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Peer-to-Peer (P2P) Systems 

 Distributed systems without any central control 

 Autonomous peers 

 Equivalent in functionality/privileges; Both a client & a server 

 Protocol features 

 Protocol constructed at the  application layer 

 Overlaid on top of Internet 

 Typically a peer has a unique identifier 

 Supports some type of message routing capability 

 Fairness & Performance 
 Self-scaling 

 Free-rider problem 

 Peer Churn 

3 

Internet



P2P Applications 

 Many application 

domains 

 File sharing – BitTorrent, 

KaZaA, Napster, 

BearShare 

 IPTV – PPLive, 

CoolStreaming, SopCast 

 VoIP – Skype 

 CPU cycle sharing – SETI, 

World Community Grid 

 Distributed data fusion – 

CASA 

 Impact of P2P traffic 
 In 2008 – 50% 2009- 39% of 

total Internet traffic (2014-

17%) 

 Today – Volume still growing 

 3.5 Exabytes/month (4 in 

2014) 

 globally, P2P TV is now over 

280 petabytes per month 

 P2P traffic 20 percent of all 

mobile data traffic globally 
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[Hyperconnectivity and the 

Approaching Zettabyte Era, 

Cisco 2010]  



P2P Characteristics 

 Tremendous scalability 

 Millions of peers 

 Globally distributed 

 Bandwidth intensive 

 Upload/download 

 Many concurrent connections 

 Aggressive/unfair bandwidth utilization 

 Aggregated downloads to overcome asymmetric 

upload bandwidth  

 Heterogeneous 

 Superpeers 

 Critical for performance/functionality 
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P2P Overlay 

 Peers directly talk to each other, or if they are 

not directly connected, uses overlay routing 

mechanism via other peers 

 Best effort service on Internet 

 Peers are autonomous 

 Determines its own capabilities based on its 

resources (minimum threshold of resources) 

 Decides on its own when to join, leave 

 Peers have symmetrical roles (relaxed in 

cases such as superpeer)  

 Overlay is scalable and resilient 

 In size, geography 

 Graceful degradation, ensure connectedness when 

nodes leave, etc.   

 Overlay Maintenance 

 Overlay has to be self-organizing (overlay 

management is done in a distributed manner) 
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Terminology 

 Application 

 Tier 2 – Services provided to end 

users 

 Tier 1 – Middleware services 

 Overlay 

 How peers are connected 

 Application layer network 

consists of peers 

 E.g., dial-up on top of telephone 

network, BGP, PlanetLab, CDNs 

 Underlay 

 Internet, Bluetooth  

 Peers implement top 3 layers 
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Application – Tier 2 
File sharing, streaming, VoIP, P2P clouds 

Application – Tier 1 
Indexing/DHT, Caching, replication, access 

control, reputation, trust 

Overlay 
Unstructured, structured, & hybrid 

Gnutella, Chord, Kademlia, CAN 

Underlay 
Internet, Bluetooth 



Overlay Connectivity 
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P2P Overlay 

Unstructured 

Deterministic 

Napster 

BitTorrent 

JXTA 

Nondeterministic 

Gnutella 

KaZaA 

Structured 

Sub-linear state 

Chord  

Kademlia  

CAN  

Pastry 

Tapestry 

Constant state 

Viceroy 

Cycloid 

Hybrid 

Structella 

Kelip 

Local minima 
search 



Bootstrapping 

 How is an initial P2P  overlay is formed from a set of nodes? 

 Use a well known server to register initial set of peers 

 Some peer addresses are well known 

 Use a well known multicast group address for peers to join 

 A well known domain name 

 Use a local broadcast to collect nearby peers, and merge such sets to 

larger sets 

 Each peer maintains a random subset of peers 

 e.g., peers in Skype maintain a cache of superpeers 

 An incoming peer talks to one of the known peers 

 A known peer accepting an incoming peer 

 Keeps track of the incoming peer 

 May redirect the incoming peer to another peer 

 Give a random set of peers to contact 

 Discover more peers by random walk or gossiping within overlay 9 



Resource Discovery Overview 
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Centralized 
O(1) 

Fast lookup 

Single point of failure 

Unstructured 
O(hopsmax) 

Easy network maintenance 

Not guaranteed to find resources 

Distribute Hash Table (DHT) 
O(log N) 

Guaranteed performance 

Not for dynamic systems 

Superpeer 
O(hopsmax) 

Better scalability 

Not guaranteed to find resources 



Centralized – Napster 

 Centralized database for 

lookup 
 Guaranteed content 

discovery 

 Low overhead 

 Single point of failure 

 Easy to track 

 Legal issues 

 File transfer directly 

between peers 

 Killer P2P application 
 June 1999 – July 2001 

 26.4 million users (peak) 
11 



Unstructured – Gnutella 

 Fully distributed 

 Random connections 

 Initial entry point is 

known 

 Peers maintain dynamic 

list of neighbors 

 Connections to multiple 

peers 

 Highly resilient to node 

failures 
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Unstructured P2P (cont.) 

 Flooding-based lookup 
 Guaranteed content discovery 

 Implosion  High overhead 

 Expanding ring flooding 

 TTL-based random walk 
 Content discovery is not 

guaranteed 

 Better performance by biasing 

random walk toward nodes with 

higher degree 

 If response follow same path 

 Anonymity 

 Used in KaZaA, BearShare, 

LimeWire, McAfee 
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Superpeers 

 Resource rich peers  

Superpeers 

 Bandwidth, reliability, trust, 

memory, CPU, etc. 

 Flooding or random walk 

 Only superpeers are 

involved 

 Lower overhead 

 More scalable 

 Content discovery is not 

guaranteed 

 Better performance when 

superpeers share list of 

file names 

 

 Examples: Gnutella V0.6, 

FastTrack, Freenet KaZaA, 

Skype 
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Scale-Free Overlays 

 Unstructured overlays can lead to 

scale-free networks 

 New nodes connect to  

 Existing nodes 

 Higher degree nodes 

 Specific implementations may set 

limits on node degree 

 e.g., LimeWire maintains 27-32 

connections 

 User modified code increases connectivity 

 Can be used to enhance P2P lookup  

 Index at high degree nodes 

 Biased random walk towards to high-

degree nodes 15 

[Stutzbach, 2008] 



BitTorrent 

 Most popular P2P file sharing 

system to date 

 Features 

 Centralized search 

 Multiple downloads 

 Enforce fairness 

 Rarest-first dissemination 

 Incentives 

 Better contribution  Better 

download speeds (not always) 

 Enable content delivery 

networks 

 Revenue through ads on search 

engines 
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Download/
upload 
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BitTorrent Protocol 

 Content owner creates a 

.torrent file 

 File name, length, hash, 

list of trackers 

 Place .torrent file on a 

server 

 Publish URL of .torrent 

file to a web site 

 Torrent search engine 

 .torrent file points to a 

tracker(s) 
 Registry of leaches & 

seeds for a given file 
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BitTorrent Protocol (cont.) 

