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II 

ABSTRACT 

 

Automating the query generation for Complex Event Processing (CEP) has marked its own 

importance in allowing users to obtain useful insights from data. Existing techniques are both 

computationally expensive and require extensive domain-specific human interaction. In 

addressing these issues, we propose a technique that combines both parallel coordinates and 

shapelets. First, if the provided data is not labeled (i.e., the time instances are not categorized 

into specific events), we label the data by clustering the dataset into a set of clusters based 

similarity between time instances. This produces a labeled dataset in which each time instance 

is labeled with the respective event it belongs to. Next, each time instance of the labeled 

multivariate dataset is represented as a line on a set of parallel coordinates. Then a shapelet-

learner algorithm is applied to those lines to extract the relevant shapelets. Afterwards, the 

identified shapelets are ranked based on their information gain. Next, the shapelets with similar 

information gain are grouped together by a shapelet-merger algorithm. The best group to 

represent each event is then identified based on the event distribution of the dataset. Finally, 

the best group is used to automatically generate the query to detect the complex events. The 

proposed technique can be applied to both multivariate and multivariate time-series data, and 

it is computationally and memory efficient. It enables users to focus only on the shapelets with 

relevant information gains. We demonstrate the utility of the proposed technique using a set of 

real-world datasets. 
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Chapter 1 

INTRODUCTION 

 

1.1 Background 

Automating query generation in large, multivariate datasets are useful in many 

application domains. For example, Complex Event Processing (CEP) combines data 

from multiple, streaming sources to identify meaningful events or patterns in real time. 

While the detection of relevant events and patterns may give insight about 

opportunities and threats related to the data being monitored (e.g., a set of sensor 

readings and credit card transactions), significant domain knowledge is required to 

write effective CEP queries. Manual analysis of data streams is not only tedious and 

error prone, but also important events are likely to be missed due to the limited domain 

knowledge of the query writer. A promising alternative is to automate the CEP query 

generation by automatically extracting/mining interesting patterns from the past data 

[1], [2], [3]. 

 

1.2 Motivation 

Suppose there is multi-story building and multiple rooms in each floor. Each room has 

smoke and temperature sensors. Suppose the owner wants to detect fire in the building. 

A CEP engine can be used to detect fire and generate an alarm once the smoke sensor 

is triggered and temperature is above a set threshold. However, it is nontrivial to decide 

on a suitable temperature threshold, even if the building has experienced fire in the 

past. Hence, significant domain knowledge/expertise is required to define such a query. 

Even if defined, it may not be the most appropriate for the particular building. 

 

Instead, it would be more useful to have a method which will generate these queries 

automatically. One alternative is to look at the past data from all the sensors and 

identify the typical behaviour. Anything that is different from this behaviour can be 

flagged. In case if the data also have sensor readings during a past fire, those could be 

flagged as outliers. Hence, it is possible to derive basic queries by looking at the data 

alone. However, it is also important to separate out potential sensor errors/failures and 
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actual fires. If some domain expertise is available those queries could be further refined 

based on user hints to improve detection rate and accuracy. This idea of automated 

CEP query generation can be applied to many domains such as stock market, online 

retail, and Internet of Things (IoT).  

 

However, developing an automated query generation system that works across many 

domains is not straightforward. Several related work has attempted to address this 

problem with limited success. For example, AutoCEP [3] is one such approaches that 

proposed a shapelet-based technique to automate CEP query generation for univariate 

time series. This itself is a major limitation as the practical presence of univariate time 

series is limited in CEP. Moreover, AutoCEP generates queries for each and every 

instance of the detected event, requiring the CEP engine to concurrently process 

multiple queries. This unnecessarily increases the computational and memory 

requirements of the CEP engine and consequently degrades its performance. iCEP 

framework [2] was developed to generate CEP queries automatically using a machine 

learning model. One of the main drawbacks of iCEP framework is the need of multiple 

historical datasets. As iCEP framework is based on a machine learning technique, 

accuracy of the generated queries and event processing based on those queries 

dependent on the comprehensiveness of the provided historical datasets. Ultra-fast 

shapelets [4] is proposed for multivariate time-series classification, where it trains a 

random forest to identify the shapelets with respect to the total dataset. While this 

technique is effective in classification, it cannot be used to generate CEP queries, as 

the generated random forest does not support backtracking and obtaining relevant 

information to determine what data lead to the classification of the event. 

 

1.3 Problem Statement 

Given a sample dataset, we address the problem of auto generating relevant queries for 

Complex Event Processors without having the exact domain knowledge. The specific 

problem that this project aims to address can be stated as follows: 

 

How to generate CEP queries for multivariate time series datasets that may or may 

not be annotated without requiring expert domain knowledge? 
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In proposing the solution we assume that each instance in the obtained dataset is either 

annotated according to the respective event or can be annotated with bit of effort. Our 

goal is to construct a filter query per event, which contains the most relevant attributes, 

their range of values, and the event detection time frame. Target is to develop a CEP 

filter query similar to the following: 

 

SELECT {∗} WHERE {attr1 ≥ a and attr2 < b} WITHIN {t1 ≤ time ≤ t2} 

 

1.4 Objectives 

Objectives of this research are to:  

1. Develop a mechanism to convert datasets given in different formats to a 

common format so that the later processing becomes simple 

2. Use the data and pattern mining techniques to identify common patterns and 

outliers in data 

3. Implement a mechanism to obtain user hints and user given rules for generating 

a query 

4. Visualize the identified pattern results back to the user to obtain furthermore 

insights and feedback 

5. Automate the query generation for CEP 

 

1.5 Research Contribution 

We propose a technique that represents a given multivariate dataset as a set of parallel 

coordinates, and then extract shapelets out of those coordinates to auto generate CEP 

queries [5]. Even a time series can be mapped to a set of parallel coordinates, by 

representing each time instance as a separate line. Extracted shapelets are sorted 

according to the information gains and then divided into a set of groups. Among all 

the groups, best group for each event is then identified. Then the most important 

shapelets in the identified groups are used to generate one CEP query per group. This 

enables one to generate CEP queries for commonalities, anomalies, as well as time-

series breakpoints in a given multivariate time-series dataset without having any 

domain knowledge. Users can focus on groups with high or low information gain 



4 

depending on the application. Moreover, shapelets identify the most relevant attributes 

in a dataset for a particular event, enabling us to write more efficient CEP queries and 

only one query per event (unless the same event is triggered by unrelated attribute 

combinations). Using a set of real-world datasets, we demonstrate that the proposed 

technique can be applied effectively to auto generate CEP queries for common and 

abnormal events while identifying the relevant features and event occurrence 

timeframe. Moreover, the proposed technique has a relatively low computational and 

memory requirements compared to prior work. Furthermore, to annotate datasets that 

are not pre-annotated, we propose an unsupervised clustering technique that cluster a 

numerical dataset without knowing the behaviour of a dataset or in other words, 

without the interaction of a domain expert. The technique proposed by us initially 

calculates the euclidean distances between time instances and the obtained distance 

matrix will be clustered using OPTICS algorithm providing an annotation for each 

time instance with respect to its belongingness to a particular event.  

 

1.6  Outline 

The remainder of the report is organized as follows. Chapter 2 provides a detailed 

analysis of related work in CEP, query generation, query optimization, event detection, 

visualization techniques, pattern mining techniques, and clustering techniques. High-

level design and detailed design of each module are presented in Chapter 3. Chapter 4 

presents the implementation of the tool and performance analysis. Finally, we 

summarize the work and discuss future work in Chapter 5. 
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Chapter 2 

LITERATURE REVIEW 

Section 2.1 describes Complex Event Processing and its usage in real world 

applications. Next we discuss some related works which we have gone through. 

Section 2.2 describes related work under query generation. Query optimization, 

visualization tools, pattern mining techniques and unsupervised techniques are 

presented in Section 2.3, Section 2.4, Section 2.5, and section 2.6 respectively. 

 

2.1 Complex Event Processing 

Complex Event Processing (CEP) refers to event processing that combines data from 

multiple sources to detect events or patterns that suggest much more complicated 

circumstances. Modern day CEP is used across many domains and applications with 

the utmost objective of identifying meaningful events such as opportunities and threats 

and in order to react to them as quickly as possible [6]. As an example CEP is 

effectively and widely used in fraud detection where suppose a debit card has been 

stolen and when it is entered to an automatic teller machine the pattern of entering pin 

number, number of frequent withdrawals, etc., are analyzed and performed CEP to 

detect fraudulent activities. This high importance that CEP possesses in today’s context 

has demanded it to produce highly accurate results. To produce highly accurate results 

simply the event processor should be accompanied with accurate query generation 

mechanism.  

 

Esper [16] and WSO2 CEP [14] are two of the leading CEP engines. Complex Event 

Processor helps identify the most meaningful events and patterns from multiple data 

sources, analyze their impacts, and act on them in real time. Most importantly, CEP 

engine can be deployed in standalone or distributed modes. CEP engines can be 

plugged into existing architectures, for e.g., WSO2 and Esper CEP engines can be 

embeddable in existing Java-based architectures such as Java Application Servers or 

Enterprise Service Bus. 
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2.2 Query Generation in CEP 

In CEP systems, query processing takes place according to user-defined rules, which 

specify the relationship between observed events and phenomena of interest. While 

preparing queries to detect complex events, several questions such as the following 

need to be answered: 

● Which events are relevant to detect the phenomena of interest and which are 

not? 

● Which values should they carry? 

● Do they need to appear in a specific, temporal order? 

● How the query can be optimized so that the computing and memory 

requirements are reduced? 

 

Writing rules with such details may be challenging, even for domain experts. 

Furthermore, the accuracy of the written queries will depend on the domain expertise 

that the user possesses. If the query generation process can be automated, we could 

enable wider use of CEP without domain expertise while simplifying the process and 

increasing the accuracy. 

 

Several related work try to automate the process to figure out answers to the above 

mentioned questions. However, they rely on strict assumptions such as dataset is a 

univariate time-series and end user will be a domain expert [3], [7], [8]. Furthermore, 

most of the implementations have been domain dependent. Majority of the proposed 

approaches focused on shortcomings of the manual rule specification, and have 

concentrated on optimizing the query processing by focusing on a specific CEP engine, 

which has its own rule definition language and query processing algorithms [1], [2]. 

Next, we discuss several selected related works on automated CEP query generation 

and optimization.  

 

 

2.2.1  autoCEP Framework 

Mousheimish et al. [3] proposed autoCEP where initially it learns from histories, then 

the rules are extracted, and finally deployed into CEP engines in an automatic manner 
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with minimum human intervention. autoCEP is a two-phase framework that relies on 

data mining techniques, more specifically early classification on time series. The 

framework learns historical trends and patterns at the first phase, and then 

algorithmically transforms them into CEP rules at the second one. This seems to be the 

first application of time series pattern mining techniques in the CEP domain. 

 

Figure 2.1: High-level architecture of autoCEP [2]. 

 

 

Figure 2.1 illustrates the autoCEP architecture. autoCEP works with univariate time 

series data which is already labeled for events. Then in the first phase Shapelets [21], 

[23] are learned, which is a technique to extract similarities in the time series. By 

scanning through the whole historical time series similar shaped time series 

subsequences (shapelets) are obtained. Shapelet is defined as a function of three 

variables defined as v = (s,∂,c), where s is a numeric time series, ∂ is the distance 

threshold for run-time classification and c the class of the Shapelet. By this definition 

unclassified instances are labeled with a class if the similarity between them is less or 

equal to [3]. There are maximum and minimum lengths to shapelets where a domain 
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expert can specify them to have a better learning process. Then one can obtain the 

useful shapelets that characterize each class and they are saved in a database (e.g., 

MySQL). Within the second phase of the implementation, rule generation using the 

shapelets will take place which is done in a defined procedure. Prototype of the 

generating rule is as follows: 

within[window] {relevant events} where[conditions]  

 

In this prototype within, {}, and where are the three main keywords for a generated rule 

using a shapelet. Window and Conditions can be taken from the derived shapelets 

saved in the MySQL database [3]. 

