
File Sharing to Resource Sharing

– Evolution of P2P Networking

Anura P. Jayasumana

Electrical & Computer Engineering,

Colorado State University,

Fort Collins, CO 80525

Slides by Dilum Bandara and Anura Jayasumana

Outline

 File sharing

 Unstructured vs. structured overlays

 Performance enhancements

 More state, caching, replication

 Opportunities & challenges

 Streaming

 Tree-push vs. mesh-pull

 Opportunities & challenges

 Resource sharing

 Collaborative P2P

 Resource aggregation

 Opportunities & challenges

2

Peer-to-Peer (P2P) Systems

 Distributed systems without any central control

 Autonomous peers

 Equivalent in functionality/privileges; Both a client & a server

 Protocol features

 Protocol constructed at the application layer

 Overlaid on top of Internet

 Typically a peer has a unique identifier

 Supports some type of message routing capability

 Fairness & Performance
 Self-scaling

 Free-rider problem

 Peer Churn

3

Internet

P2P Applications

 Many application

domains

 File sharing – BitTorrent,

KaZaA, Napster,

BearShare

 IPTV – PPLive,

CoolStreaming, SopCast

 VoIP – Skype

 CPU cycle sharing – SETI,

World Community Grid

 Distributed data fusion –

CASA

 Impact of P2P traffic
 In 2008 – 50% 2009- 39% of

total Internet traffic (2014-

17%)

 Today – Volume still growing

 3.5 Exabytes/month (4 in

2014)

 globally, P2P TV is now over

280 petabytes per month

 P2P traffic 20 percent of all

mobile data traffic globally

4

[Hyperconnectivity and the

Approaching Zettabyte Era,

Cisco 2010]

P2P Characteristics

 Tremendous scalability

 Millions of peers

 Globally distributed

 Bandwidth intensive

 Upload/download

 Many concurrent connections

 Aggressive/unfair bandwidth utilization

 Aggregated downloads to overcome asymmetric

upload bandwidth

 Heterogeneous

 Superpeers

 Critical for performance/functionality

5

Internet

P2P Overlay

 Peers directly talk to each other, or if they are

not directly connected, uses overlay routing

mechanism via other peers

 Best effort service on Internet

 Peers are autonomous

 Determines its own capabilities based on its

resources (minimum threshold of resources)

 Decides on its own when to join, leave

 Peers have symmetrical roles (relaxed in

cases such as superpeer)

 Overlay is scalable and resilient

 In size, geography

 Graceful degradation, ensure connectedness when

nodes leave, etc.

 Overlay Maintenance

 Overlay has to be self-organizing (overlay

management is done in a distributed manner)

6

Internet

Terminology

 Application

 Tier 2 – Services provided to end

users

 Tier 1 – Middleware services

 Overlay

 How peers are connected

 Application layer network

consists of peers

 E.g., dial-up on top of telephone

network, BGP, PlanetLab, CDNs

 Underlay

 Internet, Bluetooth

 Peers implement top 3 layers

7

Application – Tier 2
File sharing, streaming, VoIP, P2P clouds

Application – Tier 1
Indexing/DHT, Caching, replication, access

control, reputation, trust

Overlay
Unstructured, structured, & hybrid

Gnutella, Chord, Kademlia, CAN

Underlay
Internet, Bluetooth

Overlay Connectivity

8

P2P Overlay

Unstructured

Deterministic

Napster

BitTorrent

JXTA

Nondeterministic

Gnutella

KaZaA

Structured

Sub-linear state

Chord

Kademlia

CAN

Pastry

Tapestry

Constant state

Viceroy

Cycloid

Hybrid

Structella

Kelip

Local minima
search

Bootstrapping

 How is an initial P2P overlay is formed from a set of nodes?

 Use a well known server to register initial set of peers

 Some peer addresses are well known

 Use a well known multicast group address for peers to join

 A well known domain name

 Use a local broadcast to collect nearby peers, and merge such sets to

larger sets

 Each peer maintains a random subset of peers

 e.g., peers in Skype maintain a cache of superpeers

 An incoming peer talks to one of the known peers

 A known peer accepting an incoming peer

 Keeps track of the incoming peer

 May redirect the incoming peer to another peer

 Give a random set of peers to contact

 Discover more peers by random walk or gossiping within overlay 9

Resource Discovery Overview

10

Centralized
O(1)

Fast lookup

Single point of failure

Unstructured
O(hopsmax)

Easy network maintenance

Not guaranteed to find resources

Distribute Hash Table (DHT)
O(log N)

Guaranteed performance

Not for dynamic systems

Superpeer
O(hopsmax)

Better scalability

Not guaranteed to find resources

Centralized – Napster

 Centralized database for

lookup
 Guaranteed content

discovery

 Low overhead

 Single point of failure

 Easy to track

 Legal issues

 File transfer directly

between peers

 Killer P2P application
 June 1999 – July 2001

 26.4 million users (peak)
11

Unstructured – Gnutella

 Fully distributed

 Random connections

 Initial entry point is

known

 Peers maintain dynamic

list of neighbors

 Connections to multiple

peers

 Highly resilient to node

failures

12

Unstructured P2P (cont.)

 Flooding-based lookup
 Guaranteed content discovery

 Implosion High overhead

 Expanding ring flooding

 TTL-based random walk
 Content discovery is not

guaranteed

 Better performance by biasing

random walk toward nodes with

higher degree

 If response follow same path

 Anonymity

 Used in KaZaA, BearShare,

LimeWire, McAfee

13

D

S

D

s

Flooding

Random walk

Superpeers

 Resource rich peers

Superpeers

 Bandwidth, reliability, trust,

memory, CPU, etc.

 Flooding or random walk

 Only superpeers are

involved

 Lower overhead

 More scalable

 Content discovery is not

guaranteed

 Better performance when

superpeers share list of

file names

 Examples: Gnutella V0.6,

FastTrack, Freenet KaZaA,

Skype

14

s D

Scale-Free Overlays

 Unstructured overlays can lead to

scale-free networks

 New nodes connect to

 Existing nodes

 Higher degree nodes

 Specific implementations may set

limits on node degree

 e.g., LimeWire maintains 27-32

connections

 User modified code increases connectivity

 Can be used to enhance P2P lookup

 Index at high degree nodes

 Biased random walk towards to high-

degree nodes 15

[Stutzbach, 2008]

BitTorrent

 Most popular P2P file sharing

system to date

 Features

 Centralized search

 Multiple downloads

 Enforce fairness

 Rarest-first dissemination

 Incentives

 Better contribution Better

download speeds (not always)

 Enable content delivery

networks

 Revenue through ads on search

engines

16

User

Trackers

Web-based
search engine

Content
owner

Keyword search

.torrent file
server

Download
.torrent file

Get list of
peers

Download/
upload
chunks

BitTorrent Protocol

 Content owner creates a

.torrent file

 File name, length, hash,

list of trackers

 Place .torrent file on a

server

 Publish URL of .torrent

file to a web site

 Torrent search engine

 .torrent file points to a

tracker(s)
 Registry of leaches &

seeds for a given file

17

User

Trackers

Web-based
search engine

Content
owner

Keyword search

.torrent file
server

Download
.torrent file

Get list of
peers

Download/
upload
chunks

1

2

3

4
1

2

3
4

BitTorrent Protocol (cont.)

 Tracker

 Provide a random subset

of peers sharing same file

 Peer contacts subset of

peers parallely

 Files are shared based

on chunk IDs

 Chunk – segment of file

 Periodically ask tracker

for new set of IPs

 Every 15 min

 Pick peers with highest

upload rate

18

User

Trackers

Web-based
search engine

Content
owner

Keyword search

.torrent file
server

Download
.torrent file

Get list of
peers

Download/
upload
chunks

1

2

3

4
1

2

3
4

BitTorrent Terminology

 Swarm

 Set of peers accessing

(upload/download) same

file

 Seeds

 Peers with entire file

 Leeches

 Peers with part of file or

no file (want to download)

19 www.kat.ph

BitTorrent Site Stat

20

User ranking

of file quality

Seedpeer.com

www.kat.ph/stats/

Files in search

engine

User verified to

be valid

Across all files

Search Cloud

BitTorrent Content Popularity

 Few highly popular content

 Moderately popular

content follow Zipf’s-like

distribution

 Typical Zipf’s parameter

0.5-1.0

21

Number of occurances/queries (x) (log)

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

N
o
 o

f
s
e
a
rc

h
 t
e
rm

s
 w

it
h
 >

 x
 o

c
c
u
ra

n
c
e
s
 (

lo
g
)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

fenopy.org

y = 1.96 - 1.024x, r2 = 0.98

Number of occurances/queries (x) (og)

2.4 2.6 2.8 3.0 3.2 3.4 3.6

N
o
 o

f
s
e
a
rc

h
 t
e
rm

s
 w

it
h
 >

 x
 o

c
c
u
ra

n
c
e
s
 (

lo
g
)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

youbitTorrent.com

y = 4.71 - 1.88x, r2 = 0.98

Number of occurances/queries (x) (log)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

N
o

 o
f
s
e

a
rc

h
 t
e

rm
s
 w

it
h

 >
 x

 o
c
c
u

ra
n

c
e

s
 (

lo
g

)

-7

-6

-5

-4

-3

-2

-1

0

Dataset1 - kickasstorrents.com

y = 0.96 - 1.51x, r2 = 0.98

Toy Story 3

DVD release date

June 18, 2010

[Bandara, 2012b]

BitTorrent Characteristics

 Flash crowd effect

 Asymmetric bandwidth

 Most peers leave after

downloading

 Diurnal & seasonal

patterns

22

Flash crowd

Download

speed

Session length

[Zhang, 2009]

BitTorrent Evolution

23

BitTorrent

Global community
Islands of communities

Connected islands of

communities

BitTorrent ver. 4.2

BitTorrent Communities

 Many communities emerged based on similarity

 Semantic – songs, video, games, Linux distributions

 Geographic – China, India

 Organizational – private communities

 Run their own trackers

 Many islands of deployments

 Not isolated

 Have to search in many trackers

 v4.2.0 – connect peers using a Distributed Hash Table (DHT)

 Many private communities

 Require invitation to join

 Require login

 Today, BitTorrent Hierarchical + DHT
24

BitTorrent Communities (cont.)

