walpola

ii

Abstract

Project Title: Schema-Independent Scientific Data Cataloging Framework

Authors: S.W.S. Dhanushka (100097C)

 A.L.H.S. Jayawardena (100225U)

 M.K.D.S. Kumarasiri (100285C)

 S.C. Nakandala (100352F)

Internal Supervisor: Dr. H. M. N. Dilum Bandara

External Supervisors: Dr. Srinath Perera

 Mr. Suresh Marru

 Dr. Sudhakar Pamidighantam

Modern scientific experiments generate vast volumes of data which are hard to keep track of.

Consequently, scientists find it difficult to search, reuse, and share these data sets. We address this

problem by developing a schema-independent data cataloging framework for effic ient

management of scientific data. The proposed solution consists of an agent which automatica l ly

identifies new data products and extracts metadata from them. Agents can be used to extract any

form of data by providing a data-specific plugin. Extracted metadata is then forwarded to a server,

which indexes metadata using a NoSQL database. The server also provides a REST API for

querying, sharing, and reusing data sets through a website, workflow, or science gateway.

Moreover, the proposed solution enables fast indexing and querying of large number of metadata

and attributes, dynamic metadata fields, as well as outperforming solutions based on relationa l

databases. For example, our Apache Solr based implementation can resolve full text, sub-string,

prefix, and suffix queries 91% - 99% faster than a MySQL-based implementation. Apart from

developing a standalone system, we have integrated this into Apache Airavata scientific gateway

middleware framework.

iii

Acknowledgement

First and foremost we would like to express our sincere gratitude to our project supervisor, Dr.

H.M.N. Dilum Bandara for the valuable guidance and dedicated involvement at every step

throughout the process.

We would also like to thank our external supervisor Dr. Srinath Perera for the valuable advice and

the direction given to us regarding the project.

In addition, we would like to thank Mr. Suresh Marru and his Airavata team, for the continuous

support, encouragement and insightful comments. We would also like to thank Dr. Sudhakar

Pamidighantam for guidance and assistance given to us.

We would like to express our warm gratitude to Dr. Malaka Walpola for coordinating the final

year projects.

Last but not least, we would like to express our greatest gratitude to the Department of Computer

Science and Engineering, University of Moratuwa for providing the support for us to successfully

finish the project.

iv

Table of Contents

List of Figures .. vii

List of Tables .. viii

List of Abbreviations .. ix

1. Introduction ... 1

1.1 Motivation .. 1

1.2 Contribution ... 3

1.3 Outline .. 4

2 Literature Review.. 5

2.1 Metadata ... 5

2.2 Workflow ... 6

2.3 Scientific Gateway ... 8

2.4 Apache Airavata ... 10

2.5 Scientific Data Output Formats and Parsers .. 13

2.6 Scientific Data Management Solutions .. 13

2.6.1 MCAT ... 14

2.6.2 Metadata Cataloging Service .. 16

2.6.3 MyLEAD .. 23

2.6.4 iRODS ... 27

2.6.5 Comparison ... 28

2.7 Database Technologies... 28

2.7.1 Solr .. 29

2.7.2 Cassandra .. 30

2.7.3 Comparison of RDBMS, Solr and Cassandra ... 31

2.8 Agent Server Communication .. 32

2.8.1 SOAP .. 33

2.8.2 REST ... 33

2.8.3 Comparison of SOAP and REST .. 34

3 Problem Statement .. 35

3.1 GridChem Use Case ... 36

3.2 Airavata Use case ... 36

4 Design ... 37

v

4.1 Agent .. 38

4.2 Server ... 38

4.3 Web Portal .. 39

5 Implementation ... 40

5.1 Languages, Tools, and Technologies ... 40

5.2 Metadata Cataloging System.. 40

5.2.1 Agent ... 41

5.2.2 Server .. 43

5.2.3 Web Portal... 45

5.3 Testing .. 46

5.4 Security Controls .. 47

6 Airavata Integration .. 48

6.1.1 RabbitMQ [39] .. 48

7 Performance Analysis ... 52

7.1 Data Insert Performance ... 53

7.2 Query Performance .. 54

7.2.1 Exact match queries .. 55

7.2.2 Range Queries ... 55

7.2.3 Full text queries... 56

7.2.4 Prefix match queries.. 57

7.2.5 Suffix match queries ... 58

7.2.6 Wild card queries .. 58

7.2.7 Substring Queries .. 59

7.3 Space Utilization .. 60

7.4 Conclusion.. 61

8 Summary ... 62

8.1 Problems and Challenges ... 63

8.2 Future Work ... 63

9 References ... 65

Appendix I – Server Configuration Details .. 69

Appendix II – API Specification for DataCat Server ... 70

Appendix III – Agent Configuration Details .. 78

vi

Appendix IV – Performance Test Results .. 79

vii

List of Figures

Figure 1.1 Reuse for new studies . .. 2

Figure 1.2 Publish and Forget. .. 2

Figure 2.1 Example scientific workflow 7

Figure 2.2 Science Gateway.. 9

Figure 2.3 Airavata Functionality. .. 10

Figure 2.4 Airavata Architecture. ... 11

Figure 2.5 Airavata Stakeholders ... 12

Figure 2.6 MCAT Architecture .. 14

Figure 2.7 Attribute based discovery and accesing metadata services .. 18

Figure 2.8 Data model .. 19

Figure 2.9 MCS Architecture ... 21

Figure 2.10 MyLEAD Architecture . .. 25

Figure 2.11 Service interactions during and experiment execution . .. 27

Figure 4.1 System architechture.. 37

Figure 5.1 Web Portal. .. 46

Figure 6.1 Airavata datacat workflow... 49

Figure 6.2 Datacat deployment diagram ... 50

Figure 6.3 Basic search user interface .. 51

Figure 6.4 Advanced search user interface ... 51

Figure 7.1 Data Insertion Time. .. 54

Figure 7.2 Query execution time for exact match queries. .. 55

Figure 7.3 Query execution time for range queries. ... 56

Figure 7.4 Query execution time for full text search queries. .. 57

Figure 7.5 Query execution time for prefix match queries. .. 57

Figure 7.6 Query execution time for suffix match queries. .. 58

Figure 7.7 Query execution time for wild card queries. ... 59

Figure 7.8 Query execution time for substring queries... 60

Figure 7.9 Storage utilization.. 61

file:///C:/Users/Dinu/Desktop/Final%20Report.docx%23_Toc411373113
file:///C:/Users/Dinu/Desktop/Final%20Report.docx%23_Toc411373114
file:///C:/Users/Dinu/Desktop/Final%20Report.docx%23_Toc411373116
file:///C:/Users/Dinu/Desktop/Final%20Report.docx%23_Toc411373126

viii

List of Tables

Table 2.1 - MCS attributes and their respective categories. ... 20

Table 2.2 - System level requirements vs. Data model requirements. .. 24

Table 2.3 - Comparison of metadata cataloging solutions. ... 28

Table 2.4 General comparison between Solr and RDBMS ... 31

Table 2.5 - Comparison between Solr and RDBMS considering the search capability 31

Table 2.6 Comparison of Solr and Cassendra .. 32

Table 2.7 - Comparison of SOAP and REST .. 34

Table 7.1 - Schema for performance test. ... 53

ix

List of Abbreviations

ACL Access Control List

API Application Programming Interface

CESM Community Earth System Model

CIPRES Cyber Infrastructure for Phylogenetic Research

ESG Earth System Grid

Java EE Java Enterprise Edition

FTP File Transfer Protocol

GSI Grid Security Infrastructure

HPC High Performance Computing

HTTP Hyper Text Transfer Protocol

IDE Integrated Development Environment

iRODS Integrated Rule Oriented Data System

LEAD Linked Environments for Atmospheric Discovery

LIGO Laser Interferometer Gravitational-Wave Observatory

JDBC Java Database Connectivity

MAPS Metadata Attribute Presentation Structure

MCS Metadata Cataloging Service

OGSA-DAI Open Grid Services Architecture Data Access and Integration

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

x

SQL Structured Query Language

SRB Storage Resource Broker

RDBMS Relational Database Management System

REST Representational State Transfer

WSDL Web Service Description Language

1. Introduction

1.1 Motivation

We live in an age where vast volumes of data are getting created at every second by various means.

These data are generated from various domains, and each domain usually has its own way of

managing such vast volumes of data. It is said that data volumes from scientific experiments and

simulations are doubling every year [1]. Consequently, with the increasing data types and volumes,

scientists are finding it difficult to manage these data products. After executing scientific

experiments, the generated data products are pushed into a data archive for long-term preservation.

These data can be of different formats, e.g., binary, text, or XML. The hierarchical folder structure

is often used to organize these data.

Typically, the scientific community use simple mechanisms to organize and store these datasets.

Often they use hierarchical folder structures to organize the data. Because of this, when the data

volume increases, the scientific community faces challenges such as [2]:

 Limited file and directory naming schemes.

 Scientists retrieve entire files to ascertain relevance.

 Inability to reuse and share the data products which have a high academic and research

value with the broader scientific community.

 Important information and metadata relating to data products are usually in scientists

notebooks and heads; hence, not accessible to others.

 Un-owned data after a large project.

If there is a mechanism to provide efficient searching of these data archives, then the stored data

can be reused by the scientific community. For example, when a scientist wants to carry out an

experiment, he/she can first search these data archives to see whether the same experiment is

already done using the same inputs. If so, he/she can obtain the relevant output file(s), saving time

and computing resources. This will change the lifecycle of scientific data from using once to

reusing many times. This change is illustrated in Fig. 1.1 and 1.2.

2

MCAT [6], MCS [7], and MyLEAD [8] are widely used scientific data management systems based

on a metadata catalog. All three systems are tightly coupled to a specific computing infrastruc ture

or use case. Also, as these solutions are based on relational database technology, they have a high

response time when responding to more complex wildcard, substring, fulltext, and range queries.

These solutions use static schemas for metadata types. Therefore, they are unable to support

dynamic metadata fields (i.e., metadata fields whose existence were not known at the beginning,

but found later) and cannot handle the problem of having metadata fields which are common only

to some of the data products, efficiently. These limitations suggest that there is a need for

improving the existing systems or revisiting the problem again.

Figure 1.1 Publish and forget [2].

Figure 1.2 Reuse for new studies [2].

Figure 1.2 Publish and forget [2].

Figure 1.2 Reuse for new studies [2].

Figure 1.1 Publish and Forget [2].

Figure 1.2 Reuse for new studies [2].

3

1.2 Contribution

One of our use cases is based on “Gaussian 9” [3], which is a computational chemistry simula t ion

application. Gaussian generates a vast volume of output data consisting of the output text file

(*.out) and a binary checkpoint file (*.chk). The output file contains the details of the experiment

results, whereas the checkpoint file contains the execution states and details of the experiment.

Computational chemists parse these files to extract the information they need from the experiment

and archive it.

We propose a scientific data catalog to easily and efficiently search large volumes of scientific

data. Our approach is to extract and index the metadata in a metadata catalog, where scientists can

search and find the results of scientific experiments. By keeping a detailed metadata catalog, search

time and the overhead involved in searching through the entire dataset again and again can be

reduced [4]. When a new data product is generated, the agent component of our system detects it

and sends the file(s) to the parser system. The parser system, then extracts the metadata. This

metadata is then indexed in the NoSQL database based on Apache Solr [5]. Moreover, the system

provides a REST API for querying, sharing, and reusing datasets through a website, workflow, or

science gateway. The novelty of our solution lies in the pluggable metadata extraction logic,

extensible data product generation monitors, use of a NoSQL database, and the ability to

dynamically add new metadata fields. Our system is also generalizable and can be used in other

domains by replacing the metadata extraction logic.

The response time of our NoSQL-based implementation is much better compared to a traditiona l

relational database implementation based on MySQL. We compared the performance for different

query types such as exact, range, prefix, suffix, full text, and wild card. These tests were carried

out for databases consisting of 100,000 records. For exact and range queries, MySQL-based

implementation outperformed the Solr-based implementation. But in wildcard queries response

time of the Solr-based implementation was 99.2% lower than the MySQL-based implementat ion.

Similarly, response time for substring, suffix, and prefix queries were 97.7%, 99.2%, and 97.8%

lower than the MySQL-based implementation, respectively.

