
File Sharing to Resource Sharing

– Evolution of P2P Networking

Anura P. Jayasumana

Electrical & Computer Engineering,

Colorado State University,

Fort Collins, CO 80525

Slides by Dilum Bandara and Anura Jayasumana

Outline

 File sharing

 Unstructured vs. structured overlays

 Performance enhancements

 More state, caching, replication

 Opportunities & challenges

 Streaming

 Tree-push vs. mesh-pull

 Opportunities & challenges

 Resource sharing

 Collaborative P2P

 Resource aggregation

 Opportunities & challenges

2

Peer-to-Peer (P2P) Systems

 Distributed systems without any central control

 Autonomous peers

 Equivalent in functionality/privileges; Both a client & a server

 Protocol features

 Protocol constructed at the application layer

 Overlaid on top of Internet

 Typically a peer has a unique identifier

 Supports some type of message routing capability

 Fairness & Performance
 Self-scaling

 Free-rider problem

 Peer Churn

3

Internet

P2P Applications

 Many application

domains

 File sharing – BitTorrent,

KaZaA, Napster,

BearShare

 IPTV – PPLive,

CoolStreaming, SopCast

 VoIP – Skype

 CPU cycle sharing – SETI,

World Community Grid

 Distributed data fusion –

CASA

 Impact of P2P traffic
 In 2008 – 50% 2009- 39% of

total Internet traffic (2014-

17%)

 Today – Volume still growing

 3.5 Exabytes/month (4 in

2014)

 globally, P2P TV is now over

280 petabytes per month

 P2P traffic 20 percent of all

mobile data traffic globally

4

[Hyperconnectivity and the

Approaching Zettabyte Era,

Cisco 2010]

P2P Characteristics

 Tremendous scalability

 Millions of peers

 Globally distributed

 Bandwidth intensive

 Upload/download

 Many concurrent connections

 Aggressive/unfair bandwidth utilization

 Aggregated downloads to overcome asymmetric

upload bandwidth

 Heterogeneous

 Superpeers

 Critical for performance/functionality

5

Internet

P2P Overlay

 Peers directly talk to each other, or if they are

not directly connected, uses overlay routing

mechanism via other peers

 Best effort service on Internet

 Peers are autonomous

 Determines its own capabilities based on its

resources (minimum threshold of resources)

 Decides on its own when to join, leave

 Peers have symmetrical roles (relaxed in

cases such as superpeer)

 Overlay is scalable and resilient

 In size, geography

 Graceful degradation, ensure connectedness when

nodes leave, etc.

 Overlay Maintenance

 Overlay has to be self-organizing (overlay

management is done in a distributed manner)

6

Internet

Terminology

 Application

 Tier 2 – Services provided to end

users

 Tier 1 – Middleware services

 Overlay

 How peers are connected

 Application layer network

consists of peers

 E.g., dial-up on top of telephone

network, BGP, PlanetLab, CDNs

 Underlay

 Internet, Bluetooth

 Peers implement top 3 layers

7

Application – Tier 2
File sharing, streaming, VoIP, P2P clouds

Application – Tier 1
Indexing/DHT, Caching, replication, access

control, reputation, trust

Overlay
Unstructured, structured, & hybrid

Gnutella, Chord, Kademlia, CAN

Underlay
Internet, Bluetooth

Overlay Connectivity

8

P2P Overlay

Unstructured

Deterministic

Napster

BitTorrent

JXTA

Nondeterministic

Gnutella

KaZaA

Structured

Sub-linear state

Chord

Kademlia

CAN

Pastry

Tapestry

Constant state

Viceroy

Cycloid

Hybrid

Structella

Kelip

Local minima
search

Bootstrapping

 How is an initial P2P overlay is formed from a set of nodes?