 Similarity among communities

25

Community EX FE SP TB TS TE TR

FE 0.38

SP 0.00 0.00

TB 0.40 0.29 0.00

TS 0.48 0.33 0.00 0.48

TE 0.53 0.23 0.00 0.31 0.25

TR 0.10 0.08 0.00 0.06 0.09 0.06

YB 0.36 0.35 0.00 0.29 0.42 0.20 0.04

* EX – extratorrent.com, FE – fenopy.com, SP –

seedpeer.com, TB – torrentbit.net, TS – torrentscan.com, TE

– torrentsection.com, TR – torrentreactor.net, YB –

youbittorrent.com. Date – 24/07/2010 ~04:55 UTC.

[Bandara, 2011a]

BitTorrent Fairness/Incentives
 Tit-for-tat

 Bandwidth policy

 Upload to 4 peers that give me the

highest download bandwidth

 1 random peer

 Create clusters of similar

bandwidth peers [Legout, 2007]

 Chunk policy

 Rarest first

 Download least popular chunk

 Initial seed try not to send same

chunk twice

 Most peers leave immediately

after downloading

 Modified nodes increase free

riding

 Modified policies

 Message Types

 Choke/Unchoke

 Interested/Not_intere

sted

 Have

 Bitfield

 Request

 Piece

 Cancel

26

Summary – Unstructured P2P

 Separate content discovery & delivery

 Content discovery is mostly outside of P2P overlay

 Centralized solutions

 Not scalable

 Affect content delivery when failed

 Distributed solutions

 High overhead

 May not locate the content

 No predictable performance

 Delay or message bounds

 Lack of QoS or QoE

27

Structured P2P

 Deterministic approach to locate contents & peers

 Locate peer(s) responsible for a given key

 Contents

 Unique key

 Hash of file name, metadata, or actual content

 160-bit or higher

 Peers also have a key

 Random bit string or IP address

 Index keys on a Distributed Hash Table (DHT)

 Distributed address space [0, 2m – 1]

 Deterministic overlay to publish & locate content

 Bounded performance under standard conditions

28

Terminology

 Hash function

 Converts a large amount of data into

a small datum

 Hash table

 Data structure that uses hashing to

index content

 Distributed Hash Table (DHT)

 A hash table that is distributed

 Types of hashing

 Consistent or random

 Locality preserving

29

f()

f()

f() g()

g()
g()

Structured P2P – Example

 2 operations

 store(key, value)

 locate(key)

30

Ring – 16 addresses

Song.mp3

Cars.mpeg

f()

f()

Find cars.mpeg

n + 2i – 1, 1 i m

Successor

11 Song.mp3

6 Cars.mpeg

O(log N) hops

Chord [Stoica, 2001]

 Key space arranged as a ring

 Peers responsible for segment of

the ring

 Called successor of a key

 1st peer in clockwise direction

 Routing table

 Keep a pointer (finger) to m peers

 Keep a finger to (2i – 1)-th peer, 1 ≤ i ≤ m

 Key resolution

 Go to peer with the closest key

 Recursively continue until key is find

 Can be located within O(log n) hops

31

m =3-bit key ring

Chord (cont.)

 New peer entering overlay

 Takes keys from the successor

 Peer leaving overlay

 Give keys to the successor

 Fingers are updated as peers join & leave

 Peer failure or churn makes finger table entries stale 32

New peer with key 6 joins the overlay Peer with key 1 leave the overlay

Chord Performance

 Path length

 Worst case O(log N)

 Average ½log2N

 Updates O(log2 N)

 Fingers O(log N)

 Alternative paths (log N)!

 Balanced distribution of

keys

 Under uniform distribution

 N(log N) virtual nodes

provides best load

distribution

33

Kademlia [Maymounkov, 2002]

 Used in BitTorrent, eMule, aMule, & AZUREUS

 160-bit keys

 Nodes are assigned random keys

 Distance between 2 keys is determined by XOR

 Routing in the ring is bidirectional

 dist(a b) = dist(b a)

 Enable nodes to learn about new nodes from received messages

 Keys are stored in nodes with the shortest XOR distance

34

Kademlia (cont.)

 k-bucket routing table

 Store up to k peers for each (2i, 2i+1) distance, 1 ≤ i ≤ m

 Update bucket entries based on least-recently seen approach

 Ping a node before dropping from a bucket

 Better performance under peer churn & failure

35

Node with key 0110 keeps k

entries for

• 1xxx/1

• 00xx/2

• 010x/3

• 0111/4

1 0

0

0

0

0

0

0

0

0 0

1

1

1

1

1

1 1
1

1

Kademlia Routing

 Find set of peers with the shortest distance in routing table

 Longest prefix match

 Concurrently, ask α of them to find an even closer peer

 Iterate until no closer peers can be found

 Then send the query to α closest peers

36

1 0

0

0

0

0

0

0

0

0 0

1

1

1

1

1

1 1
1

1

Structured P2P – Alternate Designs

37

d-Torus
Content-Addressable Network (CAN)

[Ratnasamy, 2001]

(0, 0)

(1, 0)

(0, 0)

(0, 1)

Zone
controller

(0.1,0.9)

(0.3,0.4)

(0.4,0.8)

(0.75,0.2)(0.35,0.1)

(0.65,0.7)

(0.8,0.4)

(0.8,0.8)

(0-0.5, 0-0.5)

(0.5-1, 0-0.5)

(0-0.5, 0.5-1)

(0.5-1, 0.5-0.75)

Cube connected cycle
Cycloid [Shen, 2006]

Structured P2P – Extensions

 EpiChord [Leong, 2004]

 Use messages being forwarded

to learn about new nodes

 Cache their contact information

 Can achieve O(1) lookup

 Cannon [Ganesan, 2004b]

 Hierarchical DHT

 Each level in hierarchy maintains

a ring

 Merge rings at higher levels

 Maintain original fingers as it is

 Merging add few new fingers

 Many other designs for

specific applications 38

Amazon Dynamo [DeCandia, 2007]

 Highly-available key-value system

 Many large datasets/objects that only

require primary key access

 Shopping carts, better seller lists, customer

preferences, product catalogs, etc.

 Relational databases are not required, too

slow, or bulky

 Fast reads, high availability for writes

 Always failing servers, disks, switches

 Objects are replicated in successors

 All peers know about each other using

gossiping

 Can read/write to any replica

 Mechanisms to deal with different versions of objects

 39

Summary – Structured P2P

 Content discovery is within the P2P overlay

 Deterministic performance

 Chord

 Unidirectional routing

 Recursive routing

 Peer churn & failure is an issue

 Kademlia

 Bidirectional routing

 Parallel iterative routing

 Work better under peer failure & churn

 MySong.mp3 is not same as mysong.mp3

 Unbalanced distribution of keys & load
40

Summary (cont.)

41

Scheme Architecture Routing

mechanism

Lookup

overhead*

Routing

table size*

Join/leav

e cost

Resilience

Chord Circular key

space

Successor &

long distant links

O(log N) O(log N) O(log2 N) High

CAN d-torus Greedy routing

through

neighbors

O(dN1/d) 2d 2d Moderate

Pastry Hypercube Correct one digit

in key at time

O(logB N) O(B logB N) O(logB N) Moderate

Tapestry Hypercube Correct one digit

in key at time

O(logB N) O(logB N) O(logB N) Moderate

Viceroy Butterfly network Predecessor &

successor links

O(log N) O(1) O(log N) Low

Kademlia Binary tree, XOR

distance metric

Iteratively find

nodes close to

key

O(log N) O(log N) O(log N) High

Cycloid Cube connected

cycles

Links to cyclic &

cubical

neighbors

O(d) O(1) O(d) Moderate

* N – number of nodes in overlay, d – number of dimensions B – base of a key identifier

Structured vs. Unstructured

42

 Unstructured P2P Structured P2P

Overlay

construction
High flexibility Low flexibility

Resources Indexed locally Indexed remotely on a distributed

hash table

Query messages Broadcast or random walk Unicast

Content location Best effort Guaranteed

Performance Unpredictable Predictable bounds

Overhead High Relatively low

Object types Mutable, with many complex

attributes
Immutable, with few simple

attributes
Peer churn &

failure
Supports high failure rates Supports moderate failure rates

Applicable

environments
Small-scale or highly dynamic, e.g.,

mobile P2P
Large-scale & relatively stable,

e.g., desktop file sharing

Examples Gnutella, LimeWire, KaZaA,

BitTorrent
Chord, CAN, Pastry, eMule,

BitTorrent

Enhancing Lookup Performance

 Many fingers/pointers

 Caching

 Skewed popularity

 Reactive/passive

 Cache what you receive

 Proactive/active

 Demand based

 Community caching

 Replication

 Load balancing

43

Unstructured P2P –

Performance Enhancements

44

Content

locatable

Reduce path

length

Load

balancing

Distributed

statistics
• Capacity

• Popularity

• Failed queries

Consistency

Low key

movements

Goals Utilize

Heterogeneity

Skewed

popularity

Resilience

Reactive cache

ip

Local minima search

(Zhong, 2008)

P2R2

Push/pull

Unstructured P2P – Caching

 Passive/reactive caching

 Cache at query originator

 Minor improvement

 Active/proactive caching

 Cache along path

 Leads to (fk)
½ allocation

 fk – popularity of content k

 Relatively better lookup

 [Cohen, 2002] & [Lv, 2002]

45

Structured P2P –

 Performance Enhancements

Resilience

Reduce path

length

Load

balancing

Distributed

statistics
• Capacity

• Popularity

• No peers

Consistency

Low key

movements

Goals Utilize

Heterogeneity

Virtual nodes (VN)

Swap VNs

Skewed

popularity
Reactive cache

CAN replication

Beehive

PoPCache

Amazon’s Dynamo

Y0

Structured P2P – Caching

 Beehive [Ramasubramanian, 2004]

 Cache most popular keys everywhere

 2nd most popular at ½ of nodes

 3rd most popular at ¼ of nodes

 Assume Zipf’s popularity distribution

 Global popularity estimation

 Issues

 Unnecessary caching

 Not all nodes are interested in most

popular content

 Not all intermediate nodes are

involved in routing

 Works only with Zipf’s distribution

47

Structured P2P – Caching (cont.)