While MCAT [6], MCS [7], and MyLEAD [8] are widely used scientific data management

systems, they are tightly coupled to their specific use cases and utilize relational databases to index

metadata. Compared to these application-specific systems, our solution can be applied to any

4

domain by replacing the metadata extraction logic. Moreover, the given REST API enables

querying, sharing, and reusing data sets through many systems such as websites, workflows, or

science gateways. Furthermore, its NoSQL implementation based on Solr enables fast resolution

of natural language queries issued by scientists.

In our second use case, we integrate our system with Apache Airavata [9]. Apache Airavata is a

software framework for executing and managing computational jobs and workflows on distributed

computing resources including local clusters, supercomputers, national grids, and academic and

commercial clouds. It acts as a middleware layer between scientific gateways [10] and

computational resources. Scientific communities use Airavata to implement their own scientific

gateway. By integrating our system to Airavata we integrate the searching and indexing

capabilities to the scientific gateways which are built using Airavata.

1.3 Outline

This report is organized as follows. Chapter 2 discusses the existing literature which is relevant to

the project. Chapter 3 presents the problem statement with our two use cases. Design of the system

and its architecture are presented in Chapter 4. Chapter 5 presents the implementation details of

the project including the tools and technologies, system components, testing, and security controls.

Airavata integration is presented in Chapter 6. Experimental setup and performance analysis are

presented in Chapter 7. Chapter 8 will conclude the report with problems encountered, challenges,

and future work.

5

2 Literature Review

In this chapter we analyze the related work. The proposed solution for the problem is a metadata

catalog. Therefore, understanding metadata has a significant value in our project. Section 2.1

presents a detailed description about metadata and their classifications. Section 2.2 will describe

workflows, workflow management systems and their problems which lead to the development of

scientific data management solutions. Science gateways manage scientific workflows on behalf of

scientists. Section 2.3 presents about scientific gateways followed with Section 2.4 which

describes Airavata, which is a scientific gateway middleware solution. Integrating our solution to

Apache Airavata is an integral part of the project. For this we should have a good understanding

on the main functionality of Airavata and its architecture. In Section 2.5 we have discussed the

output formats and parsers scientists use to extract the relevant information from outputs. Several

scientific data management solutions are presented by various research groups for specific

domains. In Section 2.6 we describe popular and widely used scientific data management services;

namely, MCAT, Metadata Cataloging Service, myLEAD and iRODS. Section 2.7 describes the

database technology we chose to store metadata in our proposed system. To store metadata we had

several options. We could use a RDBMS or a NoSQL database like Solr or Cassandra. Section 2.7

also describes RDBMS, Solr and Cassandra with their advantages and disadvantages with respect

to our requirements. Section 2.8 presents the reasoning behind the selection of a REST architecture

to implement the APIs of the proposed system. At the end of the chapter there is a summary of

similar solutions and technologies which we use for our system.

2.1 Metadata

Metadata plays an important role in discovering the datasets for a given specific set of attributes.

Keeping a detailed metadata catalogue can reduce the search time and overhead in searching

through the entire dataset [4]. Most common metadata attributes are user defined and customized

to fit specific environments.

Federal Geographical Data Committee [11] and Maryland State Geographic Information

Committee [12] have defined a set of common attributes which make a generic metadata record:

6

 Metadata Record Information – Contains information about the metadata record such as

the language it is written in, unique file identifier, metadata standard and the date that the

metadata record is written.

 Content Information – Contains information about the actual datasets and attributes.

 Identification Information – Contains citation-level information like title, abstract, purpose

for creation, status and keywords.

 Data Quality Information – Contains the information about the processes and sources used

to develop data and accuracy assessments provided.

 Maintenance Information – Contains information about the updates like scope and

frequency to data updates.

 Distribution Information – Contains information about the data distributors and methods

for observing the data.

 Application Schema Information – Contains information about the schema or data models

used to structure the data.

Another classification of metadata is as follows:

 Structural Metadata – Description of physical and logical framework of the data sets.

 Descriptive Metadata – Description about data objects such as title, author, subject,

keywords and publisher.

 Technical Metadata – Description of mode of creation and storage such as indexes, data

types and distribution lists.

 Administrative Metadata – Description of storage format, copyrights, licensing and

preservation of datasets.

 Process Metadata – Description of information generated from scientific experiments.

Even though there exist very comprehensive standards for metadata, in practice most systems use

a subset of the above metadata types to suit their specific requirements of modeling and managing.

2.2 Workflow

Scientific experiments and simulations can have one to thousands of steps. A step in a scientific

workflow can be considered as a single activity or computation. A scientific workflow is a series

7

of structured activities and computations that arise in scientific problem solving [13]. Workflows

can also be defined as a paradigm for representing and managing complex, distributed

computations [14]. Scientific workflows are typically time consuming and produce large volumes

of data. Therefore, managing them is a difficult task. Figure 2.1 represents an example workflow

for functional genomics from the Taverna workflow system [15].

Figure 2.1 An example of a scientific workflow [15].

A workflow management system models and controls the execution of workflows in dynamic and

heterogeneous environments [16]. It faces the following major issues when controlling workflows

[14]:

 Reproducibility of scientific analyses and processes – Reproducibility is important in

scientific workflows to prove the validity of a hypothesis. It also provides the basis for

8

establishing the known truths. Reproducibility requires rich provenance information. This

requires provenance records to be indexed and made available for referencing. Therefore,

a workflow management system must capture and generate the provenance information as

a critical part of the workflow generated data.

 Scalability, reliability and security – The scientific data should be secured from malic ious

manipulations and access. They should be only allowed to be accessed by an approved

community by the preference of the scientists. The workflow management system should

be scalable since the workflows can generate large amounts of data in a single run.

Moreover, it should accommodate the increasing numbers of workflows too. The system

should always be available and reliable.

 Accommodate the inconsistencies and heterogeneities coming from different communit ies

– When managing workflows, there can be various inconsistencies and heterogeneit ies

because the information can come from different societies and sources. Therefore, there

must be some mechanism to curate, validate, translate and integrate the data needed for

sharing scientific information.

To overcome these issues scientists have to use a proper scientific data management system. Our

proposed solution will address these issues.

2.3 Scientific Gateway

Scientific workflows use a variety of computational resources like super computers, HPC servers,

work stations, etc. In a typical setup scientists have to go to the resource, add their experiment to

the queue for the resource and wait till it gets the chance to get executed. This wastes scientis ts’

valuable time which they can spend on their other scientific goals. Moreover, as we discussed in

the previous section, there are various difficulties in managing workflows. To overcome these

problems science gateways were invented. A science gateway is a community developed set of

tools, applications and data collections that are integrated through a portal or a suite of applications

[10]. Using a science gateway, scientists can handover the problem of assembling cyber

infrastructure to run their experiment to the gateway middleware and focus on achieving more

important scientific goals. Science gateways usually provide a graphical interface to the scientists

to submit their experiments. Science gateways will handle all the other details, whereas the

9

scientists only have to log into the portal to execute experiments, track the status of the experiments

and to get the results of those experiments.

These gateways are configured in a way that they will provide optimal usage of computationa l

resources by enabling the entire scientific community through a common interface. Science

gateways solve security, scalability and reliability issues in workflow management systems. A

high-level architecture of a science gateway is shown in Figure 2.2 [17].

There are many science gateways operating around the world. A few major ones are:

1. CIPRES [18] – CIPRES is one of the most heavily used science gateways in the United

States. It enables scientists to do phylogenetic reconstructions on a large scale which

supports analysis of huge data sets containing hundreds of thousands of bio-molecular

sequences. CIPRES stands for Cyber Infrastructure for Phylogenetic Research.

2. UltraScan [19] – The UltraScan gateway is used as a user-friendly web interface for

evaluation of experimental analytical ultracentrifuge data using the UltraScan modeling

software.

3. CESM [20] –The CESM gateway makes a world-leading, fully coupled climate model. It

is easy to use and available to a wide audience.

A science gateway has to maintain communication with every computational resource in order to

execute workflows. Since there are various types of resources including supercomputers, academic

clouds, national grids, local clusters and commercial clouds, the protocols used to communica te

Figure 2.2 Science Gateway.

10

with these resources also vary. Therefore, this communication will give an unnecessary burden to

the gateway. As a solution, a middleware layer dedicated to communicate with resources can be

used. Then the gateway does not have to maintain the communication protocols or other properties

about the resources.

2.4 Apache Airavata

Apache Airavata is one such solution which acts as the middleware layer between the science

gateways and the resources and takes care of the experiments submitted by science gateways [9].

Its functionality is illustrated in Figure 2.3. Airavata composes, manages, executes and monitors

distributed applications and workflows on computational resources ranging from local resources

to computational grids [21]. It has been built on the general concepts of service oriented

computing, distributed messaging, workflow composition and orchestration. All communicat ions

are secured using https in the transport layer.

Figure 2.3 Airavata Functionality.

The main goal of Airavata is to support long running applications and workflows on distributed

computational resources. The underlying architecture of Airavata is given in Fig. 2.4. Airavata

provides the following features to the users:

 Desktop tools and browser-based web interface components for managing applications,

workflows and generated data.

11

 Sophisticated server-side tools for registering and managing scientific applications on

computational resources.

 Graphical user interfaces to construct, execute, control, manage and reuse scientific

workflows.

 Interfacing and interoperability with various external (third party) data, workflow and

provenance management tools.

Figure 2.4 Airavata Architecture [9].

XBAYA workflow suite includes the GUI for workflow composition and monitoring. The

workflows can be interpreted at each step, providing dynamic interactive capabilities. The

composed workflow can be exported to various workflow languages like BPEL, SCUFL, Condor

DAG, Jython and Java. Airavata has an application wrapper service called GFac, which is used to

wrap command line driven science applications and make them into robust, network assessable

services. It is built on Axis2 [22] web service stack and constructed workflows. There is a WS-

Messenger component which is a publish subscribe based message broker implemented on top of

Axis2. It facilitates the communication with clients behind firewall and solves network issues. It

will handle the workflow execution engine notifications such as start, end, failure or successful

invocation of the workflow execution. To put and get documents there is a thick client registry

API.

12

Airavata interacts with various stake holders. These interactions are shown in Fig. 2.5.

Figure 2.5 Airavata stakeholders [23].

 Gateway End Users – These users have a model code to do some scientific application.

Sometimes this End User can be a Research Scientist. He/she writes scripts to wrap up the

applications and by executing those scripts, they run the scientific workflows in super

computers. These users interact with the portal and desktop user interfaces and are agnostic

to the existence of Airavata.

 Gateway Developers - The job of the Gateway Developer is to use Airavata and wrap the

above mentioned model code and scripts together. Then, scientific workflows are created

out of them. The primary target for Airavata Client SDK's is gateway developers. They

program against Airavata API (eased through client SDK's in Java, or PHP or C++ or JS)

and build science centric gateway interfaces.

 Gateway Administrators - These users are responsible for operating a developed gateway

and are primary targets for Airavata Administrative Tools which facilitate system level

monitoring, security and user management and so forth.

13

 Airavata Framework Developers - These group of developers understand the internals of

Airavata and develop, enhance, maintain the core software.

2.5 Scientific Data Output Formats and Parsers

The output files from scientific workflows can be in different formats. They can be in XML, binary

or text format. In some situations metadata can be easily extracted from headers of these files. If

not output files have to be parsed or mined in order to extract the metadata. If the file format is

XML, the parsing becomes easy as we can extract the interesting properties from node values

itself.

For example, in the Gaussian simulation experiments [3] in computational chemistry, there are

two types of files which will be generated when an execution is finished. Those are the output file

which is a text file and the checkpoint file which is a binary file. The checkpoint file gives all the

execution states and details of the simulation experiment. This file is important to re-create or

reinvestigate the experiment. The output file can be parsed to extract important information.

Lexical parsers such as Cup [24] and JFlex [25] can be used to parse these text files. Domain

knowledge is required to create these parsers. CUP stands for construction of useful parsers. It is

a LALR (Look Ahead Left-to-Right) parser generator which generates parsers from a given

specification [24]. JFlex is a scanner generator which is used with CUP files [25].

Typically scientists in a particular domain have the parsers to extract their required information

from output files. A single output file can be parsed using different parsers to get different

information extracted.

2.6 Scientific Data Management Solutions

There are several scientific data management solutions presented by various research groups. Here

we will describe the most successful and widely used efficient scientific data cataloging systems.