 Tracker 

 Provide a random subset 

of peers sharing same file 

 Peer contacts subset of 

peers parallely 

 Files are shared based 

on chunk IDs 

 Chunk – segment of file 

 Periodically ask tracker 

for new set of IPs 

 Every 15 min 

 Pick peers with highest 

upload rate 
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BitTorrent Terminology 

 Swarm 

 Set of peers accessing 

(upload/download) same 

file 

 Seeds  

 Peers with entire file 

 Leeches 

 Peers with part of file or 

no file (want to download) 
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BitTorrent Site Stat 
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User ranking 

of file quality 

Seedpeer.com 

www.kat.ph/stats/ 

Files in search 

engine 

User verified to 

be valid 

Across all files 

Search Cloud 



BitTorrent Content Popularity 

 Few highly popular content 

 Moderately popular 

content follow Zipf’s-like 

distribution 

 Typical Zipf’s parameter 

0.5-1.0 
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BitTorrent Characteristics 

 Flash crowd effect 

 Asymmetric bandwidth 

 Most peers leave after 

downloading 

 Diurnal & seasonal 

patterns 
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Flash crowd 

Download 

speed 

Session length 

[Zhang, 2009] 



BitTorrent Evolution 
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BitTorrent

Global community 
Islands of communities 

Connected islands of 

communities 

BitTorrent ver. 4.2 



BitTorrent Communities 

 Many communities emerged based on similarity 

 Semantic – songs, video, games, Linux distributions 

 Geographic – China, India 

 Organizational – private communities 

 Run their own trackers 

 Many islands of deployments 

 Not isolated 

 Have to search in many trackers  

 v4.2.0 – connect peers using a Distributed Hash Table (DHT) 

 Many private communities 

 Require invitation to join 

 Require login 

 Today, BitTorrent  Hierarchical + DHT 
24 



BitTorrent Communities (cont.) 

 Similarity among communities 
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Community EX FE SP TB TS TE TR 

FE 0.38 

SP 0.00 0.00 

TB 0.40 0.29 0.00 

TS 0.48 0.33 0.00 0.48 

TE 0.53 0.23 0.00 0.31 0.25 

TR 0.10 0.08 0.00 0.06 0.09 0.06 

YB 0.36 0.35 0.00 0.29 0.42 0.20 0.04 

* EX – extratorrent.com, FE – fenopy.com, SP – 

seedpeer.com, TB – torrentbit.net, TS – torrentscan.com, TE 

– torrentsection.com, TR – torrentreactor.net, YB – 

youbittorrent.com. Date – 24/07/2010 ~04:55 UTC. 

[Bandara, 2011a] 



BitTorrent Fairness/Incentives 
 Tit-for-tat    

 Bandwidth policy 

 Upload to 4 peers that give me the 

highest download bandwidth 

 1 random peer 

 Create clusters of similar 

bandwidth peers [Legout, 2007] 

 Chunk policy 

 Rarest first 

 Download least popular chunk 

 Initial seed try not to send same 

chunk twice 

 Most peers leave immediately 

after downloading 

 Modified nodes increase free 

riding 

 Modified policies 

 Message Types 

 Choke/Unchoke 

 Interested/Not_intere

sted 

 Have 

 Bitfield 

 Request 

 Piece 

 Cancel 
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Summary – Unstructured P2P 

 Separate content discovery & delivery 

 Content discovery is mostly outside of P2P overlay 

 Centralized solutions 

 Not scalable 

 Affect content delivery when failed 

 Distributed solutions 

 High overhead 

 May not locate the content 

 No predictable performance 

 Delay or message bounds 

 Lack of QoS or QoE 
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Structured P2P 

 Deterministic approach to locate contents & peers 

 Locate peer(s) responsible for a given key 

 Contents 

 Unique key 

 Hash of file name, metadata, or actual content 

 160-bit or higher 

 Peers also have a key 

 Random bit string or IP address 

 Index keys on a Distributed Hash Table (DHT) 

 Distributed address space [0, 2m – 1] 

 Deterministic overlay to publish & locate content 

 Bounded performance under standard conditions 

28 



Terminology 

 Hash function 

 Converts a large amount of data into 

a small datum 

 Hash table  

 Data structure that uses hashing to 

index content 

 Distributed Hash Table (DHT) 

 A hash table that is distributed 

 Types of hashing 

 Consistent or random 

 Locality preserving 
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Structured P2P – Example 

 2 operations 

 store(key, value) 

 locate(key) 

30 

Ring – 16 addresses 

Song.mp3 

Cars.mpeg 

f() 

f() 

Find cars.mpeg 

n + 2i – 1, 1  i  m 

Successor 

11 Song.mp3 

6 Cars.mpeg 

O(log N) hops 



Chord [Stoica, 2001] 

 Key space arranged as a ring 

 Peers responsible for segment of 

the ring 

 Called successor of a key 

 1st peer in clockwise direction 

 Routing table 

 Keep a pointer (finger) to m peers 

 Keep a finger to (2i – 1)-th peer, 1 ≤ i ≤ m 

 Key resolution 

 Go to peer with the closest key 

 Recursively continue until key is find 

 Can be located within O(log n) hops 
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m =3-bit key ring 



Chord (cont.) 

 New peer entering overlay 

 Takes keys from the successor 

 Peer leaving overlay 

 Give keys to the successor 

 Fingers are updated as peers join & leave 

 Peer failure or churn makes finger table entries stale 32 

New peer with key 6 joins the overlay Peer with key 1 leave the overlay 



Chord Performance 

 Path length 

 Worst case O(log N) 

 Average ½log2N 

 Updates O(log2 N) 

 Fingers O(log N) 

 Alternative paths (log N)! 

 Balanced distribution of 

keys 

 Under uniform distribution 

 N(log N) virtual nodes 

provides best load 

distribution 

33 



Kademlia [Maymounkov, 2002] 

 Used in BitTorrent, eMule, aMule, & AZUREUS 

 160-bit keys 

 Nodes are assigned random keys 

 Distance between 2 keys is determined by XOR 

 Routing in the ring is bidirectional 

 dist(a  b) = dist(b  a) 

 Enable nodes to learn about new nodes from received messages 

 Keys are stored in nodes with the shortest XOR distance 
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Kademlia (cont.) 

 k-bucket routing table 

 Store up to k peers for each (2i, 2i+1) distance, 1 ≤ i ≤ m 

 Update bucket entries based on least-recently seen approach 

 Ping a node before dropping from a bucket 

 Better performance under peer churn & failure 
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Node with key 0110 keeps k 

entries for 

• 1xxx/1 

• 00xx/2 

• 010x/3 

• 0111/4 
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Kademlia Routing 

 Find set of peers with the shortest distance in routing table 

 Longest prefix match 

 Concurrently, ask α of them to find an even closer peer  

 Iterate until no closer peers can be found 

 Then send the query to α closest peers 
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Structured P2P – Alternate Designs 
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d-Torus 
Content-Addressable Network (CAN) 

[Ratnasamy, 2001] 

(0, 0)

(1, 0)

(0, 0)

(0, 1)

Zone 
controller

(0.1,0.9)

(0.3,0.4)

(0.4,0.8)

(0.75,0.2)(0.35,0.1)

(0.65,0.7)

(0.8,0.4)

(0.8,0.8)

(0-0.5, 0-0.5)

(0.5-1, 0-0.5)

(0-0.5, 0.5-1)

(0.5-1, 0.5-0.75)

Cube connected cycle 
Cycloid [Shen, 2006] 



Structured P2P – Extensions 

 EpiChord [Leong, 2004] 

 Use messages being forwarded 

to learn about new nodes 

 Cache their contact information 

 Can achieve O(1) lookup 

 Cannon [Ganesan, 2004b] 

 Hierarchical DHT 

 Each level in hierarchy maintains 

a ring 

 Merge rings at higher levels  

 Maintain original fingers as it is 

 Merging add few new fingers  

 Many other designs for 

specific applications 38 



Amazon Dynamo [DeCandia, 2007] 

 Highly-available key-value system 

 Many large datasets/objects that only 

require primary key access 

 Shopping carts, better seller lists, customer 

preferences, product catalogs, etc.  

