
 1

Abstract — Security threats are becoming more
prevalent in the current Internet. The objective of
the assignment is to design and build an effective
defense and attack strategy and monitor network
performance and robustness under variety of
attacks. A test bed of 3 small autonomous systems
running standard services such as DNS, web and e-
mail was setup. Automated clients scripts were
developed to simulate traffic in the network. A 4th
network was set up to act as an arbitrator and
measure d performance during attacks.

As team2, we designed the network with security
in mind. MRTG, Snort and ntop were implemented
to monitor the network traffic and suspected
attacks. In terms of security, a multi-layered
protection scheme is used to protect all serv ices.
Each service is implemented in a different subnet
to easily apply security policies based on services
and to separate traffic. Network access policies
were implemented at the router using Access Lists
and IPTables was used as the firewall. Application
specific security features were confi gured to make
the services robust. All the events were loged.
We describe our defense and attacks strategy and
the effectiveness of those approaches. Router
became the bottleneck while defending due to
lower processing ability. The Shrew attack on
team1 was highly successful without degrading the
performance of our services.

Index terms — Attacks, Defense, Network
Security

A. INTRODUCTION

Due to the open nature, the current Internet is
suffering from a variety of threats such as worms,
viruses, spyware, DOS and DDoS attacks, spam, etc.
The objective of the exercise was to design and build an
effective defense and attack strategy and monitor the
network performance under a variety of attacks while

1 This is a term paper for CS680: Advanced Topics in

Networking - Network Security, Spring 2007.

gaining hands on experience in various aspects of
networking and security. The exercise requirement was
to construct a small network that reliably provides
common services such as web, e-mail, and DNS. Several
automated clients were needed to keep the traffic
flowing in the network while utilizing those services.

Security is the main concern in our network. The
network should be secure enough to protect valuable
services, sensitive data, and network resources from
unauthorized access. At the same time, it should be
robust enough to provide services to users under severe
attacks. In addition to defending our network, we needed
to develop some tools to attack other networks by
leveraging the vulnerability of those networks.

As Fig. 1 shows, there are 3 teams. Each team’s
network is considered as an Autonomous System (AS)
and assigned a unique AS number and IP address block.
Besides these 3 ASes, another AS was set up as a
gateway to provide access from the Internet so that each
team member can remotely access their network. The
border routers of all ASes are connected via a Fast
Ethernet switch. Each AS is peering with the other 3
ASes through BGP sessions to exchange their routes.
Additionally, a root DNS server was setup on a separate
host which is directly connected to the switch. This also
acts as the arbitrator.

As team 2, we were assigned an IP address block of
10.2.0.0/16 and use the domain name as2.lab . To setup
our AS we used 6 Pentium III PCs, a Cisco 2620 router
and Cisco Catalyst 1900 switch. All the hosts were
running unpatched version of Fedora Core 6. Apache
was selected as the web server and the mail transfer

Towards A Secure Network: Defense vs. Attack1
H M N Dilum Bandara, Yan Chen and Douglas Tear

Colorado State University, Fort Collins, CO 80523, USA.

Fig. 1. WAN network topology

 2

agent was Postfix. DNS servers were based on BIND.
The Multi Router Traffic Grapher (MRTG) [3] is used to
monitor both incoming and outgoing traffic at the border
router. Ntop [2] is used to measure the traffic in 5
second intervals. Wireshark [7] is used as a network
protocol analyzer to troubleshoot network problems by
sniffing and analyzing the traffic in the network.
TCPdump [8] is used as a basic traffic sniffer. SNORT
[4] is used to detect potential attacks on our network and
Nessus [6] is used to scan the network for vulnerabilities.
IPTable s [9] is used as a firewall to further protect
services.

The rest of the paper is organized as follows. Section
B describes the network architecture we designed and
implemented. Section C describes the services and
baseline. Section D describes the defense strategy and
its implementation. Section E provides observations under
attacks. Attack strategy and effectiveness is described in
section F. Section G further discusses the network
architecture, attacks and defense and it is followed by
concluding remarks .