 PoPCache [Rao, 2007]

 Use overly routing tree to place

cache entries

 ck = fk B

 ck – cache capacity allocated to k

 Place cache entries from bottom of

routing tree

 Global popularity estimation

 More efficient than Beehive

 Issues
 Overlay routing tree is not symmetric

 ck can exceed N

 Use of upper bound O(log N)

48

Local Knowledge-based Distributed

Caching (LKDC)

 Each overlay node

 Independently decides what keys to cache based on number of

queries it forwards

 Tries to maximize number of queries it can answer

 NP-complete [Bandara, 2011d]

 Relaxed version of problem (namely GKDC) can be used

to determine

 Where to place cache entries?

 How many entries to place?

 GKDC says local statistics are adequate to decide what to

cache at a node

 Heuristic algorithm based on Least Frequently Used (LFU)

caching
49

Global Knowledge-based Distributed

Caching (GKDC)

 Where to place?

 At nodes that forward most

number of messages

 6, (4, 5), (0, 1, 2, 3), …

 How many?

 Place according to local

popularity

50

0

16

24 8

2

4

6

7

10

12

1418

26

22

20

28

30

6 5 31

7

3 23

4 2 30 22

0 28 20

24

8

16 12

26 18 14

1 29 21

25 17

10 9

13

27 19

11

15

16 4 28
1

4 28 1 4 2 1 2 1 1

112 112

1

4 2 1

12 1

1

1

1

1

5

10

10

5

1

Fingers

Longest path

else

),,(

)1(

if1

KlP

NlBf

lkN

c kk

[Bandara, 2011d]

Asymmetric routing tree

r
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s
 (

H
a

v
e
)

2.0

2.4

2.8

3.2

3.6

g(ck)

Continious, b = log21.5

GKDC - Sim

LKDC - Sim

Eq. (12)

Heuristic-Based LKDC – Performance

 Same performance as

PoPCache using

 Small caches

 Local statistics only

 Works with any skewed

distribution 51

Number of nodes (N)

1000 2000 3000 4000 5000

A
v
e

ra
g
e

 n
u

m
b

e
r

o
f

h
o

p
s
 (

H
a

v
e
)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

g(ck)

Continious, = log21.5
PoPCache

GKDC - Sim
LKDC - Sim

PoPCache - Sim

Zipf's parameter ()

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

h
o
p
s
 (

H
a

v
e
)

0

1

2

3

4

5

6

g(ck)

Continious, = log21.5

PoPCache

GKDC - Sim

LKDC - Sim

PoPCache - Sim

0

100

200

300

400

1 2 3 4 5 6 7 8 9 1011121314151617181920

Community-Aware Caching

 Many small P2P communities are

emerging

 Enhancing lookup
 Unstructured Restructure overlay

 Structured Cache only most popular

resources in entire system

 However
1. Communities are not isolated

2. Loose popularity due to aggregation

52
0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

+

Community EX FE SP TB TS TE TR

FE 0.38

SP 0.00 0.00

TB 0.40 0.29 0.00

TS 0.48 0.33 0.00 0.48

TE 0.53 0.23 0.00 0.31 0.25

TR 0.10 0.08 0.00 0.06 0.09 0.06

YB 0.36 0.35 0.00 0.29 0.42 0.20 0.04

[Bandara, 2011d]

Community-Aware Caching

 Goal – Reduce content mixing or

overlay restructuring
 Preserve popularity

 Each community forms a sub-

overlay
 Links to community members

 Sample nodes pointed by fingers to find

community members

 Forward messages through

community members
 Nodes can identify what’s popular

within their community

53

• By probing i-th finger & its

successor 2(i + 2 log N – m) - 1

nodes can be found

• Community of size M have M/2m –

i + 1 peers in the range of i-th

finger

Community-Aware Caching (cont.)

 Cache based on communities’

interest
 “What is important to me is also

important to other community members”

 “They may have queries it before me”

 Heuristic-based LKDC caching

algorithm

 Weighted LFU caching

 Local statistics only

 Pros
 Works with any structured overlay that

provide multiple paths

 Peers can be in any community

 Preserves path length bound O(log N)

54

Community-Aware Caching – Simulation

Setup

 15,000 nodes

 10 communities

 Chord overlay

 Simulated using OverSim

55

Community C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

No of nodes

(apx.)
600 600 600 1,200 1,200 1,200 1,200 1,200 2,400 4,800

Zipf’s parameter 0.85 0.95 1.10 0.5 0.80 0.80 1.0 0.90 0.90 0.75

No of distinct

keys
40,000 30,000 30,000 40,000 40,000 40,000 50,000 50,000 50,000 50,000

Similarity with

community (x)
0.2

(C8)
0

0.1

(C7)

0.2

(C9)

0.3

(C8)

0.5

(C7)

0

0.1

(C3)

0.5

(C5)

0.3

(C5)

0.2

(C1)

0.4

(C1)

0.2

(C4)

0.3

(C10)

0.3

(C9)

Queries for rank

1 key
4,516 8,535 17,100 603 6,454 6,454 21,059 11,956 23,911 17,030

Community

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

L
a
te

n
c
y
 (

m
s
)

0

500

1000

1500

2000

Random AS

GeographyAS

Community-Aware Caching – Results

 More popular communities

 48-53% reduction in path length

 Least popular community

 23% reduction (7% with caching)

 Geographic communities

 48-50% latency reduction
56

Community
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s

0

1

2

3

4

5

6

7

8

Chord

Caching

Community Caching

Time (seconds)
2000 2500 3000 3500 4000 4500 5000

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s

0

1

2

3

4

5

6

7

8

Chord

Passive Caching

Caching

Community Caching

Results (cont.)

 Significant performance with small

caches

 Caching threshold reduce cache

thrashing, & overhead

 Fast response to popularity

changes

57

Time (seconds)

2000 2500 3000 3500 4000 4500 5000 5500 6000

A
ve

ra
g
e
 n

u
m

b
e
r

o
f

h
o
p
s

4

5

6

7

8

Dcache = 0.11

Dcache = 0.12

Dcache = 0.13

Dcache = 0.14
Popularity inversion

Time (seconds)
2000 2500 3000 3500 4000 4500 5000

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
h
o
p
s

4

5

6

7

8

Dcache = 0.10

Dcache = 0.11

Dcache = 0.12

Dcache = 0.13

Dcache = 0.14

Dcache = 0.15

Cache size (Cn)
0 5 10 15 20 25

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
h
o
p
s
 (

H
a

v
e
)

0

2

4

6

8

Chord

Passive Caching

Caching

Community Caching

Load Balancing

 Swap nodes

 Overloaded node swap its overlay location with a resourceful node

 Load may exceed capabilities or any node Not scalable

 Virtual nodes

 A physical node appear as several virtual nodes

 Chord index table is balanced when there are N log N virtual nodes

 Increase lookup cost, e.g., Chord O{log (N log N)}

 Replication

 Save in multiple neighbors, e.g., Kademlia & CAN

 Doesn’t work with some overlays, e.g., Chord

 Caching

 Nodes that cache reduce query load on indexing node

 Doesn’t work well with mutable content and/or large indexes
58

Login Server

Superpeer
overlay

Skype

 Proprietary

 Encrypted control & data messages

 Many platforms

 Voice/video calls, instant

messaging, file transfer,

video/audio conferencing

 Superpeer overlay

 Related to KaZaA

 Based on bandwidth, not behind

firewall/NAT, & processing power

 Enables NAT & firewall traversal for

ordinary peers

59

Skype (cont.)

 30% superpeers

 Relatively stable

 Diurnal behavior

 Longer session length than typical

P2P - Heavy tailed 60

[Guha, 2006]

P2P as Publisher/Subscriber Services

 Rendezvous service for consumers

& producers

 File sharing, RSS feeds, mobility,

multicast, data availability in sensor

networks

 i3 – Internet Indirection

Infrastructure [Stoica, 2002]

 Packets have unique IDs

 Receive requests packets from DHT

 Unicast, anycast, multicast, mobility

 Many other application specific

solutions

61

Mobility

Multicast

[Stoica, 2002]

P2P Middleware – JXTA

 XML-based P2P protocol

specification
 Sun Microsystem – up to 2010

 Implementations for Java, C/C++, C#

 Many protocols
 Peer Discovery – Resource search

 Pipe Binding – Addressable messaging

 Peer Information – Monitoring

 Peer Resolver – Generic query service

 Peer Membership – Security

 Rendezvous – Message propagation

 Peer Endpoint – Routing

 Use any available protocol to

traverse firewalls/NATs
 HTTP, TCP 62

[Brookshier, 2002]

JXTA (cont.)

63

[Brookshier, 2002]

P2P Middleware in Windows

 Available since Windows XP
 Supports IPv6, IPV4 needs

tunneling

 Graphing
 Overlay connectivity maintenance

 Flooding based

 Grouping
 Peers groups

 Access control

 Distributed name lookup

 Peer identity management

 Applications
 Windows HomeGroup, Meeting

Space, Internet Computer Names 64

[Microsoft, 2006a]

NSP – Name Service Provider

PNRP – Peer Name Resolution Protocol

Windows Peer Name Resolution Protocol

 Scalable, secure, & dynamic

name resolution protocol

 P2P ID

 End-point identifier of an

application, service, user, group

 Circular ID space

 Service location

 Locally unique service ID

 Peers cache IDs of other peers

 Hierarchical like Kademlia

 Iteratively search for peer(s)

with shorter distance to

destination

65

[Microsoft, 2006b]

http://technet.microsoft.com/en-us/library/Bb726971.pnrp04(l=en-us).gif

P2P Simulators

 OverSim
 OMNeT++ based, GUI, C++

 Prebuilt (un)structured protocols

 Underlay support, e.g., GT-ITM

 oversim.org

 PeerSim
 Java based

 Fast cycle-based simulation

 Prebuilt (un)structured protocols

 peersim.sourceforge.net

 Overlay Weaver
 Emulator

 Java based, GUI

 Prebuilt (un)structured protocols

 overlayweaver.sourceforge.net 66

OverSim

Overlay Weaver

Challenges & Opportunities

67

Challenges Opportunities

P2P communities
• Identify, form, & maintain

Community-aware performance

enhancements
• Lookup, fast download, reputation, trust,

etc.

