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Peer-to-Peer (P2P) Systems 

 Distributed systems without any central control 

 Autonomous peers 

 Equivalent in functionality/privileges; Both a client & a server 

 Protocol features 

 Protocol constructed at the  application layer 

 Overlaid on top of Internet 

 Typically a peer has a unique identifier 

 Supports some type of message routing capability 

 Fairness & Performance 
 Self-scaling 

 Free-rider problem 

 Peer Churn 
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P2P Applications 

 Many application 

domains 

 File sharing – BitTorrent, 

KaZaA, Napster, 

BearShare 

 IPTV – PPLive, 

CoolStreaming, SopCast 

 VoIP – Skype 

 CPU cycle sharing – SETI, 

World Community Grid 

 Distributed data fusion – 

CASA 

 Impact of P2P traffic 
 In 2008 – 50% 2009- 39% of 

total Internet traffic (2014-

17%) 

 Today – Volume still growing 

 3.5 Exabytes/month (4 in 

2014) 

 globally, P2P TV is now over 

280 petabytes per month 

 P2P traffic 20 percent of all 

mobile data traffic globally 
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[Hyperconnectivity and the 

Approaching Zettabyte Era, 

Cisco 2010]  



P2P Characteristics 

 Tremendous scalability 

 Millions of peers 

 Globally distributed 

 Bandwidth intensive 

 Upload/download 

 Many concurrent connections 

 Aggressive/unfair bandwidth utilization 

 Aggregated downloads to overcome asymmetric 

upload bandwidth  

 Heterogeneous 

 Superpeers 

 Critical for performance/functionality 
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P2P Overlay 

 Peers directly talk to each other, or if they are 

not directly connected, uses overlay routing 

mechanism via other peers 

 Best effort service on Internet 

 Peers are autonomous 

 Determines its own capabilities based on its 

resources (minimum threshold of resources) 

 Decides on its own when to join, leave 

 Peers have symmetrical roles (relaxed in 

cases such as superpeer)  

 Overlay is scalable and resilient 

 In size, geography 

 Graceful degradation, ensure connectedness when 

nodes leave, etc.   

 Overlay Maintenance 

 Overlay has to be self-organizing (overlay 

management is done in a distributed manner) 
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Terminology 

 Application 

 Tier 2 – Services provided to end 

users 

 Tier 1 – Middleware services 

 Overlay 

 How peers are connected 

 Application layer network 

consists of peers 

 E.g., dial-up on top of telephone 

network, BGP, PlanetLab, CDNs 

 Underlay 

 Internet, Bluetooth  

 Peers implement top 3 layers 
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Application – Tier 2 
File sharing, streaming, VoIP, P2P clouds 

Application – Tier 1 
Indexing/DHT, Caching, replication, access 

control, reputation, trust 

Overlay 
Unstructured, structured, & hybrid 

Gnutella, Chord, Kademlia, CAN 

Underlay 
Internet, Bluetooth 



Overlay Connectivity 
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P2P Overlay 

Unstructured 

Deterministic 

Napster 

BitTorrent 

JXTA 

Nondeterministic 

Gnutella 

KaZaA 

Structured 

Sub-linear state 

Chord  

Kademlia  

CAN  

Pastry 

Tapestry 

Constant state 

Viceroy 

Cycloid 

Hybrid 

Structella 

Kelip 

Local minima 
search 



Bootstrapping 

 How is an initial P2P  overlay is formed from a set of nodes? 

 Use a well known server to register initial set of peers 

 Some peer addresses are well known 

 Use a well known multicast group address for peers to join 

 A well known domain name 

 Use a local broadcast to collect nearby peers, and merge such sets to 

larger sets 

 Each peer maintains a random subset of peers 

 e.g., peers in Skype maintain a cache of superpeers 

 An incoming peer talks to one of the known peers 

 A known peer accepting an incoming peer 

 Keeps track of the incoming peer 

 May redirect the incoming peer to another peer 

 Give a random set of peers to contact 

 Discover more peers by random walk or gossiping within overlay 9 



Resource Discovery Overview 
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Centralized 
O(1) 

Fast lookup 

Single point of failure 

Unstructured 
O(hopsmax) 

Easy network maintenance 

Not guaranteed to find resources 

Distribute Hash Table (DHT) 
O(log N) 

Guaranteed performance 

Not for dynamic systems 

Superpeer 
O(hopsmax) 

Better scalability 

Not guaranteed to find resources 



Centralized – Napster 

 Centralized database for 

lookup 
 Guaranteed content 

discovery 

 Low overhead 

 Single point of failure 

 Easy to track 

 Legal issues 

 File transfer directly 

between peers 

 Killer P2P application 
 June 1999 – July 2001 

 26.4 million users (peak) 
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Unstructured – Gnutella 

 Fully distributed 

 Random connections 

 Initial entry point is 

known 

 Peers maintain dynamic 

list of neighbors 

 Connections to multiple 

peers 

 Highly resilient to node 

failures 
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Unstructured P2P (cont.) 

 Flooding-based lookup 
 Guaranteed content discovery 

 Implosion  High overhead 

 Expanding ring flooding 

 TTL-based random walk 
 Content discovery is not 

guaranteed 

 Better performance by biasing 

random walk toward nodes with 

higher degree 

 If response follow same path 

 Anonymity 

 Used in KaZaA, BearShare, 

LimeWire, McAfee 
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Superpeers 

 Resource rich peers  

Superpeers 

 Bandwidth, reliability, trust, 

memory, CPU, etc. 

 Flooding or random walk 

 Only superpeers are 

involved 

 Lower overhead 

 More scalable 

 Content discovery is not 

guaranteed 

 Better performance when 

superpeers share list of 

file names 

 

 Examples: Gnutella V0.6, 

FastTrack, Freenet KaZaA, 

Skype 
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Scale-Free Overlays 

 Unstructured overlays can lead to 

scale-free networks 

 New nodes connect to  

 Existing nodes 

 Higher degree nodes 

 Specific implementations may set 

limits on node degree 

 e.g., LimeWire maintains 27-32 

connections 

 User modified code increases connectivity 

 Can be used to enhance P2P lookup  

 Index at high degree nodes 

 Biased random walk towards to high-

degree nodes 15 

[Stutzbach, 2008] 



BitTorrent 

 Most popular P2P file sharing 

system to date 

 Features 

 Centralized search 

 Multiple downloads 

 Enforce fairness 

 Rarest-first dissemination 

 Incentives 

 Better contribution  Better 

download speeds (not always) 

 Enable content delivery 

networks 

 Revenue through ads on search 

engines 
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BitTorrent Protocol 

 Content owner creates a 

.torrent file 

 File name, length, hash, 

list of trackers 

 Place .torrent file on a 

server 

 Publish URL of .torrent 

file to a web site 

 Torrent search engine 

 .torrent file points to a 

tracker(s) 
 Registry of leaches & 

seeds for a given file 
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BitTorrent Protocol (cont.) 