 

 

Figure 2.2: Illustration of best matching location [21]. 

 

Figure 2.2 shows the comparison of two shapelets. Shapelets are compared by 

calculating the best distance between two shapelets. The best distance accounts for the 

distance between S and its best matching location somewhere in T [21]. Shapelets can 

be only used to analyze univariate time series. To overcome this limitation Ultra Fast 

shapelets [4] are proposed. A method for using shapelets for multivariate time series 

is proposed and Ultra-Fast Shapelets is proven to be successful under some strict 

assumptions in comparison to state-of-the-art multivariate time series classifiers on 15 

multivariate time series datasets from various domains. Finally, time series derivatives 

that have proven to be useful for other time series classifiers are investigated for the 

shapelet-based classifiers. Considering the above, one of the main limitations of ultra-

fast shapelets is the inability to generate a query for complex event processing. The 

generated random forest does not support backtracking and obtaining any relevant 

information to proceed in building up a query to obtain complex events. Furthermore, 
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ultra-shapelet implementation also fails to identify data columns dynamically into the 

shapelets. 

 

2.2.2  iCEP Framework 

iCEP [2] is a framework that has been developed using machine learning techniques 

to determine the hidden causality between the events received from the external 

environment and the situation to detect without the assistance of domain experts. iCEP 

analyzes historical traces of events and effective use of supervised learning techniques 

to derive relevant CEP rules. It is a highly modular system, with different components 

considering different aspects of the rules. Depending on their knowledge of the 

domain, users can decide which modules to deploy and can provide hints to guide the 

learning process and increase its precision [1], [2]. Figure 2.3 illustrates the high-level 

architecture of iCEP which consists of seven different modules as follows: 

 

1. Events and Attributes (Ev) Learner: finds which event types and attributes are 

relevant for the rule.  

2. Window (Win) Learner: finds the minimal time interval that includes all 

relevant events. 

3. Constraints (Constr) Learner: finds the constraints that select relevant events 

based on the values of their attributes. 

4. Aggregates (Agg) Learner: finds the presence and values of aggregate 

constraints. 

5. Parameters (Param) Learner: nds the parameters that bind the value of 

attributes in different events. 

6. Sequences (Seq) Learner: finds the ordering relations that hold among 

primitive events. 

7. Negations (Neg) Learner: finds negation constraints. 
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Figure 2.3: iCEP architecture [2]. 

 

iCEP relies on applying supervised learning techniques to a given labeled dataset and 

produces a set of rules (queries) that allows to detect complex events, which are 

triggered from the primitive events. iCEP would be a learning model containing 

various algorithms in the  machine learning paradigm which would learn from the data 

provided and infer rules (queries).  

Figure 2.4: Executing the win learner [2]. 

 

Figure 2.4 illustrates the iCEP implementation in the absence of external hints from 

domain experts. When iCEP does not have any clue regarding the possible events, 

attributes or the window size, iCEP address this dependency by using an iterative 

approach, which solves the two learning problems at once. In particular, iCEP 

implementation progressively increase the window size (Ws) and, for each considered 

size Ws, we execute the Ev Learner assuming such a window Ws as the correct one. In 

doing so, it is noticed that initially the size of events detected monotonically increases 

with Ws (as more events enter the window, more event types are detected as relevant), 

but this behaviour has an end. At a certain point this growth stops and the size of S 
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stabilizes in a plateau. In practice, this happens when Ws reaches the value of the 

window to learn.  

 

Following diagrammatic representation visualizes the evaluation of the iCEP 

framework. 

 

Figure 2.5: Evaluation architecture - iCEP [2]. 

 

 

As shown in Figure 2.5, there are two evaluation goals which has been evaluated with 

respect to iCEP. 

1) Quantitatively determining the ability of an automatically generated rule to 

correctly identify composite events; 

2) Evaluating how valuable are the indications provided by iCEP. 

 

In terms of evaluating the accuracy of the iCEP framework, a rule known as R will be 

defined which would perfectly represent the domain of interest, and rule R is used to 

detect all composite events in the training history. Afterwards, the training history 
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(including primitive and composite events) is split to generate an (almost equal) 

number of positive and negative traces of events. These traces will be the input to 

iCEP, which uses them to infer a rule R∗. To quantitatively measure the performance 

of iCEP following goal (a) above, we generate a new evaluation history of primitive 

events, and using both R and R∗ to detect composite events over it. This allows us to 

measure and recall  our algorithm, which is the fraction of composite events captured 

by R that have been also captured by R∗ and the precision, which is the fraction of 

composite events captured by R∗ that actually occurred, i.e., that were also captured 

by R. In terms of evaluating subjectively how capable iCEP at determining “correct” 

rules along the lines of goal (b) above. To do so, we compare rules R and R∗ 

syntactically, to determine in which aspects they differ [1]. 

 

2.2.3  CEP2U and CER Frameworks 

CEP2U [12] focuses on the following two possible sources of uncertainty: 

● Uncertainty in events: The uncertainty deriving from an incorrect observation 

of the phenomena under analysis. This means to admit that the notifications 

entering the CEP engine can be characterized by a certain degree of 

uncertainty. 

● Uncertainty in rules: The uncertainty deriving from incomplete or erroneous 

assumptions about the environment in which the system operates. This means 

to admit that the CEP engine has only a partial knowledge about the system 

under observation, and consequently the CEP rules cannot consider all the 

factors that may cause the composite events they are in charge of detecting. 

 

CEP2U models uncertainty in events using the theory of probability, while it exploits 

Bayesian Networks (BNs) to model uncertainty in rules. In particular, it extends the 

model of events to include probabilistic data into event notifications, while it 

automatically builds a BN for each TESLA rule deployed in the system. Domain 

experts are expected to extend such BNs to capture a priori knowledge about those 

aspects of the environment that cannot be directly observed by sources. 
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Furthermore, in dealing with uncertainty regarding CEP, many of the CER engines 

employ finite automata, either Deterministic (DFA) or Nondeterministic (NFA), as 

well as logic based approaches are preferred [12].  

 

2.2.4  User oriented rule management for event-based applications 

Event-pattern rules are the foundation of CEP applications. A research has proposed a 

rule-management framework [7] for event-based systems. They have only proposed 

this solution for the Business domain. When it comes to CEP for Business logics, 

business users depend on technical experts to generate the relevant rules and apply 

them on the CEP engine. Figure 2.6 shows the different between the existing systems 

and the proposed solution. As shown in (b) a Technical Expert will prepare a business 

logic and when Business User needs the help of the system that person does not have 

to go through the Technical Expert again and again. While this reduces the workload, 

it works well only in the business domain. Because there are many more use cases 

other than the business domain, applicability of the proposed system is limited. 

 

 

Figure 2.6: Rule-management workflows in existing systems (a) vs the proposed 

approach (b) [7]. 
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2.3 Query Optimization 

 

2.3.1  Prediction correction paradigm 

In many active systems, rules may change over time due to the dynamic nature of the 

domain. Such changes complicate the specification task even further, as the expert 

must constantly update the rules. This problem was covered in several researches and 

one research was about updating the rules over time. In [9] authors focus on two main 

repetitive stages as Rule/Parameter prediction and correction.  

The prediction correction paradigm is illustrated in Figure 2.7. The system utilizes any 

knowledge regarding how the rule parameters change over time, together with the 

events materialized by the inference algorithm to “predict” (or update) rule parameter 

values. The latter stage uses expert feedback regarding the actual occurrence of 

predicted events and the recently materialized events to update rule parameters for the 

next prediction stage.   

 

 

Figure 2.7: Prediction correction paradigm architecture [9]. 

 

 

Key contributions of this work include the following: 

● Description of a framework for automating the task of specifying CEP rules, 

combining knowledge possessed by domain experts with intelligent techniques 

for specification of rule parameters (details that are hard for experts to provide). 
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● Description of a simple yet powerful model for rule parameter determination 

and tuning, taking into account any pre-existing knowledge regarding the 

updates of parameters over time, with indirect expert feedback. 

● Provision of an algorithm based on Discrete Kalman Filters [13] to determine 

and tune the parameter values. 

 

2.3.2  Iterative event pattern recommendation 

Not only CEP rules, CEP patterns may also change over time due to the dynamic nature 

of the domain. So domain experts must update the patterns constantly. To overcome 

this, some have come up with a solution which consists of Recommendation Based 

Pattern Generation [10]. This research paper targets a specific domain which is 

Ambient Assisted Living domain. This domain serves as an integration as well as the 

evaluation platform. In order to speed up the pattern generation phase and help the 

telecare solution and care providers, they believe that some kind of pattern 

recommendation based on user input and existing patterns could be helpful. Authors 

made the following contributions: 

● An approach for supporting the domain expert in designing new patterns and 

identifying missing ones 

● Implementation of the approach for an use case example 

● Evaluation results showing the importance of pattern recommendation during 

the pattern generation process 

 

2.3.3  Distributed architecture for event-based systems 

When it comes to CEP, optimization is a major requirement and there has been so 

many researches to optimize event-based systems. A research has been done targeting 

distributed systems and some architectures to improve optimization [15] have been 

suggested. According to them the following architectures can be used: 

 

● Event-Driven Service Oriented Architecture 

The event-driven SOA is an extension of the SOA re with event processing 

capabilities. Services are entities that encapsulate business functionalities, 

offered via described interfaces that are published, discovered and used by 
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clients. Events introduce a different interaction model in which event channels 

allow consumers to subscribe for specific events, and receive them when such 

events are published by producers. This mechanism is adopted in open 

standards (e.g., CORBA), and in products or platforms (such as .NET, 

WebSphere Business Events, Oracle CEP application server, and others) with 

the aim of simplifying the design of complex interactions and supporting 

interoperability. 

● Grid Architecture 

Event processing is useful in Data Grids, which allow users to access and 

process large amounts of diverse data (files, databases, video streams, sensor 

streams, and so forth) stored in distributed repositories. Data Grids include 

services and infrastructure made available to user applications for executing 

different operations such as data discovery, access, transfer, analysis, 

visualization, transformation, and others. 

● Peer-to-peer(P2P) Architecture 

P2P systems are capable of adapting to failures and dynamic populations of 

nodes while maintaining acceptable performance. P2P systems are used to 

support application services for communication and collaboration, distributed 

computation, content distribution, etc., and middleware services like routing 

and location, anonymity, and privacy. 

● Agent Architecture 

Software agents react in response to other agents and to environment changes, 

and can act independently (are autonomic). In addition, agents initiate actions 

that affect the environment (are pro-active), are flexible (able to learn) and 

cooperate with other agents in multi-agent systems. 

 

2.3.4  Processing of uncertain events in a rule-based systems 

There is a growing need for systems that react automatically to events. While some 

events are generated externally and deliver data across distributed systems, others need 

to be derived by the system itself based on available information. A research has 

presented a mechanism to construct the probability space that captures the semantics 

and defines the probabilities of possible worlds using an abstraction based on a 
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Bayesian network [19]. Solution is to generate the composite events by the system 

itself. This solution faces the following two major challenges: 

● Calculate event probabilities while taking into account various types of 

uncertainty is not trivial. 

● Timely response to events under a heavy load of incoming events from various 

sources. 