B. NETWORK ARCHITECTURE

The main goal was to establish a network that is easier
to manage. The layout of the network, services and IP
addressees are illustrated in Fig. 2. The network was
connected to the other two ASes through the 100Mbps
gateway switch. The Fast Ethernet port in the router was
connected to the
gateway switch in order
to gain higher
bandwidth. Since we
did not have crossover
cables the remaining 4
Ethernet ports were
connect to individual
hosts through the
VLAN enabled switch.
A separate VLAN was
configured for each
router-host connection
and this later allowed us
to put more control on
traffic flow. For an
example Eth 1/1 was
connected to the mail
server and all the
incoming SMTP
requests were
forwarded only to this

port. This also allows higher bandwidth from router to
hosts.

The router acted as the DHCP server for Host1-4 and
IP addresses were given based on hosts MAC address.
Each LAN has a /24 address space. Host1 was running
the DNS server, FTP server and TFTP server. Mail
server was running on Host2 and Host4 was running the
web server. Host4 was connected through Host3 which
acts as a firewall and it also hosts the secondary DNS
server. We used Host5 predominantly for attacking and
since it was directly connected to the router it had a
10Mbps outgoing bandwidth. Snort and ntop were
running on Host6. All the traffic through the switch was
mirrored to this host.

C. SERVICES

The DNS was the first service to be configured. Bind
9.3.2 was used as a domain name service and was
resolving names for hosts and services for as2.lab
domain and was able to resolve names on other ASs
through the root name servers configured in AS4. It was
also configured to perform reverse name lookups. Each
entry had a timeout of 10 seconds. This was mostly done
for the purpose of increasing traffic in the network. The
DNS was configured to log all the queries but later this
was disable due to increased log size. For the purpose of
fault tolerance a secondary name server was configured
on Host3. It transferred the zone information from the

Fig. 2. Network layout

 3

primary server and an entry was also added to the root
name server.

SSH was enabled on all the hosts. Host1 also hosts the
TFTP server for the purpose of uploading router image
and to backup router configuration. File Server was also
configured using the very secure FTP service.

Postfix 2.3.3-2 is used as the mail server. Postfix
became the first choice since it is easier to configure and
it is renowned for higher security. It was setup with the
objectives of later adding spam and virus filtering
however those features were never implemented. It was
configured to accept e-mails for the as2.lab domain and
users were able to check mail using any IMAP client.
Courier-imap was used to provide IMAP access to
Maildir mailboxes. Since it was a bit harder to work with
IMAP clients SquirrelMail was installed as a WebMail
service. Six user accounts were added, 3 for the group
members and 3 dummy accounts, namely user1-3. It was
seen that the mail server was able to receive more than
90 mails per second. Since the mail server was
generating a large log file logs were rotated in every 3
hours.

After all ASs agreed on the 10 request per second
based line it was seen that the arbitrator was able to send
6.5 e-mails per second in average (table 1) and the
server was receiving an aggregated average of 16.7
mails per second.

Web server based on Apache 2.2.3 was configured on
Host4. It hosts the AS2 web sites which had 100 web
pages with a mean of 10000 bytes. We also had a secure
version of the website under https://www.as2.lab.
MRTG graphs were also visible through the web server.
Under baseline operations the arbitrator was able to
receive 8 web pages per second in average (Table 1)
and server was catering an aggregated average of 31.1
requests per second.

Although the other two ASs were replicating their
services to increase fault tolerance we decided not to do
so because of three reasons. We needed to build a
simple system as done by most of the small size
organizations; secondly we want to see how effective
our approach in withstanding an attack; we also realized
machines were becoming a bottleneck in handling large
requests so we decided not to run multiple services on
the same host.

A. Clients
Both mail and web clients were configured to send the

baseline of 10 requests/second for each AS in average .
Both clients were written in Perl script.

Mail clients initially used Sendmail to send the mails
and those mails were relayed through the mail server.
However there was an error, after sending mails for a
couple of hours Sendmail suddenly stop forwarding any
mails and there were multiple corrupted instances of
Sendmail in the process table. Then we switched to the
scheme of sending mails directly to the receiver’s mail
server using some SMTP libraries in Perl. A total of 10
mails were send approximately every second depending
on the delay in the establishing and delivering the mail.
Three clients were running on Host1-3 and 2 of them
send 4 mails/second/AS and the other one sends 2
mails/second/AS. The number of connection attempts
and successful attempts for a given time period was
logged.