14

2.6.1 MCAT

MCAT [6] is a metadata catalog implemented by San Diego Supercomputer Center (SDSC) as a

part of the larger Storage Resource Broker (SRB) System. It has been designed to serve both core

level and domain-independent metadata. There are four main elements in MCAT:

1. Resource – Computing platforms, communication networks, storage systems, peripherals

2. Methods – Access methods for APIs, system and user defined functions

3. Data Objects – Individual data sets and collection of data sets

4. Users and Groups – Who can create, update and access the resources, methods and data

objects

MCAT architecture is illustrated in Figure 2.6.

Figure 2.6 MCAT Architecture [6].

MCAT provides an interface protocol for the application to interact with the system. The protocol

uses MAPS (Metadata Attribute Presentation Structure) data structure to represent metadata. The

schema for storing metadata is different from MAPS; hence, it is essential to map the interna l

format with MAPS. Therefore, MCAT has used a MAPS to schema converter and a schema to

MAPS converter. A dynamic query generator is used for internal query definitions, relationships

15

and semantics to develop an appropriate query. It is able to deal with multiple and heterogeneous

catalogs internal and external to MCAT.

Data objects are first class objects in MCAT. Internal metadata are mostly extracted, derived or

mined whereas external metadata are annotated or logged from external resources. Metadata

attributes visible to MCAT user are given below:

 Name

 Type and formats

 Size

 Comments

 Liveliness

 Replica number

 Creation timestamp

 Creation owner

There is also an internal identifier metadata attribute which is not visible to the user. Every data

object in MCAT is associated with a collection. A collection in MCAT is defined as a set of data

objects or other collections. It is hierarchical, which allows navigation and searching recursive ly.

Hence, a data object has another property called collection name. A data object cannot belong to

more than one collection in MCAT. Since the data object resides in storage, metadata should also

contain a link to the physical resource and the location inside the resource.

To control access there is an Access Control List (ACL), which contains data object id, user id and

permission id. It also provides an abstract representation of resources where one can gather a set

of physical resources to form a single logical resource with abstract properties. Each action on a

data object is audited with its success or failure state. The audit trail record contains object id, user

id, action id, timestamp and comments. Apart from the system oriented metadata mentioned above,

there can be application oriented, domain oriented and user defined metadata.

In addition to the data centric view, MCAT also supports other views as well. In resource centric

view the following metadata about the resources are stored:

 Name

16

 Type

 Access address

 Default location

 Replica number

 Comments

From a user centered view the following attributes are stored:

 Name

 Type

 Address

 Email

 Phone

 Pass phrase

 Domain

 User group

A user is given a type like privileged, normal, project, etc., which is used to define different

capabilities. Moreover, a user is associated with at least one domain. Domain is a concept to

distinguish users at a higher level. To apply access control user groups are used.

2.6.2 Metadata Cataloging Service

MCS [7] can be considered as a successor to the MCAT system. It has incorporated many features

from MCAT and built on top of them. MCS has focused more on different types of metadata that

has to be stored with relation to data products. The main types of metadata that get stored in MCS

are as follows:

There are several types of metadata. One classification of metadata can be described as follows:

 User metadata – Metadata attributes such as annotations with data items or collections

which individual users may want to associate with.

 Virtual organization of metadata – Additional set of metadata conventions for

characterizing the data set defined by multiple scientific or corporate institutions in a virtua l

organization.

17

 Domain specific metadata – Domain specific metadata attributes are often defined by

ontologies that are developed by application communities.

 Domain independent metadata – Domain independent metadata is general metadata

attributes that apply to data items regardless of the application domain or virtua l

organization in which the data sets are created and shared.

 Physical metadata – Physical metadata relates to the physical characteristics of the objects

such as their size, access permissions, owners and modification information.

In MCS metadata services are defined as services that maintain mappings between logical name

attributes for data items and other descriptive metadata attributes and respond to queries about

these mappings. They deal with all the other metadata except with physical metadata such as

location replica services.

There are several processes in MCS. Publication is the process by which the data sets and

associated attributes are stored and made accessible to a user community. Discovery is the process

of identifying data items which are interesting to the user. Metadata services allow the users to

discover datasets based on the value of descriptive attributes. Figure 2.7 shows a simple scenario

of attribute based discovery and access using metadata services.

A sample execution of the system is given below based on the diagram:

1. Client application query to metadata service to find datasets with particular attribute values.

2. Metadata service responds with a set of logical name attributes for data items with

matching attributes.

3. Client queries the replica location service.

4. Replica location service responds with the set of locations where the data items are resided.

5. Client selects and contacts the storage system where the actual data is.

6. Physical storage system returns desired data sets using GridFTP protocol.

18

Figure 2.7 Attribute based discovery and accessing metadata services [6],

Various features that have been implemented by MCS to handle metadata efficiently are as

follows:

 Providing a mechanism to associate logical name attributes with domain independent

metadata attributes according to a predefined schema as well as user defined attributes that

extend this schema to store domain independent, virtual organization and user metadata

attributes.

 Supporting queries on its content.

 Implementing the policies regarding the consistency guarantees, authenticat ion,

authorization, and auditing capabilities provided by the service.

 Supporting the ability to aggregate metadata mappings into collections or views by

associating aggregation attributes with logical name attributes.

19

 Providing good performance and scalability.

The creators of MCS argue that a metadata service is a simple extension of a database service

which stores metadata attributes. It is a specialized service with the following components:

 A data model that includes mechanisms for aggregation of metadata mappings.

 A standard schema for domain independent metadata attributes with extensibility for

additional user defined attributes.

 A set of standard service behaviors.

 Query mechanisms for accessing the database.

 A set of standard interfaces and APIs for storing and accessing the metadata.

 A set of policies for consistency access control, authorization and auditing.

MCS is designed based on those components. Its data model is a file-based data model. Figure 2.8

gives an illustration of the data model.

Figure 2.8 Data model [6].

A logical file is uniquely identified by a logical name. It is the basic item of the data model. Logical

collections are user defined aggregations of logical files and collections. A logical view is another

type of aggregation which contains logical files, logical collections and other logical views. For a

consistent authorization logical files must be included in at least one logical collection. MCS

supports a tree hierarchy of collections and simple queries that maps the logical files into logical

collections. Authorization is given to logical collections. Logical views make users more flexib le

20

in creating groups of logical collections and logical files. Logical views do not deal with

authorization. Attributes in MCS schema is divided into logical categories. Table 2.1 will describe

the attributes and their categories.

Table 2.1 - MCS attributes and their respective categories.

Categories Attributes

Logical file metadata Logical file name

Data type

Version

Validity

Container identifier and container service

Creator

Last modifier

Creation time

Last modification time

Master copy location

Audit information

Logical collection metadata Collection name

Description

Composition

Creator

Modifier

Audit information

Parent logical collection

Logical view metadata View name

Description

Composition

Modifier

Creator

Audit information

Authorization metadata Access privileges

User metadata Writer

Contact information

Audit metadata

Object identifier

Audited action

User

Timestamp

User-defined metadata

Annotation Object identifier

Object type

User

Timestamp

Creation and transformation history

21

External catalog metadata

.

MCS uses a web service model for its implementation. Figure 2.9 shows its components and their

relationships.

Figure 2.9 MCS Architecture [7].

The application program issues queries using an API. Client sends these queries to server using

SOAP. MCS server interacts with the MySQL backend and returns the results back to the user.

MCS provides a synchronous Java API which handles following operations:

 Querying for logical objects based on their attributes.

 Querying static attributes of a logical object.

 Querying the user defined attributes of logical object.

 Querying on logical collections and views.

 Creating a logical file, collection or view.

 Modifying the attributes of a logical object.

 Deleting logical file, view or a collection.

 Annotating a logical object.

 Adding logical objects in to views.

22

MCS is integrated to two applications; Pegasus system and Earth System Grid project.

2.6.2.1 Pegasus Application

Pegasus (Planning for Execution in Grids) is a planning component developed within GriPhyN

project. It is used to map complex workflows into available resources. LIGO (Laser Interferometer

Gravitational-Wave Observatory) uses Pegasus. Pegasus uses MCS to discover existing

application data products. When a user requests logical files that includes a particular frequency

band, MCS returns a list of results to the Pegasus planner. Since MCS only saves logical file names

Pegasus uses an additional component for data cataloguing and discovery (Replication Location

Service). For usage in LIGO, a predefined MCS schema and user defined attributes were adequate

to provide the needed functionality.

2.6.2.2 Earth System Grid Application

ESG includes MCS with replica and storage management services. To include the metadata in

MCS, domain specific attributes as well as user specified attributes parsed from the data has been

used. MCS has proved that its functionality of querying and accessing metadata is adequate to

ESG. But for the ESG, MCS capabilities were not enough. It needed a more flexible and simple

mapping between data and metadata. Most of the general attributes which were predefined in MCS

were not used in ESG. It also needed more query type flexibility.

The performance study by the MCS team has proved that MCS scales well with simple queries,

but have limited performance with complex queries. The performance degradation is largely due

to the MySQL penalty.

As mentioned earlier, MCS is an extension of MCAT metadata catalogue of the Storage Resource

Broker from San Diego Super Computing Center. Some of the similarities between the two

systems are as follows:

 Supports logical name space which is independent from physical namespace.

 Provides GSI authentication.

 Allows specification of a logical collection hierarchy.

 Support the notion of containers to aggregate small files.

Some of the differences between the two systems are as follows:

23

 Different architecture models

 MCAT is tightly coupled with other components of SRB and cannot be used as a standalone

component whereas MCS is an orthogonal component from other services

 MCAT stores both logical metadata and physical metadata whereas MCS stores only

logical metadata.

2.6.3 MyLEAD

MyLEAD is a personalized information management tool which extends the general Globus

Metadata Catalogue Service into a general and extensible schema [8]. It plays a major role in large-

scale distributed computational environments by characterizing grid and web services. MyLEAD

handles the data management aspects of the LEAD (Linked Environments for Atmospheric

Discovery) project which uses meteorological research into forecast and prediction of severe

weather conditions.

The main problem with the existing scientific data management that is handled by myLEAD

project is the inadequate tool support. The general tools which are used in the Internet cannot be

adopted to use in most of the scientific data management scenarios. The main problems of the

system can be listed as follows:

 The general sharing model in the Internet is “written by a single source and read-only by

many”. This model allows you to tag the data with bookmarks for later access. In scientific

data handling, users need the ability to save the history and origin of the data.

 The Internet’s default availability model for data objects is group or worldwide which

complements the scientific data access default model which is user only. Although the

availability has been set to user only in scientific data, the researchers or owners of the data

should have the ability to make the data available to a broader audience.

 Information guard in general search engines is modifiable by scientific users. For example

scientific users must be able to control the number, type and meaning of the attributes

describing any given data objects.

24

To overcome these problems myLEAD team have come up with a personalized scientific metadata

catalogue including search facilities, content storage, data object cataloguing, and active

engagement of users.

MyLEAD is a metadata catalogue at its core. It stores metadata associated with data products

generated and used in the course of scientific investigation. The data products can reside with the

metadata in the database or in a separate storage. It will organize and keep track of all relevant

information for experimental runs, associated documentation, generated data products and their

provenance and run status.

Since this is designed for meteorological data analysis the input data for the prediction models

comes from various sensors and have different types of formats. The system must be able to search

the datasets, convert between formats and use the new products as the inputs to the prediction

model. The requirements can be divided into two categories; system-level requirements and data

model requirements. Table 2.2 represents the two categories of requirements.

Table 2.2 - System level requirements vs. Data model requirements.

System-Level Requirements Data Model Requirements

Driven by system’s Service Oriented

Architecture (SOA)

Derived from the need to provide search, storage and browsing

capabilities

Support concurrency Rich search capabilities over personal collections

Employ a data replication mechanism to

ensure fault tolerance

Rich metadata descriptions that includes application-level

characteristics, usage and provenance

Secure user access Ability to add attributes seamlessly to existing metadata

descriptions

Real time catalogue product generation

MyLEAD used MCS as its base because MCS provides dynamically expandable descriptions on

metadata. The architecture of myLEAD tool is given in Figure 2.10. It has three major components;

User interface, client-side services and server-side services.

 User Interface – User interface provides a portal to clients to interact with myLEAD via

LEAD portal. The single portal may contain portlets to provide management, browsing and

searching capabilities.