 

Authors have come up with a new sampling algorithm for efficient approximation of 

new event derivation, enabling a quick computation of probabilities of set of rules, 

rather than a Bayesian network. They have used the domain of Syndromic Surveillance 

System (Bioterrorist attack) to validate their solution and have contributed to the CEP 

domain by 

 

● Describing a simple yet powerful generic model for representing the derivation 

of new events under uncertainty 

● Extending the notion of selectability, which exists also in the context of 

deterministic event derivation to handle efficiently the derivation of uncertain 

events. Selectability filters events that are irrelevant to derivation by some 

rules. 

● Proposing an algorithms for calculating selectability enable significant 

computational improvements by ensuring that rules are not applied to events 

which are irrelevant to new event derivation. 

● Developing a Bayesian network representation to derive new events given the 

arrival of an uncertain event and to compute its probability 

● Developing a sampling algorithm for efficient approximation of new event 

derivation enabling a quick computation of probabilities of a set of events by 

sampling over the set of rules, rather than from a Bayesian network 

● Demonstrating the scalability and accuracy of the sampling algorithm. 
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2.4 Visualization tools 

 

2.4.1  SPEEDD Framework 

Scalable Proactive Event-Driven Decision-making (SPEEDD) Framework [17] 

focuses on proactive event driven computing which support autonomous or semi-

autonomous decision-making, including a body of tools. This is used to exploit the 

forecast models and state predictions as a basis for decision-making. The visualization 

component (dashboard) supports the human interpretation of decisions made in 

runtime. It facilitates decision making process for business users by providing easily 

comprehensible visualization of detected or forecasted situations along with output of 

the automatic decision making component. 

 

2.4.2  Visualization Charts 

In order to implement visualization of our research application, we searched about 

several APIs and libraries such as Google charts, ChartJS and Data-Driven Documents 

(D3) library. ChartJS provides useful charts to draw graphs, but in our scenario we 

need to find a chart which can be customize for the user on the web browser. In this 

case, Google Charts API was not a good solution since it does not support in build 

customizable charts. 

 

D3 Library is a JavaScript Library which provides dynamic and interactive 

visualizations in web browsers, and it is more customizable than Google charts [30]. 

In D3 graphs, user can select column values by drawing a rectangle. This helps to get 

the range of column values, but it mostly rely on users input, which is not so good for 

our scenario. If user select a wrong region of values, the accuracy of the final output 

query will be changed. This can leads to many false positive or false negatives. 

 

ChartJS is the most suitable API for our implementation because it is easy to 

implement and customize. ChartJS also provide interactive visualization like above 

mentioned libraries. 
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2.5 Pattern Mining Techniques 

 

2.5.1  Event sequence generation 

Using an Event Cloud, we can generate Event sequences using data mining techniques. 

PrefixSpan [22] shown in Figure 2.8 is a well suited algorithm as it generates a tree 

structure and by traversing through it we can generate the event sequences which can 

be assumed as a composite or a complex event. Furthermore, sequence prediction is 

another area where events are predicted by generating the sequences of events so that 

it could predict the next event in the sequence. These type of researches have been 

carried out earlier but our aim  is not only this but also to consider  red box of our 

design as many researches have not  been done in that scope. Figure 2.8 shows the tree 

corresponding to PrefixSpan algorithm.  

 

Figure 2.8: Prefixspan algorithm [22]. 

 

2.5.2  Hidden Markov Model and Noise Hidden Markov Model 

Hidden Markov models (HMM) [11] can automatically infer complex event patterns, 

but if there is a lot of noise, general HMM are insufficient to detect patterns. Noise 

Hidden Markov Model which is an extension of hidden Markov models that 
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particularly addresses the problem of only sparsely occurring, significant events that 

are interspersed with a lot of noise. 

Hidden Markov Model (HMM) is a statistical model which is modeled using the 

Markov model with visible (observed) states and hidden states. An HMM can be 

represented as the simplest dynamic Bayesian network. It can addresses the following 

three main problems [11]: 

● Evaluation Problem - If we are given a sequence of visible states V, What is 

the probability that the given V will be generated by given model H. 

● Decoding Problem - What is the best state sequence for given model H. 

● Learning Problem - How to calculate optimal model parameters for H that 

maximize total production probability p(O|H) 

 

In this context, Noise HMM has been used to learn event detection rules. Figure 2.9 

illustrates the method to detect the ABC pattern, but there are so many unwanted paths 

the system can follow, which means that from the initialization point system it can 

follow other paths instead of following ABC paths. These events that are not in the 

target event are known as Noise events. 

 

Figure 2.9: Hidden Markov Model for pattern ABC [11]. 

 

Noise HMM is similar to the conventional HMM. Since noise events do not show any 

impact on target function, the probabilities to noise events from target events will be 

sets to zero and the existing HMM algorithms have been changed to adapt for noise 
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HMM as in Figure 2.10. This method optimizes the event detection, but the method 

limits only for given target event. If we do not know the exact target event that we 

want to achieve, this is not the solution. 

 

Figure 2.10: Noise Hidden Markov Model [11]. 

 

2.5.3  Predictive complex event processing 

Predictive analytics can be used with CEP to prevent events (such as credit card fraud) 

proactively. There is a proposed conceptual framework obtained by merging the two 

domains [20] which is demonstrated in a proof–of–concept experiment. For the 

prediction, predictive analytics applies several statistical and data mining techniques, 

for example clustering, classification, regression and so on. By applying these 

techniques, predictive analytics builds predictive models which represents certain 

circumstances between available features or predictors related to the event. Predictive 

analytics face problems such as how to define predictors and how to calculate them, 

how to define the event, and so on. Predictive analytics deals with every kind of 

prediction, while CEP deals with detecting complex events occurring in real time. 

 

2.6 Unsupervised Clustering Techniques 

2.6.1  DBSCAN Algorithm 

The DBSCAN algorithm [32] performs cluster identification in large spatial datasets 

by looking at the local density of database elements, using only one input parameter. 

The DBSCAN can also determine what information should be classified as noise or 

outliers. In spite of this, its working process is quick and scales very well with the size 

of the database which happens almost linearly. 

 

In simple terms to find a cluster, DBSCAN starts with an arbitrary point p and retrieves 

all points density-reachable from p with respect to the provided maximum radius 
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(Eps/𝜀) and minimum number of points (MinPts). If p is a core point, this procedure 

yields a cluster with respect to 𝜀and MinPts. If p is a border point then no points are 

density-reachable from p and DBSCAN visits the next point of the database. 

 

2.6.2 OPTICS Algorithm 

OPTICS algorithm [31] is an extended version of DBSCAN in which it works very 

similar to  DBSCAN algorithm for an infinite number of distance parameters 

maximum radius (εi) which are smaller than a generating distance ε (i.e. 0 ≤ εi ≤ ε). 

The only difference is that it does not assign cluster memberships. Instead, it stores the 

order in which the objects are processed and the parameterized information would be 

used by the algorithm to assign cluster memberships. Following defines and 

explanations of basic definitions with respect to the OPTICS algorithm. 

 

Definition 1: Directly density-reachable 

Object p is directly density-reachable from object q wrt. ε and MinPts in a set of objects 

D if  

1. p ∈ Nε(q) (Nε(q) is the subset of D contained in the ε-neighborhood of q.) 

2. Card(Nε(q)) ≥ MinPts (Card(N) denotes the cardinality of the set N)  

 

The condition Card(Nε(q)) ≥ MinPts is called the core object condition. If this 

condition holds for an object p, then we call p a core object. Only from core objects, 

other objects can be directly density-reachable.  

 

Definition 2: Density-reachable 

An object p is density-reachable from an object q wrt. ε and MinPts in the set of objects 

D if there is a chain of objects p1, ..., pn, p1 = q, pn = p such that pi ∈ D and pi+1 is 

directly density-reachable from pi wrt. ε and MinPts.  

 

Density-reachability is the transitive hull of direct density reachability. This relation is 

not symmetric in general. Only core objects can be mutually density-reachable.  

 

Definition 3: Density-connected 
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Object p is density-connected to object q wrt. ε and MinPts in the set of objects D if 

there is an object o∈ D such that both p and q are density-reachable from o wrt. ε and 

MinPts in D.  

 

Definition 4: Cluster and noise 

Let D be a set of objects. A cluster C wrt. ε and MinPts in D is a non-empty subset of 

D satisfying the following conditions:  

 

● Maximality: ∀p,q ∈D: if p ∈C and q is density-reachable from p wrt. ε and 

MinPts, then also q ∈C.  

● Connectivity: ∀p,q ∈ C: p is density-connected to q wrt. ε and MinPts in D. 

 

Every object not contained in any cluster is noise.  

 

Definition 5: Core-distance of an object p 

Let p be an object from a database D, let ε be a distance value, let Nε(p) be the ε-

neighborhood of p, let MinPts be a natural number and let MinPts-distance(p) be the 

distance from p to its MinPts’ neighbor.  Then, the core-distance of p is defined as, 

 

Core-distance𝜀,MinPts(p)  =

 { 𝑴𝒊𝒏𝑷𝒕𝒔−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝) 𝑖𝑓  𝐶𝑎𝑟𝑑 (𝑁𝜀(𝑝))  ≥ 𝑀𝑖𝑛𝑃𝑡𝑠
𝒖𝒏𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝑖𝑓 𝐶𝑎𝑟𝑑 (𝑁𝜀(𝑝))  < 𝑀𝑖𝑛𝑃𝑡𝑠 

 

 

Definition 6: Reachability-distance object p w.r.t. object o 

Let p and o be objects from a database D, let Nε(o) be the ε-neighborhood of o, and let 

MinPts be a natural number. Then, the reachability-distance of p with respect to o is 

defined as  

reachability-distanceε,MinPts(p,o)= 

{ 𝑚𝑎𝑥 𝑐𝑜𝑟𝑒−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑜),𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ( 𝑜,𝑝 ) ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑓 | 𝑁𝜀 (𝑜)| < 𝑀𝑖𝑛𝑃𝑡𝑠
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2.6.3 Single Linkage Clustering 

This is an agglomerative clustering technique where we start from a single item and 

merge them according to a mechanism [24]. Given a set of N items to be clustered, and 

a N*N distance (or similarity) matrix, the basic process of hierarchical clustering could 

be explained as below: 

● Start by assigning each item to a cluster, so that if you have N items, you now 

have N clusters, each containing just one item. Let the distances (similarities) 

between the clusters the same as the distances (similarities) between the items 

they contain. 

● Find the closest (most similar) pair of clusters and merge them into a single 

cluster, so that now you have one cluster less. 

● Compute distances (similarities) between the new cluster and each of the old 

clusters. 

● Repeat steps 2 and 3 until all items are clustered into a single cluster of size 

N. (*) 

  

Figure 2.11: Hierarchically clustered city names using Single Linkage Clustering 

[24]. 

 

In terms of the complexity the algorithm is not scaling well. time complexity of at 

least O(n2), where n is the number of total objects and space complexity also  O(n2) 

as we form a matrix to cluster data. This happens to be a major limitation of almost 

all the hierarchical clustering techniques compared to density based clustering 

techniques [33]. 

 



25 

Chapter 3 

METHODOLOGY 

In terms of auto generating relevant queries for CEP, we propose a technique based on 

shapelets, parallel coordinates, and information gain. Section 3.1 introduces shapelets, 

parallel coordinates, and problem formulation. High-level design of the proposed 

solution is presented in Section 3.2. Detailed design is presented in Section 3.3. 

 

3.1 Preliminaries 

We first define relevant terms and then define shapelets and parallel coordinates as 

applicable to the domain of CEP query generation. The research problem is then 

formulated. 

 

3.1.1 Definitions 

Time-Series - A time-series T = t1, ..., tm  is an ordered set of m real-valued variables.  