 Relational databases are not required, too 

slow, or bulky 

 Fast reads, high availability for writes 

 Always failing servers, disks, switches 

 Objects are replicated in successors 

 All peers know about each other using 

gossiping 

 Can read/write to any replica 

 Mechanisms to deal with different versions of objects 

 39 



Summary – Structured P2P 

 Content discovery is within the P2P overlay 

 Deterministic performance 

 Chord 

 Unidirectional routing 

 Recursive routing 

 Peer churn & failure is an issue 

 Kademlia 

 Bidirectional routing 

 Parallel iterative routing 

 Work better under peer failure & churn 

 MySong.mp3 is not same as mysong.mp3 

 Unbalanced distribution of keys & load 
40 



Summary (cont.) 
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Scheme Architecture Routing 

mechanism 

Lookup 

overhead* 

Routing 

table size* 

Join/leav

e cost 

Resilience 

Chord Circular key 

space 

Successor & 

long distant links 

O(log N) O(log N) O(log2 N) High 

CAN d-torus Greedy routing 

through 

neighbors 

O(dN1/d) 2d 2d Moderate 

Pastry Hypercube Correct one digit 

in key at time 

O(logB N) O(B logB N)  O(logB N) Moderate 

Tapestry Hypercube Correct one digit 

in key at time 

O(logB N) O(logB N) O(logB N) Moderate 

Viceroy Butterfly network Predecessor & 

successor links 

O(log N) O(1) O(log N) Low 

Kademlia Binary tree, XOR 

distance metric 

Iteratively find 

nodes close to 

key 

O(log N) O(log N) O(log N) High 

Cycloid Cube connected 

cycles 

Links to cyclic & 

cubical 

neighbors 

O(d) O(1) O(d) Moderate 

* N – number of nodes in overlay, d – number of dimensions B – base of a key identifier 



Structured vs. Unstructured 
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  Unstructured P2P Structured P2P 

Overlay 

construction 
High flexibility Low flexibility 

Resources Indexed locally Indexed remotely on a distributed 

hash table 

Query messages Broadcast or random walk Unicast  

Content location Best effort Guaranteed 

Performance Unpredictable Predictable bounds 

Overhead High Relatively low 

Object types Mutable, with many complex 

attributes  
Immutable, with few simple 

attributes 
Peer churn & 

failure 
Supports high failure rates Supports moderate failure rates 

Applicable 

environments 
Small-scale or highly dynamic, e.g., 

mobile P2P 
Large-scale & relatively stable, 

e.g., desktop file sharing 

Examples Gnutella, LimeWire, KaZaA, 

BitTorrent 
Chord, CAN, Pastry, eMule, 

BitTorrent 



Enhancing Lookup Performance 

 Many fingers/pointers 

 Caching 

 Skewed popularity 

 Reactive/passive 

 Cache what you receive 

 Proactive/active 

 Demand based 

 Community caching 

 Replication 

 Load balancing 
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Unstructured P2P –  

Performance Enhancements 
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Content 

locatable 

Reduce path 

length 

Load 

balancing 

Distributed 

statistics 
• Capacity 

• Popularity 

• Failed queries  

 

Consistency 

Low key 

movements 

Goals Utilize 

 

Heterogeneity 

Skewed 

popularity 

 

Resilience 

Reactive cache 

ip

Local minima search 

(Zhong, 2008) 

 

P2R2 

 

Push/pull 

 



Unstructured P2P – Caching 

 Passive/reactive caching 

 Cache at query originator 

 Minor improvement 

 

 

 Active/proactive caching 

 Cache along path 

 Leads to (fk)
½ allocation 

 fk – popularity of content k 

 Relatively better lookup 

 [Cohen, 2002] & [Lv, 2002] 
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Structured P2P –  

 Performance Enhancements 

 

Resilience 

Reduce path 

length 

Load 

balancing 

Distributed 

statistics 
• Capacity 

• Popularity 

• No peers 

 

Consistency 

Low key 

movements 

Goals Utilize 

 

Heterogeneity 

Virtual nodes (VN) 

Swap VNs 

Skewed 

popularity 
Reactive cache 

CAN replication 

Beehive 

PoPCache 

Amazon’s Dynamo 

Y0 



Structured P2P – Caching 

 Beehive [Ramasubramanian, 2004] 

 Cache most popular keys everywhere 

  2nd most popular at ½ of nodes 

 3rd most popular at ¼ of nodes 

 Assume Zipf’s popularity distribution 

 Global popularity estimation 

 Issues 

 Unnecessary caching 

 Not all nodes are interested in most 

popular content 

 Not all intermediate nodes are 

involved in routing 

 Works only with Zipf’s distribution 
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Structured P2P – Caching (cont.) 

 PoPCache [Rao, 2007] 

 Use overly routing tree to place 

cache entries 

 ck = fk B 

 ck – cache capacity allocated to k 

 Place cache entries from bottom of 

routing tree 

 Global popularity estimation 

 More efficient than Beehive 

 Issues 
 Overlay routing tree is not symmetric 

 ck can exceed N 

 Use of upper bound O(log N) 
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Local Knowledge-based Distributed 

Caching (LKDC) 

 Each overlay node 

 Independently decides what keys to cache based on number of 

queries it forwards 

 Tries to maximize number of queries it can answer 

 NP-complete [Bandara, 2011d] 

 Relaxed version of problem (namely GKDC) can be used 

to determine 

 Where to place cache entries? 

 How many entries to place? 

 GKDC says local statistics are adequate to decide what to 

cache at a node 

 Heuristic algorithm based on Least Frequently Used (LFU) 

caching 
49 



Global Knowledge-based Distributed 

Caching (GKDC) 

 Where to place? 

 At nodes that forward most 

number of messages 

 6, (4, 5), (0, 1, 2, 3), … 

 How many? 