 Tracker 

 Provide a random subset 

of peers sharing same file 

 Peer contacts subset of 

peers parallely 

 Files are shared based 

on chunk IDs 

 Chunk – segment of file 

 Periodically ask tracker 

for new set of IPs 

 Every 15 min 

 Pick peers with highest 

upload rate 
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BitTorrent Terminology 

 Swarm 

 Set of peers accessing 

(upload/download) same 

file 

 Seeds  

 Peers with entire file 

 Leeches 

 Peers with part of file or 

no file (want to download) 
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BitTorrent Site Stat 
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User ranking 

of file quality 

Seedpeer.com 

www.kat.ph/stats/ 

Files in search 

engine 

User verified to 

be valid 

Across all files 

Search Cloud 



BitTorrent Content Popularity 

 Few highly popular content 

 Moderately popular 

content follow Zipf’s-like 

distribution 

 Typical Zipf’s parameter 

0.5-1.0 
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BitTorrent Characteristics 

 Flash crowd effect 

 Asymmetric bandwidth 

 Most peers leave after 

downloading 

 Diurnal & seasonal 

patterns 
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Flash crowd 

Download 

speed 

Session length 

[Zhang, 2009] 



BitTorrent Evolution 
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BitTorrent

Global community 
Islands of communities 

Connected islands of 

communities 

BitTorrent ver. 4.2 



BitTorrent Communities 

 Many communities emerged based on similarity 

 Semantic – songs, video, games, Linux distributions 

 Geographic – China, India 

 Organizational – private communities 

 Run their own trackers 

 Many islands of deployments 

 Not isolated 

 Have to search in many trackers  

 v4.2.0 – connect peers using a Distributed Hash Table (DHT) 

 Many private communities 

 Require invitation to join 

 Require login 

 Today, BitTorrent  Hierarchical + DHT 
24 



BitTorrent Communities (cont.) 

 Similarity among communities 
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Community EX FE SP TB TS TE TR 

FE 0.38 

SP 0.00 0.00 

TB 0.40 0.29 0.00 

TS 0.48 0.33 0.00 0.48 

TE 0.53 0.23 0.00 0.31 0.25 

TR 0.10 0.08 0.00 0.06 0.09 0.06 

YB 0.36 0.35 0.00 0.29 0.42 0.20 0.04 

* EX – extratorrent.com, FE – fenopy.com, SP – 

seedpeer.com, TB – torrentbit.net, TS – torrentscan.com, TE 

– torrentsection.com, TR – torrentreactor.net, YB – 

youbittorrent.com. Date – 24/07/2010 ~04:55 UTC. 

[Bandara, 2011a] 



BitTorrent Fairness/Incentives 
 Tit-for-tat    

 Bandwidth policy 

 Upload to 4 peers that give me the 

highest download bandwidth 

 1 random peer 

 Create clusters of similar 

bandwidth peers [Legout, 2007] 

 Chunk policy 

 Rarest first 

 Download least popular chunk 

 Initial seed try not to send same 

chunk twice 

 Most peers leave immediately 

after downloading 

 Modified nodes increase free 

riding 

 Modified policies 

 Message Types 

 Choke/Unchoke 

 Interested/Not_intere

sted 

 Have 

 Bitfield 

 Request 

 Piece 

 Cancel 
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Summary – Unstructured P2P 

 Separate content discovery & delivery 

 Content discovery is mostly outside of P2P overlay 

 Centralized solutions 

 Not scalable 

 Affect content delivery when failed 

 Distributed solutions 

 High overhead 

 May not locate the content 

 No predictable performance 

 Delay or message bounds 

 Lack of QoS or QoE 
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Structured P2P 

 Deterministic approach to locate contents & peers 

 Locate peer(s) responsible for a given key 

 Contents 

 Unique key 

 Hash of file name, metadata, or actual content 

 160-bit or higher 

 Peers also have a key 

 Random bit string or IP address 

 Index keys on a Distributed Hash Table (DHT) 

 Distributed address space [0, 2m – 1] 

 Deterministic overlay to publish & locate content 

 Bounded performance under standard conditions 
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Terminology 

 Hash function 

 Converts a large amount of data into 

a small datum 

 Hash table  

 Data structure that uses hashing to 

index content 

 Distributed Hash Table (DHT) 

 A hash table that is distributed 

 Types of hashing 

 Consistent or random 

 Locality preserving 
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Structured P2P – Example 

 2 operations 

 store(key, value) 

 locate(key) 
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Ring – 16 addresses 

Song.mp3 

Cars.mpeg 

f() 

f() 

Find cars.mpeg 

n + 2i – 1, 1  i  m 

Successor 

11 Song.mp3 

6 Cars.mpeg 

O(log N) hops 



Chord [Stoica, 2001] 

 Key space arranged as a ring 

 Peers responsible for segment of 

the ring 

 Called successor of a key 

 1st peer in clockwise direction 

 Routing table 

 Keep a pointer (finger) to m peers 

 Keep a finger to (2i – 1)-th peer, 1 ≤ i ≤ m 

 Key resolution 

 Go to peer with the closest key 

 Recursively continue until key is find 

 Can be located within O(log n) hops 
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m =3-bit key ring 



Chord (cont.) 

 New peer entering overlay 

 Takes keys from the successor 

 Peer leaving overlay 

 Give keys to the successor 

 Fingers are updated as peers join & leave 

 Peer failure or churn makes finger table entries stale 32 

New peer with key 6 joins the overlay Peer with key 1 leave the overlay 



Chord Performance 

 Path length 

 Worst case O(log N) 

 Average ½log2N 

 Updates O(log2 N) 

 Fingers O(log N) 

 Alternative paths (log N)! 

 Balanced distribution of 

keys 

 Under uniform distribution 

 N(log N) virtual nodes 

provides best load 

distribution 
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Kademlia [Maymounkov, 2002] 

 Used in BitTorrent, eMule, aMule, & AZUREUS 

 160-bit keys 

 Nodes are assigned random keys 

 Distance between 2 keys is determined by XOR 

 Routing in the ring is bidirectional 

 dist(a  b) = dist(b  a) 

 Enable nodes to learn about new nodes from received messages 

 Keys are stored in nodes with the shortest XOR distance 
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Kademlia (cont.) 

 k-bucket routing table 

 Store up to k peers for each (2i, 2i+1) distance, 1 ≤ i ≤ m 

 Update bucket entries based on least-recently seen approach 

 Ping a node before dropping from a bucket 

 Better performance under peer churn & failure 
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Kademlia Routing 

 Find set of peers with the shortest distance in routing table 

 Longest prefix match 

 Concurrently, ask α of them to find an even closer peer  

 Iterate until no closer peers can be found 

 Then send the query to α closest peers 
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Structured P2P – Alternate Designs 
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d-Torus 
Content-Addressable Network (CAN) 

[Ratnasamy, 2001] 

(0, 0)

(1, 0)

(0, 0)

(0, 1)

Zone 
controller

(0.1,0.9)

(0.3,0.4)

(0.4,0.8)

(0.75,0.2)(0.35,0.1)

(0.65,0.7)

(0.8,0.4)

(0.8,0.8)

(0-0.5, 0-0.5)

(0.5-1, 0-0.5)

(0-0.5, 0.5-1)

(0.5-1, 0.5-0.75)

Cube connected cycle 
Cycloid [Shen, 2006] 



Structured P2P – Extensions 

 EpiChord [Leong, 2004] 

 Use messages being forwarded 

to learn about new nodes 

 Cache their contact information 

 Can achieve O(1) lookup 

 Cannon [Ganesan, 2004b] 

 Hierarchical DHT 

 Each level in hierarchy maintains 

a ring 

 Merge rings at higher levels  

 Maintain original fingers as it is 

 Merging add few new fingers  

 Many other designs for 

specific applications 38 



Amazon Dynamo [DeCandia, 2007] 

 Highly-available key-value system 

 Many large datasets/objects that only 

require primary key access 

 Shopping carts, better seller lists, customer 

preferences, product catalogs, etc.  