Multivariate Time-Series — A multivariate time-series T = t1, ..., tm is a sequence of 

m vectors, where ti = (ti,1, ..., ti,s)  ∈  ℜ
𝑠

with s attributes/variables. 

Sub-sequence (𝑆𝑝
𝑡) — Given a time-series T, a subsequence 𝑆𝑝

𝑡  of T is a sampling of 

length l ≤ m of contiguous positions from T starting at time p, i.e., 𝑆𝑝
𝑡  = tp, tp+1..., tp+l−1, 

for 1 ≤ p ≤ m− l + 1.  

Set of All Sub-sequences (STl) — Set of all possible subsequences 𝑆𝑝
𝑡  that can be 

extracted by sliding a window of length l across T is STl = {all 𝑆𝑝
𝑡  of T, for 1 ≤ p ≤ 

m−l+1}.  

Sub-sequence Distance — Given T and 𝑆𝑝
𝑡  SubsequenceDist(T,𝑆𝑝

𝑡) is the minimum 

distance between p contiguous positions obtained by sliding 𝑆𝑝
𝑡  across T. We use 

Euclidean distance as the distance function.  

Entropy — Consider a time series dataset D consisting of two classes, A and B. Let 

proportions of objects belonging to class A and B be p(A) and p(B), respectively. Then 

the entropy of D is:  

I(D) = −p(A)log(p(A)) − p(B)log(p(B))  (1) 
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Information Gain (Gain) — Given a certain split strategy sp which divides D into 

two subsets D1 and D2, let the entropy before and after splitting be I(D) and 𝐼(D), 

respectively. Then the information gain for split sp is:  

Gain(sp) = I(D) − 𝐼(D) 

 Gain(sp) = I(D) − ( p(D1) I(D1) + p(D2) I(D2) )  (2) 

 

Optimal Split Point (OSP) — Consider a time-series dataset D with two classes A 

and B. For a given 𝑆𝑝
𝑡 , we choose some distance threshold dth and split D into D1 and 

D2, s.t. for every time series object T1,i in D1, SubsequenceDist(T1,i, 𝑆𝑝
𝑡) ≤ dth and for 

every T2,i in D2, SubsequenceDist(T2,i, 𝑆𝑝
𝑡) ≥ dth. An Optimal Split Point (OSP) is a 

distance threshold that Gain(𝑆𝑝
𝑡 , dOSP (D,St p)) ≥ Gain(𝑆𝑝

𝑡  ,dth) for any other distance 

threshold d-th.  

 

3.1.2 Shapelets 

Shapelets can be defined as time-series subsequences as seen in Figure 3.1. Shapelets 

can be of varying lengths, and many sub-sequences can be extracted by sliding a 

window of given length l. In shapelet-based classification, the objective is to identify 

a shapelet that is in some sense maximally representative of a class. 

 

 

Figure 3.1: Time Series Shapelets.[5] 

 

3.1.3 Parallel Coordinates 

Parallel coordinates are widely used to visualize multivariate data [18]. Figure 3.2 

illustrates the parallel coordinates representation of the room occupancy dataset 
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obtained from the UCI Machine Learning repository [25], which consists of six 

attributes. The dataset with n dimensions (i.e., attributes) is mapped to a set of points 

on n parallel lines, where each line represents an instance of data. These points are then 

connected using a line. A separate line is drawn for each instance of data (i.e., each 

row). For example, in Figure 3.2 part of the dataset selected based on the “Light” 

attribute is shown in black, and rest of the dataset is visualized in grey. When scaling 

these coordinate systems, it is recommended to use normalized data to prevent bias to 

certain dimensions. 

 

 

Figure 3.2: Parallel coordinates - Occupancy Detection Dataset. 

 

3.1.4 Problem Formulation 

In contrast to relational database systems that issue dynamic queries on stored and 

indexed data, CEP filters incoming streams of data through pre-written queries to 

detect events of interest. Hence, relevant queries need to be provided to the CEP engine 

apriori. We address the problem of needing domain knowledge to write a meaningful 

CEP queries through automation. Though a couple of related work attempt to automate 

CEP query generation, they support only univariate time series data [3]. 

 

We propose a solution which can be used to generate CEP queries for multivariate time 

series without requiring expert domain knowledge. In proposing the solution we 

assume that each instance in the obtained dataset is annotated according to the 

respective event. Our goal is to construct a filter query per event, which contains the 

most relevant attributes, their range of values, and the event detection time frame. An 

example CEP filter query may look like the following: 
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SELECT {∗} WHERE {attr1 ≥ a and attr2 < b} WITHIN {t1 ≤ time ≤ t2} 

 

3.2 High-Level Design 

Figure 3.3 illustrates the proposed architecture which consists of four main 

components. The provided dataset first enters the data processor module. The data 

processor is effectively used to transform an unlabeled dataset to a labeled dataset. If 

the dataset is already labeled, meaning each time instance is accompanied with a 

specific event it belongs to, then the data processor will effectively not do any special 

task, rather it will simply pass the dataset to the shapelet generator module. If the 

provided dataset is unlabeled, then we calculate Euclidian distances among the time 

instances and obtain a distance matrix. This matrix   is then processed through the 

OPTICS algorithm [31] to label each time instance corresponding to a particular event. 

Labelled dataset is then moved to the query generator module, which maps the dataset 

into a set of parallel coordinates. Shapelets are then extracted from the parallel 

coordinate representation. After generating the shapelets, it runs through a filtration 

process to identify the most important shapelets with respect to each event. The 

extracted important shapelets are then used to generate the CEP queries. If the user 

happens to be a domain expert, prior to building the query, the visualization module is 

been used to visualize the most important shapelets to the user and obtain his/her 

insights and improve and customize the auto generated CEP query. Next, we discuss 

each of the components in detail. 

 

 

 

Figure 3.3: Proposed system architecture. 
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3.2.1 Data Processor  

 First, the system identifies the dataset and convert that dataset into a generic format 

before any further proceedings. The input dataset could be provided in any format (e.g., 

.txt, .xml, and .csv). Data Processor module converts the data to a generic format before 

any further processing. This enables us to provide a solution that is applicable for 

datasets from multiple domains, as well as supports both time-series datasets and none 

time-series datasets.  

 

We assume that each instance in the given dataset corresponds to an occurrence of a 

specific event, i.e., each data instance is classified/labeled with the corresponding 

event. The module then counts the number of events of each type, and their proportions 

with respect to the total number of events in the entire dataset. 

 

If the given dataset is not pre-annotated we propose a clustering-based technique to 

annotate the dataset. Annotating each data point with the corresponding event is 

important to calculate the information gain with respect to each shapelet, which is 

required to filter out the generated shapelets to identify the most important shapelets.  

 

The data processor then clusters the dataset, if the dataset provided is not already 

labelled. Algorithm 3.1 initially calculates Euclidian distances between each pair of 

time instances. The resulting distance matrix is then clustered using OPTICS algorithm 

[31] resulting an annotation for each time instance. In doing so, the dataset in common 

data format needs to be clustered in a manner in which each time instance is classified 

with respect to an identified event. The output of the clustering technique would 

modify the dataset by appending another column with numerical values to denote the 

cluster number which indicate the event type that each column belongs to. This 

information then will be effectively used in the information gain calculation step inside 

the query generator module.  
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Figure 3.4: Distance matrix. 

 

The implemented clustering technique is domain independent and is based on the 

numerical values within the dataset. We initially extract the numerical values out of 

the obtained dataset and then normalize those values. We then calculate the Euclidean 

distances among the data points of each time instance. The calculation happens as such 

a particular time instance would be selected and would be compared against all the 

other time instances one at a time providing Euclidean distances for each obtained time 

instance pair which will produce a distance matrix which is similar to Figure 3.4. Then 

the obtained distance matrix will be fed into the OPTICS algorithm, which clusters 

each row separately. The reason to use this technique is, in terms of detecting events, 

we look for different pattern instances within the obtained time instances throughout 

the dataset. Calculation of the distance of corresponding data points with respect to 

each time instances is one of the best methods to compare and identify the differences 

in patterns among the time instances. 

 

The most important factor is our clustering implementation is compatible to work 

without any user input apart from providing the dataset meaning any unannotated 

dataset could even be processed via our implementation. 

 

The reason to have a distance matrix is because shapelets are distinguished according 

to the distances of each rows. Thus, having a distance matrix to distinguish the dataset 

is more appropriate. Now each row is clustered with OPTICS algorithm, as it is an 

unsupervised, density-based clustering technique which is more suitable for our 
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approach as shapelets are extracted according to their similarity of distances and 

densities.  

 

Then in the next iteration the base time instance will become the next time instance in 

the dataset and the above process will continue as explained. At the end of each 

iteration the obtained Euclidean distances per each time instance with respect to 

selected base time instance, will be clustered using the OPTICS algorithm. The output 

of the OPTICS algorithms clustering process would provide each time instance the 

cluster that it belongs to which would update in a results array in which increments a 

counter with respect to the relevant cluster and this will repeatedly happen with the 

base time instance changing iteratively. After scanning through the entire dataset we 

obtain the results array and scan through it and assign each time instance to the cluster 

which has the highest count in terms of it belongingness. This value will be appended 

to the dataset in which each time instance would have its corresponding event type.  

 

Line 2 of the pseudo code representation of the clustering algorithm (Algorithm 3.1) 

normalize the data and assign it to normData  array. Then the for loop starting from 

line 5 starts to scan through each element in normData and for each of the element of 

this array we calculate Euclidean distance with all the other elements. The number of 

times line 8 is executed equals to the array size. This allows us to obtain a distance 

matrix. Afterwards, each of the rows in this distance matrix is processed through the 

OPTICS algorithm to cluster which contains one-dimensional clustering of the 

obtained distances. This is implemented in line 11 and 12. At the end, algorithm 

analyses the row-wise cluster distribution and assigns each row for the respective 

cluster which it happens to fall to most. The rest of the code is implemented such that 

result array (line 4) is updated by giving the annotation.  

 

In terms of clustering the obtained Euclidean distances, we went through the 

implementations of popular unsupervised density based clustering techniques namely 

DBSCAN [32], OPTICS, and Single-Linkage Clustering [33] which is a hierarchical 

clustering technique. One of the main drawbacks in DBSCAN is we have to decide 

parameters globally. Deciding parameters globally is utmost important in which 
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without it the hierarchical nature of densities could not be measured and in order to do 

decide parameters globally we need to have an idea of the data distribution within the 

dataset. Since from the beginning we intended to make the total implementation 

domain and user independent obtaining information on the data distribution within the 

dataset becomes infeasible and makes it even harder using DBSCAN. The reason 

because DBSCAN cannot always be used to cluster data with different densities. So if 

need to cluster data we need to know the densities of data so that we can give a suitable 

𝜀 as a parameter. 

 

For instance, within the DBSCAN implementation if a selected radius ‘r1’ is gives a 

cluster named C and another radius ‘r2’ which is greater than ‘r1’ gives a separate 

cluster named B, this would make C as a subset of B which limits the precision of the 

derived clusters. This happens with inappropriate global parameter setting. This issue 

of global parameter setting is overcome with OPTICS algorithm  by iteratively 

developing clusters starting from a small neighbourhood radius.  

 

Furthermore, hierarchical clustering techniques also do provide satisfactory results but 

with the limitation of high time and memory complexity compared to density based 

methods. So to go line with our objective of finding time instances of similar patterns 

which are dense around another time instance, hence it is required to cluster the 

obtained Euclidean distance values considering the density and in doing so we did use 

OPTICS algorithm which happens to be an extension of DBSCAN with overcoming 

DBSCAN algorithm’s limitations. 