The web clients use a simple wget call to each AS.
The wget was configured to try once for each attempt
and records a success when successful. A total of 10
requests were made approximately every second across
the clients depending on the delay in the wget function.
The clients were distributed across Host1-4. This was
done to balance the load across the network and to avoid
overloading a single machine. Each client on hosts 2 and
4 made 2 requests/second while clients on hosts 1 and 3
made 3 requests per second. After 60 rounds of requests
the total number of successful attempts were average
out and the results were saved to a log file.

Two design errors in the script were determined after
the attack scenarios. The first was the timeout value of
wget was not changed from the default value. This
caused wget to hang while it was waiting for a reply
from the server host. This resulted in the success rate
not being calculated approximately every minute, but the
duration lasted up to several minutes during the attack.
The results were aggregated across several minutes and
did not give a detailed account of the performance of the
network being monitored during the attack. The second
error was iterating the outer loop 60 times to approximate
a one minute time frame. Even though the success rate
was calculated on actual time, it was not calculated at
equal time intervals during the iteration. The solution was
to use a timer to calculate the success rate at a specific
interval. This would also allow the time interval to be
changed to a longer or shorter interval than 1 minute.

Table 1 – Baseline performances
Services Arbitrator requests Aggregated requests

Mail 6.5 17.6
Web 8.0 31.1

 4

D. DEFENSE STRATEGY

We use the defense in depth approach while designing
the defense strategy. We configured multiple levels of
defense at the router, IPTables and at the application
level. Following sections describe the defense strategy in
detail. We used both a proactive and reactive defense
strategy.

A. Defense At The Network Level
We wanted to ensure that network and application will

not become the vulnerable point during an attack. Since
we were not supposed to patch any of the hosts and
applications we put our best effort to put maximum
defense at the network level. Basically, the router is used
to provide general security protection. And IPTables is
used to protect more important services.

Routers
We first protected the router itself and then configured

Access Control Lists (ACLs) for other services.
Since more services open more vulnerabilities, our first

security policy was to disable any unnecessary service
on the router. For example, IP redirect is not useful in
our network environment. However, this function is
turned on in the router. It can amplify SMURF or
FRAGGLE attacks or used to set up Man-in-the-Middle
attacks. Turning off such functions removes potential
vulnerabilities without affecting legitimate traffic.

Additionally, the router used in our network does not
support SSH. Since the communication using Telnet is
not encrypted, our router was set up to only accept
remote login from the specific machine in our network.

Routers mainly operate on IP layer and are used to
route the packets according their destinations. Lots of
security features are implemented in routers. One of the
most important features is the use of ACLs. The basic
function of ACLs is to look at source and possibly
destination IP addresses to make sure that only packets
from/to authorized users are allowed to go through.
Furthermore, an extended ACL can filter the packets
based on the network protocol used, TCP/UDP source
or destination port number, or ICMP types. Take Cisco
router as an instance. Following configuration shows that
the router only allows web traffic from 10.1.0.0/16 to
host 10.2.4.254.
access-list 110 permit tcp 10.1.0.0 0.0.255.255
host 10.2.4.254 eq www
Deny any any

Another security feature is route-map, which is similar
to access list. It is used when the route, that a packet
takes needs to be altered. Normally, it uses ACLs to

define the conditions. When the conditions are met, an
action can be taken. Actions are defined using set
commands and can be used to modify the packet or
routes. In this exercise, we use route-map to filter
unwanted routes learned from BGP to prevent prefix
hijacks. Normally, prefix hijacks can be easily achieved
by announcing a more specific route. For example, in our
exercise environment, AS3 can hijack our traffic from to
AS1 by advertising 10.1.0.0/17 and 10.1.128.0/17 to our
router. Since these two routes are more specific than the
route we learn from AS1, by longest match rule, our
router will pick the routes learned from AS3. In this case,
AS3 successfully hijacks all our traffic to AS1. To
prevent the above hijack, we set up following rule using
route-map.
A route announced by peer p will be accepted if
and only if the ip space contained in the route
falls into the ip space owned the by p.