• Interest-based topology adaptation

• Capturing/using social relationship

among peers

Topology missmatch & ISP traffic

blocking
• P4P, ALTO

• User’s don’t like ISPs to suggest

Transparent selection of local peers
• User & ISP friendly designs

• Incentives

• Network coordinates

QoS & QoE Best effort deterministic

performance
• Predictable download times

• Real-time & VoD streaming

Challenges & Opportunities (cont.)

68

Challenges Opportunities

Free riding
• 15% of Gnutella peers contribute

to 94% of content

• 63% of peers never responded to

queries [Adar, 2000]

Incentives, trust, & enforcement
• Revenue models

• Ads, pay-per-click

• Retaining users after downloads

Security
• File pollution, viruses, worms

• Topology worms

• Anonymity

• Route poisoning, sink holes, Sybil

attacks

Content protection & overlay security
• Signed content

• Enabling/disabling anonymity

• Authentication & accountability
• Centralized solutions are proposed

• Community support to moderate

content

Copyright violation
• Direct/indirect infringement

Monitoring, enforcement
• Active/passive monitoring

Load imbalance Static & dynamic load balancing

Challenges & Opportunities (cont.)

69

Challenges Opportunities

Integrating P2P & social

networks
• Capturing social relationships

• Privacy

Enhanced performance, QoE
• Social graph-based P2P overlays

• Better incentives

• Better caching, replication, load

distribution

Low resilience in structured P2P
• Sudden departures

• Route failures

• Loss of content index

Maximize resilience/availability
• Enhancing consistency of replicas

Connectivity
• NAT, firewalls, & proxies

• 66% of BitTorrent peers are

behind firewalls [Zhang, 2009]

Connectivity services & tunneling
• Performance should not depend on

whether a peer is behind a NAT/firewall

Outline

 File sharing

 Unstructured vs. structured overlays

 Performance enhancements

 More state, caching, replication

 Opportunities & challenges

 Streaming

 Tree-push vs. mesh-pull

 Opportunities & challenges

 Resource sharing

 Collaborative P2P

 Resource aggregation

 Opportunities & challenges

70

P2P streaming

 Emergence of IPTV

 Content Delivery Networks (CDNs) can’t handle bandwidth

requirements

 No multicast support at network layer

 P2P

 Easy to implement

 No global topology maintenance

 Tremendous scalability

 Greater demand Better service

 Cost effective

 Robustness

 No single point of failure

 Adaptive

 Application layer

71

P2P Streaming – Components

 Chunk

 Segment of the video stream

 E.g., one second worth of video

 Partners

 Subset of known peers that a peer may

actually talk to 72

(Hie, 2008)

(Zhang, 2005)

(Liu, 2008)

Tree-Push Approach

 Construct overlay tree starting from video source

 Parent peer selection is based on

 Bandwidth, latency, number of peers, etc.

 Data/chunks are pushed down the tree

 Multi-tree-based approach

 Better content distribution

 Enhanced reliability

73

Tree-Push Approach – Issues

 Connectivity is affected when peers at the top of the tree

leave/fail

 Time to reconstruct the tree

 Unbalanced tree

 Majority of the peers are leaves

 Unable to utilize their bandwidth

 High delay

74

(Zhang, 2005)

Mesh-pull approach

 A peer connects to multiple peers

forming a mesh

 Pros

 More robust to failure

 Better bandwidth utilization

 Cons

 No specific chunk forwarding path

 Need to pull chunks from partners/peers

 Need to know which partner has what

 Used in most commercial products

75

(Zhang, 2005)

Chunk Sharing

 Each peer

 Caches a set of chunks within a sliding window

 Shares its chunk information with its partners

 Buffer maps are used to inform chunk availability

 Chunks may be in one or more partners

 What chunks to get from whom?

76

(Hie, 2008)

Chunk Scheduling

 Some chunks are highly available while others are scare

 Some chinks needs to be played soon

 New chunks need to be pulled from video source

 Chunk scheduling consider how a peer can get chunks while

 Minimizing latency

 Preventing skipping

 Maximizing throughput

 Chunk scheduling

 Random, rarest first, earliest deadline first, earliest deadline & rarest

first

 Determines user QoE

 Most commercial products use TCP for chunk transmission

 Control message overhead ~1-2%

77

Random Scheduling

 One of the earliest approach – used in Chainsaw

 Peers periodically share buffer maps

 Select a random chunk & request it from one of the partners

having the chunk

 Some peers may experience significant playback delay

 1-2 minutes

 Skipping is possible

78 [Pai, 2005]

Rarest First Scheduling

 Used in CoolStraming

 Chunk = 1 sec video, 120 chunk in sliding window

 A peer gets the rarest chunk so that chunk can be spread to

its partners

 Steps

1. Gather buffer maps periodically

2. Calculate number of suppliers (i.e., partners with chunk) for each

chunk

3. Request chunks with the lowest number of suppliers

4. For chunks with multiple suppliers, request from the supplier with

highest bandwidth & free time

 Gather application-level bandwidth data for each partner

 Request are made through a bitmap
79

Rarest First (cont.)

 It is sufficient to maintain 4 partners

 Discover more peers overtime – use gossiping

 Keep only the partners that have sufficient bandwidth &

more chunks 80

(Zhang, 2005)

Rarest First (cont.)

 More robust than tree-push

approach

 Larger user community Better

service quality

 Most users experience < 1 min

delay

81

(Zhang, 2005)

Queue-Based Scheduling

 Objectives – Continuity & quality

 Try to maximize bandwidth utilization

of peers

 Available bandwidth is inferred from

queue status

 Steps

1. Peers pull chunks from source (marked

as F)

2. Peers push chunks to its peers (marked

as NF)

3. If source is not busy, it push chunks to

peers (marked as NF)

82

[Guo, 2008]

Queue Based Scheduling (cont.)

 Queues have different priorities

 Missing chunks can be requested from source or peers

 Maintain a separate queue & a connection to each peer

 Prevents a slower peer from slowing down the whole system

83

[Guo, 2008]

Queue Based Scheduling (cont.)

 Server need to contribute more bandwidth

 More suitable for on-demand video

 Lower hierarchy reduce latency

 Less scalable

 Peer churn & failure can affect the continuity
84

[Guo, 2008]

Earliest Deadline First

 Objectives – Minimum playback delay & continuity

 Rule 1

 Chunk with the lowest sequence number has the highest priority

 So request chunk with the lowest sequence number

 Try to meet earliest deadline

 Rule 2

 Peer with the lowest, largest sequence number in buffer map has the

highest priority

 Falling behind, so let it seed up

85
[Chen, 2008]

Earliest Deadline First (cont.)

 DPC – Distributed Priority based Chunk scheduling

 L – Number of partners

 Lower playback delay

 Lower skipping
86

[Chen, 2008]

Hybrid Chunk Scheduling

 Combine both earliest deadline & rarest first

 Lower delay than CoolStreaming & Chainsaw

 Lower skipping
87

250 300 350 400 450 500
0.4

0.5

0.6

0.7

0.8

0.9

1

Streaming Rate (Kbps)

A
v
e
ra

g
e
 D

e
liv

e
ry

 R
a
ti
o

Global optimal algorithm

Proposed distributed algorithm

DONet method

One-layer PALS method

Chainsaw method

[Zhang, 2006]

Application-Aware Radar Networking

 Application-aware overlay networks

 Application-aware packet marking &

streaming

 In-network data fusion

 API for application-aware service

deployment

 Data-fusion latency estimation
88

[Lee, 2006]

[Banka, 2007]

Challenges & Opportunities

89

Challenges Opportunities

QoS & QoE
• Peer churn & failure

• 30% of users leave overlay

within 3 minutes [Tang, 2007]

• Asymmetric bandwidth

Best effort deterministic

performance
• Real-time & VoD streaming

• Minimizing skipping & start-up delay

• Adaptive network formation & routing

• Integrating social networks

Heterogeneous devices Supporting
• Different video qualities

• Scree sizes

• Processing, memory, & bandwidth

• Coding designed for P2P

Digital rights management Distributing certificates/keys
• Pay-per-view, VoD, ads

Outline

 File sharing

 Unstructured vs. structured overlays

 Performance enhancements

 More state, caching, replication

 Opportunities & challenges

 Streaming

 Tree-push vs. mesh-pull

 Opportunities & challenges

 Resource sharing

 Collaborative P2P

 Resource aggregation

 Opportunities & challenges

90

Collaborative P2P Systems

 About interaction of groups

 Aggregate group(s) of resources
 Diversity in resources & capabilities is an asset

 Can accomplish greater tasks – beneficial to all peers

 Many applications
 DCAS (Distributed Collaborative Adaptive Sensing), P2P clouds,

GENI (Global Environment for Network Innovation), mobile P2P,

social networks

Download
song.mp3

91

Collaborative Adaptive Sensing of the

Atmosphere (CASA)

 Distributed Collaborative

Adaptive Sensing (DCAS)

system

 Concept

 A network of small radars instead

of one large radar

 Sense lower 3 km of atmosphere

 Collaborating & adapting radars

 Improved sensing, detection, &

prediction

 CASA goal

 Improve warning time & forecast

accuracy for hazardous weather

10,000 ft

tornado wind

snow

3
.0

5
 k

m

3
.0

5
 k

m

0 40 80 120 160 200 240
RANGE (km)

Horz. Scale: 1” = 50 km
Vert. Scale: 1” -=- 2 km

5
.4

 k
m

 1
 k

m

2
 k

m
 4

 k
m

gap

10,000 ft

tornado

wind
snow

3
.0

5
 k

m

3
.0

5
 k

m

0 40 80 120 160 200 240
RANGE (km)

