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● Reactive Nature

○ Inability to adapt to complex workload patterns

○ Not considering the execution time (Spin Up/Down time)

● Rule-Based System

○ Event triggered system to manage on-demand resources

● User Involvement

○ User is required to have a deeper understanding of the domain to utilize the auto scaling 

mechanism, define rules, and threshold

Autoscaling at PaaS Level
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Autoscale computing resources in a PaaS cloud environment based on current workload and 
resource usage, while predicting the workload to reduce cost and meet desired QoS/SLA goals.

Research Goal
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Research Contributions
● Performance study of an existing auto scaler

● A workload forecasting technique

● A penalty-based proactive scaling method

● Evaluation of feasibility of smart killing on various IaaS providers

● Analysis of different combinations of scaling methods

● Implementation of proposed combination on Apache Stratos and AWS



Our Solution
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Key features

• Proactive

• Better predictive ability

• Better resource utilization

• Considering resource 
acquisition costs and service 
degradation penalties

Evaluation

• Against Apache Stratos



Analysis of Stratos
Auto Scaling Performance
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Workload
RUBiS Workload

RUBiS Workload

Moraspirit Workload

Workload 
AnalysisAnalysis of Stratos Auto Scaling Performance
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Prediction Evaluation

Actual workload

Apache Stratos prediction using S = ut + 0.5at2

Workload 
AnalysisAnalysis of Stratos Auto Scaling Performance
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Resource Comparison

Resource AllocationActual Workload

Total Instances Spawned = 12

Workload 
Analysis

Total Instances Spawned = 14

High Threshold Low Threshold

Analysis of Stratos Auto Scaling Performance
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Workload Prediction
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Base Model Selection

● ARIMA - Linear model with ability to capture seasonal behavior

● Neural Network - Nonlinear model which is data driven and adaptable

● Exponential Model - Non linear exponential models have no counterparts 
in ARIMA

● Naive Prediction -  As an error correction step

Workload Prediction Base Models
Ensemble Technique
Evaluation
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Ensemble Technique 
●       Ensemble forecast for (t+h) is weighted average over the individual models 
●       Weights are calculated from the inverse error of the forecasts.

                         
                                                             
                                                                  

             
                E.g.:

                                                           

                                                                     

Workload Prediction Base Models
Ensemble Technique
Evaluation
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Determination of Weights 
Workload Prediction

Effectiveness of Ci depends on how you use the past forecast error from the i-th model     

         Averaged Error over past data                                                  Most recent  error  

We fitted the past forecasting error in i-th model using exponential smoothing model and 
calculated the contribution coefficients Ci  based on the result 

Base Models
Ensemble Technique
Evaluation

t t
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Comparison of Results
Workload Prediction Base Models

Ensemble Technique
Evaluation
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Resource Allocation
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Scaling Algorithm

Resource Allocation Algorithm
Penalty Based Optimization
Resource Cost Model

T

v1

v2

v3 = 0

n = min

n = max
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Scaling Algorithm: Example Penalty Function

Resource Allocation Algorithm
Penalty Based Optimization
Resource Cost Model
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Awareness of Resource Pricing Model
Considerations

● Each IaaS provides many different instance types
● Non-uniform pricing policies

○ AWS hourly billing vs. GCE per-minute billing

Solution

● Cost optimize considering IaaS pricing model separately
○ Smart Killing for AWS

Resource Allocation Algorithm
Penalty Based Optimization
Resource Cost Model
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Resource Allocation

Resource Scaling Flow

Algorithm
Penalty Based Optimization
Resource Cost Model
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Resource Scaling - Approaches

Resource Allocation Algorithm
Penalty Based Optimization
Resource Cost Model
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Simulation - Cost

Resource Allocation Algorithm
Penalty Based Optimization
Resource Cost Model
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Overall Solution
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Architectural Design

Overall Solution Architectural Design
Tests on Mock IaaS
Tests on AWS EC2
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Tests on AWS EC2

