inteliScaler

Workload and Resource Aware, Proactive Auto Scaler for PaaS Cloud

Paper #10368 RS Shariffdeen, UKJU Bandara, DTSP Munasinghe, HS Bhathiya, and HMN Dilum Bandara

Dept. of Computer Science & Engineering, University of Moratuwa, Sri Lanka

Introduction

Autoscaling at PaaS Level

- Reactive Nature
 - Inability to adapt to complex workload patterns
 - Not considering the execution time (Spin Up/Down time)
- Rule-Based System
 - Event triggered system to manage on-demand resources
- User Involvement
 - User is required to have a deeper understanding of the domain to utilize the auto scaling mechanism, define rules, and threshold

Research Goal

Autoscale computing resources in a PaaS cloud environment based on current workload and resource usage, while predicting the workload to reduce cost and meet desired QoS/SLA goals.

Research Contributions

- Performance study of an existing auto scaler
- A workload forecasting technique
- A penalty-based proactive scaling method
- Evaluation of feasibility of smart killing on various laaS providers
- Analysis of different combinations of scaling methods
- Implementation of proposed combination on Apache Stratos and AWS

Our Solution

Key features

- Proactive
- Better predictive ability
- Better resource utilization
- Considering resource acquisition costs and service degradation penalties

Evaluation

• Against Apache Stratos

Analysis of Stratos Auto Scaling Performance

Analysis of Stratos Auto Scaling Performance

Workload Analysis

Workload

RUBiS Workload

time elapsed (s)

Workload Analysis

Prediction Evaluation

- Actual workload
- Apache Stratos prediction using $S = ut + 0.5at^2$

Workload Analysis

Resource Comparison

Workload Prediction

Base Model Selection

- **ARIMA** Linear model with ability to capture seasonal behavior
- **Neural Network** Nonlinear model which is data driven and adaptable
- **Exponential Model** Non linear exponential models have no counterparts in ARIMA
- Naive Prediction As an error correction step

Ensemble Technique

- Ensemble forecast for (t+h) is weighted average over the individual models
- Weights are calculated from the inverse error of the forecasts.

$$\hat{x}_{(t+h)} = \frac{\sum_{i=1}^{k} c_i \hat{x}_{(t+h)}^{(i)}}{\sum_{i=1}^{k} c_i} \qquad c_i = \frac{1}{e_{(i,t)}}$$

E.g.:
$$\hat{y_t} = \frac{\alpha y_{t,arima} + \beta y_{t,exp} + \gamma y_{t,nnet}}{\alpha + \beta + \gamma}$$

 $\alpha = \frac{1}{error_{T,arima}} \qquad \beta = \frac{1}{error_{T,exp}} \qquad \gamma = \frac{1}{error_{T,nnet}}$

~

Workload Prediction

Base Models Ensemble Technique Evaluation

Determination of Weights

Effectiveness of C_i depends on how you use the past forecast error from the *i*-th model

We fitted the past forecasting error in *i*-th model using exponential smoothing model and calculated the contribution coefficients C_i based on the result

Base Models Ensemble Technique **Evaluation**

Comparison of Results

Model	Google Cluster		Memory		CPU	
	RMSE	MAPE	RMSE	MAPE	RMSE	MAPE
ARIMA	12.963	0.051	7.238	0.136	2.976	0.036
Exponential	12.886	0.041	7.005	0.160	3.150	0.048
Neural net.	12.530	0.036	8.169	0.135	2.792	0.031
Stratos	19.757	0.116	9.928	0.172	5.692	0.024
ARMA-based model	12.549	0.069	7.185	0.180	3.477	0.023
Mean Ensemble	12.099	0.051	7.036	0.130	2.900	0.029
Median Ensemble	12.059	0.055	7.010	0.141	2.944	0.028
Proposed Ensemble	11.934	0.027	6.972	0.129	2.873	0.027

Algorithm Penalty Based Optimization Resource Cost Model

Scaling Algorithm

Algorithm Penalty Based Optimization Resource Cost Model

Scaling Algorithm: Example Penalty Function

Resource Allocation Algorithm Penalty Based Optimization Resource Cost Model

Awareness of Resource Pricing Model

Considerations

- Each laaS provides many different instance types
- Non-uniform pricing policies
 - AWS hourly billing vs. GCE per-minute billing