92

CASA Oklahoma Test Bed

 Multiple high bandwidth streams

 Real-time communication

 Simultaneous observations by multiple radars

 Multi-sensor data fusion

 Heterogeneous infrastructure & end users

 Hostile weather conditions

Radar 1 Radar 2

Radar 3 Radar 4

Radar 1

Radar 2
Radar 3

Radar 4

WOSC Altus

Snyder

Cameron

Lawton Repeater

USAO Chickasha

RushSprings

Velma

Radio tower

Newcastle

OU Engineering

DS-3

DS-3 D
S

-3

D
S
-3

D
S
-3

D
S

-3

D
S

-3

D
S

-3

D
S
-3

OneNet

Hub-

Altus

Tower-

Altus
100Mb

Tower-

Snyder

OneNet

Hub-

Lawton

Tower-

Lawton

Tower-

RushSpri

ngs

Tower-

Velma

Tower-

Ardmore

OneNet

Hub-

Ardmore

100 Mb

Tower-

Newcast

Tower

Chickash

OneNet

Hub-

Chick

DS-3 SONET

OneNet

Hub-OKC

45M
b-E

thernet

WesternHeights

Tower Lexington

802.11B

3550

Each Hub Has existing

Fiber Based DS-3 to

OneNethub-OKC

DS-3

DS-3DS-3
DS-3

93

Large-Scale CASA Deployments

 Large-scale CASA deployments are lot

more computation, bandwidth, & storage

intensive

 New solid-state radar data rates in Gbps

 Distributed & heterogeneous resources

 Increased resource utilization

94

MC&C
Meteorological

command & control

CASA (cont.)

 Groups of multi-attribute resources

 Radars/sensors, processing, storage,

scientific algorithms

 Heterogeneous, dynamic, &

distributed

 Need to aggregate groups of

resources as and when needed

95

Multi-Sensor Data Fusion Applications

Event
notification

Event
subscription

Publisher/Subscriber

Event
Handler

Resource
Manager

Best Peer
Selection (BPS)

Neighboring Peers

P2P Collaboration Framework in a peer

Locate data

Peer Manager

Data

Peers

Events Probe
& cost

Task assignment
& data

Global Environment for Network

Innovations (GENI)

 Collaborative & exploratory platform for innovation

 Aggregating groups of resources across multiple administrative

domains 96

www.geni.net

Other Applications

 Depends on some form of

resource aggregation

 Multi-attribute, heterogeneous,

dynamic, & distributed

97

Community (P2P) clouds

Find

ATM

Mobile P2P

Multi-Attribute P2P Resource Aggregation

 Phases of resource aggregation
 Advertise resources

 Attributes & usage constrains

 Select best resources

 Match resources
 Bandwidth, latency, packet loss,

neighborhood (avoid ISP)

 Bind to resources
 Agreement between user & resource

 Use resources

 Release
 Task complete or decreased demand

 Process continues
 Demand increases

 Overcome/use fail/new resources
98

Advertise

Select

Match

Bind

Use

Release

[Bandara, 2011d]

Multi-Attribute Queries

 Specify multiple attributes & range of attribute values

 “Find 2 nodes”

 “Find 2 Linux nodes”

 “Find 2 nodes with CPU ≥ 2.0 GHz and 256 ≤ Memory ≤ 512 MB and

OS=“Linux 2.6” and Latency ≤ 50 ms”

 May also specify constraints

 “Find 2 GHz ×86 CPU: available between 12:00am-6:00am to my friends and

average utilization must be ≤ 60%”

 99

Queries

Single attribute

Exact

Range

Multi-attribute

Exact

Range

Resource Discovery – Unstructured P2P

100

Centralized

O(1)

Single point of failure

Unstructured

O(hopsmax)

Not guaranteed to find resources

Superpeer

O(hopsmax)

Not guaranteed to find resources

Unstructured P2P (cont.)

 Random walk
 Superpeer overlay

 Pros – low overhead, accurate state

 Cons – no guarantees, high latency

 Broadcast
 Best peer selection [Lee; 2007]

 Expanding tree [Yao, 2006]

 Pros – accurate state

 Cons – high overhead, not scalable

 Gossiping
 Agents carry resource information

[Kwan, 2010]

 Pros – low overhead, large coverage

 Cons – stale data, no guarantees
101

Random walk

Expanding tree

I

N1

N2

N3

Step 1 (PP:d1, PP:d2, PPd3)

Step 2 (FP:PP(d1), PP(d2), PP(d3))
Probe(P

P:d1, P
P:d2, P

P:d3)

Probe(PP:d1, PP:d2, PP:d3)

Probe(PP:d1, PP:d2, PPd3)

I

N1

N2

N3

Cost(PP:d1:5, PP:d2:20, PP:d3:12)

X

Application Request

Best peer selection

Unstructured P2P (cont.)

 Report to specific nodes

 Centralized
 Report to a known location

 E.g., GENI clearing house

 Pros

 Accurate state, guaranteed, low

adv/query cost

 Cons

 Single point of failure, not scalable

 Hierarchical
 Report to local repository

 Which in turn report to a regional

one

 e.g., GENI federated clearing house

102

[Ranjan, 2008]

UPnP (Universal Plug & Play) – upnp.org

 Pervasive P2P network

connectivity across

 PCs, mobile phones, TVs,

intelligent appliances,

sensors, actuators

 Data sharing,

communication & control

 Expressed using XML

 HTTP & TCP/IP for direct

communication

 Facilitates collaborative

P2P applications within

 Home, office, & everywhere in

between

103

www.orbitmicro.com

wordpress.com

Resource Discovery – Structured P2P

104

Distribute Hash Table (DHT)
O(log N)

Guaranteed performance

Not for dynamic systems

Resource Discovery – Multiple Rings

 Separate ring for each attribute
 Mercury [Bharambe, 2004]

 Locality preserving hashing
 Map attribute values to nearby nodes

 (v – vmin)/(vmax – vmin)

1. Multiple sub-queries
 Go to c1/m1/b1

 Then go from c1/m1/b1 to c2/m2/b2

using successors

 Finally, a database-like join

 Total cost O(N)

105

q

CPUSpeed BandwidthMemory

Query routing Peer originating query

(a)

Pointers

query = c1 ≤ CPU ≤ c2, m1 ≤

Memory ≤ m2, b1 ≤ BW ≤ b2

)(tQq

q
QUE

Rr

r
ADVTOTAL CCC

Aqi
i

i
q

i
q
QUE

A

N

r

r
hC 1

max

Multiple Rings (cont.)

2. Single-Attribute Dominated

Queries (SADQ)
 Advertise attributes to all rings

 Pick min(c1 – c2, m1 – m2, b1 – b2)

 Search that ring

 Query stop as soon as desired

no of resources are found

 Low query cost

 High advertising cost

 Pros
 Support new attributes

 Cons
 Many routing entries

 Load balancing issue

106

q

CPUSpeed BandwidthMemory

Query routing Peer originating query

(a)

Pointers

query = c1 ≤ CPU ≤ c2, m1 ≤

Memory ≤ m2, b1 ≤ BW ≤ b2

Single Ring

 Single-partitioned ring
 LORM [Shen, 2007]

 Sword [Albrecht, 2008]

 Pros

 Few routing entries

 Cons

 Hard to add new attributes

 Load balancing issue

 Single-overlapped ring
 MAAN [Cai, 2004]

 Pros

 Few routing entries

 Relatively better load distribution

 Cons

 Easy to add new attributes

107

CPUSpeed BandwidthMemory

q

q

Resource Discovery in MANET

 Group nodes based on landmarks

 Mapped to a partitioned-ring

 Advertise resources to

 Nodes within own landmark

 Global address on ring

 Can locate nearby resources

 Reduce latency & hops

 Doesn’t work with many attributes

108

MADPastry [Zahn, 2005]

D-Torus – MURK [Ganesan, 2004a]

 Map attribute values to a d-torus

 Partition d-torus to zones

 A peer is responsible for a zone

 Track as a kd-tree

 Index in appropriate zone

 Greedy routing of queries

 Parallel search on neighboring zones

 Results are send to query originator

 Finally, database-like join

 Cons - high query cost

 Also, mapped to Chord using space

filling curves

 Cons – loose locality, cost is O(N) 109

Clock speed

B
a

n
d

w
id

th

Q1

Q2

MURK - MUlti-dimensional

Rectangulation with Kd-trees

D-Torus – Resource-Aware Overlay
[Costa, 2009]

 DHTs can’t track dynamic attributes

correctly

 Use only static attributes

 Form overlay by connecting peers

based on
 Partition torus into hierarchical cells

 Keep a pointer to a node in each level in

hierarchy & cell

 Identified using gossip protocol

 Query resolution
 Depth-first search starting from lowest

level cell

 Cons – high latency & support only

static attributes 110

A

Clock speed

B
a

n
d

w
id

th

Q1

Resource Selection, Match, & Bind

 Select

 Supported by all solutions

 Match

 Need access to multiple resources

 Superpeers index multiple resources

 Sword support latency & bandwidth as AS level

 MADPastry based on locality & latency

 Bind

 Need access to resource

 Superpeers, unstructured P2P, & resource-aware overlay

 No single solution support all 3 requirements

111

Summary of Structured P2P Solutions

112

Scheme Architecture Routing

mechanism

Lookup

overhead

(point query)*

Lookup

overhead

(range

query)*

Routing

table size*

Load

balancing

Mercury Multiple rings Successor &

long distant

links

O(1/k log2 n) O(n) k + 2 per

ring

Dynamic

LORM Partitioned

ring

Cycloid O(d) O(n) O(1) Static

MADPastry Partitioned

ring (locality

based)

Pastry O(log n) O(n) O(log l) Static

MAAN Single ring Chord O(log n) O(n) O(log n) Static

MURK d- torus CAN with long

distance links

O(log2 n) O(n) 2d + k Dynamic

SWORD Partitioned

ring, resource

matching

Chord O(log n) O(n) O(log n) Static

Resource-

aware

overlay

d- torus

partitioned

into cells

Links to peers

in other cells

O(n) O(n) O(d) Static

* n – number of peers in overlay, k – number of long distant links, d – number of dimensions, D - network diameter, l – number

of landmarks

Summary of All Solutions
Scheme Architecture Advertise Discover Select Match* Bind*