Overall Solution Architectural Design
Tests on Mock IaaS
Tests on AWS EC2

Stratos inteliScaler
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Performance Evaluation
• Current auto scaler implementation in Apache Stratos

Workload Prediction
• Evaluating current workload prediction techniques
• Proposing a new ensemble workload prediction technique for PaaS

Resource Allocation
• Comparison of different combinations of resource allocation methods
• Proposing a penalty-based resource allocation technique

Overall Solution
• Implementation and testing on Apache Stratos

Summary
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• Defining different penalty functions based on required QoS

• Bidding for Spot Instances on AWS

• Inclusion of a Performance Model

• Support for Heterogeneity

Further Improvement
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Q & A
ridwan.11@cse.mrt.ac.lk
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Thank You
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Tests on Mock IaaS

Overall Solution Architectural Design
Tests on Mock IaaS
Tests on AWS EC2

Stratos - High ThresholdStratos - Low Threshold inteliScaler
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Upcoming Sections
Performance Evaluation

• Current auto scaler implementation in Apache Stratos

Workload Prediction
• Evaluating current workload prediction techniques
• Proposing a new ensemble workload prediction technique for PaaS

Resource Allocation
• Comparison of different combinations of resource allocation methods
• Proposing a penalty-based resource allocation technique

Overall Solution
• Implementation and testing on Apache Stratos

Project Summary

Introduction Cloud Terminology
Auto Scaling
Apache Stratos
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Workload Types
• Nature

▪ Synthetic

▪ Empirical

• Pattern
▪ On-and-Off

▪ Growing

▪ Stable

▪ Sudden Peak

▪ Cyclic Bursting

Performance Evaluation Workload
Simulation Platforms
Apache Stratos Evaluation
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Why Simulation?
• Clouds exhibit varying demands, supply patterns, system sizes and 

computing resources.

• Cloud users have heterogeneous, dynamic and competing QoS 

requirements.

• Cloud applications have varying performance, workload, and dynamic 
application scaling requirements.

Performance Evaluation Workload
Simulation Platforms
Apache Stratos Evaluation
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Experimental Platforms
Performance Evaluation Workload

Simulation Platforms
Apache Stratos Evaluation

Experimental Workloads

• CloudSim

• MDCSim

• GreenCloud

• 98 World Cup

• Google Cluster Data

• ClarkNet

Synthetic Workload Generators
• Httperf

• Faban

• Rain

Application Benchmarks

• RUBiS

• RUBBoS

• TPC-W
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Weight Calculation
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Contributions

• Performance study of an existing auto 
scaler

• A workload forecasting technique
• A penalty based proactive scaling method
• Evaluation of feasibility of smart killing on 

various IaaS providers
• Evaluation of various combinations of 

scaling methods
• Implementation of proposed combination 

on Apache Stratos

Research Overview
Achievements

Research Papers

• Acceptance of “Adaptive Workload 
Prediction for Proactive Auto Scaling in PaaS 
Systems” for International Conference - 
Internet of Things and Cloud Computing 
Technologies, Singapore

• Working on another paper for 
International Cloud Computing 
Conference - IEEE Cloud 2016, USA

Research Grant
AWS Education Research Grant for 1 year
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Apache Stratos
A PaaS framework

• Can be set up on existing IaaS
• AWS, GCE, Azure
• Private cloud support

Why Stratos?
• Open source
• Apache Community support
• Mock IaaS - eliminates need and cost of using actual IaaS resources

Architecture
• Services via cartridge instances (PHP, MySQL, Tomcat, etc.)
• Managed by modules (Cloud Controller, Auto Scaler, etc.)
• Pub-sub messaging

Introduction Cloud Terminology
Auto Scaling
Apache Stratos
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Resource Allocation 

Resource Allocation Challenges
Penalty Based Optimization
Resource Cost Model

Current PaaS Auto Scalers
● User need to define threshold parameters
● Autoscaler unaware of the pricing models of 