 

In terms of user interaction with our system, in which the user happens to be a domain 

expert that user could provide us with the additional information such as the number 

of events within the dataset and proportionate event distribution to increase the 

accuracy levels of the implementation. Conducting parameter tuning in the OPTICS 

algorithm also allows a user to increase the accuracy levels of the clustering 

implementation. 
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Algorithm 3.1: Algorithm to cluster data using OPTICS. 

 

3.2.2 Shapelet Generator  

This is the core module of the system which uses pattern mining. This module 

identifies the most appropriate shapelets to represent each event. First, the multivariate 

time series dataset is mapped to a set of parallel coordinates. Figure 3.5 is an exemplary 

representation of a multivariate time series with six attributes and five, time instances 
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converted to parallel coordinates. Then all the shapelets are extracted from the parallel 

coordinates while varying the length l of the sliding window. Though the shape of the 

extracted shapelets depend on the order of the attributes, the final outcome of the 

solution is independent of the order. Length of an identified shapelet is bounded by 

number of attributes m in the time series (i.e., 1 ≤ l ≤ m). Therefore, our technique 

produces a much lower number of shapelets compared to prior work, where m can be 

as large as the length of the time series. Moreover, it is not required to apply heuristics 

or expert knowledge to determine the optimum minimum and maximum length of 

shapelets. Therefore, our Shapelet Learner Algorithm is both computationally and 

memory efficient. Once all shapelets are extracted, the next step is to identify a subset 

of the shapelets that are representative of patterns in the parallel coordinates. For this, 

we use information gain to quantify the extent to which a selected shapelet is similar 

to a given line on parallel coordinates. For example, Figure 3.6 shows two shapelets, 

one with attributes 1 and 2 (shapelet S1) and another with attributes 1, 2, and 3 (shapelet 

S2). We slide both S1 and S2 across the line/row with t = 5000 and find the minimum 

distance between the shapelet and line. For example, S1 has a relatively lower distance 

between the attributes 1-2 and 3-4, whereas S2 has a relatively lower distance between 

attributes 1-3 and 4-6. This is estimated using the SubsequenceDist() function defined 

in Section 3.1.1. The same process is applied to all other time instances and shapelets. 

This results in a matrix of minimum distance values for each (shapelet, time instance) 

pair. We then find the Optimal Splitting Point (OSP) [21] for each row of minimum 

distance values, to find the maximum information gain for each shapelet. The shapelets 

are then ranked based on the descending order of its information gain. We then use 

Shapelet Merger Algorithm to group shapelets within the ranked list with respect to 

their information gain. Because the shapelets with similar information gains produce 

similar insights, groups created using Shapelet Merger Algorithm allows us to cluster 

the similar informative shapelets together. Finally, Important Shapelet Extraction 

Algorithm is used to identify the most suitable shapelets to represent each event type. 
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Figure 3.5: Multivariate time series mapped as parallel coordinates. 

 

 

Figure 3.6: Shapelets slide across the time series. 

 

3.2.3 Visual Representation  

This module visualizes generated shapelets, optionally enabling users to select what 

shapelets to choose for query writing. While the system can auto generate queries 

without any user suggestions, this module facilitates and accepts user approval 

allowing the user to select the shapelets that user is interested in. User may also select 

a subset of the attributes and their range of values that he/she expects to use in the 

generated queries. Such user intervention reduces false positives and improves the 

performance of the CEP engine, as not every identified event may be of practical 

importance. 
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3.2.4 Query Generator 

Given the chosen shapelets this module auto generates CEP queries based on the input 

provided by the shapelet generator module and incorporating any user provided hints. 

Here we generate one query per each event with the relevant query parameters 

generated by the system, or set of attributes and ranges approved by the user. The 

module identifies the most relevant attributes and their value ranges to be used in 

constructing the query along with the optimal time periods within which each event 

occurs. Optimal time periods are identified by analyzing the event distribution of the 

actual dataset and choosing the longest event detection time period with respect to each 

occurrence of an event. Using these data, the module generates filter queries for each 

and every event of the given dataset. 

  

3.3  Detailed Architecture 

Few and recent efforts that touched about Shapelets are discussed in [3], [21], [23]. 

We introduce a new approach to define Shapelets using parallel coordinates as an 

Object with four attributes �̂� = (𝒈, 𝒊, 𝒂, 𝒄), where g is the information gain which 

represents how much similar the data set for the shapelet, i is the series id which 

represents the row id of the data set, a is the starting column id and c is the content of 

data. Based on the above explanation our implementation with shapelets would be 

divided into two phases 

● Extract all possible shapelets from a given data set. 

● Identify important shapelets from the generated shapelets. 

 

Before extracting shapelets from the given dataset, the dataset will be transformed into 

a parallel coordinates system. Figure 3.5 displays a visual representation of the 

obtained parallel coordinates which would be used to extract shapelets. 
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Our method builds upon two main phases which are shown in Figure 3.7.

 

Figure 3.7: Architecture - Shapelet generator module. 

 

3.3.1 Phase one: Shapelet Learner 

The Shapelet Learner extracts all the shapelets from the obtained parallel coordinates. 

We set the default minimum length (lmin) of a shapelet as two, while the maximum 

(lmax) is set to the number of attributes m (i.e., 2 ≤ l ≤ m). However, a user may 

override these values. Afterwards, Algorithm 2 of the Shapelet Generator module 

extracts all possible shapelets while varying the shapelet length. First, the shapelet list 

is initialized to store the extracted shapelets (line 2). Then shapelets are extracted by 

going through each row r in the Dataset D. The outer loop increments the length of a 

shapelet l up to lmax, while the inner loop increments start to scans through each r. 

The inner-most loop (line 13-16) extracts all attributes between lmin to l for a given 

starting point. Then we convert each shapelets content to standard normal using 

zNorm() function to prevent any biases to specific attributes. Moreover, in line 19 we 

also store the raw values of shapelets, as they are later required while generating 

queries. We also calculate and save the information gain of each shapelets using 

infoGain() function (line 20). First, the SubsequenceDist() function is used to find the 
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minimum distance between the row and the shapelet by sliding the shapelet across the 

row, one attribute at a time (see Figure 3.6). By repeating the function, the minimum 

distance per each row is found and saved in an array. Then by sequentially splitting 

the array we calculate the information gain using Eq. 2. Finally, for each shapelet we 

get the maximum information gain and the corresponding split point, which would be 

the Optimum Splitting Point of the array. In line 21, each shapelet and its metadata are 

then added to the shapelets list, which is later returned by the algorithm. 

 

 

Algorithm 3.2: Shapelet learner algorithm. 

 

All possible shapelets will be extracted from a given dataset. In addition to the 

Algorithm 3.2 the dataset will be standardized in to a normal distribution and based on 
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that shapelets will be extracted. Extracted shapelets can be saved into a database or 

simply use as the input for the second phase.  

 

3.3.2 Phase two Shapelet Extraction 

All the extracted shapelets are first sorted according to their information gain. Then 

these shapelets are divided into a set of groups and then merged using Algorithm 3.3. 

Algorithm takes the set of shapelets S and number of shapelets per group (groupsize) 

as the input. groupsize is selected based on the cluster pruning technique in which we 

set the number of groups to the square root of the total number of identified shapelets. 

If desired, the user may also define the groupsize. Then in line 12 to 15 the grouped 

shapelets are updated by adding their series ID (i.e., row number), starting positions 

(i.e., starting attribute index), and class value (i.e., event type). Finally, the algorithm 

return all the merged shapelets (line 25). 
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Algorithm 3.3: Shapelet merger algorithm. 

 

Important Shapelet Finder algorithm (Algorithm 3.4) takes in three parameters, namely 

merged shapelets, classified/labelled dataset and class values (i.e., event types). Line 

2 and 3 initialize two lists named shapeletArr and classValueProb, which would 

respectively contain important shapelets and probabilities for class values within the 

total dataset. Then for each class value, a set data structure is created named 

shapeletBucket. findProb() function calculates the probability of the relevant class 

values within the dataset, and then put that to shapeletBucket (line 8 to 10). As the next 

step, (in line 12 to 17) each merged shapelet is included into a relevant shapeletBucket, 

based on the most probable class values for each group of shapelets. This is achieved 

using maxProbClassVal() function. Next, Algorithm 3.4 finds the absolute differences 

between the probabilities of actual events of the dataset and groups of shapelets. This 

is calculated using the getMinDifShape() function (line 28). Because the chosen group 

of shapelets per each event comprises of the minimum difference with respect to the 

actual event distribution in the dataset, it enables us to choose the most representative 

groups of shapelets per each event. Finally, the extracted group of shapelets are added 

to the shapeletArr (line 29). 
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Algorithm 3.4: Shapelet finder algorithm. 

 

3.3.3 Query Generation 

Returned shapeletArr from Algorithm 3.4 is the input for Query generator 

Algorithm (see Algorithm 5). This algorithm is developed to generate CEP queries 

from the extracted shapelets. If user wants to customize the generated shapelets, then 

user can decide that in the hint approval phase. In Algorithm 3.5, generated important 

shapelets may grouped into more than one group. If so, the system should be able to 
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identify the relevant groups and relevant information in generating the query. To 

identify that, Algorithm 3.5 stores starting positions of the shapelets in a hash map and 

then uses the created hash map to calculate the most suitable group of shapelets. 

Between lines 2 to 6 the algorithm stores those starting positions in a hash map. After 

that it identifies the most common starting positions of the provided shapelets. That 

process happens from line 7 to 15. Most common starting positions will be saved in a 

variable called startPos. To come up with a meaningful query we need two values with 

respect to a given column. Those two required values with respect to a column is its 

upperbound and the lowerbound. In this algorithm two lists will be created and those 

required values will be saved in those two lists. Initializing of those two lists is done 

in line 16 and 17. Between lines 18 to 41, system identifies those values from the 

provided shapeletArr. Previously defined startPos variable is used for this process. 

After completing this process, as collected information we have the following, 

1. Starting column number (startPos) 

2. Upper Bound values of the relevant columns (upperBound) 

3. Lower Bound values of the relevant columns (lowerBound) 

 

Using the above information we can write any type of a CEP query. Note that, when 

implementing this, CEP query specification should also be there in this algorithm. 

After specifying the CEP query in this algorithm, we can return the generated query 

from this algorithm 
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Algorithm 3.5: Query generator algorithm. 
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Chapter 4 

IMPLEMENTATION AND PERFORMANCE EVALUATION 

 

We implemented a web application to visualize the project output to the user. This web 

application demonstrate the full life cycle of automated query generation. Section 4.1 

describes the development framework. The features of the web application are 

presented in Section 4.2. Section 4.3 illustrates the data visualization of the application 

and performance evaluation is presented in Section 4.4. 

 

4.1 Web Application with spring 

SPRING Framework has been used for this development and the resulted shapelets 

will be appeared to the user as set of graphs [27]. Then user can customize the 

generated results and proceed to create a query for the respective events.    

 

The reasons of selecting spring framework for our development are as follows: 

1. Spring provides a very clean division between controllers, JavaBean models, 

and views. Here the complete application has been divided into three main 

components. 

a. Model - Model is where the application’s data objects are stored. The 

model does not know anything about views and controllers. When a 

model changes, typically it will notify its observers that a change has 

occurred. 

b. View - View is what is presented to the users and how users interact 

with the app. The view is made with HTML, CSS, JavaScript and often 

templates. 

c. Controller - The controller is the decision maker and the glue between 

the model and view. The controller updates the view when the model 

changes. It also adds event listeners to the view and updates the model 

when the user manipulates the view. 