Note that under above rule, if the link or the BGP
session between AS2 and AS1 is broken, the traffic from
AS2 to AS1 will be lost and vice verse. The reason is
that AS2 will never believe the route about AS1’s IP
space announced by AS3.

Besides filter routes learned from BGP, we use ACLs
to control the incoming traffic and the traffic to each
subnet. Since we separate each service into different
subnets, we apply ACLs on the interfaces connecting the
service server. For example, only DNS traffic is
forwarded out to the interface connecting DNS server’s
subnet. In this way, even if one of the servers is
compromised, it is still hard for attacker to use that
server to attack the other legitimate servers.

Nowadays, lots of attacks are based on spoofing the
source IP address in the packets. In this way, attackers
can either make themselves hard to be detected or easily
launch a DoS attack.

To mitigate the problem caused by forged IP
addresses, Cisco provides a nice feature called Unicast
Reverse Path Forwarding (RPF) [10]. Basically, Unicast
RPF is applied on an interface. The router examines all
packets received as input on that interface to make sure
that the source address and source interface appear in
the routing table and match the interface on which the
packet was received. If they do not match, the packets
will be dropped. Unicast RPF is useful when the path
between source and destination is in symmetry. In our
network topology, although each BGP router connects to
the other 3 routers by one interface, we can still remove
the forged prefixes not in the allocated IP space.

 5

IPTables
Before configuring any rules a network scan was

performed on all the hosts in the network using Nessus
vulnerability scanner [6]. This network scan reviled some
of the services that were running without our knowledge.
Some of those include; sunrpc running on TCP/UDP port
111, FTP and TFTP that we forgot to disable, unknown
service running on TCP/UDP port 814, mdns on UDP
port 5353, POP3S on TCP port 995, swat on TCP 901,
etc. Most of the services that we could disable were
stopped and for other services specific REJECT rules
were added to IPTables. Default policy was to block
everything. Since we did not require running FTP and
TFTP during attacks those services were disabled. Host3
added additional protection to web server by having
another security layer. Only web requests were
forwarded to the web server. Table 2 summarizes
IPTable rules for each host. After applying IPTable rules
and enabling SeLinux on Host1-4 another vulnerability
scan was performed to make sure that the defenses
were in place.

B. Defense At The Application Level
Although we were not able to patch any of the

services we were able to put some constrains at the
application level by using some of the built in features in
individual services.

In order to ensure fault tolerance a secondary DNS
server was installed. This DNS was configured not to
accept any zone transfers other than from the primary
DNS server.

The mail server was configured to relay mails only
within AS2 IP addresses. Mails that were sent to unused
accounts were immediately rejected to prevent any
resource utilization. The server was configured to access
only 50 concurrent mail connections (although we saw it
can handle more than 90 connections) and parallel
delivery limit to same destination was set to 10. These
were done to prevent the server from being overloaded
during an attack. In order to prevent the mailboxes from
filling the hard disk, mails were deleted in every 60
seconds and deferred queue was flushed every 3 hours.
Mail log was also rotated in every 3 hours.

The Apache web server has some built in features that
we used to try and make or web server more robust to
an attack. A 30 second timeout directive on send and
receive connections was set. This directive determines
that a connection will time out after 30 seconds due to
one of three reasons; a late GET request, time between
TCP packets on a POST or PUT request exceeded, or
time between ACKs on TCP packet responses
exceeded. This prevents an unresponsive or latent
connection from being kept open and occupying idle
server processes.

The MaxKeepAliveRequests directive was set to a
value of 50. This only allowed 50 requests on a persistent
connection. This prevents large number of persistent
connections from dominating all the connections to the
server by continually making a request and using up
server resources. Although in the real world this would
inhibit performance to some clients, but it allows a
greater number of clients a share of the server’s
resources.