 Client side services – Client side services layer include the myLEAD agent and MCS client

components. MyLEAD agent is a transient, short-lived service that serves a single user for

a single session. Therefore, multiple agents can be existing at the same time and represent

25

users who are doing experimental runs. MCS client is embedded in that agent. It is a java

interface to the myLEAD service.

 Server side services – MyLEAD server service is a persistent grid service which is built on

top of a relational database management system (RDMS). MCS is built on top of the Open

Grid Services Architecture Data Access and Integration web service (OGSA-DAI). It

provides a set of generic web services to access any database management system. It

connects to the database with Java Database Connectivity (JDBC). MCS extends OGSA-

DAI by providing the ability to access particular tables in the database schema. MyLEAD

extends this schema further by supporting spatial and temporal attributes.

Figure 2.10 MyLEAD Architecture [8].

MyLEAD data catalog consists of investigations and collections comprising one or more logical

files, views or groups of logical files that belongs to multiple collections, user defined complex

attribute types, pre-defined spatial and temporal attribute types and abstraction hierarchy from low

level vocabulary to high level concepts.

To offer more intuitive querying than MCS, myLEAD extends OGSA-DAI modular design

allowing additional activities. It also allows bulk loading capabilities that MCS does not provide.

26

MyLEAD agent is a transitory grid service that works on the user’s behalf to negotiate with other

services in generating metadata and storing, recording and accessing data products generated and

used during investigations. It represents the user negotiations with other web services, initiates file

movement to the storage repository, ensures consistency between storage and myLEAD, and

manages local space available to the user.

One of the unique characteristics which make myLEAD distinct from previous metadata

catalogues is that its agent can take over more responsibilities like decision making while in other

systems it is only limited to database access.

Figure 2.11 shows the service interactions that take places during an experiment execution. The

step by step process is as follows:

1. User creates a new experiment at the portal.

2. Catalog creates a myLEAD agent to act on user’s behalf and it makes a connection with

the resource

3. User configures the workflow script and launches it at the designated site.

4. Sequence execution of the script with forecasting model

5. Consult the myLEAD agent to find space to store generated data.

6. Save the generated data on the proper location

7. Script executes the data mining task on the results

8. Record the analyzed results in persistent storage

9. Add the metadata to metadata catalog

As myLEAD is based on a relational database system it has a static schema. But evolving scientific

data has shown the need of a dynamic schema for the metadata catalogue. With the development

of NoSQL languages this has been feasible.

27

Figure 2.11 Service interactions during and experiment execution [8].

2.6.4 iRODS

iRODS (integrated Rule-Oriented Data System) is an open source data management software in

use at research organizations and government agencies worldwide [26]. Advantages of iRODS

include:

 iRODS enables data discovery using a metadata catalog that describes every file, every

directory and every storage resource in the data grid.

 iRODS automates data workflows, with a rule engine that permits any action to be initiated

by any trigger on any server or client in the grid.

 iRODS enables secure collaboration, so users only need to log into their home grid to

access data hosted on a remote grid.

 iRODS implements data virtualization, allowing access to distributed storage assets under

a unified namespace and freeing organizations from getting locked into single-vendor

storage solutions.

28

2.6.5 Comparison

Table 2.3 summarizes the comparison between the above mentioned metadata cataloging services .

Table 2.3 - Comparison of metadata cataloging solutions.

MCAT MCS MyLEAD iRODS

Ability to use

independently

An integrated

component of Storage

Resource Broker.

Cannot be used

independently.

A component in a

larger grid

software

infrastructure.

Tightly coupled to

the LEAD project.

Cannot be used in a

different scenario.

Comes as a

complete grid

middleware.

Database

technology

Combination of IBM

DB2 & Oracle

Database.

MySQL Database. MySQL Database. MySQL Database.

Support Access

controlling

Yes Yes Yes Yes

Supporting logical

collections

Yes Yes

Search operations Attribute-value based

search.

Attribute value-

based search.

Attribute value-

based search.

Attribute value-

based search.

Handling

provenance

No explicit notion of

provenance

information.

No explicit notion

of provenance

information.

Stores & manages

provenance

information

relating to data

products.

Stores & manages

provenance

information

relating to data

products.

Data mining No notion of data

mining.

No notion of data

mining.

Supports data

mining tasks on

data on data

products.

No notion of data

mining.

Communication

protocols/

architectures

Service- oriented
architecture

Service-oriented

architecture

Client server

architecture

These existing systems are tightly coupled with their grid infrastructures. They use relationa l

database management systems where the querying is not flexible. Our proposed solution should

have various query type support such as wild card queries, substring queries and fielded queries.

These systems do not handle dynamic metadata fields. Our requirement is a system with a

generalizable framework which will support flexible querying. Therefore, we cannot use these

existing metadata catalogs for our requirement.

2.7 Database Technologies

For the implementation of the proposed scientific data cataloging system we need to choose the

best technologies out from vast amount of existing ones. Previous metadata catalog systems used

Relational Database Management Systems (RBDMS) to store and search the metadata. Another

29

alternative is to use No-SQL database solutions. In the preceding section we elaborate on the

potential technologies that we considered, the technologies that we ultimately selected and the

rationale for choosing them.

2.7.1 Solr

Solr is an open source Apache subproject which provides mature Java-based indexing and search

technology [27]. It is built on Apache Lucene [28]. Solr is a standalone enterprise search server

with a REST-like API. You put documents in it (called "indexing") via JSON, XML, CSV or

binary over HTTP. You query it via HTTP GET and receive JSON, XML, CSV or binary results

[29]. Solr features will be given as follows:

 Advanced full-text search capabilities- since it is powered by Lucene, Solr enables

powerful matching capabilities including phrases, wildcards, joins, grouping and much

more across any data type.

 Optimized for high volume traffic

 Standards Based Open Interfaces - XML, JSON and HTTP

 Comprehensive administration interfaces

 Easy monitoring- Solr publish metric data via JMX.

 Highly scalable and fault tolerant- since it is built on Apache Zookeeper, Solr makes it easy

to scale up and down. Solr bakes in replication, distribution, re-balancing and fault

tolerance out of the box.

 Flexible and adaptable with easy configuration

 Near real time indexing

 Extensible plugin architecture

 Data driven schema less mode

 Rich document parsing

 Multiple search indices

 Dynamic Fields enable on-the-fly addition of new fields that auto-map to field types based

on the field name

 Text analysis components including word splitting, regex, stemming

30

Table 4 summarizes the comparison between Solr and RDBMS.

2.7.2 Cassandra

Another possible alternative for data storage is Cassandra NoSQL database. It is a distributed

storage system for managing very large amounts of structured data spread out across many

commodity servers, while providing a highly available service with no single point of failure [30].

Advantages of using Cassandra as a database solution can be given as follows [31]:

 Fault tolerance- Data is automatically replicated to multiple nodes for fault-tolerance.

Replication across multiple data centers is supported. Failed nodes can be replaced with no

downtime.

 High performance- Cassandra consistently outperforms popular NoSQL alternatives in

benchmarks.

 Decentralization- There are no single points of failure. There are no network bottlenecks.

Every node in the cluster is identical.

 Durability- Cassandra is suitable for applications that can't afford to lose data, even when

an entire data center goes down.

 Elasticity- Read and write throughput both increase linearly as new machines are added,

with no downtime or interruption to applications.

When using as a database choice we should consider following limitations of Cassandra as well

[32].

 No join or subquery support, and limited support for aggregation. This is by design, to

force you to de-normalize into partitions that can be efficiently queried from a single

replica, instead of having to gather data from across the entire cluster.

 Ordering is done per-partition, and is specified at table creation time. Again, this is to

enforce good application design; sorting thousands or millions of rows can be fast in

development, but sorting billions in production is a bad idea.

Table 5 gives a summarized comparison of Cassandra and Solr.

31

2.7.3 Comparison of RDBMS, Solr and Cassandra

In Table 2.4 Solr and RDBMS is compared according to general characteristics of databases. Table

2.5 compares the two databases with their search options.

Table 2.4 General comparison between Solr and RDBMS [33].

Solr Relational DB

Text Search Fast and sophisticated Minimal and slow

Features Few, targeted to text search Many

Deployment Complexity Medium Medium

Administration Tools Minimal open source projects Many open source & commercial

Monitoring Tools Weak Very Strong

Scaling Tools Automated, medium scale Large scale

Support Availability Weak Strong

Schema Flexibility Must in general rebuild Changes immediately visible

Indexing Speed Slow Faster and adjustable

Query Speed Text search is fast & predictable Very dependent on design & use

case

Row Addition/Extraction Speed Slow Fast

Partial Record Modification No Yes

Time to Visibility After Addition Slow Immediate

Access to Internal Data

Structures

High None

Technical Knowledge Required Java (minimal), web server

deployment, IT

SQL, DB-specific factors, IT

Table 2.5 - Comparison between Solr and RDBMS considering the search capability [27].

Solr RDBMS

Adept in full text search Adept in data modeling and

transaction.

Field type is only keyword Field types char, varchar, datetime,

int, etc., can exist

Query time is independent of the data amount for exact queries. Less

query time than RDBMS. Solr uses an inverted index.

Query time of unindexed RDBMS

has a monotonic relationship with the

amount of data for exact queries.

When it is indexed using a clustered

index the query time is similar to Solr.

For wildcard prefix queries Solr performs well than unindexed RDBMS. Indexed RDB performs well on prefix

queries. Sometimes it outperforms

Solr.

Query time of full wildcard queries in Solr has the same monotonic

relationship with the data amount as RDBMS. However, full wild card

queries are often performed on one field in Solr, if type of the field is set

to text; it will be tokenized by the analyzer and support full text search.

Query time of full wildcard queries in

RDBMS has the same monotonic

relationship with the data volume as

Solr.

Since Solr is implemented in Java it results in lower efficiency in program

executing, memory usage and file I/O

The most commonly used SQL server

databases are encoded in binary.

For the combination queries, Lucene query time increases slowly with the

number of elements in the combination.

Query time depends on whether the

query fields are indexed or not.

32

Query time increases with record complexity Unindexed RDBMS’s performance is

same as Solr. Query time of the

indexed RDBMS is independent of

record complexity.

Our metadata catalog should have several search options like full text search, wildcard queries,

substring queries and exact match queries. When going through the above comparisons we can say

that Solr will be much suitable for the implementation of our metadata storage than RDBMS. Table

2.6 gives a summarized comparison between Solr and Cassandra.

Table 2.6 Comparison of Solr and Cassendra [34].

Solr Cassandra

Database model Search Engine Column Store

Data scheme Exists a schema Schema free

APIs and other access

methods

Java API, RESTful HTTP API Proprietary Protocol

Replication methods Cloud/distributed (via Zookeeper) Master-

slave application

Selectable replication factor

Map reduce no yes

Consistency concepts Eventual consistency Eventual consistency, Immediate

consistency

Secondary indexes yes restricted

For the implementation of the metadata storage we considered using Cassandra because of its

performance. But since our system needs flexible query support, search functionality and since

Cassandra has a larger footprint in terms of resource utilization we chose Solr as our database

solution.

2.8 Agent Server Communication

For the communication between agent and server, we considered two options. They are SOAP and

REST based web services. We consider REST or SOAP over basic TCP-based solutions because

they provide better support for implementation.

33

2.8.1 SOAP

SOAP is a well-developed protocol used in web industry to exchange the structured information

in the implementation of web services in a network. WSDL (Web service description Language)

is the standard used with SOAP to make the messages available over the web via web services.

This protocol encodes messages so they can be delivered over the network using a transport

protocol such as HTTP, SMTP, FTP or others.

2.8.2 REST

REST is a set of architectural principles designing web applications which is gaining popularity

because of its simplicity, scalability and architectural dependence on the World Wide Web [35].

REST principles focus on how resource states are addressed and transferred over HTTP, by a wide

range of clients written in different languages [36]. The main idea behind REST is to use well

developed HTTP for transferring data between machines, rather than using a protocol that works

on top of the HTTP layer for message transfers such as SOAP [35].

The key features of REST can be given as follows [37]:

 Use HTTP methods explicitly- This basic REST design principle establishes a one-to-one

mapping between create, read, update, and delete (CRUD) operations and HTTP methods.

According to this mapping, POST will create a resource in the server, GET will retrieve a

resource, PUT will update a resource and DELETE will remove a resource. These verbs

are already defined by the protocol.