   

 

 Place according to local 

popularity 
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Asymmetric routing tree 
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Heuristic-Based LKDC – Performance 

 Same performance as 

PoPCache using 

 Small caches 

 Local statistics only 

 Works with any skewed 

distribution  51 
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Community-Aware Caching 

 Many small P2P communities are 

emerging 

 Enhancing lookup 
 Unstructured  Restructure overlay 

 Structured  Cache only most popular 

resources in entire system 

 However 
1. Communities are not isolated 

2. Loose popularity due to aggregation 

52 
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Community EX FE SP TB TS TE TR 

FE 0.38 

SP 0.00 0.00 

TB 0.40 0.29 0.00 

TS 0.48 0.33 0.00 0.48 

TE 0.53 0.23 0.00 0.31 0.25 

TR 0.10 0.08 0.00 0.06 0.09 0.06 

YB 0.36 0.35 0.00 0.29 0.42 0.20 0.04 

[Bandara, 2011d] 



Community-Aware Caching 

 Goal – Reduce content mixing or 

overlay restructuring 
 Preserve popularity 

 Each community forms a sub-

overlay 
 Links to community members 

 Sample nodes pointed by fingers to find 

community members 

 Forward messages through 

community members 
 Nodes can identify what’s popular 

within their community 

53 

• By probing i-th finger & its 

successor 2(i + 2 log N – m) - 1 

nodes can be found 

• Community of size M have M/2m – 

i + 1 peers in the range of i-th 

finger 



Community-Aware Caching (cont.) 

 Cache based on communities’ 

interest  
 “What is important to me is also 

important to other community members” 

 “They may have queries it before me” 

 Heuristic-based LKDC caching 

algorithm 

 Weighted LFU caching 

 Local statistics only 

 Pros 
 Works with any structured overlay that 

provide multiple paths 

 Peers can be in any community 

 Preserves path length bound O(log N) 
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Community-Aware Caching – Simulation 

Setup 

 15,000 nodes 

 10 communities 

 Chord overlay 

 Simulated using OverSim 
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Community C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

No of nodes 

(apx.) 
600 600 600 1,200 1,200 1,200 1,200 1,200 2,400 4,800 

Zipf’s parameter 0.85 0.95 1.10 0.5 0.80 0.80 1.0 0.90 0.90 0.75 

No of distinct 

keys 
40,000 30,000 30,000 40,000 40,000 40,000 50,000 50,000 50,000 50,000 

Similarity with 

community (x) 
0.2 

(C8) 
0 

0.1 

(C7) 

0.2 

(C9) 

0.3 

(C8) 

0.5 

(C7) 

0 

0.1 

(C3) 

0.5 

(C5) 

0.3 

(C5) 

0.2 

(C1) 

0.4 

(C1)  

0.2 

(C4) 

0.3 

(C10) 

0.3 

(C9) 

Queries for rank 

1 key 
4,516 8,535 17,100 603 6,454 6,454 21,059 11,956 23,911 17,030 
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Community-Aware Caching – Results 

 More popular communities 

 48-53% reduction in path length 

 Least popular community 

 23% reduction (7% with caching) 

 Geographic communities 

 48-50% latency reduction 
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Results (cont.) 

 Significant performance with small 

caches 

 Caching threshold reduce cache 

thrashing, & overhead 

 Fast response to popularity 

changes 
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Load Balancing 

 Swap nodes 

 Overloaded node swap its overlay location with a resourceful node 

 Load may exceed capabilities or any node  Not scalable 

 Virtual nodes 

 A physical node appear as several virtual nodes 

 Chord index table is balanced when there are N log N virtual nodes 

 Increase lookup cost, e.g., Chord O{log (N log N)} 

 Replication 

 Save in multiple neighbors, e.g., Kademlia & CAN 

 Doesn’t work with some overlays, e.g., Chord 

 Caching 

 Nodes that cache reduce query load on indexing node 

 Doesn’t work well with mutable content and/or large indexes 
58 



Login Server

Superpeer 
overlay

Skype 

 Proprietary 

 Encrypted control & data messages 

 Many platforms 

 Voice/video calls, instant 

messaging, file transfer, 

video/audio conferencing 

 Superpeer overlay 

 Related to KaZaA 

 Based on bandwidth, not behind 

firewall/NAT, & processing power 

 Enables NAT & firewall traversal for 

ordinary peers 
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Skype (cont.) 

 30% superpeers 

 Relatively stable 

 Diurnal behavior 

 Longer session length than typical 

P2P - Heavy tailed 60 

[Guha, 2006] 



P2P as Publisher/Subscriber Services 

 Rendezvous service for consumers 

& producers 

 File sharing, RSS feeds, mobility, 

multicast, data availability in sensor 

networks 

 i3 – Internet Indirection 

Infrastructure [Stoica, 2002] 

 Packets have unique IDs 

 Receive requests packets from DHT 

 Unicast, anycast, multicast, mobility 

 Many other application specific 

solutions 

61 

Mobility 

Multicast 

[Stoica, 2002] 



P2P Middleware – JXTA 

 XML-based P2P protocol 

specification 
 Sun Microsystem – up to 2010 

 Implementations for Java, C/C++, C# 

 Many protocols 
 Peer Discovery – Resource search 

 Pipe Binding – Addressable messaging 

 Peer Information – Monitoring 

 Peer Resolver – Generic query service 

 Peer Membership – Security 

 Rendezvous – Message propagation 

 Peer Endpoint – Routing 

 Use any available protocol to 

traverse firewalls/NATs 
 HTTP, TCP 62 

[Brookshier, 2002] 



JXTA (cont.) 

63 

[Brookshier, 2002] 



P2P Middleware in Windows 

 Available since Windows XP 
 Supports IPv6, IPV4 needs 

tunneling 

 Graphing 
 Overlay connectivity maintenance 

 Flooding based 

 Grouping 
 Peers groups 

 Access control 

 Distributed name lookup 

 Peer identity management 

 Applications 
 Windows HomeGroup, Meeting 

Space, Internet Computer Names 64 

[Microsoft, 2006a] 

NSP – Name Service Provider 

PNRP – Peer Name Resolution Protocol 



Windows Peer Name Resolution Protocol 

 Scalable, secure, & dynamic 

name resolution protocol 

 P2P ID 

 End-point identifier of an 

application, service, user, group 

 Circular ID space 

 Service location 

 Locally unique service ID 

 Peers cache IDs of other peers 

 Hierarchical like Kademlia 

 Iteratively search for peer(s) 

with shorter distance to 

destination 

 

65 

[Microsoft, 2006b] 

http://technet.microsoft.com/en-us/library/Bb726971.pnrp04(l=en-us).gif


P2P Simulators 

 OverSim 
 OMNeT++ based, GUI, C++ 

 Prebuilt (un)structured protocols 

 Underlay support, e.g., GT-ITM 

 oversim.org 

 PeerSim 
 Java based 

 Fast cycle-based simulation 

 Prebuilt (un)structured protocols 

 peersim.sourceforge.net 

 Overlay Weaver 
 Emulator 

 Java based, GUI 

 Prebuilt (un)structured protocols 

 overlayweaver.sourceforge.net 66 

OverSim 

Overlay Weaver 



Challenges & Opportunities 

67 

Challenges Opportunities  

P2P communities 
• Identify, form, & maintain 

Community-aware performance 

enhancements 
• Lookup, fast download, reputation, trust, 

etc. 