Finally MaxAliveTimeout directive was set. This
directive will timeout a persistent connection if a new
request is not made within the given timeout value. The
value was set to 15 seconds to prevent an inactive
connection from occupying the server resources.
 These different rate limits were set in an attempt to
prevent the resources of the mail and web server from
being dominated under an attack by malicious clients
resulting in a denial of service to legitimate clients.

C. Network Monitoring
In a defense scheme, detecting anomaly in time is a

prerequisite condition to reduce the effect of an attack.
Furthermore, the monitoring data is also useful for us to
analyze the behavior of attacks and track back to the
attackers.

We planned to defend our network during an attack
using several approaches. Before we put any dynamic
controls on the network or applications we need to

Table 2 – Summary of IPTable rules

Host Rules

Common
rules

SSH only with AS2 network and gateway machine
Outgoing DNS, ICMP ECHO, DHCP requests
One ICMP ECHO replies per second

Host1
Incoming DNS requests only
Outgoing mail and web for clients
20 TCP SYN per second

Host2
Incoming mails only
Outgoing mail and web request for clients
50 TCP SYN per second

Host3

Incoming DNS requests only, zone transfer only from
primary server
Outgoing mail and web for clients
Forwarding only web traffic to Host4
20 TCP SYN per second

Host4
Incoming web requests only
Outgoing web for clients
50 TCP SYN per second

 6

understand what is going wrong in the network. With that
objective we install two traffic analysis tools MRTG and
ntop. Initially we had MRTG installed and it monitors
SNMP statistics from SNMP -capable devices. In this
exercise, we monitor our incoming and outgoing traffic
and provide traffic breakdown by application layer
protocols. Additionally, we use MRTG to check each
server’s resource load, such as CPU utilization, memory
utilization, and the number of TCP connections, etc. The
drawback of MRTG is that it cannot reflect traffic
change in time since it collects data every 5 minutes.
Because of this delay we used ntop. The ntop provides
more instantaneous response of network traffic,
therefore ntop was preferred over MRTG. The
drawback of this approach is that we cannot directly
distinguish incoming traffic from outgoing traffic.

We also installed an Intruder Detection System (IDS)
to further support our attack detection. Snort [4] was
selected since it was much easier to configure and use
than some of the other similar products. All traffic
through the switch was mirrored into Host6 to be
monitored by Snort. Snort was configured in alert
mode using a basic set of rules provided by the Snort
website. All alerts generated by snort were then sent to
a log to be monitored during the attack.

Some of the rules included in the basic configuration
were: DoS, DDoS, SMTP, Telnet, ICMP, SNMP,
attack-response, web-client, FTP, and other-IDS rules.
Rules were picked trying to anticipate the basic possible
attacks on our network. Snort was able to detect most of
the attacks during the vulnerability scan on our own
network.

D. Plans For Defending While Under Attack
We were connected to all the hosts and router through

the terminal and remotely so that we can easily manage
any issues on the machines, services and router. We
were depending on Snort, ntop, mail and web logs to give
us some hints while we were under attacked. We were
planning to put rate limits at the router based on attacks
that we detected. Similarly we also had some IPTable
template rule s to quickly block or rate limit detected
attacks. We also identified some parameters in the web
and the mail servers that we could change in order to
reduce the effect of the attack. Examples include
blocking email having a specific header or body, rate
limiting concurrent connections and changing timeouts.

E. OBSERVATIONS UNDER ATTACK

We were attacked by AS3. During the attack, our
router stopped responding to any requests from our
terminal that connects to the router through the console
port. However, our monitor did not detect any anomalous
traffic. Our conjecture is that attackers were sending lots
of packets, such as TCP SYN packet and Telnet
requests to the router. Those packets were blocked by
our security policy. In order to check if the incoming
packets match a given rule or not, the router has to look
into the TCP header in each and every packet. These
operations took too much CPU utilization and eventually
reduced packet forwarding to a very low value.

Since we did not set up our monitor before the router,
we cannot verify our conjecture. After the presentations,
the attackers verified our conjecture.