 Relational databases are not required, too 

slow, or bulky 

 Fast reads, high availability for writes 

 Always failing servers, disks, switches 

 Objects are replicated in successors 

 All peers know about each other using 

gossiping 

 Can read/write to any replica 

 Mechanisms to deal with different versions of objects 

 39 



Summary – Structured P2P 

 Content discovery is within the P2P overlay 

 Deterministic performance 

 Chord 

 Unidirectional routing 

 Recursive routing 

 Peer churn & failure is an issue 

 Kademlia 

 Bidirectional routing 

 Parallel iterative routing 

 Work better under peer failure & churn 

 MySong.mp3 is not same as mysong.mp3 

 Unbalanced distribution of keys & load 
40 



Summary (cont.) 
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Scheme Architecture Routing 

mechanism 

Lookup 

overhead* 

Routing 

table size* 

Join/leav

e cost 

Resilience 

Chord Circular key 

space 

Successor & 

long distant links 

O(log N) O(log N) O(log2 N) High 

CAN d-torus Greedy routing 

through 

neighbors 

O(dN1/d) 2d 2d Moderate 

Pastry Hypercube Correct one digit 

in key at time 

O(logB N) O(B logB N)  O(logB N) Moderate 

Tapestry Hypercube Correct one digit 

in key at time 

O(logB N) O(logB N) O(logB N) Moderate 

Viceroy Butterfly network Predecessor & 

successor links 

O(log N) O(1) O(log N) Low 

Kademlia Binary tree, XOR 

distance metric 

Iteratively find 

nodes close to 

key 

O(log N) O(log N) O(log N) High 

Cycloid Cube connected 

cycles 

Links to cyclic & 

cubical 

neighbors 

O(d) O(1) O(d) Moderate 

* N – number of nodes in overlay, d – number of dimensions B – base of a key identifier 



Structured vs. Unstructured 

42 

  Unstructured P2P Structured P2P 

Overlay 

construction 
High flexibility Low flexibility 

Resources Indexed locally Indexed remotely on a distributed 

hash table 

Query messages Broadcast or random walk Unicast  

Content location Best effort Guaranteed 

Performance Unpredictable Predictable bounds 

Overhead High Relatively low 

Object types Mutable, with many complex 

attributes  
Immutable, with few simple 

attributes 
Peer churn & 

failure 
Supports high failure rates Supports moderate failure rates 

Applicable 

environments 
Small-scale or highly dynamic, e.g., 

mobile P2P 
Large-scale & relatively stable, 

e.g., desktop file sharing 

Examples Gnutella, LimeWire, KaZaA, 

BitTorrent 
Chord, CAN, Pastry, eMule, 

BitTorrent 



Enhancing Lookup Performance 

 Many fingers/pointers 

 Caching 

 Skewed popularity 

 Reactive/passive 

 Cache what you receive 

 Proactive/active 

 Demand based 

 Community caching 

 Replication 

 Load balancing 
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Unstructured P2P –  

Performance Enhancements 
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Content 

locatable 

Reduce path 

length 

Load 

balancing 

Distributed 

statistics 
• Capacity 

• Popularity 

• Failed queries  

 

Consistency 

Low key 

movements 

Goals Utilize 

 

Heterogeneity 

Skewed 

popularity 

 

Resilience 

Reactive cache 

ip

Local minima search 

(Zhong, 2008) 

 

P2R2 

 

Push/pull 

 



Unstructured P2P – Caching 

 Passive/reactive caching 

 Cache at query originator 

 Minor improvement 

 

 

 Active/proactive caching 

 Cache along path 

 Leads to (fk)
½ allocation 

 fk – popularity of content k 

 Relatively better lookup 

 [Cohen, 2002] & [Lv, 2002] 
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Structured P2P –  

 Performance Enhancements 

 

Resilience 

Reduce path 

length 

Load 

balancing 

Distributed 

statistics 
• Capacity 

• Popularity 

• No peers 

 

Consistency 

Low key 

movements 

Goals Utilize 

 

Heterogeneity 

Virtual nodes (VN) 

Swap VNs 

Skewed 

popularity 
Reactive cache 

CAN replication 

Beehive 

PoPCache 

Amazon’s Dynamo 

Y0 



Structured P2P – Caching 

 Beehive [Ramasubramanian, 2004] 

 Cache most popular keys everywhere 

  2nd most popular at ½ of nodes 

 3rd most popular at ¼ of nodes 

 Assume Zipf’s popularity distribution 

 Global popularity estimation 

 Issues 

 Unnecessary caching 

 Not all nodes are interested in most 

popular content 

 Not all intermediate nodes are 

involved in routing 

 Works only with Zipf’s distribution 
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Structured P2P – Caching (cont.) 

 PoPCache [Rao, 2007] 

 Use overly routing tree to place 

cache entries 

 ck = fk B 

 ck – cache capacity allocated to k 

 Place cache entries from bottom of 

routing tree 

 Global popularity estimation 

 More efficient than Beehive 

 Issues 
 Overlay routing tree is not symmetric 

 ck can exceed N 

 Use of upper bound O(log N) 
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Local Knowledge-based Distributed 

Caching (LKDC) 

 Each overlay node 

 Independently decides what keys to cache based on number of 

queries it forwards 

 Tries to maximize number of queries it can answer 

 NP-complete [Bandara, 2011d] 

 Relaxed version of problem (namely GKDC) can be used 

to determine 

 Where to place cache entries? 

 How many entries to place? 

 GKDC says local statistics are adequate to decide what to 

cache at a node 

 Heuristic algorithm based on Least Frequently Used (LFU) 

caching 
49 



Global Knowledge-based Distributed 

Caching (GKDC) 

 Where to place? 

 At nodes that forward most 

number of messages 

 6, (4, 5), (0, 1, 2, 3), … 

 How many? 