• Interest-based topology adaptation  

• Capturing/using social relationship 

among peers 

Topology missmatch & ISP traffic 

blocking 
• P4P, ALTO 

• User’s don’t like ISPs to suggest 

Transparent selection of local peers 
• User & ISP friendly designs 

• Incentives 

• Network coordinates 

QoS & QoE Best effort  deterministic 

performance 
• Predictable download times 

• Real-time & VoD streaming 



Challenges & Opportunities (cont.) 
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Challenges Opportunities  

Free riding 
• 15% of Gnutella peers contribute 

to 94% of content 

• 63% of peers never responded to 

queries [Adar, 2000] 

Incentives, trust, & enforcement 
• Revenue models 

• Ads, pay-per-click 

• Retaining users after downloads 

Security 
• File pollution, viruses, worms 

• Topology worms 

• Anonymity 

• Route poisoning, sink holes, Sybil 

attacks 

Content protection & overlay security 
• Signed content 

• Enabling/disabling anonymity  

• Authentication & accountability 
• Centralized solutions are proposed 

• Community support to moderate 

content 

Copyright violation 
•  Direct/indirect infringement 

Monitoring, enforcement 
•  Active/passive monitoring 

Load imbalance Static & dynamic load balancing 



Challenges & Opportunities (cont.) 
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Challenges Opportunities  

Integrating P2P & social 

networks 
• Capturing social relationships 

• Privacy 

Enhanced performance, QoE 
• Social graph-based P2P overlays 

• Better incentives 

• Better caching, replication, load 

distribution 

Low resilience in structured P2P 
• Sudden departures 

• Route failures 

• Loss of content index 

Maximize resilience/availability 
• Enhancing consistency of replicas 

Connectivity 
• NAT, firewalls, & proxies 

• 66% of BitTorrent peers are 

behind firewalls [Zhang, 2009] 

 

Connectivity services & tunneling 
• Performance should not depend on 

whether a peer is behind a NAT/firewall 



Outline 

 File sharing 

 Unstructured vs. structured overlays 

 Performance enhancements 

 More state, caching, replication 

 Opportunities & challenges 

 Streaming 

 Tree-push vs. mesh-pull 

 Opportunities & challenges 

 Resource sharing 

 Collaborative P2P 

 Resource aggregation 

 Opportunities & challenges  
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P2P streaming 

 Emergence of IPTV 

 Content Delivery Networks (CDNs) can’t handle bandwidth 

requirements 

 No multicast support at network layer 

 P2P 

 Easy to implement 

 No global topology maintenance 

 Tremendous scalability 

 Greater demand  Better service 

 Cost effective 

 Robustness 

 No single point of failure 

 Adaptive 

 Application layer 
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P2P Streaming – Components 

 Chunk 

 Segment of the video stream 

 E.g., one second worth of video 

 Partners 

 Subset of known peers that a peer may 

actually talk to 72 

(Hie, 2008) 

(Zhang, 2005) 



(Liu, 2008) 

Tree-Push Approach 

 Construct overlay tree starting from video source 

 Parent peer selection is based on 

 Bandwidth, latency, number of peers, etc.  

 Data/chunks are pushed down the tree 

 Multi-tree-based approach 

 Better content distribution 

 Enhanced reliability 
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Tree-Push Approach – Issues 

 Connectivity is affected when peers at the top of the tree 

leave/fail 

 Time to reconstruct the tree 

 Unbalanced tree  

 Majority of the peers are leaves 

 Unable to utilize their bandwidth 

 High delay 
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(Zhang, 2005) 



Mesh-pull approach 

 A peer connects to multiple peers 

forming a mesh 

 Pros 

 More robust to failure 

 Better bandwidth utilization 

 Cons 

 No specific chunk forwarding path 

 Need to pull chunks from partners/peers 

 Need to know which partner has what 

 Used in most commercial products 

75 

(Zhang, 2005) 



Chunk Sharing 

 Each peer  

 Caches a set of chunks within a sliding window 

 Shares its chunk information with its partners 

 Buffer maps are used to inform chunk availability 

 Chunks may be in one or more partners 

 What chunks to get from whom? 

76 

(Hie, 2008) 



Chunk Scheduling 

 Some chunks are highly available while others are scare  

 Some chinks needs to be played soon 

 New chunks need to be pulled from video source 

 Chunk scheduling consider how a peer can get chunks while 

 Minimizing latency 

 Preventing skipping 

 Maximizing throughput 

 Chunk scheduling 

 Random, rarest first, earliest deadline first, earliest deadline & rarest 

first 

 Determines user QoE 

 Most commercial products use TCP for chunk transmission 

 Control message overhead ~1-2% 
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Random Scheduling 

 One of the earliest approach – used in Chainsaw 

 Peers periodically share buffer maps 

 Select a random chunk & request it from one of the partners 

having the chunk 

 Some peers may experience significant playback delay 

 1-2 minutes 

 Skipping is possible 

78 [Pai, 2005] 



Rarest First Scheduling 

 Used in CoolStraming 

 Chunk = 1 sec video, 120 chunk in sliding window  

 A peer gets the rarest chunk so that chunk can be spread to 

its partners 

 Steps 

1. Gather buffer maps periodically 

2. Calculate number of suppliers (i.e., partners with chunk) for each 

chunk 

3. Request chunks with the lowest number of suppliers 

4. For chunks with multiple suppliers, request from the supplier with 

highest bandwidth & free time 

 Gather application-level bandwidth data for each partner 

 Request are made through a bitmap 
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Rarest First (cont.) 

 It is sufficient to maintain 4 partners 

 Discover more peers overtime – use gossiping 

 Keep only the partners that have sufficient bandwidth & 

more chunks 80 

(Zhang, 2005) 



Rarest First (cont.) 

 More robust than tree-push 

approach 

 Larger user community  Better 

service quality 

 Most users experience < 1 min 

delay 
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(Zhang, 2005) 



Queue-Based Scheduling 

 Objectives – Continuity & quality 

 Try to maximize bandwidth utilization 

of peers 

 Available bandwidth is inferred from 

queue status 

 Steps 

1. Peers pull chunks from source (marked 

as F) 

2. Peers push chunks to its peers (marked 

as NF) 

3. If source is not busy, it push chunks to 

peers (marked as NF) 

82 

[Guo, 2008 ] 



Queue Based Scheduling (cont.) 

 Queues have different priorities 

 Missing chunks can be requested from source or peers 

 Maintain a separate queue & a connection to each peer 

 Prevents a slower peer from slowing down the whole system 

83 

[Guo, 2008] 



Queue Based Scheduling (cont.) 

 Server need to contribute more bandwidth 

 More suitable for on-demand video 

 Lower hierarchy reduce latency 

 Less scalable 

 Peer churn & failure can affect the continuity 
84 

[Guo, 2008] 



Earliest Deadline First 

 Objectives – Minimum playback delay & continuity 

 Rule 1 

 Chunk with the lowest sequence number has the highest priority 

 So request chunk with the lowest sequence number 

 Try to meet earliest deadline 

 Rule 2 

 Peer with the lowest, largest sequence number in buffer map has the 

highest priority 

 Falling behind, so let it seed up 

 

 

85 
[Chen, 2008] 



Earliest Deadline First (cont.) 