IaaS

Inteliscacler
● Cost and QoS aware scaling algorithm to calculate 

resource count required
● Pricing model aware resource scaling
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Stratos Auto Scaling
Introduction Cloud Terminology

Auto Scaling
Apache Stratos
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Literature - Prediction Techniques : Statistical 
Naïve Prediction 

Exponential Smoothing 

Workload Prediction Statistical
Machine Learning
Proposed Model

Moving Average
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Literature - Prediction Techniques : Statistical
Autoregressive Integrated Moving Average Model(p,d,q)

A combination of ,

Differencing(d)

Autoregression(p)

Moving Average(q)

Workload Prediction Statistical
Machine Learning
Proposed Model
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Literature - Prediction Techniques : Machine Learning
  Autoregressive Neural Networks

            Lagged values of the time series can be used as inputs to a neural network.

Workload Prediction Statistical
Machine Learning
Proposed Model
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Challenges In PaaS Workload Prediction

● A PaaS cloud may be used to build different applications with vastly different workload patterns. 

● As the workload dataset grows with time, predictive model should evolve and continuously learn 
the latest workload characteristics.

● The workload predictor should produce results within a bounded time.

● The predictor should produce sufficiently accurate results over a sufficiently large time horizon.

Workload Prediction Statistical
Machine Learning
Proposed Model
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Evaluation of  Existing Models - Datasets
Workload Prediction Statistical

Machine Learning
Proposed Model
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Evaluation of  Existing Models - Results
 

• Each model performs well on some datasets while performing worse on other datasets

• A single model will not perform well in all online training scenarios

BUT,

• Different applications on PaaS have different workload characteristics

• Dynamic adjustment of models is required for robust results

Workload Prediction Statistical
Machine Learning
Proposed Model
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Our Simulator
• Workloads

▪ Synthetic
o Rain-Toolkit
o Httperf

▪ Empirical
o Sports website (Moraspirit Log)
o 98 World Cup Trace
o Rackspace Cloud Data (Hosting a HR System)
o Google Cluster Data

• Platform
▪ 4 Server Nodes 
▪ Apache Stratos 4.1 setup on top of AWS

• Benchmark
▪ RUBiS

Analysis of Stratos Auto Scaling Performance Our Simulator
Workload 
Analysis

Google Cluster Data
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Experimental Setup
• Intel Core i3 1.6 GHz

• 4 GB DRR3 RAM

• 500 GB Hard Disk

• MySQL 5.5.

• Apache 2.4

• PHP 5.5

Server Node Specification

• Intel Core i5 2.6 GHz

• 4 GB DRR3 RAM

• Rain Tool Kit

• Java 1.7 

Client Specification

Our Simulator
Workload 
Analysis

Analysis of Stratos Auto Scaling Performance
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AWS Setup

Our Simulator
Workload 
Analysis

Analysis of Stratos Auto Scaling Performance
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Stratos Prediction

Our Simulator
Workload 
Analysis

Analysis of Stratos Auto Scaling Performance
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Stratos Scaling Process

Our Simulator
Workload 
Analysis

Analysis of Stratos Auto Scaling Performance
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• Policies
▪ Application Deployment Policy
▪ Auto-Scaling Policy

o Load Average Threshold
o Memory Consumption Threshold
o Requests in Flight Threshold



Project Summary

50



Summary
Performance Evaluation

• Current auto scaler implementation in Apache Stratos

Workload Prediction
• Evaluating current workload prediction techniques
• Proposing a new ensemble workload prediction technique for PaaS

Resource Allocation
• Comparison of different combinations of resource allocation methods
• Proposing a penalty-based resource allocation technique

Overall Solution
• Implementation and testing on Apache Stratos

Introduction Cloud Terminology
Auto Scaling
Apache Stratos
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Challenges Faced
Project Summary Challenges Faced

Further Improvement
Key References

• Resource and Infrastructure Cost

• Insufficient sources for Workload Data

• Setting up Apache Stratos Paas Cloud on AWS EC2
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