   

 

 Place according to local 

popularity 
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Asymmetric routing tree 



 

r
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
h

o
p

s
 (

H
a

v
e
)

2.0

2.4

2.8

3.2

3.6

g(ck)

Continious, b = log21.5

GKDC - Sim

LKDC - Sim

Eq. (12)

Heuristic-Based LKDC – Performance 

 Same performance as 

PoPCache using 

 Small caches 

 Local statistics only 

 Works with any skewed 

distribution  51 
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Community-Aware Caching 

 Many small P2P communities are 

emerging 

 Enhancing lookup 
 Unstructured  Restructure overlay 

 Structured  Cache only most popular 

resources in entire system 

 However 
1. Communities are not isolated 

2. Loose popularity due to aggregation 
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Community EX FE SP TB TS TE TR 

FE 0.38 

SP 0.00 0.00 

TB 0.40 0.29 0.00 

TS 0.48 0.33 0.00 0.48 

TE 0.53 0.23 0.00 0.31 0.25 

TR 0.10 0.08 0.00 0.06 0.09 0.06 

YB 0.36 0.35 0.00 0.29 0.42 0.20 0.04 

[Bandara, 2011d] 



Community-Aware Caching 

 Goal – Reduce content mixing or 

overlay restructuring 
 Preserve popularity 

 Each community forms a sub-

overlay 
 Links to community members 

 Sample nodes pointed by fingers to find 

community members 

 Forward messages through 

community members 
 Nodes can identify what’s popular 

within their community 
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• By probing i-th finger & its 

successor 2(i + 2 log N – m) - 1 

nodes can be found 

• Community of size M have M/2m – 

i + 1 peers in the range of i-th 

finger 



Community-Aware Caching (cont.) 

 Cache based on communities’ 

interest  
 “What is important to me is also 

important to other community members” 

 “They may have queries it before me” 

 Heuristic-based LKDC caching 

algorithm 

 Weighted LFU caching 

 Local statistics only 

 Pros 
 Works with any structured overlay that 

provide multiple paths 

 Peers can be in any community 

 Preserves path length bound O(log N) 
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Community-Aware Caching – Simulation 

Setup 

 15,000 nodes 

 10 communities 

 Chord overlay 

 Simulated using OverSim 
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Community C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

No of nodes 

(apx.) 
600 600 600 1,200 1,200 1,200 1,200 1,200 2,400 4,800 

Zipf’s parameter 0.85 0.95 1.10 0.5 0.80 0.80 1.0 0.90 0.90 0.75 

No of distinct 

keys 
40,000 30,000 30,000 40,000 40,000 40,000 50,000 50,000 50,000 50,000 

Similarity with 

community (x) 
0.2 

(C8) 
0 

0.1 
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Queries for rank 
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4,516 8,535 17,100 603 6,454 6,454 21,059 11,956 23,911 17,030 
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Community-Aware Caching – Results 

 More popular communities 

 48-53% reduction in path length 

 Least popular community 

 23% reduction (7% with caching) 

 Geographic communities 

 48-50% latency reduction 
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Results (cont.) 

 Significant performance with small 

caches 

 Caching threshold reduce cache 

thrashing, & overhead 

 Fast response to popularity 

changes 
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Load Balancing 

 Swap nodes 

 Overloaded node swap its overlay location with a resourceful node 

 Load may exceed capabilities or any node  Not scalable 

 Virtual nodes 

 A physical node appear as several virtual nodes 

 Chord index table is balanced when there are N log N virtual nodes 

 Increase lookup cost, e.g., Chord O{log (N log N)} 

 Replication 

 Save in multiple neighbors, e.g., Kademlia & CAN 

 Doesn’t work with some overlays, e.g., Chord 

 Caching 

 Nodes that cache reduce query load on indexing node 

 Doesn’t work well with mutable content and/or large indexes 
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Login Server

Superpeer 
overlay

Skype 

 Proprietary 

 Encrypted control & data messages 

 Many platforms 

 Voice/video calls, instant 

messaging, file transfer, 

video/audio conferencing 

 Superpeer overlay 

 Related to KaZaA 

 Based on bandwidth, not behind 

firewall/NAT, & processing power 

 Enables NAT & firewall traversal for 

ordinary peers 

 
59 



Skype (cont.) 

 30% superpeers 

 Relatively stable 

 Diurnal behavior 

 Longer session length than typical 

P2P - Heavy tailed 60 

[Guha, 2006] 



P2P as Publisher/Subscriber Services 

 Rendezvous service for consumers 

& producers 

 File sharing, RSS feeds, mobility, 

multicast, data availability in sensor 

networks 

 i3 – Internet Indirection 

Infrastructure [Stoica, 2002] 

 Packets have unique IDs 

 Receive requests packets from DHT 

 Unicast, anycast, multicast, mobility 

 Many other application specific 

solutions 
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Mobility 

Multicast 

[Stoica, 2002] 



P2P Middleware – JXTA 

 XML-based P2P protocol 

specification 
 Sun Microsystem – up to 2010 

 Implementations for Java, C/C++, C# 

 Many protocols 
 Peer Discovery – Resource search 

 Pipe Binding – Addressable messaging 

 Peer Information – Monitoring 

 Peer Resolver – Generic query service 

 Peer Membership – Security 

 Rendezvous – Message propagation 

 Peer Endpoint – Routing 

 Use any available protocol to 

traverse firewalls/NATs 
 HTTP, TCP 62 

[Brookshier, 2002] 



JXTA (cont.) 
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[Brookshier, 2002] 



P2P Middleware in Windows 

 Available since Windows XP 
 Supports IPv6, IPV4 needs 

tunneling 

 Graphing 
 Overlay connectivity maintenance 

 Flooding based 

 Grouping 
 Peers groups 

 Access control 

 Distributed name lookup 

 Peer identity management 

 Applications 
 Windows HomeGroup, Meeting 

Space, Internet Computer Names 64 

[Microsoft, 2006a] 

NSP – Name Service Provider 

PNRP – Peer Name Resolution Protocol 



Windows Peer Name Resolution Protocol 

 Scalable, secure, & dynamic 

name resolution protocol 

 P2P ID 

 End-point identifier of an 

application, service, user, group 

 Circular ID space 

 Service location 

 Locally unique service ID 

 Peers cache IDs of other peers 

 Hierarchical like Kademlia 

 Iteratively search for peer(s) 

with shorter distance to 

destination 
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[Microsoft, 2006b] 

http://technet.microsoft.com/en-us/library/Bb726971.pnrp04(l=en-us).gif


P2P Simulators 

 OverSim 
 OMNeT++ based, GUI, C++ 

 Prebuilt (un)structured protocols 

 Underlay support, e.g., GT-ITM 

 oversim.org 

 PeerSim 
 Java based 

 Fast cycle-based simulation 

 Prebuilt (un)structured protocols 

 peersim.sourceforge.net 

 Overlay Weaver 
 Emulator 

 Java based, GUI 

 Prebuilt (un)structured protocols 

 overlayweaver.sourceforge.net 66 

OverSim 

Overlay Weaver 



Challenges & Opportunities 
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Challenges Opportunities  

P2P communities 
• Identify, form, & maintain 

Community-aware performance 

enhancements 
• Lookup, fast download, reputation, trust, 

etc. 