2. Spring MVC is truly view-agnostic. You do not get pushed to use JSP if you 

do not want to; you can use Velocity, XLST or other view technologies. If you 

want to use a custom view mechanism 
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3. Spring comes with various design patterns in its core principles 

4. Provides dependency injection. 

 

4.2  Features of Web Application 

This web application provides following set of APIs: 

1. Uploading a dataset 

API can be used to upload datasets to the system. Any supported dataset (CSV 

of ARFF can be uploaded using this API. If there is an annotated dataset user 

can specify it to proceed directly to the Shapelet Generator module, otherwise 

dataset can be annotated by Data Processor module with user request. A HTTP 

POST request should be sent to the API with the Multipart File attached.  

2. Get uploaded datasets 

All the uploaded files will be saved in the system for reuse. A HTTP GET 

request should be sent to the API and it will send back a JSON file containing 

all the details of the uploaded datasets. 

3. Start generating shapelets 

A HTTP GET request should be sent to the API with Email and Dataset name 

attached as parameters. Here Spring Asynchronous task will be initiated. Since 

this process may take some time to complete, an email will be sent to the 

provided email address with a url once the process completed. Websockets are 

used to notify the frontend once the generating shapelets is completed. In 

summary there are two ways to notify the user once the processing is 

completed. 

a. Email notification [28]. 

b. Notification on frontend [29]. 

4. Get generated shapelets by simply sending a HTTP GET request to this API 

with dataset name attached as a parameter, generated shapelets files can be 

retrieved. A simple JSON file will be returned. 

5. Generate queries - This API can be used to generate the queries for most 

important shapelets generated by the system. Dataset name has to be sent as a 

parameter and a JSON file containing all the queries will be returned. 
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After generating shapelets, we generate a JSON file including all the details of 

generated shapelets such as no of events, event type, content values for each content 

etc. Then this JSON file was used to draw graphs. Since we have to get user 

involvement on graphs we tried different APIs which supports our requirement. 

Google Chart, ChartJS are two APIs and D3 is a library which supports dynamic 

visualizations on web browsers. Out of these we chose ChartJS which is the best 

solution for our scenario to customize graphs. 

 

4.3  Screenshots of Web Application 

 

4.3.1 Home Page 

Homepage enables user to upload data files to the server, here the file type should be .csv or 

.arff. Even user can upload multiple files to the server for later usages. After getting uploaded 

files to the server user can start the process in the shapelet generator module by selecting a 

uploaded dataset and providing an valid email address. This email address will get an email 

after completing the process in the server.  

 

 

Figure 4.1: Home page of Web application. 
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4.2.2 Shapelet Visualization 

Shapelet Visualization page illustrate the graphical representation of the important 

shapelets which was generated by shapelet generator module for all events. Figure 4.2 

and Figure 4.3 show the visualization of shapelets for Occupancy dataset [25] for 

relevant two events. 

 

 

Figure 4.2: Event 0 (Occupied) - Shapelet representation. 

 

 

Figure 4.3: Event 1 (Non- Occupied) - Shapelet representation. 
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4.4 Performance Evaluation 

Next we provide an analysis of clustering technique as well as query generation using 

shapelets and parallel coordinates. In order to test the accuracy of the clustering 

technique, we evaluated the clustering implementation through two datasets in which 

the time instances were already clustered into different events. 

 

Table 4.1 refer to clustering results obtained upon the “Occupancy Detection” dataset 

provided in UCI Machine Learning Repository [25] which is a multivariate time series 

dataset which has 7 attributes. The dataset contains real world data. The dataset itself 

consist of 8143 instances out of which it has 6,414 instances which has a state of not 

occupied (occupancy = 0) and 1729 instances which has a state of occupied (occupancy 

= 1) resulting approximately 78% of not occupied events and 21% of occupied events.  

 

Table 4.2 refer to clustering results obtained upon the “EEG-Eye State” dataset 

provided in UCI Machine Learning Repository [26] which is a multivariate time series 

dataset which has 15 attributes. The dataset contains real world data. The dataset itself 

consist of 14980 instances which comprises of time instances with respect to eye open 

and eye closed events.  

 

We processed the total dataset without the column with the event label and obtained 

the cluster distribution for each time instance and compared it against the original 

column which had the event label.  

 

Table 4.1: Occupancy dataset clustering results. 

Metric Value 

maximum radius (ε) 0.19 

minimum number of points (m) 2 

Total number of time instances considered 1100 

Correctly clustered time instances 1018 
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Incorrectly clustered time instances  82 

Accuracy of the clustering technique 92.55% (1018/1100) 

 

 

Table 4.2: EEG dataset clustering results. 

Metric Value 

maximum radius (ε) 0.18 

minimum number of points (m) 2 

Total number of time instances considered 1000 

Correctly clustered time instances 795 

Incorrectly clustered time instances  205 

Accuracy of the clustering technique 79.5% (795/1000) 

 

 

In terms of the above used dataset our research has been conducted to solve the 

problem of generating queries in order to detect the occupied event as well as not 

occupied event along with a timely representation. “Occupancy Detection” dataset [25] 

represents accurate occupancy detection of an office room from light, temperature, 

humidity and CO2 measurements.  

 

Figure 4.4 illustrates the extracted shapelets visualization with respect to event 1 of 

detecting non occupancy events as well as Figure 4.5 displays the extracted shapelets 

visualization with respect to event 2 of detecting occupancy events.  
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Figure 4.4: Extracted shapelets for Event 1 - Occupancy dataset. 

 

 

Figure 4.5: Extracted shapelets for Event 2 - Occupancy dataset. 
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Table 4.3: Occupancy dataset event detection results.  

Event Metric Value 

Not occupied No of events in dataset 

No of events detected using CEP query 

Recall 

Precision 

False positives 

False negatives 

291 

286 

98.28% 

100.00% 

0 

5 (1.72%) 

Occupied No of events in dataset 

No of events detected using CEP query 

Recall 

Precision 

False positives 

False negatives 

196 

196 

100.00% 

84.48% 

36 (18.37 

0 

  

 

We also used electroencephalogram (EEG) dataset related to opening and closing of 

eyes. The eye state was detected via a camera during the EEG measurement and later 

used to annotate the EEG time series by analyzing the video frames. The eye-open 

state is indicated using binary 0 while the eye-closed state is indicated using 1. The 

extracted shapelets for the identified two events is visualized in below figures as well 

as the recorded results of event detection for the corresponding events in the EEG 

dataset is listed in the table below. 
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Figure 4.6: Extracted shapelets for Event 1 - EEG dataset. 

 

 

 

Figure 4.7 : Extracted shapelets for Event 2 - EEG dataset. 
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Table 4.4: EEG dataset event detection results. 

Event Metric Value 

Eye-open No of events in dataset 

No of events detected using CEP query 

Recall 

Precision 

False positives 

False negatives 

652 

635 

97.39% 

100.00% 

0 

17(2.67%) 

Eye-closed No of events in dataset 

No of events detected using CEP query 

Recall 

Precision 

False positives 

False negatives 

69 

68 

98.55% 

100.00% 

0 

1(1.45%) 
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Chapter 5 

SUMMARY 

 

5.1  Conclusion 

Complex Event Processing (CEP) combines data from multiple sources to detect 

events or patterns that suggest much more complicated circumstances. Modern day 

CEP engines are used across many domains and applications with the objective of 

identifying meaningful events in near real time. For example, CEP is effectively used 

in the financial domains such as stock markets and credit card fraud detection 

Accuracy of the output of CEP depends on the queries that are used to process the data. 

However, it is not straightforward to write CEP queries, as they depend on many 

attributes of the event being monitored and their correlations. Moreover, significant 

insight is required to write effective queries; hence the the query generation process is 

domain and user dependent. Automated CEP query generation is identified as one of 

the promising alternatives, and several prior work address different aspects of the 

problem. However, existing techniques are computationally expensive, works only for 

univariate data, and require extensive domain-specific human interaction. 

 

We looked into this issue of providing a domain and user independent solution for the 

automated query generation for CEP. We proposed technique to automatically 

generate CEP queries based on multivariate time series data. The proposed technique 

first map the multivariate time series to a set of parallel coordinates. Then key patterns 

that are representative of the events are identified using time series shapelets. We also 

propose a technique to identify the most relevant shapeless per event, such that only a 

single CEP query will be generated per event. This enables one to generate CEP 

queries for commonalities, anomalies, as well as time-series breakpoints in a given 

multivariate time-series dataset without having any domain knowledge. Users can 

focus on groups with high or low information gain depending on the application. 

Furthermore, for datasets that are not pre-annotated, we proposed a technique to label 

the data by clustering the dataset into a set of clusters based on similarity (measured 

using Euclidean distance) between time instances. This produces a labeled dataset in 

which each time instance is labeled with the respective event it belongs to. 
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The proposed technique is both computationally and memory efficient compared to 

prior work, as the length of a shapelet is bounded by the number of attributes. 

Moreover, the performance of the CEP engine is also improved, as only one query will 

be generated per events.  The proposed technique can be applied to both multivariate 

and multivariate time-series data regardless of the domain, and it is computationally 

and memory efficient. Using two real datasets, we demonstrate that the resulting 

queries have good accuracy in detecting relevant events. Our approach remarks its 

importance due to its nature of user and domain independence, as well as producing 

high accuracies and precision with respect to the experimental results. Furthermore, 

the developed tool enables if a domain expert users interacts with our system and use, 

our approach facilitates to that user also by allowing the user to provide insights in 

order to optimize and change the query generation process to his or her likeness. 

 

5.2 Future Work 

The current implementation does not facilitate constructing CEP queries while 

capturing interdependencies among attributes in multivariate time series. For example, 

on a server CPU fan speed is correlated to the CPU utilization. However, as the CPU 

utilization increases, fan speed does not increase immediately. It will increase the 

speed only after sometime. Similarly, fan speed does not reduce as soon as CPU 

utilization goes down. The proposed technique cannot write accurate window-based 

queries for such instances. Figuring out such interdependencies among the attributes 

would be useful to generate more accurate and complex queries. 

 

While the proposed clustering-based technique is effective in annotating time series 

datasets with events, it accuracy need to be further improved. Similarly, between two 

time series instances cannot capture complex relationships among data points. For 

example, the CPU utilization and fan speed example could be interpreted as two 

independent events by our clustering solution. Hence, further work is required in this 

area. Moreover, due to curse of dimensionality Euclidean distance based similarity 

measure becomes less effective as the number of attributes increase. 
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In terms of the web interface the limitation exists in obtaining user insights provided 

that the user needs to interact with the systems. Here the main issue lies within the 

difficulty of allowing user to select the ranges of the most important shapelets that are 

been generated from the system in order to build up the CEP query.  
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Abstract—Automating the query generation for 

Complex Event Processing (CEP) has marked its own 

importance in allowing users to obtain useful insights 

from data. Existing techniques are both 

computationally expensive and require extensive 

domainspecific human interaction. In addressing these 

issues, we propose a technique that combines both 

parallel coordinates and shapelets. First, each instance 

of the multivariate data is represented as a line on a set 

of parallel coordinates. Then a shapelet-learner 

algorithm is applied to those lines to extract the 

relevant shapelets. Afterwards, the identified shapelets 

are ranked based on their information gain. Next, the 

shapelets with similar information gain are divided into 

groups by a shapeletmerger algorithm. The best group 

for each event is then identified based on the event 

distribution of the dataset. Then the best group is used 

to generate the query to detect the complex events. 

The proposed technique can be applied to both 

multivariate and multivariate time-series data, and it is 

computationally and memory efficient. It enables users 

to focus only on the shapelets with relevant 

information gains. We demonstrate the utility of the 

proposed technique using a set of real-world datasets. 