Flooding Flood advertisements

or queries

Yes N/A Guaranteed N/S When queries

are flooded

Gossiping Agents share resource

specifications they

know

Yes Yes Moderate

probability of

success

Simple

matching

N/S

Random walk Agents carry resource

specifications &

queries

Yes Yes Moderate

probability of

success

Simple

matching

When query

agents are

used

Superpeer 2-layer overlay Yes Yes Relatively high

probability of

success

Simple

matching

Yes

Mercury Multiple rings Yes N/A Guaranteed N/S N/S

LORM Partitioned ring Yes N/A Guaranteed N/S N/S

MADPastry Partitioned ring (based

on locality)

To local &

neighbor

partitions

N/A Guaranteed Latency &

hop count

N/S

MAAN Single ring Yes N/A Guaranteed N/S N/S

MURK d- torus Yes N/A Guaranteed N/S N/S

SWORD Partitioned ring,

resource matching

Yes N/A Guaranteed Yes N/S

Resource-

aware overlay

d- torus partitioned

into cells

Static

attributes

N/A Guaranteed N/S Yes

113

Resource & Query Characteristics

 Resources & queries are characterized by multiple

attributes

 Need detailed understanding to design, optimize, & validate

 No formal analysis Many simplifying assumptions

 Few attributes

 Ignore cost of updating dynamic attributes

 i.i.d attributes

 Uniform/Zipf’s distribution of resources/queries

 Queries specifying a large number of attributes & a small range of

attribute values

 Leads to inaccurate designs, performance analysis, &

conclusions

114

Datasets

 PlanetLab node data
 Global research network for developing new network services,

protocols, & applications

 Reflects many characteristics of Internet-based distributed systems

 Heterogeneity, multiple end users, dynamic nodes, & global

presence

 Used to evaluate many preliminary P2P protocols & applications

 12 static & 34 dynamic attributes sampled every 5 min

 500-700 active nodes

 SETI@home

 Desktop grid

 Static resources from 300,000+ nodes

 21 static & 4 dynamic attributes

115

Resource Characteristics

116

 Resources satisfy a mixture of

probability distributions
 Gaussian – CPUSpeed, MemSize, DiskFree

 Pareto – TxRate, RxRate

 Many identical nodes

 Highly skewed distributions
 CPUFree, MemFree, CPU architecture

Clock speed of CPUs (GHz)
0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

D
e
n

s
it
y

0.0

0.2

0.4

0.6

0.8

1.0
CPUSpeed

~N(2.63, 0.43)

Free CPU and memory (%)

0 10 20 30 40 50 60 70 80 90 100

D
e
n

s
it
y

0.00

0.02

0.04

0.06

0.08

0.10

CPUFree

MemFree

Transmission rate (bps)

0 5000 10000 15000 20000

D
e
n

s
it
y

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

TxRate

~GPD(0, 953, 0.55)

CPU architecture

x86 PowerPC SPARC

N
o
 o

f
n

o
d

e
s

0

1e+5

2e+5

3e+5

4e+5

SETI@home

No of attribute value changes within 24 hours

0 50 100 150 200 250

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

1MinLoad

5MinLoad

FreeCPU

FreeMemory

TxRate

RxRate

Dynamic Attributes at Different Times

 Distribution of dynamic attributes

is stable over days

 Dynamic attributes & their rate of

change fits Pareto
 Same attributes/nodes change

frequently

 Many status updates

117

CPUFree (%)

0 20 40 60 80 100

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

t = t0

t = t0 + 12 hours

t = t0 + 1 day

t = t0 + 7 days

t = t0 + 14 days

TxRate (bps)

0 5000 10000 15000 20000

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

t = t0

t = t0 + 12 hours

t = t0 + 1 day

t = t0 + 7 days

t = t0 + 14 days

Memory Free (%)

0 20 40 60 80 100

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

t = t0

t = t0 + 12 hours

t = t0 + 1 day

t = t0 + 7 days

t = t0 + 14 days

Thresholds: CPUFree = MemFree = ± 10%,

1MinLoad = ± 2, TxRate = RxRate = ± 1 Kbps

CPUFree (%)

0 20 40 60 80 100

N
u
m

C
o
re

s

0

2

4

6

8

10

12

14

16

Resource Characteristics – Correlation

 Complex correlation among

attributes

 Correlation between attributes
 Static-dynamic

 Dynamic-dynamic

118

C
P

U
S

p
ee

d

N
u

m
C

o
re

s

C
P

U
F

re
e

1
M

in
L

o
ad

M
em

S
iz

e

M
em

F
re

e

D
is

k
F

re
e

T
x

R
at

e

NumCores -0.09

 CPUFree 0.02 0.48

 1MinLoad 0.03 -0.31 -0.57

 MemSize 0.06 0.28 0.26 -0.25

 MemFree 0.13 0.21 0.31 -0.35 0.25

 DiskFree -0.09 0.46 0.37 -0.29 0.54 0.23

 TxRate 0.08 -0.23 -0.26 0.24 -0.12 -0.17 -0.12

 RxRate 0.10 -0.23 -0.30 0.35 -0.13 -0.20 -0.16 0.85

C
P

U
S

p
ee

d

N
u

m
C

o
re

s

C
P

U
F

re
e

1
M

in
L

o
ad

M
em

S
iz

e

M
em

F
re

e

D
is

k
F

re
e

T
x

R
at

e

NumCores 0.04

 CPUFree -0.07 0.67

 1MinLoad 0.10 -0.42 -0.72

 MemSize 0.03 0.37 0.37 -0.33

 MemFree -0.07 0.37 0.37 -0.38 0.53

 DiskFree -0.20 0.60 0.52 -0.41 0.44 0.44

 TxRate 0.06 -0.35 -0.39 0.30 -0.07 -0.20 -0.29

 RxRate 0.07 -0.33 -0.42 0.41 -0.11 -0.21 -0.29 0.86

Pearson’s correlation coefficient Spearman’s ranked correlation coefficient ρ

Dynamic Attributes – Contemporaneous

Correlation

 Contemporaneous correlation among time series of

dynamic attributes

 Specific temporal pattern in MemFree

 Temporal patterns need to be preserved 119

0 10 20 30 40 50

C
P

U
F

re
e

 (
%

)

0

30

60

90

1
M

in
L

o
a

d

FreeCPU

1MinLoad

0 10 20 30 40 50

M
e

m
F

re
e

 (
%

)

25

50

75

100

125

D
is

k
F

re
e

 (
G

B
)

MemFree

DiskFree

Time (hours)
0 10 20 30 40 50

T
x
R

a
te

 (
K

b
p

s
)

0

2

4

6

8

R
x
R

a
te

 (
K

b
p

s
)TxRate

RxRate

Dynamic Attributes – Autocorrelation

 High autocorrelation in DiskFree & MemFree

 No noticeable change in DiskFree

 Temporal patterns need to be preserved
120

Lag

0 20 40 60 80 100 120 140 160 180 200

A
u
to

c
o
rr

e
la

ti
o
n

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CPUFree

1MinLoad

MemFree

DiskFree

Txrate

RxRate

MemSize
0.0 0.2 0.4 0.6 0.8 1.0

N
u
m

C
o
re

s

0.0

0.2

0.4

0.6

0.8

1.0

Generated data

Actual data

Modeling Static Attributes

 Need to preserve correlation
 Attribute values can’t be randomly drawn from marginal distributions

 Pearson’s correlation matrix is insufficient

 Copulas capture complex correlations
 Functions that couple multivariate distributions to their marginals

 Multivariate joint distribution defined on d-dimensional unit cube s.t.

marginal distribution ui is ~uniform(0, 1)

 Empirical copulas support complex/unknown distributions

& correlations

 x(i) ordered statistics of x

 No need to find distribution of attributes

)(,),()(11 dd uFuFCuF

n

yyxxyx

n

j

n

i
C

ji
n

)()(and s.t.),(pairs of No
,

Modeling Dynamic Attributes

 Specific temporal patterns in time series Can’t draw

values randomly

 Contemporaneous correlation Can’t draw independently

 Goal – Not to predict future behavior, but to generate

nodes with similar overall characteristics

 Not necessary to fit a model

 Build a library of time series segments

 Pick the most distinct pattern & split according to structural changes

 Preserve distinct temporal patterns

 Split other time series at same position & replay segments together

122

Time (hours)
0 12 24 36 48 60 72

M
e
m

F
re

e
 (

%
)

50

75

100

Modeling Dynamic Attributes (cont.)