• Interest-based topology adaptation  

• Capturing/using social relationship 

among peers 

Topology missmatch & ISP traffic 

blocking 
• P4P, ALTO 

• User’s don’t like ISPs to suggest 

Transparent selection of local peers 
• User & ISP friendly designs 

• Incentives 

• Network coordinates 

QoS & QoE Best effort  deterministic 

performance 
• Predictable download times 

• Real-time & VoD streaming 



Challenges & Opportunities (cont.) 
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Challenges Opportunities  

Free riding 
• 15% of Gnutella peers contribute 

to 94% of content 

• 63% of peers never responded to 

queries [Adar, 2000] 

Incentives, trust, & enforcement 
• Revenue models 

• Ads, pay-per-click 

• Retaining users after downloads 

Security 
• File pollution, viruses, worms 

• Topology worms 

• Anonymity 

• Route poisoning, sink holes, Sybil 

attacks 

Content protection & overlay security 
• Signed content 

• Enabling/disabling anonymity  

• Authentication & accountability 
• Centralized solutions are proposed 

• Community support to moderate 

content 

Copyright violation 
•  Direct/indirect infringement 

Monitoring, enforcement 
•  Active/passive monitoring 

Load imbalance Static & dynamic load balancing 



Challenges & Opportunities (cont.) 
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Challenges Opportunities  

Integrating P2P & social 

networks 
• Capturing social relationships 

• Privacy 

Enhanced performance, QoE 
• Social graph-based P2P overlays 

• Better incentives 

• Better caching, replication, load 

distribution 

Low resilience in structured P2P 
• Sudden departures 

• Route failures 

• Loss of content index 

Maximize resilience/availability 
• Enhancing consistency of replicas 

Connectivity 
• NAT, firewalls, & proxies 

• 66% of BitTorrent peers are 

behind firewalls [Zhang, 2009] 

 

Connectivity services & tunneling 
• Performance should not depend on 

whether a peer is behind a NAT/firewall 



Outline 

 File sharing 

 Unstructured vs. structured overlays 

 Performance enhancements 

 More state, caching, replication 

 Opportunities & challenges 

 Streaming 

 Tree-push vs. mesh-pull 

 Opportunities & challenges 

 Resource sharing 

 Collaborative P2P 

 Resource aggregation 

 Opportunities & challenges  
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P2P streaming 

 Emergence of IPTV 

 Content Delivery Networks (CDNs) can’t handle bandwidth 

requirements 

 No multicast support at network layer 

 P2P 

 Easy to implement 

 No global topology maintenance 

 Tremendous scalability 

 Greater demand  Better service 

 Cost effective 

 Robustness 

 No single point of failure 

 Adaptive 

 Application layer 
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P2P Streaming – Components 

 Chunk 

 Segment of the video stream 

 E.g., one second worth of video 

 Partners 

 Subset of known peers that a peer may 

actually talk to 72 

(Hie, 2008) 

(Zhang, 2005) 



(Liu, 2008) 

Tree-Push Approach 

 Construct overlay tree starting from video source 

 Parent peer selection is based on 

 Bandwidth, latency, number of peers, etc.  

 Data/chunks are pushed down the tree 

 Multi-tree-based approach 

 Better content distribution 

 Enhanced reliability 
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Tree-Push Approach – Issues 

 Connectivity is affected when peers at the top of the tree 

leave/fail 

 Time to reconstruct the tree 

 Unbalanced tree  

 Majority of the peers are leaves 

 Unable to utilize their bandwidth 

 High delay 
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(Zhang, 2005) 



Mesh-pull approach 

 A peer connects to multiple peers 

forming a mesh 

 Pros 

 More robust to failure 

 Better bandwidth utilization 

 Cons 

 No specific chunk forwarding path 

 Need to pull chunks from partners/peers 

 Need to know which partner has what 

 Used in most commercial products 

75 

(Zhang, 2005) 



Chunk Sharing 

 Each peer  

 Caches a set of chunks within a sliding window 

 Shares its chunk information with its partners 

 Buffer maps are used to inform chunk availability 

 Chunks may be in one or more partners 

 What chunks to get from whom? 

76 

(Hie, 2008) 



Chunk Scheduling 

 Some chunks are highly available while others are scare  

 Some chinks needs to be played soon 

 New chunks need to be pulled from video source 

 Chunk scheduling consider how a peer can get chunks while 

 Minimizing latency 

 Preventing skipping 

 Maximizing throughput 

 Chunk scheduling 

 Random, rarest first, earliest deadline first, earliest deadline & rarest 

first 

 Determines user QoE 

 Most commercial products use TCP for chunk transmission 

 Control message overhead ~1-2% 
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Random Scheduling 

 One of the earliest approach – used in Chainsaw 

 Peers periodically share buffer maps 

 Select a random chunk & request it from one of the partners 

having the chunk 

 Some peers may experience significant playback delay 

 1-2 minutes 

 Skipping is possible 

78 [Pai, 2005] 



Rarest First Scheduling 

 Used in CoolStraming 

 Chunk = 1 sec video, 120 chunk in sliding window  

 A peer gets the rarest chunk so that chunk can be spread to 

its partners 

 Steps 

1. Gather buffer maps periodically 

2. Calculate number of suppliers (i.e., partners with chunk) for each 

chunk 

3. Request chunks with the lowest number of suppliers 

4. For chunks with multiple suppliers, request from the supplier with 

highest bandwidth & free time 

 Gather application-level bandwidth data for each partner 

 Request are made through a bitmap 
79 



Rarest First (cont.) 

 It is sufficient to maintain 4 partners 

 Discover more peers overtime – use gossiping 

 Keep only the partners that have sufficient bandwidth & 

more chunks 80 

(Zhang, 2005) 



Rarest First (cont.) 

 More robust than tree-push 

approach 

 Larger user community  Better 

service quality 

 Most users experience < 1 min 

delay 
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(Zhang, 2005) 



Queue-Based Scheduling 

 Objectives – Continuity & quality 

 Try to maximize bandwidth utilization 

of peers 

 Available bandwidth is inferred from 

queue status 

 Steps 

1. Peers pull chunks from source (marked 

as F) 

2. Peers push chunks to its peers (marked 

as NF) 

3. If source is not busy, it push chunks to 

peers (marked as NF) 
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[Guo, 2008 ] 



Queue Based Scheduling (cont.) 

 Queues have different priorities 

 Missing chunks can be requested from source or peers 

 Maintain a separate queue & a connection to each peer 

 Prevents a slower peer from slowing down the whole system 

83 

[Guo, 2008] 



Queue Based Scheduling (cont.) 

 Server need to contribute more bandwidth 

 More suitable for on-demand video 

 Lower hierarchy reduce latency 

 Less scalable 

 Peer churn & failure can affect the continuity 
84 

[Guo, 2008] 



Earliest Deadline First 

 Objectives – Minimum playback delay & continuity 

 Rule 1 

 Chunk with the lowest sequence number has the highest priority 

 So request chunk with the lowest sequence number 

 Try to meet earliest deadline 

 Rule 2 

 Peer with the lowest, largest sequence number in buffer map has the 

highest priority 

 Falling behind, so let it seed up 
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[Chen, 2008] 



Earliest Deadline First (cont.) 