    Index Terms—Complex Event Processing, 

Multivariate Time Series, Parallel Coordinates, 

Shapelets 

I. INTRODUCTION 

Automating query generation in large, multivariate datasets 

are useful in many application domains. For example, 

Complex Event Processing (CEP) [1] combines data from 

multiple, streaming sources to identify meaningful events or 

patterns in real time. While the detection of relevant events 

and patterns may give insight about opportunities and 

threats related to the data being monitored (e.g., a set of 

sensor readings and credit card transactions), significant 

domain knowledge is required to write effective CEP 

queries. Manual analysis of data streams is not only tedious 

and error prone, but also important events are likely to be 

missed due to the limited domain knowledge of the query 

writer. A promising alternative is to automate the CEP 

query generation by automatically extracting/mining 

interesting patterns from the past data [2], [3], [4]. 

       Time-series pattern mining and classification 

techniques are extensively studied in the literature. 

Dynamic Time Warping (DTW) [5] is one such technique 

used to measure the similarity between two time-series 

based on a distance measure. However, the computational 

complexity of DTW grows exponentially with large and 
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multiple time-series limiting its usages. Moreover, the 

accuracy of the results depends on the chosen sliding 

window, which is nontrivial to estimate [2]. A shapelet [6] is 

a time series subsequence that is identified as being 

representative of class membership; hence, useful in time-

series classification. AutoCEP [2] proposed a 

shapeletbased technique to automate the CEP query 

generation for univariate time series. This itself is a major 

limitation as the practical presence of univariate time series 

is limited in CEP. Moreover, AutoCEP generates queries 

for each and every instance of the detected event, requiring 

the CEP engine to concurrently process multiple queries. 

This unnecessarily increases the computational and 

memory requirements of the CEP engine and consequently 

degrades its performance. One trivial optimization is to use 

the assistance of a domain-expert to aggregate the queries 

and attempt to write one or few queries. Ultra-fast shapelets 

[7] are proposed for multivariate time-series classification. 

Ultra-fast shapelets calculate a vectorized representation of 

respective attributes of the dataset. Then a random forest 

is trained to identify the shapelets with respect to the total 

dataset. The leaves of the random forest are considered to 

be the symbols. The number of occurrences of a symbol in 

the raw data is counted and these symbol histograms are 

used for the final classification using random forests. While 

this technique is effective in classification, it cannot be used 

to generate CEP queries, as the generated random forest 

does not support backtracking and obtaining any relevant 

information as to what data lead to the classification of the 

event [7]. Rare itemset pattern mining (AprioriRare) [8] is 

another technique. This technique cannot be used to detect 

events that occur within a short period of time. Moreover, 

most related work focus only on domain-specific datasets 

limiting the usability across diverse datasets and 

applications [9], [10].  

     We propose a technique that represents the given 

multivariate dataset as a set of parallel coordinates, and 

then extract shapelets out of those coordinates to auto 

generate CEP queries. Even a time series can be mapped 

to a set of parallel coordinates, by representing each time 

instance as a separate line. Extracted shapelets are sorted 

according to the information gains and then divided into 

several groups. Out of all the groups, best group for each 

event is identified. Then the most important shapelets in the 

identified groups are used to generate one CEP query per 

group. This enables one to generate CEP queries for 

commonalities, anomalies, as well as time-series 

breakpoints in a given multivariate time-series dataset 

without having any domain knowledge. Users can focus on 

groups with high or low information gain depending on the 

application. Moreover, shapelets identify most relevant 

attributes in a dataset for a particular event, enabling us to 

write more efficient CEP queries and only one query per 

event (unless the same event is triggered by unrelated 

attribute combinations). Using a set of real-world datasets, 

we demonstrate that the proposed technique can be 

applied effectively to auto generate CEP queries for 

common and abnormal events while identifying the relevant 

features and event occurrence timeframe. Moreover, the 

proposed technique has a relatively low computational and 

memory requirements compared to prior work.  

       Rest of the paper is organized as follows. Section II 

introduces shapelets, parallel coordinates, and problem 

formulation. Section III presents the proposed technique 

and Section IV explains implementation details. 

Performance analysis is presented in Section V. 

Concluding remarks and future work are discussed in 

Section VI. 

II. PRELIMINARIES 

    We first define relevant terms and then define shapelets 

and parallel coordinates as applicable to the domain of 

CEP query generation. The research problem is then 

formulated.  
 

A. Definitions  
 

Time-Series — A time-series T = t1, ..., tm is an ordered 

set of m real-valued variables.  

Multivariate Time-Series — A multivariate time-series T = 

t1, ..., tm is a sequence of m vectors, where ti = (ti,1, ..., ti,s) 

Rs with s attributes/variables.  

Sub-sequence (St p) — Given a time-series T, a 

subsequence St p of T is a sampling of length l ≤ m of 

contiguous positions from T starting at time p, i.e., St p = 

tp, tp+1..., tp+l−1, for 1 ≤ p ≤ m − l + 1.  

Set of All Sub-sequences (STl) — Set of all possible 

subsequences St p that can be extracted by sliding a 

window of length l across T is STl = {all St p of T, for 1 ≤ p 

≤ m−l+1}. 

Sub-sequence Distance — Given T and St p 

SubsequenceDist(T,St p) is the minimum distance between 

p contiguous positions obtained by sliding St p across T. 

We use Euclidean distance as the distance function. 

Entropy — Consider a time series dataset D consisting of 

two classes, A and B. Let proportions of objects belonging 
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to class A and B be p(A) and p(B), respectively. Then the 

entropy of D is: I(D) = −p(A)log(p(A)) − p(B)log(p(B)) -----(1)  

 

Fig. 1: Time-series shapelets. 

 

 

Fig. 2: Parallel coordinates representation of 
Occupancy Detection dataset [12]. 
 

Information Gain (Gain) — Given a certain split strategy 

sp which divides D into two subsets D1 and D2, let the 

entropy before and after splitting be I(D) and ˆI(D), 

respectively. Then the information gain for split sp is: 

Gain(sp) = I(D) − ˆI(D) Gain(sp) = I(D) − (p(D1)(ID1) + 

p(D2)I(D2))---------------------------------------------------------- (2)  

Optimal Split Point (OSP) — Consider a time-series 

dataset D with two classes A and B. For a given St p, we 

choose some distance threshold dth and split D into D1 and 

D2, s.t. for every time series object T1,i in D1, 

SubsequenceDist(T1,i, St p) ≤ dth and for every T2,i in D2, 

SubsequenceDist(T2,i, St p) ≥ dth. An Optimal Split Point 

(OSP) is a distance threshold that Gain(St p, dOSP (D,St 

p)) ≥ Gain(St p, d th) for any other distance threshold d th.  

 

B. Shapelets  
 

    Shapelets can be defined as time-series sub-sequences 

as seen in Fig. 1. Shapelets can be of varying lengths, and 

many sub-sequences can be extracted by sliding a window 

of given length l. In shapelet-based classification, the 

objective is to identify a shapelet that is in some sense 

maximally representative of a class. 

 

C. Parallel Coordinates 

 

    Parallel coordinates are widely used to visualize 

multivariate data [11]. Fig. 2 illustrates the parallel 

coordinates representation of the room occupancy dataset 

obtained from the UCI Machine Learning repository [12], 

which consists of six attributes. The dataset with n 

dimensions (i.e., attributes) is mapped to a set of points on 

n parallel lines, where each line represents an instance of 

data. These points are then connected using a line. A 

separate line is drawn for each instance of data (i.e., each  

 

Fig. 3: High-level architecture of the proposed solution. 

 

row). For example, in Fig. 2 part of the dataset selected 

based on the ”Light” attribute is shown in black, and rest of 

the dataset is visualized in grey. When scaling these 

coordinate systems, it is recommended to use normalized 

data to prevent bias to certain dimensions.  

 

D. Problem Statement  

 

    In contrast to relational database systems that issue 

dynamic queries on stored and indexed data, CEP filters 

incoming streams of data through pre-written queries to 

detect events 846 847 Fig. 3: High-level architecture of the 

proposed solution. of interest. Hence, relevant queries 

need to be provided to the CEP engine apriori. We address 

the problem of needing domain knowledge to write a 

meaningful CEP queries through automation. Though a 

couple of related work attempt to automate CEP query 

generation, they support only univariate time series data 

[2].  

     We propose a solution which can be used to generate 

CEP queries for multivariate time series without requiring 

expert domain knowledge. In proposing the solution we 

assume that each instance in the obtained dataset is 

annotated according to the respective event. Our goal is to 

construct a filter query per event, which contains the most 

relevant attributes, their range of values, and the event 

detection time frame. An example CEP filter query may look 

like the following:  

SELECT {∗} WHERE {attr1 ≥ a and attr2 < b} WITHIN {t1 ≤ 

time ≤ t2} -------------------------------------------------------------(3) 

 

III. PROPOSED TECHNIQUE 

To auto generate queries for Complex Event Processors, 

we propose the modularized architecture illustrated in Fig. 

3. The four main modules perform the following tasks: 

  
Data Processor — Converts the input dataset (e.g., time 

series data in .txt, .xml, or .csv format) into a generic format 

used by rest of the modules. We assume that each instance 
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in the given dataset corresponds to an occurrence of a 

specific event, i.e., each data instance is classified/labeled 

with the corresponding event. The module then counts the 

number of events of each type, and their proportions with 

respect to the total number of events in the entire dataset. 
 

Shapelet Generator — This is the core module of the 

system which uses pattern mining. This module identifies 

the most appropriate shapelets to represent each event. 

First, the multivariate time series dataset is mapped to a set 

of parallel coordinates. Fig. 4 is an exemplary 

representation of a multivariate time series with six 

attributes and five, time instances converted to parallel 

coordinates. Then all the shapelets are extracted from the 

parallel coordinates while varying the length l of the sliding 

window. Though the shape of the extracted shapelets 

depend on the order of the attributes, the final outcome of 

the solution is independent of the order. Length of an 

identified shapelet is bounded by number of attributes m in 

the time series (i.e., 1 ≤ l ≤ m). Therefore, our technique 

produces a much lower number of shapelets compared to 

prior work, where m can be as large as the length of the 

time series. Moreover, it is not required to apply heuristics 

or expert knowledge to determine the optimum minimum 

and maximum length of shapelets. Therefore, our Shapelet 

Learner Algorithm is both computationally and memory 

efficient. Once all shapelets are extracted, the next step is 

to identify a subset of the shapelets that are representative 

of patterns in the parallel coordinates. For this, we use 

information gain to quantify the extent to which a selected 

shapelet is similar to a given line on parallel coordinates. 

For example, Fig. 5 shows two shapelets, one with 

attributes 1 and 2 (shapelet S1) and another with attributes 

1, 2, and 3 (shapelet S2). We slide both S1 and S2 across 

the line/row with t = 5000 and find the minimum distance 

between the shapelet and line. For example, S1 has a 

relatively lower distance between the attributes 1-2 and 3-

4, whereas S2 has a relatively lower distance between 

attributes 1-3 and 4-6. This is estimated using the 

SubsequenceDist() function defined in Sec. 2.1. The same 

process is applied to all other time instances and shapelets. 

This results in a matrix of minimum distance values for each 

(shapelet, time instance) pair. We then find the Optimal 

Splitting Point (OSP) [6] for each row of minimum distance 

values, to find the maximum information gain for each 

shapelet. The shapelets are then ranked based on the 

descending order of its information gain. We then use 

Shapelet Merger Algorithm to group shapelets within the 

ranked list with respect to their information gain. Because 

the shapelets with similar information gains produce similar  

 

Fig. 4: Multivariate time series mapped as parallel 

coordinates. 

 

 

Fig. 5: Shapelets slide accross the time series 

 

 

Fig. 6: Shapelets that are representative of event 

 

 

insights, groups created using Shapelet Merger Algorithm 

allows us to cluster the similar informative shapelets 

together. Finally, Important Shapelet Extraction Algorithm 

is used to identify the most suitable shapelets to represent 

each event type, which would result in an output similar to 

Fig. 6.  