 Initial approach – R strucchange package

 Better approach – Sliding window (w) looking for

significant change in average value (Δ) of 2 halves

of the window
123

niuxy ii
T
ii ,,1

Check for Null

Hypothesis that

H0: βi = β0, i = 1, …, n

Time (hours)
0 12 24 36 48 60 72

M
e
m

F
re

e
 (

%
)

50

75

100

Sliding Window

w = 20, Δ = 30%

Dynamic Attributes – Contemporaneous

Correlation

 Split other time series at same position & replay segments

together

 Concatenate segments to form longer sequences

 Segments are index by static attributes 124

0 10 20 30 40 50

C
P

U
F

re
e

 (
%

)

0

30

60

90

1
M

in
L

o
a

d

FreeCPU

1MinLoad

0 10 20 30 40 50

M
e

m
F

re
e

 (
%

)

25

50

75

100

125

D
is

k
F

re
e

 (
G

B
)

MemFree

DiskFree

Time (hours)
0 10 20 30 40 50

T
x
R

a
te

 (
K

b
p

s
)

0

2

4

6

8

R
x
R

a
te

 (
K

b
p

s
)TxRate

RxRate

RESQUE – RESource & QUEry Generator

 NumCores establish correlation between static & dynamic

 Generate synthetic traces with n nodes, as static & ad dynamic

attributes over a given time t

 Also generate multi-attribute queries

 Beta version available – www.cnrl.colostate.edu/Projects/CP2P/ 125

Transform to uniform CDF

Calculate empirical copula

Generate random numbers

Inverse CDF transformation

Build library of time
series

Library of
time series

Select attributes

PlanetLab node data

C
o

p
u

la
 g

en
er

at
io

n

Draw random
samples

Static & instantaneous
dynamic attributes

Time series of dynamic
attributes

Time series of
dynamic attributes

Random vectors

NumCores

TxRate (bps)
0 5000 10000 15000 20000

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

Act - t = t0 + 12 hours, (= 1771, = 2377)

Gen - t = t0, (= 1488, = 2040)

Gen - t = t0 + 12 hours, (= 1626, = 2249)

Gen - t = t0 + 1 day, (= 1669, = 2665)

Gen - t = t0 + 7 days, (= 1539, = 2174)

Gen - t = t0 + 14 days, (= 1564, = 2287)

CPUSpeed (GHz)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

Actula, (= 2.63, = 0.43)

Generated, (= 2.63, = 0.44)

CPUFree (%)
0 20 40 60 80 100

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

Act - t = t0+ 12 hours, (= 76.6, = 29.8)

Gen - t = t0, (= 79.6, = 28)

Gen - t = t0 + 12 hours, (= 79.4, = 28.2)

Gen - t = t0 + 1 day, (= 79.7, = 27.7)

Gen - t = t0 + 7 days, (= 78.3, = 28.8)

Gen - t = t0 + 14 days, (= 78, = 28.8)

Resource Generation – Validation

 Using 300 nodes over a week

generated 5,000 nodes over 2 weeks

 Satisfy Kolmogorov-Smirnov (KS) test

with a significance level of 0.05

 Statistically accurate data

126

Attribute

R
es

pT
im

e

1M
in
Lo

ad

C
P
U
Fre

e

D
is
kF

re
e

M
em

Fre
e

TxR
at

e

C
P
U
S
pe

ed

M
em

S
iz
e

Lo
ca

tio
n

5M
in
Lo

ad

U
pT

im
e

B
W

Li
m

it

O
S
N
am

e
G
N
P

K
er

nV
er

D
rif

t

N
um

S
lic

es

C
P
U
B
us

y

D
is
kS

iz
e

H
as

V
ia

N
o
 o

f
q
u
e
ri

e
s

0

20

40

60

80

100

120

140

160

180

Query Characteristics

 441 queries, 9 moths

 Few attributes in a query
 80% queries specify 1 or 2 attributes

 Skewed but not Zipf’s

 Less specific attribute ranges
 89% queries request CPUFree of 40-100%

 70% queries request DiskFree of 5-1000GB

 Dynamic attributes are popular

 Large number of resources
 73 resources per query

127

FreeCPU (%)

0 10 20 30 40 50 60 70 80 90 100

N
o

 o
f
q

u
e

ri
e

s
 r

e
q

u
e

s
ti
n

g
 x

%
 F

re
e

C
P

U

0

20

40

60

80

100

No of distinct attributes specified in query
0 1 2 3 4 5 6 7

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

x = Cluster size

1 10 100

C
u

m
m

u
la

ti
v
e

 d
is

tr
ib

u
ti
o

n
 o

f
q

u
e

ri
e

s
 >

 x

0.001

0.01

0.1

1

Cluster of queries

Cluster of attributes

Comparison of Existing Solutions

 Most prior assumptions are not valid

 Resources

 Many attributes, mixture of distributions, skewed, correlated, change

rapidly

 Queries

 Few attributes, request many resources, large range of attribute

values, skewed

 Need to validate existing designs under real-workloads
 Mostly extensions of single-attribute solutions

 Contributions
 Simple cost model for advertising & querying

 Simulated 7 designs using PlanetLab resources & query traces

 Unable to deliver desired performance, load balancing, etc.

128

Time (hours)

0 12 24 36 48 60 72

T
o

ta
l
c
o
s
t
(h

o
p

s
)

0

3x107

6x107

9x107

Centralized

Unstructured

Superpeer

Multi-ring + SADQ

Partitioned-ring + SADQ

Overlapped-ring + SADQ

d-Torus

No of attributes

12 15 18 21 24

C
o

s
t
p

e
r

q
u
e

ry
 (

h
o
p

s
)

0

200

400

600

800

Multi-ring + Sub-query

Multi-ring + SADQ

Partitioned-ring + Sub-query

Partitioned-ring + SADQ

Overlapped-ring + SADQ

Simulation of Different Solutions

 Rings – higher advertising cost

 Partitioned ring – Disproportionate load

distribution

 Superpeers – Balance cost & load but can’t

locate all resources 129

No of attributes

12 15 18 21 24

T
o

ta
l
a

d
v
e

rt
is

in
g

 c
o
s
t
(h

o
p

s
)

0

107

2x107

3x107

Multi-ring + Sub-query

Multi-ring + SADQ

Partitioned-ring + Sub-query

Partitioned-ring + SADQ

Overlapped-ring + SADQ

Static attributes only

Number of nodes (N)

400 600 800 1000

C
o
s
t

p
e
r

q
u

e
ry

 (
h

o
p

s
)

0

200

400

600

800

1000

Multi-ring + SADQ

Partitioned-ring + SADQ

Overlapped-ring + SADQ

Simulation of Different Solutions (cont.)

 Large range of attribute values cost of ring-based designs O(N)
130

N Multi-ring + SADQ Partitioned-ring +

SADQ

Overlapped-ring +

SADQ

Min Ave Max Min Ave Max Min Ave Max

250 0 9.2 239.1 0 3.7 19.4 0 9.1 238.4

527 0 13.7 509.0 0 4.6 27.6 0 13.5 506.0

750 0 16.2 719.1 0 4.9 36.6 0 16.5 719.9

1000 0 19.8 975.5 0 5.3 45.3 0 20.4 963.8

Index size

0 100 200 300 400 500

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

Multi-ring + SADQ

Partitioned-ring + SADQ

Overlapped-ring + SADQ

Load Distribution

 Unbalanced index size & query load
131

Architecture

Total Cost per Query Query Load Index Size

Min Max
Min Max

SWORD Uniform SWORD Uniform SWORD Uniform

Centralized 2.03 2.03 950,000 950,000 950,000 950,000 527 527

Unstructured 69.5 94.8 4,859 1,272 268,497 37,824 1 1

Superpeer 6.5 9.5 81,021 22,390 289,626 87,209 17 36

Multi-ring + SADQ 48.3 69.0 0 0 178,492 22,943 0 527

Multi-ring + Sub-queries 398.8 120.8 0 0 624,837 57,518 0 230

Partitioned-ring + SADQ 36.6 37.0 0 0 185,972 15,840 0 527

Partitioned-ring + Sub-queries 40.7 16.4 0 0 432,859 46,946 0 527

Overlapped-ring + SADQ 46.0 67.2 0 0 391,738 57,524 0 527

No of queries answered

0 1e+5 2e+5 3e+5 4e+5

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

Multi-ring + SADQ

Partitioned-ring + SADQ

Overlapped-ring + SADQ

N = 527, Attributes = 24

Challenges & Opportunities

133

Challenges Opportunities

Diversity in
• Resources

• Application requirements

• Complex inter-resource

relationships

New solutions
• Support large number of resources &

attributes
• Consider real-world resource & query

characteristics

• How to specify application requirements

& constraints

• Efficiently track & match inter-resource

relationships

No solution satisfy select, match,

& bind

Supporting select, match, & bind

within a single solution
• Track inter-node

• Bandwidth, latency, jitter, packet loss,

etc.

• Social relationships

• Distributed resource binding

Challenges & Opportunities (cont.)

134

Challenges Opportunities

High cost
• Query cost

• Advertising dynamic attributes

Enhance performance
• Better support for dynamic attributes

• Reduce query cost
• New DHT mechanisms

• Efficient updates – static/dynamic

thresholds to reduce number of

updates

Load balancing Dynamic/adaptive solutions
• Based on queries & updates

• Based on resources being indexed

• Supporting many attributes & values
• Some attributes have few values

Overcoming resource failures &

unavailability

Resource compensation
• Substituting one resource with another

• CASA – can process faster to

accommodate high transmission delay

due to lack of bandwidth

Challenges & Opportunities (cont.)

135

Challenges Opportunities

Increasing user participation Incentives, security, & trust
• Essential in collaborative P2P

• Virtual currency schemes to support

community clouds

Capturing large & high resolution

datasets

Tools to

• Capture datasets

• Generate statically accurate synthetic

datasets

Comments & Questions

136

Anura P. Jayasumana

 Electrical & Computer Engineering,

Colorado State University,

Fort Collins, CO 80525&

Anura.Jayasumana@Colostate.edu

www.engr.colostate.edu/~anura

Bibliography
1. E. Adar and B.A. Huberman, Free Riding on Gnutella, 2000.

2. J. Albrecht, D. Oppenheimer, D. Patterson, and A. Vahdat, Design and implementation tradeoffs for

wide-area resource discovery, ACM Trans. Internet Technol, 8(4), Sep. 2008.

3. H. M. N. D. Bandara and A. P. Jayasumana, Exploiting Communities for Enhancing Lookup

Performance in Structured P2P Systems, IEEE Int. Conf. on Communications (ICC2011), June 2011.

4. H. M. N. Dilum Bandara and Anura P. Jayasumana, On Characteristics and Modeling of P2P

Resources with Correlated Static and Dynamic Attributes, IEEE GLOBECOM ‘11, Dec. 2011.

5. H. M. N. D. Bandara and A. P. Jayasumana, Characteristics of Multi-Attribute Resources/Queries and

Implications on P2P Resource Discovery, 9th ACS/IEEE Int. Conf. On Computer Systems And

Applications (AICCSA 2011), Dec. 2011.

6. H. M. N. D. Bandara and A. P. Jayasumana, Community-Based Caching for Enhanced Lookup

Performance in P2P Systems, 2011, under review.

7. H. M. N. D. Bandara and A. P. Jayasumana, Evaluation of P2P Resource Discovery Architectures

Using Real-Life Multi-Attribute Resource and Query Characteristics, IEEE Consumer Communications

and Networking Conf. (CCNC ‘12), Jan. 2012.