 DPC – Distributed Priority based Chunk scheduling 

 L – Number of partners 

 Lower playback delay 

 Lower skipping 
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[Chen, 2008] 



Hybrid Chunk Scheduling 

 Combine both earliest deadline & rarest first 

 Lower delay than CoolStreaming & Chainsaw 

 Lower skipping 
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Application-Aware Radar Networking 

 Application-aware overlay networks 

 Application-aware packet marking & 

streaming 

 In-network data fusion 

 API for application-aware service 

deployment 

 Data-fusion latency estimation 
88 

[Lee, 2006] 

[Banka, 2007] 



Challenges & Opportunities 
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Challenges Opportunities  

QoS & QoE 
• Peer churn & failure 

• 30% of users leave overlay 

within 3 minutes [Tang, 2007] 

• Asymmetric bandwidth 

Best effort  deterministic 

performance 
• Real-time & VoD streaming 

• Minimizing skipping & start-up delay 

• Adaptive network formation & routing 

• Integrating social networks 

Heterogeneous devices Supporting 
• Different video qualities 

• Scree sizes 

• Processing, memory, & bandwidth 

• Coding designed for P2P 

Digital rights management Distributing certificates/keys 
• Pay-per-view, VoD, ads 



Outline 

 File sharing 

 Unstructured vs. structured overlays 

 Performance enhancements 

 More state, caching, replication 

 Opportunities & challenges 

 Streaming 

 Tree-push vs. mesh-pull 

 Opportunities & challenges 

 Resource sharing 

 Collaborative P2P 

 Resource aggregation 

 Opportunities & challenges  
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Collaborative P2P Systems 

 About interaction of groups 

 Aggregate group(s) of resources 
 Diversity in resources & capabilities is an asset 

 Can accomplish greater tasks – beneficial to all peers  

 Many applications 
 DCAS (Distributed Collaborative Adaptive Sensing), P2P clouds, 

GENI (Global Environment for Network Innovation), mobile P2P, 

social networks 

Download 
song.mp3
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Collaborative Adaptive Sensing of the 

Atmosphere (CASA) 

 Distributed Collaborative 

Adaptive Sensing (DCAS) 

system 

 Concept 

 A network of small radars instead 

of one large radar 

 Sense lower 3 km of atmosphere 

 Collaborating & adapting radars 

 Improved sensing, detection, & 

prediction  

 CASA goal 

 Improve warning time & forecast 

accuracy for hazardous weather 
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CASA Oklahoma Test Bed 

 Multiple high bandwidth streams 

 Real-time communication 

 Simultaneous observations by multiple radars 

 Multi-sensor data fusion 

 Heterogeneous infrastructure & end users 

 Hostile weather conditions 
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Large-Scale CASA Deployments 

 Large-scale CASA deployments are lot 

more computation, bandwidth, & storage 

intensive 

 New solid-state radar data rates in Gbps 

 Distributed & heterogeneous resources 

 Increased resource utilization 
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MC&C  
Meteorological 

command & control 



CASA (cont.) 

 Groups of multi-attribute resources 

 Radars/sensors, processing, storage, 

scientific algorithms 

 Heterogeneous, dynamic, & 

distributed 

 Need to aggregate groups of 

resources as and when needed 
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Multi-Sensor Data Fusion Applications

Event 
notification 

Event 
subscription 

Publisher/Subscriber

Event 
Handler

Resource 
Manager

Best Peer 
Selection (BPS)

Neighboring Peers

P2P Collaboration Framework in a peer

Locate data

Peer Manager

Data

Peers

Events Probe 
& cost

Task assignment 
& data



Global Environment for Network 

Innovations (GENI) 

 Collaborative & exploratory platform for innovation 

 Aggregating groups of resources across multiple administrative 

domains 96 

www.geni.net 



Other Applications 

 Depends on some form of 

resource aggregation 

 Multi-attribute, heterogeneous, 

dynamic, & distributed 
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Community (P2P) clouds 

  

Find 

ATM 

Mobile P2P 



Multi-Attribute P2P Resource Aggregation 

 Phases of resource aggregation 
 Advertise resources 

 Attributes & usage constrains 

 Select best resources 

 Match resources 
 Bandwidth, latency, packet loss, 

neighborhood (avoid ISP) 

 Bind to resources 
 Agreement between user & resource 

 Use resources 

 Release 
 Task complete or decreased demand 

 Process continues 
 Demand increases 

 Overcome/use fail/new resources 
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Advertise 

Select 

Match 

Bind 

Use 

Release 

[Bandara, 2011d] 



Multi-Attribute Queries 

 Specify multiple attributes & range of attribute values 

 “Find 2 nodes” 

 “Find 2 Linux nodes” 

 “Find 2 nodes with CPU ≥ 2.0 GHz and 256 ≤ Memory ≤ 512 MB and 

OS=“Linux 2.6” and Latency ≤ 50 ms” 

 May also specify constraints 

 “Find 2 GHz ×86 CPU: available between 12:00am-6:00am to my friends and 

average utilization must be ≤ 60%” 
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Resource Discovery – Unstructured P2P 

100 

Centralized 

O(1) 

Single point of failure 

Unstructured 

O(hopsmax) 

Not guaranteed to find resources 

Superpeer 

O(hopsmax) 

Not guaranteed to find resources 



Unstructured P2P (cont.) 

 Random walk 
 Superpeer overlay 

 Pros – low overhead, accurate state 

 Cons – no guarantees, high latency 

 Broadcast 
 Best peer selection [Lee; 2007] 

 Expanding tree [Yao, 2006] 

 Pros – accurate state 

 Cons – high overhead, not scalable 

 Gossiping 
 Agents carry resource information 

[Kwan, 2010] 

 Pros – low overhead, large coverage 

 Cons – stale data, no guarantees 
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Unstructured P2P (cont.) 

 Report to specific nodes 

 Centralized 
 Report to a known location 

 E.g., GENI clearing house 

 Pros 

 Accurate state, guaranteed, low 

adv/query cost 

 Cons 

 Single point of failure, not scalable 

 Hierarchical 
 Report to local repository 

 Which in turn report to a regional 

one 

 e.g., GENI federated clearing house 

102 

[Ranjan, 2008] 



UPnP (Universal Plug & Play) – upnp.org 

 Pervasive P2P network 

connectivity across 

 PCs, mobile phones, TVs, 

intelligent appliances, 

sensors, actuators 

 Data sharing, 

communication & control 

 Expressed using XML 

 HTTP & TCP/IP for direct 

communication 

 Facilitates collaborative 

P2P applications within 

 Home, office, & everywhere in 

between 
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www.orbitmicro.com 

wordpress.com 



Resource Discovery – Structured P2P 
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Distribute Hash Table (DHT) 
O(log N) 

Guaranteed performance 

Not for dynamic systems 



Resource Discovery – Multiple Rings 

 Separate ring for each attribute 
 Mercury [Bharambe, 2004] 

 Locality preserving hashing 
 Map attribute values to nearby nodes 

 (v – vmin)/(vmax – vmin) 

1. Multiple sub-queries 
 Go to c1/m1/b1 

 Then go from c1/m1/b1 to c2/m2/b2 

using successors 

 Finally, a database-like join 

 Total cost O(N) 
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Multiple Rings (cont.) 