Unfortunately, Snort did not generate any useful alerts
during the attack. This could have been due to a couple
of reasons. Not enough traffic was able to pass through
the router into the switch during the attack. In this case,
there were not enough attack packets reaching the Snort
machine to signal an alert. Another reason could have
been the snort rules were not configured for the types of
attacks made on our network.

There was a drop in traffic indicated by ntop. Both
web and mail log did not reveal any suspicious behavior.
Later it was reviled that attackers did perform a form of
Shrew [1] attack on our mail and web servers however
the attack die after the first 2 minutes. This is clearly
visible in figure 3.

A. Performance under attack
During the attack we observed a significant decrease

in services. The router was our first line of defense
against an attack, but turned out to be our downfall.
This became evident during the attack as the router
became unresponsive to Telnet and management

Table 3 – Measurements by arbitrator (success/second)

Attack
Service AS Baseline

AS3àAS2 AS2àAS1 AS1àAS3

1 6.4 6.8 1.8 1.7

2 6.5 2.3 6.5 4.8

e-mail

 3 7.2 4.2 7.3 6.4

1 8.6 8.7 1.8 3.9

2 8 2.7 8.1 6.8

Web

 3 8.8 5.7 8.8 2.3

 7

console. During the attack we attempted to log into the
router and set rate limits on the traffic originating from
AS3, but were unable to connect to the router. The
router was too busy analyzing and applying security rules
rather than forwarding traffic. Since the router was fairly
old it did not have much processing power therefore all
its resources were utilized much faster.

The affects of AS3’s attack can be seen in Table 3
which shows the measurements recorded by the
arbitrator. The 3rd column is a baseline average recorded
over a 10 minute interval before any attacks were
launched and traffic had a chance to stabilize. The next 3
columns represent the recorded averages over a 10
minute time period during each of the 3 attacks:

Attack 1 – AS3 attacked AS2
Attack 2 – AS2 attacked AS1
Attack 3 – AS1 attacked AS3
All figures represent the average successful requests

per second at the end of the 10 minute time frame as
averaged over the entire time frame.

As can be seen in Table 3, the 10 minute average for
web requests dropped from the baseline of 8 successful
requests per second to 2.7 requests per second. The
average for sent emails dropped from the baseline of 6.5
successful transmissions per second to 2.3 successful
transmissions per second. However like some of the
other ASs our service rate never went to 0. This data is
a bit misleading since the arbitrator has an accumulative
average.

As the attack progressed the performance of the
network degraded significantly. Fig. 3 shows the results
from the clients in AS1 which continued to try and send
requests to AS2 during the attack.

As can be seen, the performance of the servers
degraded to 0 during the last few minutes of the attack.
The graph shows a curious peak during the attack where

the network appears to almost return to normal. The only
explanation we can offer is AS3 tried to launch a type of
Shrew attack. Shortly into the attack period AS3
reported their Shrew attack failed and stopped running.
We surmise this could have led to the spike in network
performance before AS3’s other attacks were able to fill
the void and shutdown our network.

Upon examination of our web and mail server logs,
there were some successful requests made during the
last minutes of the attack. This shows a limited number
of requests were able to pass through the router to the
web and mail server. However, these successful
requests originated mainly from the arbitrator at AS4 and
a few request originated from AS3, but none of the
requests originated from AS1 as reflected in their data
and this was also visible in our logs. This accounts for the
discrepancies between the arbitrator and AS1. The
arbitrator was able to make some successful requests
during the attack, but AS1 was not. We do not have an
answer for these discrepancy.

Fig. 4 shows the successful requests from our server
logs based on requests made by the arbitrator. Table 3
shows that during AS3’s attack on AS2, the arbitrator’s
success rate to AS3 dropped significantly. The success
rate for email dropped from the baseline of 7.2 per
second to 4.2 per second and the web success rate
dropped from 8.8 per second to 5.7 per second. We
believe this suggests that AS3’s attack was having a
negative effect on their own network and degrading the
performance of their own services.

An interesting note, the Apache log shows AS1 was
initiating approximately 16.6 requests per second versus
8.9 average requests per second from AS3. AS1’s
requests were almost twice the number of requests from
AS3 and much greater than the specified approximate 10
requests per second. It appears AS1 was running 2 hosts

Fig. 3. AS3 attack on AS2 as observed by AS1 Fig. 4. AS3 attack on AS2 as observed from log files

 8

each making approximately 10 requests per second
instead of the 10 total requests.