 Stateless- REST Web services need to scale to meet increasingly high performance

demands. Clusters of servers with load-balancing and failover capabilities, proxies, and

gateways are typically arranged so that they form a service topology, which allows requests

to be forwarded from one server to the other as needed to decrease the overall response

time of a Web service call. Using intermediary servers to improve scale requires REST

Web service clients to send complete, independent requests; that is, to send requests that

include all data needed to be fulfilled so that the components in the intermediary servers

may forward, route, and load-balance without any state being held locally in between

requests.

34

 Expose directory structures like URIs- From the standpoint of client applications

addressing resources, the URIs determine how intuitive the REST Web service is going to

be and whether the service is going to be used in ways that the designers can anticipate.

URIs should also be static so that when the resource changes or the implementation of the

service changes, the link stays the same.

 Transfer XML. JSON or both- This is allowed using MIME types and HTTP accept

headers.

2.8.3 Comparison of SOAP and REST

Table 2.7 - Comparison of SOAP and REST [38].

SOAP REST

A protocol An architecture

Tightly coupled system Loosely coupled system

Assumes point to point communication model Designed for distributed computing environments

Less verbose More verbose

Built in error handling No error handling

Not reliable Reliable

For proposed scientific metadata catalog we need a reliable, lightweight solution which can be

easily integrated to web applications. SOAP gives a huge overhead in terms of metadata and

latency in communication. Therefore we chose REST for our implementation.

35

3 Problem Statement

When a scientist needs some data from an experiment, he/she has to execute the experimenta l

workflow by submitting it to a science gateway. After the execution is completed, the scientist

extracts the data he/she wants from the output and discards the output or saves it in a data archive.

When the same scientist or some other person wants to run the same experiment with the same

inputs, he/she has two options; (1) run the experimental workflow from the beginning or (2) search

the results from the output data archive to see whether there exists any reusable data product that

matches his/her requirement. Typically, these experimental workflows are long running and need

machines with high computing power like super computers, clusters, or workstations. If the

workflow is to execute from the beginning, a lot of time and resources are required. If the scientist

decides to search for the achieved data for experimental or simulation results, it is time consuming

as the output data archives typically contain terabytes of data. Therefore, an efficient data

management system is needed to reduce the time spent on generating new data (by promoting data

reuse) or searching existing data, while reducing the resource consumption.

Our research problem is to develop a framework to enable efficient and effective retrieval and

sharing of scientific data. This will allow scientists to easily reuse the scientific data outputs. The

proposed framework should have the following features:

 Easily searchable – The output data should be easily searchable through the framework so

that scientists are able to search the output of previously executed workflows. This should

allow search queries of various types including full text search, wildcard search, substring

search, fielded search, etc.

 Allow sharing with access control mechanisms – Scientist belong to different scientific

sub-communities. They should be able to share their experimental outputs with their

relevant sub-communities as well as with the general public. To allow this we have to

provide access control at multiple levels.

 Automated metadata generation – To make the data searchable, we have to generate meta-

data from the workflow outputs and build a catalogue using those metadata. So every time

a workflow is executed and outputs are generated, metadata for the data products should

also be generated and should be added to the catalogue so that it is searchable.

36

Our project deals with two separate use cases. They are the Gridchem use cases and Airavata use

case.

3.1 GridChem Use Case

The Computational Chemistry Science Gateway (GridChem) includes desktop software and

middleware services to integrate molecular science applications and tools for community use [39].

It provides a comprehensive end-to-end solution for managing jobs, workflows, allocations, and

data, as well as processing simulation results through a graphical user interface.

Gridchem use case deals with computational chemistry simula tion data of “Gaussian 9” [3]

experiments executed via the GridChem gateway. The output files have many important attributes

like RMS force, number of iterations, atomic number. Typically, scientists use parsers to extract

the data that they need from the output files and put the file into the archive. The scientists in the

Gridchem scientific community sees this as a waste of data and resources. Hence, they need some

mechanism to efficiently extract the important experimental data without spending time for search

them from the data archive. Another requirement they specifically mentioned is that, right now

they don’t have a proper way of sharing the experimental data with the community of a group of

communities. The experiments are visible only to the scientist who ran it. Therefore the solution

should also contains an access control mechanism to allow sharing of the output data.

3.2 Airavata Use case

Currently, Apache Airavata middleware is used by many scientific communities to implement

their own scientific gateway. A large number of scientists use Airavata daily to submit and execute

their computational tasks, workflows on the grids or supercomputers. This results in the generation

of vast volumes of scientific data which eventually get abandoned in the computational resources.

Currently, Airavata does not provide any mechanism to support search, browse or reuse this data.

In this project we hope to tackle this problem and enable the scientist who is using Airavata to

have better control of the data products that are generated by him/her or any data products that are

shared with him/her.

37

4 Design

This chapter describes the design of the metadata cataloging system we propose, to easily and

efficiently search large volumes of scientific data. The system architecture consists of agent,

server, and the web portal. In our use cases we assume that all the data products will be pushed to

a data archive after their generation. The agent continuously monitors to identify the generation of

new data products. Once it discovers such a data product(s), it generates a notification to the

metadata extractor. Metadata extractor then extracts or mines the metadata and important

attributes, and publishes those to the server. Server uses Solr, an open-source search platform as

its backend data store. It provides a query API (Application Programming Interface) for the web

portal users to query on metadata and extracted attributes. Figure 4.1 will give the high level view

of the system architecture.

 Figure 4.1 System architecture.

38

4.1 Agent

Agent sub system consists of three components; data product generation monitor, metadata

extractor and metadata extraction logic. Data product generation monitor is the component

responsible for detecting the generation of a new data product. This monitoring can happen in

various ways depending on the system. It can be implemented as a file system monitor or message

broker. The system is designed to be able to replace this component to extend the system to use

with any external system.

When data product generation monitor identifies a new data product it will send a notifica t ion

including the physical location of the data product to metadata extractor component. If the file

system already contained data products before the agent was started, the data product generation

monitor will create notifications for every existing data product. This is essential to make sure all

existing data products are indexed. It is also possible to have more than one data archiving

locations. In such a scenario multiple agent instances have to be run in each data archiving node.

When this notification is received the metadata extraction component extracts the metadata using

metadata extraction logic. Metadata extraction logic contains a set of domain specific parsers to

extract metadata and other important attributes.

4.2 Server

The server is the central component in our system where all the metadata and access-control

information is maintained. The server provides three service APIs. They are metadata publisher

API, query API, and access control list update API. The metadata publisher API is used by the

agents to publish the generated metadata objects. The query API is used by the web portal to make

queries on behalf of the users. The web portal can also use access control list update API to change

the access control lists maintained for the particular metadata object. All these APIs are

implemented as REST (Representational State Transfer) based web services.

The server uses Apache Solr, an open-source search platform, as its backend data store. It provides

mature Java based indexing and search technology [5]. We selected Solr over a relational database

management system like MySQL, as the backend because of its flexible query support and search

functionality. Metadata and ACL information will be stored in Solr database.

39

4.3 Web Portal

The web portal is the primary entry point for users to access the query service provided by the

server. Users can use the web portal to generate queries using the graphical controls. Experienced

users should be able to directly submit the query in the form of a string. Before submitting a search

query, users need to login to the system using their credentials. If not, users can retrieve only the

publicly shared information. It is also possible to integrate the web portal with an existing user

store, used by the scientific community.

The main functions of the web portal can be summarized as follows:

 Users should be able to perform a full text search.

 Users should be able to use graphical constructs to generate a more advanced query.

 Users should be able to select the type of query they want to perform.

 Users can issue a query based on the data product creation date.

40

5 Implementation

This chapter gives a detailed description about implementation of our system. Section 5.1 describes

the languages and technologies used. Section 5.2 describes the implementation details of each

component in the system. Finally, Section 5.3 discusses the testing process. This section will

conclude after discussing the security controls used to implement the solution.

5.1 Languages, Tools, and Technologies

Our system is developed using Java EE 7 [40]. To simplify the development process we used

IntelliJ IDEA [41] as our IDE. As discussed in Chapter 2, we used Apache Solr 4.10 for the

database which is used to store metadata and REST for communication between the client and

server. The web portal is implemented using HTML, CSS, JQuery and for the look and feel

Bootstrap [42] web development framework.

For version control we used Git. Our project is hosted at Git hub [43]. It is easier to maintain the

versions and do collaborative work using Git.

5.2 Metadata Cataloging System

The metadata cataloging system was developed according to the system architecture which was

discussed in Chapter 4. In our system implementation we assume that all data products will be

pushed to a data archive after they are generated, where the data is organized in a hierarchica l

folder structure. In our use case the data is located in a directory called data_root, where the top-

level directories inside it correspond to the users of the system. All the data corresponding to a

particular user will be pushed into his/her corresponding subdirectory inside the data_root

directory. The data products are also organized into directories, where they are given names

corresponding to their experiment and an execution date for the ease of identification. There are

mainly two types of files inside each data directory. Those are the output file (*.out), which is a

text file and the checkpoint file (*.chk), which is a binary file. The checkpoint file gives all the

execution states and details of the simulation experiment. This file is important to recreate or re-

41

investigate an experiment. The output file contains a summary of the execution of the experiment

in textual format which is human readable.

5.2.1 Agent

Agent consists of Data Product Generation Monitor, Metadata Extractor and Metadata Extraction

Logic Component. It will communicate with Data Archive to detect new data product generation.

When the metadata and important attributes are extracted, the Agent will send them to sever for

indexing and storing.

The Data Product Generation Monitor component in the Agent sub-system contains a local file

system monitor. It scans the file system starting from data_root recursively at regular intervals to

identify new data products that have been generated. If it identifies a new data product, it sends a

notification to the metadata extractor component. This notification contains information regarding

the location of the new data products. If the file system already contained data products before the

agent was started, data product generation monitor will create notifications for every existing data

product. This is essential to make sure all existing data products are indexed. It is also possible to

have more than one data archiving location. In such a scenario multiple agent instances have to be

run in each data archiving node.

Data product generation monitor can be implemented in many ways depending on the application.

Here we implemented it using a local file system scanner for our standalone application. For the

system which gets integrated to Airavata we used a message broker. Local file system scanner was

implemented using java.nio.file [44] package in JDK 1.7. It gives the capability to watch a

directory for changes. The java.nio.file package provides a file change notification API, called the

Watch Service API. This API enables you to register a directory (or directories) with the watch

service [45]. When registering you have to tell the service that you are interested in tracking file

creation. After registering when a service detects a file creation it will be forwarded to the

registered process.

When a data product generation is detected by the data product generation monitor notification is

sent to the Metadata extractor with the location of the data product. Upon receiving a notifica t ion

message, the metadata extraction component extracts metadata and important attributes from the

42

data product and publishes those information to the server via the metadata publisher API. In our

use case the output file (*.out) is parsed to extract the metadata and important attributes. These

output files are in human readable text format. But the content is complex so that more advanced

mechanisms like parsers are needed rather than extracting the important attributes using regular

expressions. Moreover, these output files contain information which do not have parsers in the

system. Therefore, system should be extendable so that new parsers can be added to the metadata

extraction logic component. Since these parsers are domain specific it is hard to generalize the

metadata extraction logic.

In our system we offer the ability to parse the data using regular expressions as well. If the scientist

does not have a parser and wants to extract some trivial information which can be extracted from

regular expressions, he/she can explicitly give the regular expression and the attribute he/she wants

to extract. We maintain a regex parser which can be dynamically changed to add regular

expressions and attributes so that when the parser is run next time, the respective attributes will be

extracted.

Metadata extraction logic component contains domain logic in the form of parsers. In our use case

we obtained CUP [24] and JFlex [25] files of the parsers in computational chemistry simula t ion

experiments from the GridChem scientists. They use these parsers to extract information when an

output file is generated. From these lexical parsers we generate Java parsers which will suit our

purpose.

These parsers extract metadata and other important attributes from output files. Extracted metadata

comprises of domain independent metadata such as file name, file path, generated application

name, data archive node, created date, and owner name. It also contains domain dependent

metadata and attributes such as Universal Chemical Identifier (InChI) string, energy value, and

number of iterations for convergence.