 DPC – Distributed Priority based Chunk scheduling 

 L – Number of partners 

 Lower playback delay 

 Lower skipping 
86 

[Chen, 2008] 



Hybrid Chunk Scheduling 

 Combine both earliest deadline & rarest first 

 Lower delay than CoolStreaming & Chainsaw 

 Lower skipping 
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Application-Aware Radar Networking 

 Application-aware overlay networks 

 Application-aware packet marking & 

streaming 

 In-network data fusion 

 API for application-aware service 

deployment 

 Data-fusion latency estimation 
88 

[Lee, 2006] 

[Banka, 2007] 



Challenges & Opportunities 

89 

Challenges Opportunities  

QoS & QoE 
• Peer churn & failure 

• 30% of users leave overlay 

within 3 minutes [Tang, 2007] 

• Asymmetric bandwidth 

Best effort  deterministic 

performance 
• Real-time & VoD streaming 

• Minimizing skipping & start-up delay 

• Adaptive network formation & routing 

• Integrating social networks 

Heterogeneous devices Supporting 
• Different video qualities 

• Scree sizes 

• Processing, memory, & bandwidth 

• Coding designed for P2P 

Digital rights management Distributing certificates/keys 
• Pay-per-view, VoD, ads 



Outline 

 File sharing 

 Unstructured vs. structured overlays 

 Performance enhancements 

 More state, caching, replication 

 Opportunities & challenges 

 Streaming 

 Tree-push vs. mesh-pull 

 Opportunities & challenges 

 Resource sharing 

 Collaborative P2P 

 Resource aggregation 

 Opportunities & challenges  
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Collaborative P2P Systems 

 About interaction of groups 

 Aggregate group(s) of resources 
 Diversity in resources & capabilities is an asset 

 Can accomplish greater tasks – beneficial to all peers  

 Many applications 
 DCAS (Distributed Collaborative Adaptive Sensing), P2P clouds, 

GENI (Global Environment for Network Innovation), mobile P2P, 

social networks 

Download 
song.mp3
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Collaborative Adaptive Sensing of the 

Atmosphere (CASA) 

 Distributed Collaborative 

Adaptive Sensing (DCAS) 

system 

 Concept 

 A network of small radars instead 

of one large radar 

 Sense lower 3 km of atmosphere 

 Collaborating & adapting radars 

 Improved sensing, detection, & 

prediction  

 CASA goal 

 Improve warning time & forecast 

accuracy for hazardous weather 
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CASA Oklahoma Test Bed 

 Multiple high bandwidth streams 

 Real-time communication 

 Simultaneous observations by multiple radars 

 Multi-sensor data fusion 

 Heterogeneous infrastructure & end users 

 Hostile weather conditions 
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Large-Scale CASA Deployments 

 Large-scale CASA deployments are lot 

more computation, bandwidth, & storage 

intensive 

 New solid-state radar data rates in Gbps 

 Distributed & heterogeneous resources 

 Increased resource utilization 

94 

MC&C  
Meteorological 

command & control 



CASA (cont.) 

 Groups of multi-attribute resources 

 Radars/sensors, processing, storage, 

scientific algorithms 

 Heterogeneous, dynamic, & 

distributed 

 Need to aggregate groups of 

resources as and when needed 
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Multi-Sensor Data Fusion Applications

Event 
notification 

Event 
subscription 

Publisher/Subscriber

Event 
Handler

Resource 
Manager

Best Peer 
Selection (BPS)

Neighboring Peers

P2P Collaboration Framework in a peer

Locate data

Peer Manager

Data

Peers

Events Probe 
& cost

Task assignment 
& data



Global Environment for Network 

Innovations (GENI) 

 Collaborative & exploratory platform for innovation 

 Aggregating groups of resources across multiple administrative 

domains 96 

www.geni.net 



Other Applications 

 Depends on some form of 

resource aggregation 

 Multi-attribute, heterogeneous, 

dynamic, & distributed 
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Community (P2P) clouds 

  

Find 

ATM 

Mobile P2P 



Multi-Attribute P2P Resource Aggregation 

 Phases of resource aggregation 
 Advertise resources 

 Attributes & usage constrains 

 Select best resources 

 Match resources 
 Bandwidth, latency, packet loss, 

neighborhood (avoid ISP) 

 Bind to resources 
 Agreement between user & resource 

 Use resources 

 Release 
 Task complete or decreased demand 

 Process continues 
 Demand increases 

 Overcome/use fail/new resources 
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Advertise 

Select 

Match 

Bind 

Use 

Release 

[Bandara, 2011d] 



Multi-Attribute Queries 

 Specify multiple attributes & range of attribute values 

 “Find 2 nodes” 

 “Find 2 Linux nodes” 

 “Find 2 nodes with CPU ≥ 2.0 GHz and 256 ≤ Memory ≤ 512 MB and 

OS=“Linux 2.6” and Latency ≤ 50 ms” 

 May also specify constraints 

 “Find 2 GHz ×86 CPU: available between 12:00am-6:00am to my friends and 

average utilization must be ≤ 60%” 
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Single attribute 

Exact 

Range 

Multi-attribute 

Exact 

Range 



Resource Discovery – Unstructured P2P 

100 

Centralized 

O(1) 

Single point of failure 

Unstructured 

O(hopsmax) 

Not guaranteed to find resources 

Superpeer 

O(hopsmax) 

Not guaranteed to find resources 



Unstructured P2P (cont.) 

 Random walk 
 Superpeer overlay 

 Pros – low overhead, accurate state 

 Cons – no guarantees, high latency 

 Broadcast 
 Best peer selection [Lee; 2007] 

 Expanding tree [Yao, 2006] 

 Pros – accurate state 

 Cons – high overhead, not scalable 

 Gossiping 
 Agents carry resource information 

[Kwan, 2010] 

 Pros – low overhead, large coverage 

 Cons – stale data, no guarantees 
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Random walk 

Expanding tree 
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Step 1 (PP:d1, PP:d2, PPd3)

Step 2 (FP:PP(d1), PP(d2), PP(d3))
Probe(P
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P:d2, P

P:d3)

Probe(PP:d1, PP:d2, PP:d3)

Probe(PP:d1, PP:d2, PPd3)

I

N1

N2

N3

Cost(PP:d1:5, PP:d2:20, PP:d3:12)

X

Application Request

Best peer selection 



Unstructured P2P (cont.) 

 Report to specific nodes 

 Centralized 
 Report to a known location 

 E.g., GENI clearing house 

 Pros 

 Accurate state, guaranteed, low 

adv/query cost 

 Cons 

 Single point of failure, not scalable 

 Hierarchical 
 Report to local repository 

 Which in turn report to a regional 

one 

 e.g., GENI federated clearing house 
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[Ranjan, 2008] 



UPnP (Universal Plug & Play) – upnp.org 

 Pervasive P2P network 

connectivity across 

 PCs, mobile phones, TVs, 

intelligent appliances, 

sensors, actuators 

 Data sharing, 

communication & control 

 Expressed using XML 

 HTTP & TCP/IP for direct 

communication 

 Facilitates collaborative 

P2P applications within 

 Home, office, & everywhere in 

between 
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www.orbitmicro.com 

wordpress.com 



Resource Discovery – Structured P2P 
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Distribute Hash Table (DHT) 
O(log N) 

Guaranteed performance 

Not for dynamic systems 



Resource Discovery – Multiple Rings 

 Separate ring for each attribute 
 Mercury [Bharambe, 2004] 

 Locality preserving hashing 
 Map attribute values to nearby nodes 

 (v – vmin)/(vmax – vmin) 

1. Multiple sub-queries 
 Go to c1/m1/b1 

 Then go from c1/m1/b1 to c2/m2/b2 

using successors 

 Finally, a database-like join 

 Total cost O(N) 
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Multiple Rings (cont.) 