 Use a well known server to register initial set of peers

 Some peer addresses are well known

 Use a well known multicast group address for peers to join

 A well known domain name

 Use a local broadcast to collect nearby peers, and merge such sets to

larger sets

 Each peer maintains a random subset of peers

 e.g., peers in Skype maintain a cache of superpeers

 An incoming peer talks to one of the known peers

 A known peer accepting an incoming peer

 Keeps track of the incoming peer

 May redirect the incoming peer to another peer

 Give a random set of peers to contact

 Discover more peers by random walk or gossiping within overlay 9

Resource Discovery Overview

10

Centralized
O(1)

Fast lookup

Single point of failure

Unstructured
O(hopsmax)

Easy network maintenance

Not guaranteed to find resources

Distribute Hash Table (DHT)
O(log N)

Guaranteed performance

Not for dynamic systems

Superpeer
O(hopsmax)

Better scalability

Not guaranteed to find resources

Centralized – Napster

 Centralized database for

lookup
 Guaranteed content

discovery

 Low overhead

 Single point of failure

 Easy to track

 Legal issues

 File transfer directly

between peers

 Killer P2P application
 June 1999 – July 2001

 26.4 million users (peak)
11

Unstructured – Gnutella

 Fully distributed

 Random connections

 Initial entry point is

known

 Peers maintain dynamic

list of neighbors

 Connections to multiple

peers

 Highly resilient to node

failures

12

Unstructured P2P (cont.)

 Flooding-based lookup
 Guaranteed content discovery

 Implosion  High overhead

 Expanding ring flooding

 TTL-based random walk
 Content discovery is not

guaranteed

 Better performance by biasing

random walk toward nodes with

higher degree

 If response follow same path

 Anonymity

 Used in KaZaA, BearShare,

LimeWire, McAfee

13

D

S

D

s

Flooding

Random walk

Superpeers

 Resource rich peers 

Superpeers

 Bandwidth, reliability, trust,

memory, CPU, etc.

 Flooding or random walk

 Only superpeers are

involved

 Lower overhead

 More scalable

 Content discovery is not

guaranteed

 Better performance when

superpeers share list of

file names

 Examples: Gnutella V0.6,

FastTrack, Freenet KaZaA,

Skype

14

s D

Scale-Free Overlays

 Unstructured overlays can lead to

scale-free networks

 New nodes connect to

 Existing nodes

 Higher degree nodes

 Specific implementations may set

limits on node degree

 e.g., LimeWire maintains 27-32

connections

 User modified code increases connectivity

 Can be used to enhance P2P lookup

 Index at high degree nodes

 Biased random walk towards to high-

degree nodes 15

[Stutzbach, 2008]

BitTorrent

 Most popular P2P file sharing

system to date

 Features

 Centralized search

 Multiple downloads

 Enforce fairness

 Rarest-first dissemination

 Incentives

 Better contribution  Better

download speeds (not always)

 Enable content delivery

networks

 Revenue through ads on search

engines

16

User

Trackers

Web-based
search engine

Content
owner

Keyword search

.torrent file
server

Download
.torrent file

Get list of
peers

Download/
upload
chunks

BitTorrent Protocol

 Content owner creates a

.torrent file

 File name, length, hash,

list of trackers

 Place .torrent file on a

server

 Publish URL of .torrent

file to a web site

 Torrent search engine

 .torrent file points to a

tracker(s)
 Registry of leaches &

seeds for a given file

17

User

Trackers

Web-based
search engine

Content
owner

Keyword search

.torrent file
server

Download
.torrent file

Get list of
peers

Download/
upload
chunks

1

2

3

4
1

2

3
4

BitTorrent Protocol (cont.)