None of the requests from AS1 were answered
successfully in the last minutes of the attack unlike some
of the successful requests of AS3 and AS4. We were
not able to derive a conclusive reason for this behavior.

F. ATTACK STRATEGY

We crafted an attack that consists of a Shrew attack
and TCP SYN and Reset attack.

A. Shrew Attack
We attempted to implement a shrew [1] attack on

AS1. Shrew is an attack which exploits TCP’s
retransmission timeout mechanism. The shrew attempts
to congest a network with a burst of packets long enough
to cause a TCP connection to enter timeout. The shrew
attack will then stop transmitting for the timeout period
before sending another congestion causing burst of
packets. By sending the attack in bursts, the shrew
minimizes the total throughput of the attack. Yet it still is
able to cause a disruption in the TCP connections without
a large flood of attack packets, allowing it to minimize its
chance of detection.

In our shrew attack, we used PackIt [5] to craft attack
packets of maximum size in order to try and cause
congestion in the network being attacked. We attempted
to create a burst of packets of length 0.1 seconds as
suggested in [1]. Several trials were performed with
PackIt to see how many packets of maximum size could
be sent in one second and then this number was divided
by 10 to try and create a 0.1 second burst of packets. It
was determined over the trials that 9000 – 9100 packets
were sent per second at full rate. A burst size of 91
packets was decided upon to create an approximate 0.1
second burst of packets.

Next a timeout between burst was set at 1 second
following the results given in [1]. This timeout resulted in
an approximate 15 - 20 percent decrease in successful
responses using the arbitrator on Host4 as a measure.
In order to try and achieve an increase in the affect of
the attack, the timeout period was cut in half to 0.5
seconds which resulted in similar results in [1]. This
appeared to increase the effectiveness of the attack in
the few trails that were performed in the limited time we
had left.

To increase the effectiveness of our attack, 2 types of
packets were used in the attack in order to try and
maximize the congestion in the network being attacked.
This was also done in an attempt to avoid any defensive
measures by the network being attacked by choosing

common packet types for services implemented in the
attacked network. The first set of attack packets were
TCP SYN packets sent to TCP port 80 (HTTP), and the
second set of attack packets were UDP packets sent to
UDP port 53 (DNS).

Since the other two ASes had replicated their services
across all of their hosts, both types of packets were sent
to each of their hosts. To try and further limit the
possibility of detection and any rate limiting that may
have been applied by the AS, each attack packet flow
had a different crafted source IP address, either from
AS2 or AS3.

In the few trials that were able to be preformed, the
attack seemed to have a significant affect on AS1, but it
is unknown if this was actually the intended result of the
attack or the result of the router not being able to handle
the burst of packets. Further trials and measures would
be needed.

B. TCP SYN Reset On Router
A simple TCP SYN and Reset attack was done to

AS1’s router. The attack was directed towards the BGP
port (TCP 179) of the router. A total of 10000 attack
packets were sent at a burst of 10 packets. The source
IP was spoofed to one of the AS1’s mail servers since
we knew it was slow in handing mails. So we wanted to
make it even slower by asking it to handle packets that it
didn’t send. Following command was used to generate
the attack packets using PackIt.
packit -s 10.1.0.5 -d 10.1.0.1 -S 403 -D 179 -

F SR -q 12345678910 -c 10000 -b 10
We do now have an idea of how successful the attack

was. This was not a well prepared attack it was just
written on the fly because we were not sure about the
effectiveness of Shrew attack. However we assume that
least it kept the victim router busy.

C. Performance under attack
Our attack on AS3 resulted in a significant decrease in

the performance of their services. The 3rd column of
Table 3 shows the results of the successful request from
the arbitrator on AS4 during our attack on AS1. As can
be seen, after the 10 minute attack period, their average
successful email rate dropped from 6.4 per second to 1.8
per second. The average successful web request
dropped from 8.6 per second to 1.8 per second. Once
again this is an average over the 10 minute attack period
and does not truly show the total effects of the attack.