2. Single-Attribute Dominated 

Queries (SADQ) 
 Advertise attributes to all rings 

 Pick min(c1 – c2, m1 – m2, b1 – b2) 

 Search that ring 

 Query stop as soon as desired 

no of resources are found 

 Low query cost 

 High advertising cost 

 Pros  
 Support new attributes 

 Cons 
 Many routing entries 

 Load balancing issue 
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q

CPUSpeed BandwidthMemory

Query routing Peer originating query

(a)

Pointers

query = c1 ≤ CPU ≤ c2, m1 ≤ 

Memory ≤ m2, b1 ≤ BW ≤ b2 



Single Ring 

 Single-partitioned ring 
 LORM [Shen, 2007] 

 Sword [Albrecht, 2008] 

 Pros 

 Few routing entries 

 Cons 

 Hard to add new attributes 

 Load balancing issue 

 Single-overlapped ring 
 MAAN [Cai, 2004] 

 Pros 

 Few routing entries 

 Relatively better load distribution 

 Cons 

 Easy to add new attributes 
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Resource Discovery in MANET 

 Group nodes based on landmarks 

 Mapped to a partitioned-ring 

 Advertise resources to  

 Nodes within own landmark 

 Global address on ring 

 Can locate nearby resources 

 Reduce latency & hops 

 Doesn’t work with many attributes 
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MADPastry [Zahn, 2005] 



D-Torus – MURK [Ganesan, 2004a] 

 Map attribute values to a d-torus 

 Partition d-torus to zones 

 A peer is responsible for a zone 

 Track as a kd-tree 

 Index in appropriate zone 

 Greedy routing of queries 

 Parallel search on neighboring zones 

 Results are send to query originator 

 Finally, database-like join 

 Cons - high query cost 

 Also, mapped to Chord using space 

filling curves 

 Cons – loose locality, cost is O(N) 109 
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D-Torus – Resource-Aware Overlay 
[Costa, 2009] 

 DHTs can’t track dynamic attributes 

correctly 

 Use only static attributes 

 Form overlay by connecting peers 

based on 
 Partition torus into hierarchical cells 

 Keep a pointer to a node in each level in 

hierarchy & cell 

 Identified using gossip protocol 

 Query resolution 
 Depth-first search starting from lowest 

level cell 

 Cons – high latency & support only 

static attributes 110 
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Resource Selection, Match, & Bind 

 Select 

 Supported by all solutions 

 Match 

 Need access to multiple resources 

 Superpeers index multiple resources 

 Sword support latency & bandwidth as AS level 

 MADPastry based on locality & latency 

 Bind 

 Need access to resource 

 Superpeers, unstructured P2P, & resource-aware overlay 

 No single solution support all 3 requirements 
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Summary of Structured P2P Solutions 
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Scheme Architecture Routing 

mechanism 

Lookup 

overhead 

(point query)* 

Lookup 

overhead 

(range 

query)* 

Routing 

table size* 

Load 

balancing 

Mercury Multiple rings Successor & 

long distant 

links 

O(1/k log2 n) O(n) k + 2 per 

ring 

Dynamic 

LORM Partitioned 

ring 

Cycloid O(d) O(n) O(1) Static 

MADPastry Partitioned 

ring (locality 

based) 

Pastry O(log n) O(n) O(log l)  Static 

MAAN Single ring Chord O(log n) O(n) O(log n) Static 

MURK d- torus CAN with long 

distance links 

O(log2 n) O(n) 2d + k Dynamic 

SWORD Partitioned 

ring, resource 

matching 

Chord O(log n) O(n) O(log n) Static 

Resource-

aware 

overlay  

d- torus 

partitioned 

into cells 

Links to peers 

in other cells 

O(n) O(n) O(d) Static 

* n – number of peers in overlay, k – number of long distant links, d – number of dimensions, D - network diameter, l – number 

of landmarks 



Summary of All Solutions 
Scheme Architecture Advertise Discover Select Match* Bind* 

Flooding Flood advertisements 

or queries 

Yes N/A Guaranteed N/S When queries 

are flooded 

Gossiping Agents share resource 

specifications they 

know 

Yes Yes Moderate 

probability of 

success  

Simple 

matching 

N/S 

Random walk Agents carry resource 

specifications & 

queries 

Yes Yes Moderate 

probability of 

success 

Simple 

matching 

When query 

agents are 

used 

Superpeer 2-layer overlay Yes Yes Relatively high 

probability of 

success 

Simple 

matching 

Yes 

Mercury Multiple rings Yes N/A Guaranteed N/S N/S 

LORM Partitioned ring Yes N/A Guaranteed N/S N/S 

MADPastry Partitioned ring (based 

on locality) 

To local & 

neighbor 

partitions 

N/A Guaranteed Latency & 

hop count 

N/S 

MAAN Single ring Yes N/A Guaranteed N/S N/S 

MURK d- torus Yes N/A Guaranteed N/S N/S 

SWORD Partitioned ring, 

resource matching 

Yes N/A Guaranteed Yes N/S 

Resource-

aware overlay 

d- torus partitioned 

into cells 

Static 

attributes  

N/A Guaranteed N/S Yes 
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Resource & Query Characteristics 

 Resources & queries are characterized by multiple 

attributes 

 Need detailed understanding to design, optimize, & validate 

 No formal analysis  Many simplifying assumptions 

 Few attributes 

 Ignore cost of updating dynamic attributes 

 i.i.d attributes 

 Uniform/Zipf’s distribution of resources/queries 

 Queries specifying a large number of attributes & a small range of 

attribute values 

 Leads to inaccurate designs, performance analysis, & 

conclusions 
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Datasets 

 PlanetLab node data 
 Global research network for developing new network services, 

protocols, & applications 

 Reflects many characteristics of Internet-based distributed systems 

 Heterogeneity, multiple end users, dynamic nodes, & global 

presence 

 Used to evaluate many preliminary P2P protocols & applications 

 12 static & 34 dynamic attributes sampled every 5 min 

 500-700 active nodes 

 SETI@home 

 Desktop grid 

 Static resources from 300,000+ nodes 

 21 static & 4 dynamic attributes 
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Resource Characteristics 
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 Resources satisfy a mixture of 

probability distributions 
 Gaussian – CPUSpeed, MemSize, DiskFree 

 Pareto – TxRate, RxRate 

 Many identical nodes 

 Highly skewed distributions 
 CPUFree, MemFree, CPU architecture 
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No of attribute value changes within 24 hours
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Dynamic Attributes at Different Times 

 Distribution of dynamic attributes 

is stable over days 

 Dynamic attributes & their rate of 

change fits Pareto 
 Same attributes/nodes change 

frequently 

 Many status updates 

 
117 

CPUFree (%)
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Memory Free (%)

0 20 40 60 80 100

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

t = t0

t = t0 + 12 hours

t = t0 + 1 day

t = t0 + 7 days

t = t0 + 14 days

Thresholds: CPUFree = MemFree = ± 10%, 

1MinLoad = ± 2, TxRate = RxRate = ± 1 Kbps 



CPUFree (%)