8. T. Banka, P. Lee, A. P. Jayasumana and J. F. Kurose, An Architecture and a Programming Interface for

Application-Aware Data Dissemination Using Overlay Networks, COMSWARE 2007, Jan. 2007.

9. A. R. Bharambe, M. Agrawal, and S. Seshan, Mercury: Supporting scalable multi-attribute range

queries, ACM SIGCOMM ‘04, Aug.-Sep. 2004.

10. R. Bland, D. Caulfield, E. Clarke, A. Hanley, and E. Kelleher, “P2P routing,” Available:

http://ntrg.cs.tcd.ie/undergrad/4ba2.02-03/p9.html

137

Bibliography
11. D. Brookshier, Overview of JXTA, Aug. 2002, Available:

www.developer.com/java/other/article.php/10936_1450221_1

12. M. Cai, M. Frank, J. Chen, and P. Szekely, MAAN: A multi-attribute addressable network for grid

information services, Journal of Grid Computing, Jan 2004.

13. Z. Chen, K. Xue, and P. Hong, A study on reducing chunk scheduling delay for mesh-based P2P live

streaming, 7th Int. Conf. on Grid and Cooperative Computing, 2008, pp. 356-361.

14. Cisco Systems, Inc., Cisco Visual Networking Index: Forecast and Methodology, 2008–2013, June

2009.

15. Cisco Systems, Inc., Approaching the Zettabyte Era, June 2008.

16. E. Cohen and S. Shenker, Replication strategies in unstructured peer-to-peer networks, ACM

SIGCOMM ‘02, Aug. 2002.

17. P. Costa, J. Napper, G. Pierre, and M. Steen, Autonomous resource selection for decentralized utility

computing, 29th Int’l. Conf. Distributed Computing Systems, June 2009.

18. G. DeCandia et al., Dynamo: Amazon's highly available key-value store, ACM SIGOPS Operating

Systems (SOSP '07), vol. 41, no 6, Oct. 2007, pp. 205-220.

19. P. Ganesan, B. Yang, and H. Garcia-Molina, One torus to rule them all: Multi-dimensional queries in

P2P systems. 7th Int’l Workshop on the Web and Databases (WebDB ‘04), June 2004.

20. P. Ganesan, K. Gummadi, and H. Garcia-Molina, Canon in G major: designing DHTs with hierarchical

structure, 24th Int. Conf. on Distributed Computing Systems, 2004, pp. 263-272.

21. P. B. Godfrey and I. Stoica, Heterogeneity and load balance in distributed hash tables, IEEE INFOCOM,

Mar. 2005.
138

Bibliography
22. S. Guha, N. Daswani, and R. Jain, An Experimental Study of the Skype Peer-to-Peer VoIP System, 5th

Int. Workshop on Peer-to-Peer Systems (IPTPS ‘06), Feb. 2006.

23. Y. Guo, C. Liang, and Y. Liu, Adaptive queue-based chunk scheduling for P2P live streaming, IFIP

Networking, May 2008.

24. X. Hei, Y. Liu, and K. W. Ross, IPTV over P2P streaming networks: the mesh-pull approach, IEEE

Communications Magazine, vol. 46, no. 2, Feb. 2008, pp. 86-92.

25. T. Koponen et al., A data-oriented (and beyond) network architecture, SIGCOMM '07, 2007.

26. S. Kwan and J. K. Muppala, Bag-of-tasks applications scheduling on volunteer desktop grids with

adaptive information dissemination, IEEE LCN ‘10, Oct. 2010, pp. 560-567.

27. C. Leng, W. W. Terpstra, B. Kemme, W. Stannat, and A. P. Buchmann, Maintaining replicas in

unstructured P2P systems, ACM Int. Conf. on Emerging Networking Experiments and Technologies

(CoNEXT), Dec. 2008.

28. B. Leong, B. Liskov, E. D. Demaine, EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive

Routing State Management, 12th Int. Conf. on Networks, 2004.

29. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, Search and replication in unstructured peer-to-peer

networks, 16th Int. Conf. on Supercomputing (ICS ‘02), June 2002, pp. 84-95.

30. Microsoft, Introduction to Windows Peer-to-Peer Networking, Sep. 2006, Available:

http://technet.microsoft.com/en-us/library/bb457079(d=printer).aspx

31. Microsoft, Peer Name Resolution Protocol, Sep. 2006, Available: http://technet.microsoft.com/en-

us/library/bb726971(printer).aspx

32. R Morselli, B. Bhattacharjee, A. Srinivasan, and M. A. Marsh, Efficient lookup on unstructured

topologies, 24th ACM Symposium on Principles of Distributed Computing (PODC '05), July 2005. 139

Bibliography
33. P. Lee, T. Banka, A. P. Jayasumana, and V. Chandrasekar, Content Based Packet Marking for

Application-Aware Processing in Overlay Networks, IEEE LCN ‘06, Nov. 2006.

34. P. Lee, A. P. Jayasumana, S. Lim, and V. Chandrasekar, A Peer-to-Peer Collaboration Framework for

Multisensor Data Fusion, Int. Joint Conf. on Computer, Information, and Systems Sciences, and

Engineering (CISSE ‘07), Dec. 2007.

35. A. Legout, N. Liogkas, E. Kohler, and L. Zhang, Clustering and Sharing Incentives in BitTorrent

Systems, SIGMETRICS ‘07, June 2007.

36. J. Liu, S. G. Rao, B. Li, and H. Zhang, “Opportunities and challenges of peer-to-peer internet video

broadcast,” In Proc. of IEEE, vol. 96, no. 1, Jan. 2008, pp. 11-24.

37. P. Maymounkov and D. Mazières, Kademlia: A peer-to-peer information system based on the XOR

metric, 1st Int. Workshop on Peer-to-peer Systems (IPTPS ‘02), Feb. 2002, pp. 53-65.

38. V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy and A. E. Mohr, Chainsaw: eliminating trees from

overlay multicast, 4th Int. Workshop on Peer-to-Peer Systems (IPTPS), Feb. 2005, pp. 127-140.

39. V. Ramasubramanian and E. G. Sirer, Beehive: O(1) lookup performance for power-law query

distributions in peer-to-peer overlays, 1st Symposium on Networked Systems Design and

Implementation (NSDI), 2004, pp. 99-112.

40. R. Ranjan, A. Harwood, and R. Buyya, Peer-to-Peer based resource discovery in global grids: a tutorial,

IEEE Commun. Surveys, vol. 10, no. 2, 2008.

41. A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, Load balancing in structured P2P

systems, 2nd Int. Workshop on P2P Systems (IPTPS), Feb. 2003.

42. W. Rao, L. Chen, A. W. Fu, and Y. Bu, Optimal proactive caching in peer-to-peer network: analysis and

application, 6th ACM Conf. on Information and Knowledge Management (CIKM ‘07), Nov. 2007, pp. 663-

672.
140

Bibliography
43. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable content-addressable

network, ACM Special Interest Group on Data Communication (SIGCOMM ‘01), Aug. 2001.

44. J. Seedorf, S. Kiesel, and M. Stiemerling, Traffic Localization for P2P-Applications: The ALTO

Approach, IEEE P2P ‘09, 2009.

45. H. Shen, C. Xu, and G. Chen, Cycloid: A constant-degree and lookup-efficient P2P overlay network,

Performance Evaluation, vol. 63, no. 3, Mar. 2006, pp. 195-216.

46. H. Shen, A. Apon, and C. Xu, LORM: supporting low-overhead P2P-based range-query and multi-

attribute resource management in grids, 13th Int. Conf. on Parallel and Distributed Systems, (ICPADS

‘07), Dec. 2007.

47. M. Sozio, T. Neumann, and G. Weikum, Near-optimal dynamic replication in unstructured peer-to-peer

networks, 27th ACM symposium on Principles of Database Systems (PODS ‘08), June 2008, pp. 281-

290.

48. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, Chord: a scalable peer-to-peer

lookup service for internet applications, ACM SIGCOMM ‘01, 2001, pp. 149-160.

49. I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, Internet Indirection Infrastructure, ACM

SIGCOMM, Aug. 2002.

50. D. Stutzbach, R. Rejaie, and S. Sen, Characterizing unstructured overlay topologies in modern P2P

file-sharing systems, IEEE/ACM Transactions on Networking, vol. 16, no. 2, April 2008.

51. Y. Tang, L. Sun, K. Zhang, S. Yang, and Y. Zhong, Longer, better: On extending user online duration

to improve quality of streaming service in P2P networks, IEEE Int. Conf. on Multimedia and Expo, July

2007.

52. H. Xie, A. Krishnamurthy, A. Silberschatz, and Y. Richard Yang, P4P: Explicit Communications for

Cooperative Control Between P2P and Network Providers, P4P WG Whitepaper, May 2007.
141

Bibliography
53. J. Yao, J. Zhou, and L. Bhuyan, Computing real time jobs in P2P networks, IEEE LCN, Nov. 2006, pp.

107-114.

54. T. Zahn and J. Schiller, MADPastry: a DHT substrate for practicably sized MANETs, 5th Workshop

Applications and Services in Wireless Networks, June/July 2005.

55. B. Zhang, A. Iosup, J. Pouwelse, D. Epema, and H. Sips, On Assessing Measurement Accuracy in

BitTorrent Peer-to-Peer File-Sharing Networks, Delft University of Technology, 2009.

56. M. Zhang, Y. Xiong, Q. Zhang, and S. Yang, On the optimal scheduling for media streaming in data-

driven overlay networks, GLOBECOM ‘06, Nov.-Dec. 2006.

57. X. Zhang, J. Liu, B. Li, and T. P. Yum, CoolStreaming/DONet: a data-driven overlay network for

efficient live media streaming, INFOCOM 2005, Mar. 2005.

58. M. Zhong, K. Shen, and J. Seiferas, Replication degree customization for high availability, European

Conf. on Computer Systems (EuroSys '08), Apr. 2008, pp. 55-68.

59. J.F. Buford, H. Yu and E.K. Lua, P2P Networking and Applications, Morgan Kaufmann, 2009.

142