For example, let us take a parser which extracts InChI string from an output file. The IUPAC

(International Union of Pure and Applied Chemistry) International Chemical Identifier (InChITM)

is a non-proprietary identifier for chemical substances that can be used in printed and electronic

data sources thus enabling easier linking of diverse data compilation [46]. Typically, chemical

compounds are defined by their chemical structures, connection tables or 2D diagrams. InChI will

give a unique identifier for each compound in the string format [47]. To run InChI parser you need

43

Open Babel installed. It is a chemical toolbox designed to speak the many languages of chemical

data. It is an open, collaborative project allowing anyone to search, convert, analyze, or store data

from molecular modeling, chemistry, solid-state materials, biochemistry, or related areas [48].

This parser with its dependencies is already installed in the system. When the scientist has a parser

for a specific attribute which is not already installed in the system, we provide the ability to add it

to the list of parsers.

The metadata extraction logic is given as a plugin which can dynamically change by adding parsers

or replacing the whole set of parsers with a new set of a completely different domain.

Configuration details for the Agent is given in Appendix I.

5.2.2 Server

Metadata and access control information are maintained in the server. The server provides three

service APIs. They are metadata publisher API, query API, and access control list update API. All

these APIs are implemented as REST (Representational State Transfer) based web services.

Server uses Apache Solr, an open-source search platform, as its backend data store. It provides

mature Java based indexing and search technology [27] . Putting data into Solr is called indexing

in Solr. Basically when you add data to an index, they become searchable by Solr. A Solr index

can accept data from many different sources. In our system we have a separate Java API to insert

data. Regardless of the method used to ingest data, there is a common basic data structure for data

being fed into a Solr index: a document containing multiple fields, each with a name and

containing content, which may be empty. One of the fields is usually designated as a unique ID

field (analogous to a primary key in a database), although the use of a unique ID field is not strictly

required by Solr [49].

Solr can have multiple cores in an installation. Solr core is a single index with associated

transaction log, configuration files, and schema [50]. Core allows indexing data in different

structures in the same server. We have created two cores in Solr. They are metadata core and ACL

core.

44

Metadata and important attributes are stored in the metadata core. Although there is a well

specified schema, it allows additional fields which are not specified in the schema at the beginning

to add to the database dynamically as a string field. Entire content is indexed using a full text index.

N-gram indexing is also performed with remove capitalization filter to get better query support.

All the fields except data fields are stored as “String” fields. Date fields are stored in “Date” format.

Every file has its own unique ID which is used to identify the file. In ACL core this document IDs

are stored with their respective access control lists.

Indexer component in the server is responsible for indexing the metadata received from the agents.

It creates documents based on the received metadata information and indexes them in Solr. The

index needs to be recreated with every insertion of a new metadata object. Therefore, to amortize

the cost of recreating the index, we opted for batch inserts. Hence, the indexer was designed in

such a way so that it accumulates metadata objects up to a configurable threshold or up to a

configurable time interval, and then indexes them as a batch.

The query builder component generates queries based on the query parameters received from the

query API and executes them against Solr index. The generated queries requires a join between

the two cores metadata and ACL to check whether the user issuing the query has permission to

access a particular metadata product.

Even though the system maintains only metadata and some important attributes, enforcing a proper

access controlling mechanism is very important. This is because the indexed data sets may contain

high academic and research value. Therefore, our system explicitly maintains the access control

information. It is also possible for the owner of a metadata object to share the information with

intended collaborators. ACL updater is used to access and update the ACL core in the database.

The metadata publisher API is used by the agents to publish the generated metadata objects. When

metadata and important attributes are extracted by the agent, they are sent to the server through

metadata publisher API.

The query API is used by the web portal to make queries on behalf of the users. Users can access

the data using various query types such as wildcard queries, suffix queries, prefix queries and full

text queries apart from typically used exact match and range queries. These queries are sent to

Query Builder to form the actual queries joining with ACL information.

45

If the user wants to update the access control information on a certain document he/she has to use

ACL Updater API from the web portal. Then this will communicate with ACL Updater component

to update ACL information in ACL core.

A detailed API specification is given in Appendix II. Configuration details is given in Appendix

III.

5.2.3 Web Portal

Figure 5.1 shows a screenshot of the web portal, the primary entry point for users to access the

query service provided by the server. To handle user management we have used a third-party user

store called WSO2 Identity Server [51]. It is also possible to integrate the web portal with an

existing user store, used by the scientific community. WSO2 Identity Server provides sophisticated

security and identity management of enterprise web applications, services, and APIs, and makes

life easier for developers and architects with its hassle-free, minimal monitoring and maintenance

requirements [51].

Web portal is implemented using JQuery to simplify the native JavaScript functionality. It will

enable the developer to manipulate the component easily. When exchanging data with the server

JQuery AJAX calls are used. AJAX is the art of exchanging data with a server, and updating parts

of a web page without reloading the whole page [52]. Bootstrap framework is used along with

JQuery to increase the look and feel of the web portal. The Bootstrap responsive grid system is

used to maintain the responsiveness of the app.

The main functions of the web portal shown in Fig. 5.1 can be summarized as follows:

1. Users can perform a full text search.

2. Users can also use graphical constructs to generate a more advanced query. These

constructs will be joined by AND operators.

3. Users can also select the type of query they want to perform. Currently supported query

types include exact match, substring, wildcard, range, and full text search.

4. Users can issue a query based on the data product creation date.

46

Because of the feature rich REST API, another website, workflow, or scientific gateway can access

the same functionalities given by the web portal.

Figure 5.1 Web portal.

5.3 Testing

The system is tested at various stages in the process. In the development stage, to ensure the coding

quality and standards, Junit unit tests are used. We have implemented a suite if integration tests to

ensure that the functionalities of our project are working properly.

After the system is implemented we carried out a performance test to ensure that the performance

of our system is better than the traditional relational database based solutions. To do so, we

implemented a similar solution replacing the database. A detailed description of the performance

testing will be given in Chapter 7.

47

5.4 Security Controls

These output data and their metadata contains high research value. The scientific data passed

through the system should not be accessed by an unwanted person. Apart from managing the ACL

information security steps are taken to limit unwanted access to those data. Therefore, the security

plays major role in the system.

The data is only shared among the given scientific community. The owner of the data has the

ability to add and remove scientific communities which have access to that particular file. This is

handled by the user store.

 For the communication via REST APIs, https requests and responses are used with public key

cryptography. Each component has a public key and a private key. The public key is published

whereas the private key is secret to the component. When a message is sent it is encrypted using

the public key. This message cannot be decrypted by anyone who does not have the matching

private key.

48

6 Airavata Integration

According to our second use case we integrated our system into Apache Airavata. The

communication among components in Airavata happens mainly through a message broker.

Therefore, the file generation monitor will take inputs from the message broker client. All the

services subscribe to the required queues and consume the messages corresponding to those

queues. The message service which Airavata use is RabbitMQ [53].

6.1.1 RabbitMQ [39]

RabbitMQ is a commercially supported open source message broker software that implements the

Advanced Message Queueing Protocol (AMQP). AMQP is a networking protocol that enables

conforming client applications to communicate with conforming messaging middleware brokers

[54]. Messaging brokers receive messages from publishers (applications that publish them, also

known as producers) and route them to consumers (applications that process them). For the

message brokering between Airavata and our system, a separate exchange called the datacat

exchange is used. It will inform the system that a new output is generated instead of having a local

file system monitor.

When an experiment is completed and outputs are generated, Airavata copies those outputs into a

data store that is managed by an agent from our system. Airavata then triggers an

ExperimentOutputCreatedEvent for each and every output file excluding the standard error and

standard out files. The ExperimentOutputCreatedEvent contains meta-information that is relevant

for the processing of the file and to allow proper access control.

The workflow is shown in the Fig. 6.1. In this use case our system is named as Datacat.

The ExperimentOutputCreatedEvent contains the following fields:

 Experiment ID

 Experiment Name

 Output URI

 Owner Name

49

 Gateway Name

 Application Name

 Computational Resource

Figure 6.1 Airavata datacat workflow.

This event is processed by the FileUpdateListener (a RabbitMQ consumer) in the Datacat Agent

which creates the file meta-data object and adds it to the Monitor Dispatcher Queue to be parsed

and sent to the Datacat Server.

As soon as the extracted meta-data of the output files are sent to the server, the Agent sends a new

message of the type ExperimentOutputParsedEvent which will provide Airavata with an ID which

is of the indexed output file so that Airavata can call the Datacat Server using that ID to get the

extracted meta-data.

The deployment diagram of Datacat system is given in Fig. 6.2.

To demonstrate the functionalities of our system integrated to Airavata we have used SciGap PHP

Reference Gateway [55]. PHP Reference Gateway is a user interface developed by Airavata team

for demonstration purposes.

50

Figure 6.2 Datacat deployment diagram.

Figure 6.3 and 6.4 shows how we integrated our system to the PHP Reference Gateway. Figure

6.3 shows the basic search screen where a user can type what he wants right away. The search

terms will be considered as a full text search. If the user has some more information about the

search he wants to perform then he can go to the advanced search tab which is shown in Fig. 6.4.

In advanced search you can search the metadata fields or/and search type.

51

Figure 6.3 Basic search user interface

Figure 6.4 Advanced search user interface

52

7 Performance Analysis

Even though Solr has been used to index and search large amounts of data, it has rarely been used

in a use case as ours to index and search metadata information. Relational Database Management

Systems (RDBMS) and Solr have different strengths and weaknesses. RDBMS provide greater

support for modelling complex data and maintaining consistency. Similar to Solr, RDBMS can

also provide search operations like exact attribute match queries, range queries, and wildcard

queries. In Solr all searchable words are stored in an inverted index, enabling orders of magnitude

faster searching compared to a RDBMS. But this speed comes at the cost of high disk space

utilization. Therefore, we developed two versions of our system one using Solr (version 4.10) and

the other using MySQL (version 5.6) as the backend data store. We then designed a series of tests

to verify which backend data store performs better and under what cases. Both MySQL and Solr

had the same schema. In MySQL-based design, all the text fields were indexed using a full text

index and other fields were indexed using B-Tree indexes.

There are several widely adopted performance metrics that are used to compare the performance

of data stores. Some of them are index size, index creation time, and query time for a mixture of

queries. In both MySQL and Solr data stores, the indexes can be created in advance, and hence we

will not address the indexing time metric in our analysis. In the next parts of this section data

insertion time, index size, and query performance will be considered. For clarity we use Sys-Solr

to denote the system that uses Solr as the backend data store and Sys-MySQL to denote the system

that uses MySQL as the backend data store.

The experimental server had the following configuration. Dual core Intel Core i5 480M processor

running at 2.67GHz processor. 4GB of RAM. The I/O subsystem was a spin type hard disk drive

with an RPM of 5,600. Results are based on ten samples, which were sufficient to attain insertion

time and query time within ±5% accuracy and 95% confidence level.

The following schema was used for testing and records were added up to a maximum of 100,000.

The content of the records were randomly generated. For both the systems the same test dataset

was used. The result of performance analysis is given in Appendix II.

53

Table 7.1 - Schema for performance test.

Field Name Sys-MySQL Field Type Sys-Solr Field Type

id varchar(255) (B-tree index) string

fileName varchar(255) (B-tree index) string

filePath varchar(255) (B-tree index) string

generatedApplicationName varchar(255) (B-tree index) string

dataArchiveNode varchar(255) (B-tree index) string

ownerName varchar(255) (B-tree index) string

inChi varchar(255) (B-tree index) string

inChiKey varchar(255) (B-tree index) string

text text (full-text index) text

7.1 Data Insert Performance

It is very important to test the data insert performance of the metadata catalog as scientific

applications and experiments can generate large volumes of data especially in situations where

instrumental observations are recorded. The test was performed on both systems Sys-Solr and Sys-

MySQL, assuming that the indexes have already been created. Data were inserted in batches of

1,000 records up to a total of 100,000 records. The results are shown in Fig. 7.1. It can be seen that

the metadata insertion time of Sys-Solr grows much more slowly compared to the Sys-MySQL

implementation.

54

Figure 7.1 Data Insertion Time.

7.2 Query Performance

For this performance test we analyzed seven types of queries which are listed below:

 Exact match queries

 Range queries

 Full text queries

 Prefix match queries

 Suffix match queries

 Wildcard queries

 Substring queries

To maintain the timing accuracy, tests were carried out as 100 test cases per query type, and

average query response time was considered based on time per each batch. Same test queries were

used in both the systems.