2. Single-Attribute Dominated 

Queries (SADQ) 
 Advertise attributes to all rings 

 Pick min(c1 – c2, m1 – m2, b1 – b2) 

 Search that ring 

 Query stop as soon as desired 

no of resources are found 

 Low query cost 

 High advertising cost 

 Pros  
 Support new attributes 

 Cons 
 Many routing entries 

 Load balancing issue 

 

106 

q

CPUSpeed BandwidthMemory

Query routing Peer originating query

(a)

Pointers

query = c1 ≤ CPU ≤ c2, m1 ≤ 

Memory ≤ m2, b1 ≤ BW ≤ b2 



Single Ring 

 Single-partitioned ring 
 LORM [Shen, 2007] 

 Sword [Albrecht, 2008] 

 Pros 

 Few routing entries 

 Cons 

 Hard to add new attributes 

 Load balancing issue 

 Single-overlapped ring 
 MAAN [Cai, 2004] 

 Pros 

 Few routing entries 

 Relatively better load distribution 

 Cons 

 Easy to add new attributes 
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Resource Discovery in MANET 

 Group nodes based on landmarks 

 Mapped to a partitioned-ring 

 Advertise resources to  

 Nodes within own landmark 

 Global address on ring 

 Can locate nearby resources 

 Reduce latency & hops 

 Doesn’t work with many attributes 
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MADPastry [Zahn, 2005] 



D-Torus – MURK [Ganesan, 2004a] 

 Map attribute values to a d-torus 

 Partition d-torus to zones 

 A peer is responsible for a zone 

 Track as a kd-tree 

 Index in appropriate zone 

 Greedy routing of queries 

 Parallel search on neighboring zones 

 Results are send to query originator 

 Finally, database-like join 

 Cons - high query cost 

 Also, mapped to Chord using space 

filling curves 

 Cons – loose locality, cost is O(N) 109 
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D-Torus – Resource-Aware Overlay 
[Costa, 2009] 

 DHTs can’t track dynamic attributes 

correctly 

 Use only static attributes 

 Form overlay by connecting peers 

based on 
 Partition torus into hierarchical cells 

 Keep a pointer to a node in each level in 

hierarchy & cell 

 Identified using gossip protocol 

 Query resolution 
 Depth-first search starting from lowest 

level cell 

 Cons – high latency & support only 

static attributes 110 

A

Clock speed

B
a

n
d

w
id

th

Q1



Resource Selection, Match, & Bind 

 Select 

 Supported by all solutions 

 Match 

 Need access to multiple resources 

 Superpeers index multiple resources 

 Sword support latency & bandwidth as AS level 

 MADPastry based on locality & latency 

 Bind 

 Need access to resource 

 Superpeers, unstructured P2P, & resource-aware overlay 

 No single solution support all 3 requirements 
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Summary of Structured P2P Solutions 

112 

Scheme Architecture Routing 

mechanism 

Lookup 

overhead 

(point query)* 

Lookup 

overhead 

(range 

query)* 

Routing 

table size* 

Load 

balancing 

Mercury Multiple rings Successor & 

long distant 

links 

O(1/k log2 n) O(n) k + 2 per 

ring 

Dynamic 

LORM Partitioned 

ring 

Cycloid O(d) O(n) O(1) Static 

MADPastry Partitioned 

ring (locality 

based) 

Pastry O(log n) O(n) O(log l)  Static 

MAAN Single ring Chord O(log n) O(n) O(log n) Static 

MURK d- torus CAN with long 

distance links 

O(log2 n) O(n) 2d + k Dynamic 

SWORD Partitioned 

ring, resource 

matching 

Chord O(log n) O(n) O(log n) Static 

Resource-

aware 

overlay  

d- torus 

partitioned 

into cells 

Links to peers 

in other cells 

O(n) O(n) O(d) Static 

* n – number of peers in overlay, k – number of long distant links, d – number of dimensions, D - network diameter, l – number 

of landmarks 



Summary of All Solutions 
Scheme Architecture Advertise Discover Select Match* Bind* 

Flooding Flood advertisements 

or queries 

Yes N/A Guaranteed N/S When queries 

are flooded 

Gossiping Agents share resource 

specifications they 

know 

Yes Yes Moderate 

probability of 

success  

Simple 

matching 

N/S 

Random walk Agents carry resource 

specifications & 

queries 

Yes Yes Moderate 

probability of 

success 

Simple 

matching 

When query 

agents are 

used 

Superpeer 2-layer overlay Yes Yes Relatively high 

probability of 

success 

Simple 

matching 

Yes 

Mercury Multiple rings Yes N/A Guaranteed N/S N/S 

LORM Partitioned ring Yes N/A Guaranteed N/S N/S 

MADPastry Partitioned ring (based 

on locality) 

To local & 

neighbor 

partitions 

N/A Guaranteed Latency & 

hop count 

N/S 

MAAN Single ring Yes N/A Guaranteed N/S N/S 

MURK d- torus Yes N/A Guaranteed N/S N/S 

SWORD Partitioned ring, 

resource matching 

Yes N/A Guaranteed Yes N/S 

Resource-

aware overlay 

d- torus partitioned 

into cells 

Static 

attributes  

N/A Guaranteed N/S Yes 
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Resource & Query Characteristics 

 Resources & queries are characterized by multiple 

attributes 

 Need detailed understanding to design, optimize, & validate 

 No formal analysis  Many simplifying assumptions 

 Few attributes 

 Ignore cost of updating dynamic attributes 

 i.i.d attributes 

 Uniform/Zipf’s distribution of resources/queries 

 Queries specifying a large number of attributes & a small range of 

attribute values 

 Leads to inaccurate designs, performance analysis, & 

conclusions 
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Datasets 

 PlanetLab node data 
 Global research network for developing new network services, 

protocols, & applications 

 Reflects many characteristics of Internet-based distributed systems 

 Heterogeneity, multiple end users, dynamic nodes, & global 

presence 

 Used to evaluate many preliminary P2P protocols & applications 

 12 static & 34 dynamic attributes sampled every 5 min 

 500-700 active nodes 

 SETI@home 

 Desktop grid 

 Static resources from 300,000+ nodes 

 21 static & 4 dynamic attributes 
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Resource Characteristics 

 

116 

 Resources satisfy a mixture of 

probability distributions 
 Gaussian – CPUSpeed, MemSize, DiskFree 

 Pareto – TxRate, RxRate 

 Many identical nodes 

 Highly skewed distributions 
 CPUFree, MemFree, CPU architecture 
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No of attribute value changes within 24 hours
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Dynamic Attributes at Different Times 