 

Visual Representation — This module visualizes 

generated shapelets, optionally enabling users to select 

what shapelets to choose for query writing. While the 

system can auto generate queries without any user 

suggestions, this module facilitates and accepts user 

approval allowing the user to select the shapelets that user 

is interested in. As seen in Fig. 6 user may also select a 
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subset of the attributes and their range of values that 

he/she expects to use in the generated queries. Such user 

intervention reduces false positives and improves the 

performance of the CEP engine, as not every identified 

event may be of practical importance.  

 

Query Generator — Given the chosen shapelets this 

module auto generates CEP queries based on the input 

provided by the hint generator module and incorporating 

any user provided hints. Here we generate one query per 

each event with the relevant query parameters generated 

by the system, or set of attributes and ranges approved by 

the user. The module identifies the most relevant attributes 

and their value ranges to be used in constructing the query 

along with the optimal time periods within which each event 

occurs. Optimal time periods are identified by analyzing the 

event distribution of the actual dataset and choosing the 

longest event detection time period with respect to each 

occurrence of an event. Using these data, the module 

generates filter queries (similar to Eq. 3) for each and every 

event of the given dataset. 
 

IV. IMPLEMENTATION 
 

      In this paper, we introduce a new approach to define 

shapelets using parallel coordinates as an object with four 

attributes s = (g, i, a, c). g is the information gain, which 

measures the similarity between shapelet and time series. 

i is the time series identifier, which is the row number of the 

line on parallel coordinates (see Fig. 4). a is the starting 

column/attribute number. We store the normalized values 

of the attributes which belong to the particular shapelet in 

c. We also keep track of the original values c, as those are 

later required to generate CEP queries.  

     We first transform the multivariate time series dataset 

into parallel coordinates as seen in Fig. 2. Our method 

builds upon two main phases which are illustrated in Fig. 7. 

Next, implementation of each phase is discussed in detail. 

 

 A. Phase one: Shapelet Learner  

 

     The Shapelet Learner extracts all the shapelets from the 

obtained parallel coordinates. We set the default minimum 

length (lmin) of a shapelet as two, while the maximum 

(lmax) is set to the number of attributes m (i.e., 2 ≤ l ≤ m). 

However, a user may override these values. Afterwards, 

Algorithm 1 of the Shapelet Generator module extracts all 

possible shapelets while varying the shapelet length. First, 

the shapelet list is initialized to store the extracted 

shapelets (line 2). Then shapelets are extracted by going 

through each row r in the Dataset D. The outer loop 

increments the length of a shapelet l up to lmax, while the  

 

Fig. 7: Architecture of the Shapelet Generator module 

 

 

 

inner loop increments start to scans through each r. The 

inner-most loop (line 13-16) extracts all attributes between 

lmin to l for a given starting point. Then we convert each 

shapelets content to standard normal using zNorm() 

function to prevent any biases to specific attributes. 

Moreover, in line 19 we also store the raw values of 

shapelets, as they are later required while generating 

queries.  

      We also calculate and save the information gain of each 

shapelets using infoGain() function (line 20). First, the 

SubsequenceDist() function is used to find the minimum 

distance between the row and the shapelet by sliding the 

shapelet across the row, one attribute at a time (see Fig. 

5). By repeating the function, the minimum distance per 

each row is found and saved in an array. Then by 

sequentially splitting the array we calculate the information 
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gain using Eq. 2. Finally, for each shapelet we get the 

maximum information gain and the corresponding split  

 

 

point, which would be the Optimum Splitting Point of the 

array. In line 21, each shapelet and its metadata are then 

added to the shapelets list, which is later returned by the 

algorithm.  

 

B. Phase Two - Shapelet Extraction 

 

All the extracted shapelets are first sorted according to their 

information gain. Then these shapelets are divided into a 

set of groups and then merged using Algorithm 2. Algorithm 

takes the set of shapelets S and number of shapelets per 

group (groupsize) as the input. groupsize is selected based 

on the cluster pruning technique in which we set the 

number of groups to the square root of the total number of 

identified shapelets. If desired, the user may also define the 

groupsize. Then in line 12 to 15 the grouped shapelets are 

updated by adding their series ID (i.e., raw number), 

starting positions (i.e., starting attribute index), and class 

value (i.e., event type). Finally, the algorithm return all the 

merged shapelets (line 25). Important Shapelet Finder 

algorithm (Algorithm 3) takes in three parameters, namely 

merged shapelets, classified/labelled dataset. and class 

values (i.e., event types). Line 2 and 3 initialize two lists 

named shapeletArr and classValueProb, which would 

respectively contain important shapelets and probabilities 

for class values within the total dataset. Then for each class 

value, a set data structure is created named 

shapeletBucket. findProb() function calculates the 

probability of the relevant class values within the dataset, 

and then put that to shapeletBucket (line 8 to 10). As the 

next step, (in line 12 to 17) each merged shapelet is 

included into a relevant shapeletBucket, based on the most  

 

 

probable class values for each group of shapelets. This is 

achieved using maxProbClassVal() function. Next, 

Algorithm 3 finds the absolute differences between the 

probabilities of actual events of the dataset and groups of 

shapelets. This is calculated using the getMinDifShape() 

function (line 28). Because the chosen group of shapelets 

per each event comprises of the minimum difference with 

respect to the actual event distribution in the dataset, it 

enables us to choose the most representative groups of 

shapelets per each event. Finally, the extracted group of 

shapelets are added to the shapeletArr (line 29). 

     Regardless of the CEP query language, two blocks are 

needed to generate a meaningful CEP query for an event 

(see Eq. 3). First, the time frame (or window) of the rule 

need to be identified from the extracted shapelets. This is 

specified using the within construct. Second, the conditions 

that need to be met on the captured sequence of events is 

defined using the where construct. Once the relevant 

parameters and constructs are known, we use the 

technique proposed in [2] to automatically generate the 

queries. The conditions are extracted using the selected 

attributes and their respective range of the important 

shapelets. If user wants to get a CEP rule to identify 

multiple events, in addition to above two blocks, filter block 

should be added as follows: 
 

 within[window]{relevent−events}where[conditions]------ (4) 
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V. PERFORMANCE ANALYSIS 

 

Fig. 8: Shapelets corresponding to not occupied events. 

 

 

Fig. 9: Shapelets corresponding to occupied events 

 

We use two multivariate time-series datasets from UCI 

machine learning repository [12], [13] to demonstrate that 

our technique can automate CEP query generation for 

different types of domains. We quantify the accuracy of the 

generated CEP queries using recall, precision, false 

positives, and false negatives. In addition to that, the 

computational complexity is analysed theoretically. 

 

A. Occupancy Dataset  

 

Occupancy Detection dataset [12] is a multivariate 

timeseries dataset of which measure the occupancy factor 

of an office room with respect to light, temperature, 

humidity, and CO2 measurements. It consists of 8,143 

instances out of which 6,414 (78%) instances are labeled 

as not occupied (occupancy= 0) while the remaining 1,729 

(21%) instances are labeled as occupied (occupancy = 1). 

Our objective is to auto generate queries to detect both the 

occupied and not occupied events.  

     This dataset results in 9,344 shapelets, and then the 

most appropriate shapelets are filtered out and used for the  

TABLE I: Occupancy dataset event detection results 

 
 

query generation process. Fig. 8 and Fig. 9 illustrate the 

most appropriate shapelets to detect not occupied and 

occupied events. Most appropriate shapelets of Fig. 8 are 

within attributes 1 and 3 (i.e., humidity and CO2). As seen 

in Fig. 9 for the occupied event CO2 and humidity ratio 

attributes are more relevant. The longest time window for 

not occupied events was between 17:32:00 - 22:23:00 on 

2015/02/08. Whereas for the occupied events it was 

14:49:00 - 18:40:00 on 2015/02/09. Based on these time 

gaps we set the event detection time frame. These 

attributes, their range of values, and the optimal event 

detection time frames are then used to generate queries.    

      Table I summarizes the accuracy of detected events 

based on the auto-generated queries. It can be seen that 

the generate CEP query is able to detect all the occupied 

events, it missed a few not occupied events (1.7% of total 

dataset). However, false positives for occupied events were 

relatively high (18.4%). Overall recall, precision, false 

positive, and false negative values are acceptable for both 

the occupied and not occupied events, indicating the 

usefulness of auto-generate CEP queries.  
 

B. EEG Eye State Dataset 

 

Next, we used electroencephalogram (EEG) dataset 

related to opening and closing of eyes [13]. The eye state 

was detected via a camera during the EEG measurement 

and later used to annotate the EEG time series by 

analysing the video frames. The eye-open state is indicated 

using binary 0 while the eyeclosed state is indicated using 

1. Fig. 10 and 11 correspond to the most appropriate 

shapelets to detect event 0 and 1 respectively. Most 

appropriate shapelets for an eye-open state are within 

attributes 8-13 (Fig. 10). As seen on Fig. 10 attributes 4-5, 

6-7, and 8-9 are more relevant for an eye-closed event. The 

longest time window for an eye-open state was between 

time stamps 128,349s to 204,516s, while for an eyeclosed 
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events it was 14,976s to 128,232s. We generate queries 

based on these three shapelets and event detection time  

 

Fig. 10: Shapelets corrosponding to EEG eye-open state. 

 

Fig. 11: Shapelets corrosponding to EEG eye-closed 

state. 

 

frames. As there are three shapelets the where clause in 

Eq. 3 is of the form (Attr 4’s range AND Attr 5’s range) OR 

(Attr 6’s range AND Attr 7’s range) OR (Attr 8’s range AND 

Attr 9’s range). 

      Table II summarizes the accuracy of detected events 

based on the auto-generated queries. For this dataset zero 

false positives are observed for both eye-open and eye-

closed events. False negatively are also very low for both 

events (2.7% and 0.1%, respectively). Both the precision 

and recall are also close to 100%, indicating that results 

queries are able to detect relevant events with good 

accuracy.  

    Since the solution has been divided into three main 

algorithms, we have computed the time complexities of 

those three algorithms separately. Algorithm 1 has a time 

complexity of O(nm3). Algorithm 2 has a time complexity of 

O(nm2). Algorithm 3 has a time complexity of O(n3/2m3). 

Ultra-fast Shapelets [7] has a time complexity of O(pnm2) 

and AutoCEP [2] has a time complexity of O(n2) where n is 

the number of instances (time-series), m is the number of 

attributes and p(< n) is a random number. Even though the 

listed complexities are as such, Ultra-fast shapelets 

introduces a shapelet-based clustering technique in which 

they do not focus on query generation and AutoCEP only 

focuses on univariate domain makes it harder to compare 

those two techniques directly with ours as we cover full 

cycle from shapelet generation to the query generation. 

 

TABLE II: EEG Eye State dataset event detection results. 

 

 

VI. SUMMARY AND FUTURE WORK 

 

We propose a technique to automatically generate CEP 

queries based on multivariate time series data. The 

proposed technique first map the multivariate time series to 

a set of parallel coordinates. Then key patterns that are 

representative of the events are identified using time series 

shapelets. We also propose a technique to identify the most 

relevant shapeless per event, such that only a single CEP 

query will be generated per event. The proposed technique 

is computationally efficient compared to prior work, as the 

length of a shapelet is bounded by the number of attributes 

whereas in prior work it is bounded by the length of the 

time-series. Moreover, the performance of the CEP engine 

is also improved, as only one query will be generated per 

events. Furthermore, using two real datasets, we 

demonstrate that the resulting queries have good accuracy 

in detecting relevant events. In future, we plan to further 

improve the accuracy and extend the proposed technique 

work with unlabeled time series datasets.  
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