55

7.2.1 Exact match queries

In exact match queries the server will return only the results which exactly match with the query

parameters. Figure 7.2 shows the graph between the time taken for the execution for exact match

query in Sys-Solr and Sys-MySQL. According to this we can see that Sys-MySQL has

outperformed Sys-Solr. But the gradient of Sys-MySQL performance is relatively higher than Sys-

Solr. Therefore, as the number of records increases Sys-Solr performance will be comparable to

Sys-MySQL.

Figure 7.2 Query execution time for exact match queries.

7.2.2 Range Queries

Range queries are queries which return the values which are inside a value range defined by the

query. Figure 7.3 represents the response time for range queries for Sys-Solr and Sys-MySQL.

Similar to exact match queries, Sys-MySQL has better performance in range queries.

56

Figure 7.3 Query execution time for range queries.

7.2.3 Full text queries

In full text search, the search engine tries to match all of the words in every stored document with

the search criteria given by the user. In MySQL this is handled using ranking with vector spaces

[56]. Rank is a relevance measure which shows how good a match is. Solr is powered by Lucene

[28]. Lucene is a powerful full text search library implemented in Java.

 Figure7.4 shows the response time for query execution in full text queries. For a database consist

of 100,000 records, Sys-Solr gives 97.45% better performance than Sys-MySQL in full text

queries.

57

Figure 7.4 Query execution time for full text search queries.

7.2.4 Prefix match queries

Prefix match query returns results which starts with the value given by the user. Figure 7.5 shows

the response time for query execution in prefix match queries. For a database consisting of 100,000

records, Sys-Solr gives 99.2% better performance than Sys-MySQL prefix match queries.

Figure 7.5 Query execution time for prefix match queries.

58

7.2.5 Suffix match queries

Suffix match query returns results which ends with the value given by the user. Figure 7.6 shows

the response time for query execution in suffix match queries. For a database consisting of 100,000

records, Sys-Solr gives 97.8% better performance than Sys-MySQL in suffix match queries.

 Figure 7.6 Query execution time for suffix match queries.

7.2.6 Wild card queries

In wild card queries the server returns the terms which have the given value anyplace in the term.

Figure 7.7 shows the response time for query execution in wild card queries. For a database

consisting of 100,000 records, Sys-Solr gives a 99.16% better performance than Sys-MySQL in

wild card queries.

59

Figure 7.7 Query execution time for wild card queries.

7.2.7 Substring Queries

A substring query returns only a part of a string which is defined by the user indicating the start

and end indexes. Figure 7.8 shows the response time for query execution in substring queries. For

a database consisting of 100,000 records, Sys-Solr gives 97.72% better performance than Sys-

MySQL in substring queries.

60

Figure 7.8 Query execution time for substring queries.

7.3 Space Utilization

Even though disk space is getting cheaper it is good to have an understanding of the disk space

utilization of the two alternatives. In this test, we analyzed the storage utilization of each system.

Fig. 25 shows the disk utilization at different numbers of records. Sys-Solr consumes more disk

space and has a relatively higher gradient than Sys-MySQL.

61

Figure 7.9 Storage utilization.

7.4 Conclusion

In conclusion, Solr-based implementation provides a much better query performance at the

expense of relatively high storage utilization. It resolves more complex queries 91% - 99% faster

than a MySQL-based implementation. As our system indexes only the metadata (not the actual

data generated by the scientific experiment or simulation), we believe that this increase in storage

utilization can be justified given the lower cost of storage devices and end user convenience it

gives in terms of better querying, sharing, and reusing of scientific datasets.

62

8 Summary

Scientists have long running experimental workflows which use computational resources like

super computers, clusters, and workstations. When they run an experimental workflow and get the

output file, they parse it to get the data they want and dump the file into an archive. If they want

to run exactly the same experiment with the same inputs, they run it again. This wastes valuable

resources and time. If there is a mechanism to search the data archives effectively, then the

scientific community can reuse the previous run experimental outputs rather than running the

experiment again. We address this problem by developing a scientific data catalog which stores

the important information in an experiment output in the form of a metadata catalog.

Our solution consists of an agent which detects the output data as they get generated and parse

them to extract metadata, a server which stores the metadata and handles queries, and a web portal

through which scientists can access the data shared with them.

While there are many similar solutions which uses metadata catalogs to enable efficient searching

of scientific data, they are tightly coupled to their problem domain. The uniqueness of our system

lies in the pluggable metadata extraction logic, which enables our system to be used across many

scientific domains for data management.

All the previously implemented metadata catalogs use relational database management systems as

their backend database. For our system we used Solr as our backend because it supports flexib le

querying and has a better performance compared to a relational database management system. We

carried out a performance analysis replacing our backend with similar MySQL based

implementation and measured query execution times for various queries, data insertion time and

space utilization to compare with Solr based implementation. We found out that even though

MySQL-based implementation has better performance in exact match and range queries, Solr-

based implementation outperforms MySQL based implementation in full text search, prefix match

search, suffix match search, and wild card search. Solr based implementation resolves these

complex queries 91% - 99% faster than a MySQL-based implementation.

63

8.1 Problems and Challenges

When designing and implementing the system the main challenge we faced was that we were

lacking domain knowledge to implement the parsers. GridChem use case deals with “Gaussian 9”

computational chemistry experiments. The parsers are generated from CUP and JFLEX lexical

parsers. To integrate these parsers to our system we had to have an understanding on the metadata

attributes and how they are used. For example, attributes like InChI string of a chemical compound

is new to all the team members because we do not have a chemistry background. Therefore, before

understanding the parsers we had to understand the attributes.

Another challenge that we encountered is using Solr database. We were accustomed to use

relational database management systems like MySQL. Since we have not used Solr before, we had

to learn it from scratch and research about it to see whether it will be suitable for our system and

feasible to implement in our metadata store.

It was difficult to obtain large datasets through the campus network, and we also had to face with

several issues while remotely accessing the resources at Indianan University. We solved the

difficulty in obtaining the large dataset issue by taking only a sample set of output files without

taking the large dataset. Problems with accessing resources at Indiana University is resolved using

constant communication through mailing lists.

8.2 Future Work

One possible extension points on this project is to let the system auto generate parsers which are

defined by the user. We try to address this problem within our scope and found out because the

output data is in a complex format, it will need a significant time to figure out how it is done and

how do it. Although we were not successful in auto generating parsers given the attribute, we

added the functionality to extract metadata when the regular expression of an attribute which can

be extracted directly is given.

Another interesting area to extend the project is allowing provenance-aware workflow execution.

When executing a workflow it can have several intermediate states which generate intermed iate

outputs. These intermediate states can be reused by some other experiments which are similar and

have the same states up to a certain point. In that case the solution we implemented now will be of

64

no use because it only tracks the output and its important attribute. If we take this intermed iate

provenance information and enable the searching capability to search from them, it will make the

scientist’s life easier. Instead of running the whole experiment in the computational resource

he/she can run a part of it if the provenance information of the other part can be taken from another

experiment.

65

9 References

[1] J. Gary, D. T. Liu, M. Nieto-Santisteban, A. Szaley, D. Dewitt, and G. Heber, “Scientif ic

Data Management in the Coming Decade,” ACM SIGMOD Record, vol. 34, no. 4, pp. 34-

41, Dec. 2005.

[2] M. Valle, “Scientific Data Management,” [Online]. Availab le :

http://mariovalle.name/sdm/scientific-data-management.html.

[3] “Gaussian,” High Performance Computing Virtual Laboratory, [Online]. Availab le :

http://www.hpcvl.org/faqs/application-software/gaussian.

[4] O. A. Adeleke, A Metadata Service for an Infrastructure of Large Scale Distributed

Scientific Datasets, M.S. Thesis,Fac. of Science, Univ. Witwatersrand, Johannesberg, 2014.

[5] “Apache Solr,” Lucene, [Online]. Available: http://lucene.apache.org/solr/.

[6] “MCAT,” [Online]. Available: http://www.sdsc.edu/srb/index.php/MCAT.

[7] G. Singh et al., “A Metadata Catalog Service for Data Intensive Applications,” in SC'03,

Phoenix, Arizona, USA, 2003.

[8] B. Plale, D. Gannon, J. Alameda, B. Wilhelmson and A. R. K. D. S. Hampton, “Active

Management of Scientific Data,” IEEE Internet Computing, pp. 27-34, Jan. 2005.

[9] “Airavata,” Apache Airavata, [Online]. Availab le :

https://airavata.apache.org/architecture/overview.html.

[10] “What is a Science Gateway,” [Online]. Available: http://sciencegateways.org/what-is-a-

science-gateway..

[11] “Geospatial Metadata,” [Online]. Available: http://www.fgdc.gov/metadata/index_html.

[12] “Maryland State Geographic Information Committee,” [Online]. Availab le :

http://www.msgic.state.md.us.

[13] M. Singh and A. Vouk, “Scientific computing meets transactional workflows,” in NSF

Workshop on Workflow and Process Automation in Information Systems: State-of-the-Art

and Future Directions, Athens, 1996.

[14] G. Yolanda et al., “Examining the Challenges of Scientific Workflows,” IEEE Computer,

vol. 40, no. 12, pp. 24-32, 2007.

[15] “Common Motifs in Scientific Workflows,” [Online]. Availab le :

http://mayor2.dia.fi.upm.es/oeg-upm/files/dgarijo/motifAnalysisSite/.

66

[16] M. Weske, Workflow Management Systems: Formal Foundation, Conceptual Design,

Implementation Aspects, Habilitation Thesis, University of M ̈unste, 2000.

[17] “Apache Airavata's Architecture,” Apache Airavata, [Online]. Availab le :

https://airavata.apache.org/architecture/user4.png.

[18] “The CIPRES Science Gateway V. 3.3,” [Online]. Available: http://www.phylo.org./.

[19] “Welcome to the XSEDE Science Gateway for UltraScan!,” UltraScan Project, [Online].

Available: http://uslims.uthscsa.edu/.

[20] “Welcome to the Community Climate System Modeling Portal!,” Purdue Univers ity,

[Online]. Available: https://gridsphere.rcac.purdue.edu:8453/gridsphere/gridsphere.

[21] S. Marru et al., “Apache Airavata: A framework for Distributed Applications,” in

Proceedings of the 2011 ACM workshop on Gateway computing environments, New York,

2011.

[22] “Welcome to Apache Axis2/Java,” Apache Software Foundation, [Online]. Availab le :

http://axis.apache.org/axis2/java/core/.

[23] “Airavata Stakeholders,” Apache Airavata, [Online]. Availab le :

https://airavata.apache.org/architecture/airavata-stakeholders.html.

[24] F. Flannery, C. Ananian, D. Wang and M.Petter, “CUP User's Manual,” [Online]. Availab le :

http://www2.cs.tum.edu/projects/cup/docs.php.

[25] “JFlex - The fastest scanner generator for Java,” [Online]. Available: http://www.jflex.de/.

[26] “iRods Overview,” [Online]. Available: http://irods.org/about/overview.

[27] Y. Ging, C. Zhang and X. Wang, “An Empirical Study on Performance Comparison of

Lucene and Relational Database,” in International conference of Communication Software

and Networks, Macau, 2009.

[28] “Apache Lucene,” Lucene, [Online]. Available: http://lucene.apache.org/.

[29] “Solr features,” Lucene, [Online]. Available: http://lucene.apache.org/solr/features.html.

[30] A. Lakshman and P. Malik, “Cassandra- a decentralized structured storage system,” ACM

SIGOP Operating System Review Newsletter, pp. 35-40, April 2010.

[31] “Welcome to Apache Cassandra,” Apache Software Foundation, [Online]. Availab le :

http://cassandra.apache.org/.

[32] ‘Limitations,” [Online]. Available: http://wiki.apache.org/cassandra/CassandraLimitations.

67

[33] “Why Use Solr,” [Online]. Available : http://wiki.apache.org/solr/WhyUseSolr.

[34] “Cassendra Vs. Solr,” [Online]. Available: http://db -

engines.com/en/system/Cassandra%3BSolr.

[35] P. Potti, On the Design of Web Services: SOAP vs. REST, M.S. thesis, School of Computing,

Univ. Florida, 2011.

[36] “RESTful Web Services: The Basics,” [Online]. Availab le :

https://www.ibm.com/developerworks/webservices/library/ws-restful.

[37] A. Rodriguez, “RESTful Web services: The basics,” [Online]. Availab le :

http://www.ibm.com/developerworks/library/ws-restful/.