During the attack, AS1 was forced to unplug their
router from the network in order to log into it, in an
attempt to thwart the attack. It appears our attack had
the same effect as AS3’s attack had on us. Their router

 9

was not able to process the number of packets being sent
to them.

Fig. 5 shows the client logs from AS3 as they were
monitoring the successful requests from AS1 and AS2.
AS3 monitored both ASes together so the results are
aggregated between the 2 ASes. AS3 had a few time
points in their data with anomalous readings. The flat
spot in the middle of the graph had no useable data
points. These 2 factors made it hard to determine if the
decline in services was due to AS1’s lack of response
because of the attack from AS2 or factors with AS2.
However, a decline in services is shown.

AS2 was the only AS not to show degradation from
baseline while we launched our attack. AS1 and AS3
both showed a decline in successful requests from the
arbitrator during the launch of their own attacks. This is
because we only used 1 attack host and it was directly
connected to the router.

It was disappointing not to be able to see the actual
effects of out attack. We were very anxious to see if and
how effective our attacks would have been.

G. DISCUSSION

The router was our first line of defense against an
attack, but turned out to be our downfall. In hindsight
there were tw o misjudgments made on our part. The first
of which, the Snort box should have been placed in front
of the router to monitor and filter all incoming traffic.
This would have made it easier to detect and stop a
subsequent attack. Next, Snort could have been used to
monitor the packets coming into the network to manually
identify possible attacks. However, this might have been
practically impossible due to the amount of packets being
flooded into the network while it was under attack.

If Snort was configured in the filter mode, it might
drop enough attack packets so that the router would not
get overloaded.

Another solution would be to place a firewall in front
of the router. However this is not done in practice.
Although this can be done in an enterprise network it
would be impossible to place such a firewall in the
backbone network.

Even if we place firewalls and monitoring tools to
detect what is happening, if the attacker targeted these,
it still may not be effective. A more practical solution
would be to block such attack packets at the source
network.

It was hard to derive any concrete conclusions from
the data collected by each AS because they were so
different and we also saw that some hosts were not time
synchronized. Although we expected that the arbitrator
would give a clear picture of success rates it actually
gave accumulative average . Additional in the ASes,
success rates were calculated assuming that it does not
take any time to send data or pass logs however, this
was not the case. So the average values were not
accurate. This could have been prevented if a timer was
used and every AS computed averages based on the
same time frames. It could make the things much clearer
if baseline traffic measurements were taken in a much
earlier stage of the exercise.

Although our network topology was relatively simple to
other networks, we were able to handle larger traffic
volume and our attack did not disrupt the services. It
would have been nice to see how the IPTables handled
traffic if the router was not the bottleneck.

H. CONCLUSION

We built a simple administrative domain with some of the
common servers with security in mind. Then layered
security measures were put in place and we also
attacked another AS. Through this exercise we realized
that even protecting a simple network is not easy, even if
you have all the defenses in place. Theory is different
from the reality (as shown by our router) there is always
a possibility of an unexpected vulnerability.

References
[1] [1] A Kuzmanovic and E W Knightly. Low-Rate TCP-

targeted Denial of Service attacks (The Shew vs. the Mice and
Elephants), SIGCOMM 2003, Germany, Aug. 2003.

[2] ntop – Network top, http://www.ntop.org
[3] The Multi Router Traffic Grapher (MRTG) -

http://oss.oetiker.ch/mrtg/
[4] Snort - http://www.snort.org/

Fig. 5. AS2 attack on AS1 as observed by AS3

 10

[5] Packet toolkit (Packit) -
http://www.intrusense.com/software/packit/

[6] Nessus vulnerabilit y scanner - http://www.nessus.org/
[7] Wireshark - http://www.wireshark.org/
[8] TCPDump - http://www.tcpdump.org/
[9] IPTables - http://www.netfilter.org/
[10] Unicast Reverse Path Forwarding –

http://www.cisco.com/univercd/cc/td/doc/product/software/ios111/cc
111/uni_rpf.htm