Solution

- Cost optimize considering laaS pricing model separately
 - Smart Killing for AWS

Algorithm Penalty Based Optimization Resource Cost Model

19

Resource Scaling Flow

P

Algorithm Penalty Based Optimization Resource Cost Model

Resource Scaling - Approaches

Algorithm Penalty Based Optimization Resource Cost Model

Simulation - Cost

Model	Blind Killing	Smart Killing	
Stratos Prediction	34.29	12.35	
Reactive	9.14	4.13	
Proactive	5.53	3.25	

Proactive Smart Killing

Violation Percentage After 7 Hours : 9.26% Violation Cost After 7 Hours: 0.235

Architectural Design Tests on Mock IaaS Tests on AWS EC2

Architectural Design

23

Architectural Design Tests on Mock laaS Tests on AWS EC2

Tests on AWS EC2

machine units

4

Stratos

Performance Evaluation

• Current auto scaler implementation in Apache Stratos

Workload Prediction

- Evaluating current workload prediction techniques
- Proposing a new ensemble workload prediction technique for PaaS

Resource Allocation

- Comparison of different combinations of resource allocation methods
- Proposing a penalty-based resource allocation technique

Overall Solution

• Implementation and testing on Apache Stratos

Further Improvement

- Defining different penalty functions based on required QoS
- Bidding for Spot Instances on AWS
- Inclusion of a Performance Model
- Support for Heterogeneity

ridwan.11@cse.mrt.ac.lk

Thank You

Architectural Design Tests on Mock laaS Tests on AWS EC2

Tests on Mock IaaS

Upcoming Sections

Performance Evaluation

• Current auto scaler implementation in Apache Stratos

Workload Prediction

- Evaluating current workload prediction techniques
- Proposing a new ensemble workload prediction technique for PaaS

Resource Allocation

- Comparison of different combinations of resource allocation methods
- Proposing a penalty-based resource allocation technique

Overall Solution

• Implementation and testing on Apache Stratos

Project Summary

Performance Evaluation

Workload Simulation Platforms Apache Stratos Evaluation

Workload Types

- Nature
 - Synthetic
 - Empirical
- Pattern
 - On-and-Off
 - Growing
 - Stable
 - Sudden Peak
 - Cyclic Bursting

Why Simulation?

- Clouds exhibit varying demands, supply patterns, system sizes and computing resources.
- Cloud users have heterogeneous, dynamic and competing QoS requirements.
- Cloud applications have varying performance, workload, and dynamic application scaling requirements.

Performance Evaluation

Experimental Platforms

- CloudSim
- MDCSim
- GreenCloud

Synthetic Workload Generators

- Httperf
- Faban
- Rain

Experimental Workloads

- 98 World Cup
- Google Cluster Data
- ClarkNet

Application Benchmarks

- RUBiS
- RUBBoS
- TPC-W

Weight Calculation

$$b_{i,t} = \alpha e_{(i,t)} + (1 - \alpha) b_{(i,t-1)}$$
(10)
where $0 \le \alpha \le 1$
 $b_{i,t} = \alpha e_{(i,t)} + \alpha (1 - \alpha) e_{(i,t-1)} + \alpha (1 - \alpha)^2 e_{(i,t-2)} + \dots$
 $c_{i,t} = \frac{1}{b_{i,t}}$ (11)

Research Overview

Contributions

- Performance study of an existing auto scaler
- A workload forecasting technique
- A penalty based proactive scaling method
- Evaluation of feasibility of smart killing on various laaS providers
- Evaluation of various combinations of scaling methods
- Implementation of proposed combination on Apache Stratos

Achievements

Research Papers

- Acceptance of "Adaptive Workload Prediction for Proactive Auto Scaling in PaaS Systems" for International Conference -Internet of Things and Cloud Computing Technologies, Singapore
- Working on another paper for International Cloud Computing Conference - IEEE Cloud 2016, USA

Research Grant

AWS Education Research Grant for 1 year

Cloud Terminology Auto Scaling **Apache Stratos**

Apache Stratos

A PaaS framework

- Can be set up on existing laaS
- AWS, GCE, Azure
- Private cloud support

Why Stratos?