 Distribution of dynamic attributes 

is stable over days 

 Dynamic attributes & their rate of 

change fits Pareto 
 Same attributes/nodes change 

frequently 

 Many status updates 
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Memory Free (%)
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Resource Characteristics – Correlation 

 Complex correlation among 

attributes 

 Correlation between attributes 
 Static-dynamic 

 Dynamic-dynamic 
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Dynamic Attributes – Contemporaneous 

Correlation  

 Contemporaneous correlation among time series of 

dynamic attributes 

 Specific temporal pattern in MemFree 

 Temporal patterns need to be preserved 119 
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Dynamic Attributes – Autocorrelation 

 High autocorrelation in DiskFree & MemFree 

 No noticeable change in DiskFree 

 Temporal patterns need to be preserved 
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Modeling Static Attributes 

 Need to preserve correlation 
 Attribute values can’t be randomly drawn from marginal distributions  

 Pearson’s correlation matrix is insufficient 

 Copulas capture complex correlations 
 Functions that couple multivariate distributions to their marginals 

 Multivariate joint distribution defined on d-dimensional unit cube s.t. 

marginal distribution ui is ~uniform(0, 1) 

   

 Empirical copulas support complex/unknown distributions 

& correlations 
   

 

 x(i) ordered statistics of x 

 No need to find distribution of attributes 
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Modeling Dynamic Attributes 

 Specific temporal patterns in time series  Can’t draw 

values randomly 

 Contemporaneous correlation  Can’t draw independently 

 Goal – Not to predict future behavior, but to generate 

nodes with similar overall characteristics 

 Not necessary to fit a model 

 Build a library of time series segments 

 Pick the most distinct pattern & split according to structural changes  

 Preserve distinct temporal patterns 

 Split other time series at same position & replay segments together 
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Modeling Dynamic Attributes (cont.) 

 Initial approach – R strucchange package  

 Better approach – Sliding window (w) looking for 

significant change in average value (Δ) of 2 halves 

of the window 
123 
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H0: βi = β0, i = 1, …, n 
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Dynamic Attributes – Contemporaneous 

Correlation  

 Split other time series at same position & replay segments 

together 

 Concatenate segments to form longer sequences 

 Segments are index by static attributes 124 
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RESQUE – RESource & QUEry Generator 

 NumCores establish correlation between static & dynamic 

 Generate synthetic traces with n nodes, as static & ad dynamic 

attributes over a given time t  

 Also generate multi-attribute queries 

 Beta version available – www.cnrl.colostate.edu/Projects/CP2P/ 125 

Transform to uniform CDF

Calculate empirical copula

Generate random numbers
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Resource Generation – Validation 

 Using 300 nodes over a week  

generated 5,000 nodes over 2 weeks 

 Satisfy Kolmogorov-Smirnov (KS) test 

with a significance level of 0.05 

 Statistically accurate data 
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Query Characteristics 

 441 queries, 9 moths 

 Few attributes in a query 
 80% queries specify 1 or 2 attributes 

 Skewed but not Zipf’s 

 Less specific attribute ranges 
 89% queries request CPUFree of 40-100% 

 70% queries request DiskFree of 5-1000GB 

 Dynamic attributes are popular 

 Large number of resources 
 73 resources per query 
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Comparison of Existing Solutions 

 Most prior assumptions are not valid 

 Resources 

 Many attributes, mixture of distributions, skewed, correlated, change 

rapidly 

 Queries 

 Few attributes, request many resources, large range of attribute 

values, skewed 

 Need to validate existing designs under real-workloads 
 Mostly extensions of single-attribute solutions 

 Contributions 
 Simple cost model for advertising & querying 

 Simulated 7 designs using PlanetLab resources & query traces 

 Unable to deliver desired performance, load balancing, etc. 
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Simulation of Different Solutions 

 Rings – higher advertising cost 

 Partitioned ring – Disproportionate load 

distribution 

 Superpeers – Balance cost & load but can’t 

locate all resources 129 
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 Large range of attribute values  cost of ring-based designs O(N) 
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N Multi-ring + SADQ Partitioned-ring + 

SADQ 

Overlapped-ring + 

SADQ 

Min Ave Max Min Ave Max Min Ave Max 

250 0 9.2 239.1 0 3.7 19.4 0 9.1 238.4 

527 0 13.7 509.0 0 4.6 27.6 0 13.5 506.0 

750 0 16.2 719.1 0 4.9 36.6 0 16.5 719.9 

1000 0 19.8 975.5 0 5.3 45.3 0 20.4 963.8 



Index size
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Load Distribution 

 Unbalanced index size & query load 
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Architecture 

Total Cost per Query Query Load Index Size 

Min Max 
Min Max 

SWORD Uniform SWORD Uniform SWORD Uniform 

Centralized 2.03 2.03 950,000 950,000 950,000 950,000 527 527 

Unstructured 69.5 94.8 4,859 1,272 268,497 37,824 1 1 

Superpeer 6.5 9.5 81,021 22,390 289,626 87,209 17 36 

Multi-ring + SADQ 48.3 69.0 0 0 178,492 22,943 0 527 

Multi-ring + Sub-queries 398.8 120.8 0 0 624,837 57,518 0 230 

Partitioned-ring + SADQ 36.6 37.0 0 0 185,972 15,840 0 527 

Partitioned-ring + Sub-queries 40.7 16.4 0 0 432,859 46,946 0 527 

Overlapped-ring + SADQ 46.0 67.2 0 0 391,738 57,524 0 527 

No of queries answered
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Challenges & Opportunities 
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Challenges Opportunities  

Diversity in 
• Resources 

• Application requirements 

• Complex inter-resource 

relationships 

New solutions 
• Support large number of resources & 

attributes 
• Consider real-world resource & query 

characteristics 

• How to specify application requirements 

& constraints 

• Efficiently track & match inter-resource 

relationships 

No solution satisfy select, match, 

& bind 

Supporting select, match, & bind 

within a single solution 
• Track inter-node 

• Bandwidth, latency, jitter, packet loss, 

etc. 

• Social relationships 

• Distributed resource binding 



Challenges & Opportunities (cont.) 
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Challenges Opportunities  

High cost 
• Query cost 

• Advertising dynamic attributes 

Enhance performance 
• Better support for dynamic attributes 

• Reduce query cost 
• New DHT mechanisms 

• Efficient updates – static/dynamic 

thresholds to reduce number of 

updates 

Load balancing Dynamic/adaptive solutions 
• Based on queries & updates 

• Based on resources being indexed 

• Supporting many attributes & values 
• Some attributes have few values 

Overcoming resource failures & 

unavailability 

Resource compensation 
• Substituting one resource with another 

• CASA – can process faster to 

accommodate high transmission delay 

due to lack of bandwidth 



Challenges & Opportunities (cont.) 
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Challenges Opportunities  

Increasing user participation Incentives, security, & trust 
• Essential in collaborative P2P 

• Virtual currency schemes to support 

community clouds 

Capturing large & high resolution 

datasets 

Tools to 

• Capture datasets 

• Generate statically accurate synthetic 

datasets 
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