0 20 40 60 80 100

N
u
m

C
o
re

s

0

2

4

6

8

10

12

14

16

Resource Characteristics – Correlation 

 Complex correlation among 

attributes 

 Correlation between attributes 
 Static-dynamic 

 Dynamic-dynamic 
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Dynamic Attributes – Contemporaneous 

Correlation  

 Contemporaneous correlation among time series of 

dynamic attributes 

 Specific temporal pattern in MemFree 

 Temporal patterns need to be preserved 119 
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Dynamic Attributes – Autocorrelation 

 High autocorrelation in DiskFree & MemFree 

 No noticeable change in DiskFree 

 Temporal patterns need to be preserved 
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MemSize
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Modeling Static Attributes 

 Need to preserve correlation 
 Attribute values can’t be randomly drawn from marginal distributions  

 Pearson’s correlation matrix is insufficient 

 Copulas capture complex correlations 
 Functions that couple multivariate distributions to their marginals 

 Multivariate joint distribution defined on d-dimensional unit cube s.t. 

marginal distribution ui is ~uniform(0, 1) 

   

 Empirical copulas support complex/unknown distributions 

& correlations 
   

 

 x(i) ordered statistics of x 

 No need to find distribution of attributes 
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Modeling Dynamic Attributes 

 Specific temporal patterns in time series  Can’t draw 

values randomly 

 Contemporaneous correlation  Can’t draw independently 

 Goal – Not to predict future behavior, but to generate 

nodes with similar overall characteristics 

 Not necessary to fit a model 

 Build a library of time series segments 

 Pick the most distinct pattern & split according to structural changes  

 Preserve distinct temporal patterns 

 Split other time series at same position & replay segments together 
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Modeling Dynamic Attributes (cont.) 

 Initial approach – R strucchange package  

 Better approach – Sliding window (w) looking for 

significant change in average value (Δ) of 2 halves 

of the window 
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niuxy ii
T
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Check for Null 

Hypothesis that 

H0: βi = β0, i = 1, …, n 
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Dynamic Attributes – Contemporaneous 

Correlation  

 Split other time series at same position & replay segments 

together 

 Concatenate segments to form longer sequences 

 Segments are index by static attributes 124 
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RESQUE – RESource & QUEry Generator 

 NumCores establish correlation between static & dynamic 

 Generate synthetic traces with n nodes, as static & ad dynamic 

attributes over a given time t  

 Also generate multi-attribute queries 

 Beta version available – www.cnrl.colostate.edu/Projects/CP2P/ 125 

Transform to uniform CDF

Calculate empirical copula

Generate random numbers
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Resource Generation – Validation 

 Using 300 nodes over a week  

generated 5,000 nodes over 2 weeks 

 Satisfy Kolmogorov-Smirnov (KS) test 

with a significance level of 0.05 

 Statistically accurate data 
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Query Characteristics 

 441 queries, 9 moths 

 Few attributes in a query 
 80% queries specify 1 or 2 attributes 

 Skewed but not Zipf’s 

 Less specific attribute ranges 
 89% queries request CPUFree of 40-100% 

 70% queries request DiskFree of 5-1000GB 

 Dynamic attributes are popular 

 Large number of resources 
 73 resources per query 
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Comparison of Existing Solutions 

 Most prior assumptions are not valid 

 Resources 

 Many attributes, mixture of distributions, skewed, correlated, change 

rapidly 

 Queries 

 Few attributes, request many resources, large range of attribute 

values, skewed 

 Need to validate existing designs under real-workloads 
 Mostly extensions of single-attribute solutions 

 Contributions 
 Simple cost model for advertising & querying 

 Simulated 7 designs using PlanetLab resources & query traces 

 Unable to deliver desired performance, load balancing, etc. 
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Simulation of Different Solutions 

 Rings – higher advertising cost 

 Partitioned ring – Disproportionate load 

distribution 

 Superpeers – Balance cost & load but can’t 

locate all resources 129 
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Number of nodes (N)
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Simulation of Different Solutions (cont.) 

 Large range of attribute values  cost of ring-based designs O(N) 
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N Multi-ring + SADQ Partitioned-ring + 

SADQ 

Overlapped-ring + 

SADQ 

Min Ave Max Min Ave Max Min Ave Max 

250 0 9.2 239.1 0 3.7 19.4 0 9.1 238.4 

527 0 13.7 509.0 0 4.6 27.6 0 13.5 506.0 

750 0 16.2 719.1 0 4.9 36.6 0 16.5 719.9 

1000 0 19.8 975.5 0 5.3 45.3 0 20.4 963.8 



Index size
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Load Distribution 

 Unbalanced index size & query load 
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Architecture 

Total Cost per Query Query Load Index Size 

Min Max 
Min Max 

SWORD Uniform SWORD Uniform SWORD Uniform 

Centralized 2.03 2.03 950,000 950,000 950,000 950,000 527 527 

Unstructured 69.5 94.8 4,859 1,272 268,497 37,824 1 1 

Superpeer 6.5 9.5 81,021 22,390 289,626 87,209 17 36 

Multi-ring + SADQ 48.3 69.0 0 0 178,492 22,943 0 527 

Multi-ring + Sub-queries 398.8 120.8 0 0 624,837 57,518 0 230 

Partitioned-ring + SADQ 36.6 37.0 0 0 185,972 15,840 0 527 

Partitioned-ring + Sub-queries 40.7 16.4 0 0 432,859 46,946 0 527 

Overlapped-ring + SADQ 46.0 67.2 0 0 391,738 57,524 0 527 
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Challenges & Opportunities 
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Challenges Opportunities  

Diversity in 
• Resources 

• Application requirements 

• Complex inter-resource 

relationships 

New solutions 
• Support large number of resources & 

attributes 
• Consider real-world resource & query 

characteristics 

• How to specify application requirements 

& constraints 

• Efficiently track & match inter-resource 

relationships 

No solution satisfy select, match, 

& bind 

Supporting select, match, & bind 

within a single solution 
• Track inter-node 

• Bandwidth, latency, jitter, packet loss, 

etc. 

• Social relationships 

• Distributed resource binding 



Challenges & Opportunities (cont.) 
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Challenges Opportunities  

High cost 
• Query cost 

• Advertising dynamic attributes 

Enhance performance 
• Better support for dynamic attributes 

• Reduce query cost 
• New DHT mechanisms 

• Efficient updates – static/dynamic 

thresholds to reduce number of 

updates 

Load balancing Dynamic/adaptive solutions 
• Based on queries & updates 

• Based on resources being indexed 

• Supporting many attributes & values 
• Some attributes have few values 

Overcoming resource failures & 

unavailability 

Resource compensation 
• Substituting one resource with another 

• CASA – can process faster to 

accommodate high transmission delay 

due to lack of bandwidth 



Challenges & Opportunities (cont.) 
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Challenges Opportunities  

Increasing user participation Incentives, security, & trust 
• Essential in collaborative P2P 

• Virtual currency schemes to support 

community clouds 

Capturing large & high resolution 

datasets 

Tools to 

• Capture datasets 

• Generate statically accurate synthetic 

datasets 



Comments & Questions 
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