- Open source
- Apache Community support
- Mock laaS eliminates need and cost of using actual laaS resources

Architecture

- Services via cartridge instances (PHP, MySQL, Tomcat, etc.)
- Managed by modules (Cloud Controller, Auto Scaler, etc.)
- Pub-sub messaging

Resource Allocation

Challenges Penalty Based Optimization Resource Cost Model

Resource Allocation

Current PaaS Auto Scalers

- User need to define threshold parameters
- Autoscaler unaware of the pricing models of laaS

Inteliscacler

- Cost and QoS aware scaling algorithm to calculate resource count required
- Pricing model aware resource scaling

Introduction

Cloud Terminology Auto Scaling **Apache Stratos**

Stratos Auto Scaling

Workload Prediction

Statistical Machine Learning Proposed Model

Literature - Prediction Techniques : Statistical

Naïve Prediction

Exponential Smoothing

^

$${\hat y}_{t+1|t} = lpha y_t + (1-lpha) {\hat y}_{t|t-1} \ {\hat y}_{T+1|T} = lpha y_T + lpha (1-lpha) y_{T-1} + lpha (1-lpha)^2 y_{T-2} + \cdots$$

39

Statistical Machine Learning Proposed Model

Literature - Prediction Techniques : Statistical

Autoregressive Integrated Moving Average Model(p,d,q)

A combination of,

 $\begin{array}{ll} \text{Differencing(d)} & y_t' = y_t - y_{t-1} \\ \text{Autoregression(p)} & y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + e_t \\ \text{Moving Average(q)} & y_t = c + e_t + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \dots + \theta_q e_{t-q} \end{array}$

40

Machine Learning Proposed Model

Literature - Prediction Techniques : Machine Learning

Autoregressive Neural Networks

Lagged values of the time series can be used as inputs to a neural network.

Workload Prediction Statistical Machine Learning Proposed Model

Challenges In PaaS Workload Prediction

- A PaaS cloud may be used to build different applications with vastly different workload patterns.
- As the workload dataset grows with time, predictive model should evolve and continuously learn the latest workload characteristics.
- The workload predictor should produce results within a bounded time.
- The predictor should produce sufficiently accurate results over a sufficiently large time horizon.

Workload Prediction

Statistical Machine Learning Proposed Model

Evaluation of Existing Models - Datasets

Time

Time

Time

Evaluation of Existing Models - Results

Model/	sunspotarea		euretail		oil		Memory		CPU	
Dataset	MSE	MARE	MSE	MARE	MSE	MARE	MSE	MARE	MSE	MAPE
Arima	382.360	1.359	0.524	0.004	55.313	0.251	7.599	0.075	2.976	0.036
Exponential	505.750	1.161	0.576	0.011	54.989	0.251	8.869	0.024	3.150	0.048
Neural Network	473.924	0.465	1.882	0.006	51.616	0.160	7.136	0.153	2.792	0.031
Stratos	546.938	0.965	0.650	0.004	61.807	0.585	11.736	0.046	5.692	0.024

- Each model performs well on some datasets while performing worse on other datasets
- A single model will not perform well in all online training scenarios

BUT,

- Different applications on PaaS have different workload characteristics
- Dynamic adjustment of models is required for robust results

Our Simulator Workload Analysis

Our Simulator

- Workloads
 - Synthetic
 - o Rain-Toolkit
 - o Httperf
 - Empirical
 - Sports website (Moraspirit Log)
 - o 98 World Cup Trace
 - Rackspace Cloud Data (Hosting a HR System)
 - o Google Cluster Data
- Platform
 - 4 Server Nodes
 - Apache Stratos 4.1 setup on top of AWS
- Benchmark
 - RUBiS