[38] “Compare RESTful vs. SOAP Web Services,” [Online]. Availab le :

http://java.dzone.com/articles/j2ee-compare-restful-vs-soap.

[39] “GridChem,” [Online]. Available: http://www.sciencegatewaysecurity.org/case -

study/gridchem.

[40] “Java EE at a glance,” Oracle, [Online]. Availab le :

http://www.oracle.com/technetwork/java/javaee/overview/index.html.

[41] “IntelliJIDEA,” JetBrains, [Online]. Available: https://www.jetbrains.com/idea/.

[42] “Bootstrap,” [Online]. Available: http://getbootstrap.com/.

[43] “GitHub,” [Online]. Available: https://github.com/.

[44] “File I/O (Featuring NIO.2),” Oracle, [Online]. Availab le :

http://docs.oracle.com/javase/tutorial/essential/io/fileio.html.

[45] “Watching a directory for changes,” Oracle, [Online]. Availab le :

http://docs.oracle.com/javase/tutorial/essential/io/notification.html.

[46] “The IUPAC International Chemical Identifier (InChI),” International Union of Pure and

Applied Chemistry, [Online]. Available: http://www.iupac.org/home/publications /e-

resources/inchi.html.

[47] S. Stein, S. R. Heller and D. Tchekhovski, “An Open Standard for Chemical Structure

Representation - The IUPAC Chemical Identifier”.

[48] “Open Babel: The Open Source Chemistry Toolbox,” [Online]. Availab le :

http://openbabel.org/wiki/Main_Page.

68

[49] “Introduction to Solr Indexing,” Apache Software Foundation, [Online]. Availab le :

https://cwiki.apache.org/confluence/display/solr/Introduction+to+Solr+Indexing.

[50] “Solr Cores and solr.xml,” Apache Software Foundation, [Online]. Availab le :

https://cwiki.apache.org/confluence/display/solr/Solr+Cores+and+solr.xml.

[51] “WSO2 Identity Server,” WSO2 Inc., [Online]. Availab le :

http://wso2.com/products/identity-server/.

[52] “JQuery AJAX Methods,” [Online]. Availab le :

http://www.w3schools.com/jquery/jquery_ref_ajax.asp.

[53] “RabbitMQ,” RabbitMQ, [Online]. Available: http://www.rabbitmq.com/.

[54] “AMPQ model explained,” RabbitMQ, [Online]. Availab le :

https://www.rabbitmq.com/tutorials/amqp-concepts.html.

[55] “PHP Reference Gateway,” Apache Software Foundation, [Online]. Availab le :

https://cwiki.apache.org/confluence/display/AIRAVATA/PHP+Reference+Gateway+User

+Guide.

[56] “Full Text Search,” MySQL, [Online]. Availab le :

http://dev.mysql.com/doc/internals/en/full-text-search.html.

[57] S.Marru et al., “Apache Airavata: A framework for Distributed Applications,” in GCE'11,

Seattle, Washinton, USA, 2011.

69

Appendix I – Server Configuration Details

The end point of the datacat service

DATACAT_URI=https://localhost:8887/

The end point of the publisher URL

PUBLISHER_URI=https://localhost:8888/

The end point of the (optional) userstore URI

USERSTORE_URI=https://localhost:8889/

Solr metadata core access URL

SOLR_METADATA_URL=http://localhost:8983/solr/metadata

Solr ACL core access point URL

SOLR_ACL_URL=http://localhost:8983/solr/acl

Username of the servlet container containing Solr

SOLR_USERNAME=datacat

Password of the servlet container containing Solr

SOLR_PASSWORD=datacat

WSO2 Identity server URL

IS_URL=https://localhost:9443

Identity server administrative username

IS_USERNAME=admin

Identity server administrative password

IS_PASSWORD=admin

#When empty server adds a randomly generated GUID

METADATA_PRIMARY_INDEX=

keystore and truststore specific communication

KEYSTORE_FILE=keystore.jks

KEYSTORE_PWD=keystore_password

TRUSTSTORE_FILE=client-truststore.jks

TRUSTSTORE_PWD=truststore_password

70

Appendix II – API Specification for DataCat Server

DataCat Service

This API is used by the web portal to delegate user tasks such as searching over data and updating

the access control information.

1. Get API Version

Method to get the API Version of the DataCat Service.

Request

Method GET

URL http://<host>/datacat/getAPIVersion

Response

Status Response

200 (ok) <api_version>

2. Get Metadata by id

Method to get the metadata information given the metadata document id. This method returns a

JSON representation of the metadata information (Map of key value pairs).

Request

Method GET

URL http://<host>/datacat/getMetadataById?id=<id>

Response

Status Response (example)

200 (ok) {

 “id” = “dkss923-n232nD-23sd2d”,

 “inChi” = “InChi=C2H20”,

 .

71

 .

 .

 “key_n” = “val_n”

}

3. Get Results

Method to get matching metadata documents given a query object. This method returns a JSON

representation of the metadata information (Map of key value pairs).

Request

Method GET

URL http://<host>/datacat/getResults

Body (example) {

 "username": "sudhakar",

 "userGroups": ["gridchem"],

 "queryStringSet": false,

 "queryString": "*:*",

 "startRow": 0,

 "numberOfRows": 25,

 "primaryQueryParameterList": [

 {

 "primaryQueryType": "EQUALS",

 "firstParameter": "InChI=1S/C5H9O4",

 "secondParameter": null,

 "field": "InChi_s"

 },

 {

 "primaryQueryType": "SUBSTRING",

 "firstParameter": "C5H9O4",

 "secondParameter": null,

 "field": "InChi_s"

 },

 {

 "primaryQueryType": "RANGE",

 "firstParameter": "*",

 "secondParameter": "2015-09-08",

72

 "field": "createdDate"

 },

 {

 "primaryQueryType": "PHRASE",

 "firstParameter": "InChI=1S/C5H9O4",

 "secondParameter": null,

 "field": "InChi_s"

 }

]

}

Response

Status Response (example)

200 (ok) {

 [

 “id” : “dkss923-n232nD-23sd2d”,

 “inChi” : “InChi=C2H20”,

 .

 .

 .

 “key_n” : “val_n”

],

 [

 “id” : “dkss923-n232nD-23sd2d”,

 “inChi” : “InChi=C2H20”,

 .

 .

 .

 “key_n” : “val_n”

]

}

4. Get Access Control List

Method to get the Access Control List information given the metadata document id. This method

returns a JSON representation of an array of group names of the allowed groups.

73

Request

Method GET

URL http://<host>/datacat/getAclList?id=<id>

Response

Status Response (example)

200 (ok) {

 [

 “gridchem”,

 “parachem”

 “public”

]

}

5. Update Access Control List

Method to update the Access Control List information given the metadata document id and the

new Access Control List.

Request

Method POST

URL http://<host>/datacat/updateAclList

Body {

 id : “8dhgrx-anaqm2-sd2m22”,

 acl :

 [

 “gridchem”,

 “parachem”

 “public”

]

}

Response

Status Response (example)

74

200 (ok) success

Publisher Service

Publisher Service is used by agents to publish the generated metadata to the central server.

1. Add Metadata Document

Method to insert the generated metadata to the central server. Metadata is inserted one document

at a time.

Request

Method POST

URL http://<host>/publisher/addFileMetadata

Body {

 “id” = “dkss923-n232nD-23sd2d”,

 “inChi” = “InChi=C2H20”,

 .

 .

 .

 “key_n” = “val_n”

}

Response

Status Response (example)

200 (ok) success

2. Add Batch Metadata

Method to insert multiple generated metadata files to the central server.

Request

Method POST

75

URL http://<host>/publisher/addFileMetadata

Body {

 [

 “id” : “dkss923-n232nD-23sd2d”,

 “inChi” : “InChi=C2H20”,

 .

 .

 .

 “key_n” : “val_n”

],

 [

 “id” : “dkss923-n232nD-23sd2d”,

 “inChi” : “InChi=C2H20”,

 .

 .

 .

 “key_n” : “val_n”

]

}

Response

Status Response (example)

200 (ok) success

User store Service

 This is an optional service which can be used by the web portals if they don’t have their

user management system. This service is backed by WSO2 Identity server and most of user

management functionalities can be done from the WSO2 IS. Only the functionalities that are

relevant for the DataCat application is exposed in this service.

1. Authenticate user

Method to authenticate a user giving username and password

Request

76

Method POST

URL http://<host>/userstore/authenticate

Body {

 “username” : ”abc”,

 “password” : “pwd”

}

Response

Status Response (example)

200 (ok) true : login success

false : login fails

2. Get All Groups

This method returns all the available groups in the system.

Request

Method GET

URL http://<host>/userstore/getAllGroups

Response

Status Response (example)

200 (ok) {

 [

 “gridchem”,

 “parachem”

]

}

3. Get Group List of User

This method returns all the groups of the given user

77

Request

Method POST

URL https://<host>/userstore/getGroupsOfUser?username=<username>

Response

Status Response (example)

200 (ok) {

 [

 “group1”,

 “group2”,

 “group3”

]

}

78

 Appendix III – Agent Configuration Details

number of maximum parser threads

MAX_PARSER_THREADS=20

batch based waiting time for monitor scan

BATCH_MONITOR_WAIT_TIME=2000

time delay for file to get finished updating

FILE_UPDATE_MESSAGE_DELAY=5

end point of the datacat publisher post

PUBLISHER_ADD_ENDPOINT=https://localhost:8888/publisher/addFileMetadata/

#Monitor type is FILE_SYSTEM or RABBITMQ

MONITOR_TYPE=RABBITMQ

data archive root directory location

DATA_ROOT=/home/supun/datacat/data_root

RabbitMQ related configuration

RABBITMQ_HOST=localhost

EXCHANGE_NAME=datacat

PARSER_CLASS=org.apache.airavata.datacat.parsers.gridchem.GridChemDemoParser

keystore and truststore related configuration

KEYSTORE_FILE=keystore.jks

KEYSTORE_PWD=keystore_password

TRUSTSTORE_FILE=client-truststore.jks

TRUSTSTORE_PWD=truststore_password

79

Appendix IV – Performance Test Results

Table1 Data insertion time

Number of Records Sys-MySQL Response Time (ms) Sys-Solr Response Time (ms)

20,000 1509.185 78.781

40,000 2737.777 139.204

60,000 4047.541 209.743

80,000 5471.707 315.017

100,000 6991.735 421.454

Table 2 Query execution time for exact match queries

Number of Records Sys-MySQL Response Time (ms) Sys-Solr Response Time (ms)

20,000 0.289 2.043

40,000 0.306 2.028

60,000 0.337 2.053

80,000 0.392 2.037

100,000 0.441 2.045

Table 3 Query execution time for range queries

Number of Records Sys-MySQL Response Time (ms) Sys-Solr Response Time (ms)

20,000 9.426 93.298

40,000 10.365 98.237

60,000 11.225 100.095

80,000 12.8 103.116

100,000 14.606 106.485

80

Table 3 Average query execution time for prefix match queries.

Number of Records Sys-MySQL Response Time (ms) Sys-Solr Response Time (ms)

20,000 81.052 1.733

40,000 85.975 1.792

60,000 89.796 1.747

80,000 94.082 1.763

100,000 97.684 1.74

Table 4 Average query execution time for suffix match queries.

Number of Records Sys-MySQL Response Time (ms) Sys-Solr Response Time (ms)

20,000 89.629 2.145

40,000 94.483 2.117

60,000 99.501 2.118

80,000 103.797 2.133

100,000 110.321 2.151

Table 5 Average query execution time for full text queries.

Number of Records Sys-MySQL Response Time (ms) Sys-Solr Response Time (ms)

20,000 58.661 1.457

40,000 58.219 1.459

60,000 58.219 1.494

80,000 59.564 1.483

100,000 60.044 1.529

81

Table 6 Average query execution time for substring queries

Number of Records Sys-MySQL Response Time (ms) Sys-Solr Response Time (ms)

20,000 64.576 3.064

40,000 70.265 3.315

60,000 75.227 3.642

80,000 81.865 3.802

100,000 86.216 4.136

Avarage query execution time for wildcard queries

Number of Records Sys-MySQL Response Time (ms) Sys-Solr Response Time (ms)

20,000 90.783 1.772

40,000 94.745 1.775

60,000 97.231 1.779

80,000 103.035 1.774

100,000 106.116 1.772