10	90000	981883546	1488529849	3	0.003125	8.38861e-02
11	90000	1263655469	1488529853	2	0.000000	0.00000e+00
12	90000	757745334	1488529860	0	0.000000	0.00000e+00
13	90000	1487094655	1488529866	0	0.003125	3.82931e-03
14	90000	1458411965	1488529868	0	0.000000	4.02513e-04
15	90000	1390006181	1488529872	1	0.000000	0.00000e+00
16	90000	1164728954	1488529877	0	0.003125	1.63840e-03
17	90000	1288997448	1488529880	0	0.012500	9.92832e-04
18	90000	1433362210	1488529881	0	0.000000	2.45760e-02
19	90000	1263655469	1488529882	2	0.015625	2.51658e-02
20	90000	1288997448	1488529889	0	0.003125	4.91520e-03
21	90000	1488529887	1488529894	2	0.000000	0.00000e+00
22	90000	1213243701	1488529902	0	0.000000	3.36337e-04
23	90000	1164728954	1488529904	0	0.000000	0.00000e+00
24	90000	1488529890	1488529897	0	0.000000	0.00000e+00
25	90000	1488529890	1488529900	0	0.003125	2.08077e-03
26	90000	975992247	1488529906	0	0.015625	1.63840e-03
27	90000	1488529907	1488529909	2	0.000000	8.15488e-04
28	90000	757745334	1488529915	0	0.000000	3.11296e-02

Google Cluster Data

Our Simulator Workload Analysis

Experimental Setup

Server Node Specification

Intel Core i3 1.6 GHz
4 GB DRR3 RAM
500 GB Hard Disk
MySQL 5.5.
Apache 2.4
PHP 5.5

Client Specification

- Intel Core i5 2.6 GHz
- 4 GB DRR3 RAM
- Rain Tool Kit
- Java 1.7

Analysis of Stratos Auto Scaling Performance

Our Simulator Workload Analysis

AWS Setup

Our Simulato Workload Analysis

Stratos Prediction

$s = ut + 1/2 at^2$

- s = predicted load
- u = first derivative (eg. first derivative of current load average)
- t = time interval (eg. one minute)
- a = second derivative (eg. second derivative of current load average)

Stratos Scaling Process

- Policies
 - Application Deployment Policy
 - Auto-Scaling Policy
 - Load Average Threshold
 - Memory Consumption Threshold
 - Requests in Flight Threshold

Project Summary

Summary

- Performance Evaluation
 - Current auto scaler implementation in Apache Stratos

Workload Prediction

- Evaluating current workload prediction techniques
- Proposing a new ensemble workload prediction technique for PaaS

Resource Allocation

- Comparison of different combinations of resource allocation methods
- Proposing a penalty-based resource allocation technique

Overall Solution

• Implementation and testing on Apache Stratos

Challenges Faced

- Resource and Infrastructure Cost
- Insufficient sources for Workload Data
- Setting up Apache Stratos Paas Cloud on AWS EC2

Key References

N. Roy, A. Dubey, and A. Gokhale, "Efficient Autoscaling in the Cloud using Predictive Models for Workload Forecasting", in proc. Intl. Conf. on Cloud Computing (CLOUD), Washington, DC, July 2011.

H. Alipour, Y. Liu, and A. Hamou-Lhadj, "Analyzing Auto-scaling Issues in Cloud Environments," in proc. 24th Annual Intl. Conf. on Computer Science and Software Engineering, Markham, Ontario, Canada, Nov. 2014.

C. Bunch, V. Arora, N. Chohan, C. Krintz, S. Hegde, and A. Srivastava, "A Pluggable Autoscaling Service for Open Cloud PaaS Systems," in proc. 5th IEEE Intl. Conf. on Utility and Cloud Computing (UCC), Chicago, IL, Nov. 2012.

J. Yang, C. Liu, Y. Shang, Z. Mao, and J. Chen, "Workload Predicting-Based Automatic Scaling in Service Clouds," in proc. 6th IEEE Intl. Conf. on Cloud Computing, Santa Clara, CA, Jul. 2013.

G.F.S. Garg, R. Buyya, and W. Li, "Revenue Maximization Using Adaptive Resource Provisioning in Cloud Computing Environments," in proc. ACM/IEEE 13th Intl. Conf. on Grid Computing (GRID), Beijing, China, 2012.

M. Mao and M. Humphrey, "Auto-scaling to Minimize Cost and Meet Application Deadlines in Cloud Workflows," in proc. Intl. Conf. for High Performance Computing, Networking, Storage and Analysis, New York, NY, 2011.