 Tracker

 Provide a random subset

of peers sharing same file

 Peer contacts subset of

peers parallely

 Files are shared based

on chunk IDs

 Chunk – segment of file

 Periodically ask tracker

for new set of IPs

 Every 15 min

 Pick peers with highest

upload rate

18

User

Trackers

Web-based
search engine

Content
owner

Keyword search

.torrent file
server

Download
.torrent file

Get list of
peers

Download/
upload
chunks

1

2

3

4
1

2

3
4

BitTorrent Terminology

 Swarm

 Set of peers accessing

(upload/download) same

file

 Seeds

 Peers with entire file

 Leeches

 Peers with part of file or

no file (want to download)

19 www.kat.ph

BitTorrent Site Stat

20

User ranking

of file quality

Seedpeer.com

www.kat.ph/stats/

Files in search

engine

User verified to

be valid

Across all files

Search Cloud

BitTorrent Content Popularity

 Few highly popular content

 Moderately popular

content follow Zipf’s-like

distribution

 Typical Zipf’s parameter

0.5-1.0

21

Number of occurances/queries (x) (log)

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

N
o
 o

f
s
e
a
rc

h
 t
e
rm

s
 w

it
h
 >

 x
 o

c
c
u
ra

n
c
e
s
 (

lo
g
)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

fenopy.org

y = 1.96 - 1.024x, r2 = 0.98

Number of occurances/queries (x) (og)

2.4 2.6 2.8 3.0 3.2 3.4 3.6

N
o
 o

f
s
e
a
rc

h
 t
e
rm

s
 w

it
h
 >

 x
 o

c
c
u
ra

n
c
e
s
 (

lo
g
)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

youbitTorrent.com

y = 4.71 - 1.88x, r2 = 0.98

Number of occurances/queries (x) (log)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

N
o

 o
f
s
e

a
rc

h
 t
e

rm
s
 w

it
h

 >
 x

 o
c
c
u

ra
n

c
e

s
 (

lo
g

)

-7

-6

-5

-4

-3

-2

-1

0

Dataset1 - kickasstorrents.com

y = 0.96 - 1.51x, r2 = 0.98

Toy Story 3

DVD release date

June 18, 2010

[Bandara, 2012b]

BitTorrent Characteristics

 Flash crowd effect

 Asymmetric bandwidth

 Most peers leave after

downloading

 Diurnal & seasonal

patterns

22

Flash crowd

Download

speed

Session length

[Zhang, 2009]

BitTorrent Evolution

23

BitTorrent

Global community
Islands of communities

Connected islands of

communities

BitTorrent ver. 4.2

BitTorrent Communities

 Many communities emerged based on similarity

 Semantic – songs, video, games, Linux distributions

 Geographic – China, India

 Organizational – private communities

 Run their own trackers

 Many islands of deployments

 Not isolated

 Have to search in many trackers

 v4.2.0 – connect peers using a Distributed Hash Table (DHT)

 Many private communities

 Require invitation to join

 Require login

 Today, BitTorrent  Hierarchical + DHT
24

BitTorrent Communities (cont.)

 Similarity among communities

25

Community EX FE SP TB TS TE TR

FE 0.38

SP 0.00 0.00

TB 0.40 0.29 0.00

TS 0.48 0.33 0.00 0.48

TE 0.53 0.23 0.00 0.31 0.25

TR 0.10 0.08 0.00 0.06 0.09 0.06

YB 0.36 0.35 0.00 0.29 0.42 0.20 0.04

* EX – extratorrent.com, FE – fenopy.com, SP –

seedpeer.com, TB – torrentbit.net, TS – torrentscan.com, TE

– torrentsection.com, TR – torrentreactor.net, YB –

youbittorrent.com. Date – 24/07/2010 ~04:55 UTC.

[Bandara, 2011a]

BitTorrent Fairness/Incentives
 Tit-for-tat

 Bandwidth policy

 Upload to 4 peers that give me the

highest download bandwidth

 1 random peer

 Create clusters of similar

bandwidth peers [Legout, 2007]

 Chunk policy

 Rarest first

 Download least popular chunk

 Initial seed try not to send same

chunk twice

 Most peers leave immediately

after downloading

 Modified nodes increase free

riding

 Modified policies

 Message Types

 Choke/Unchoke

 Interested/Not_intere

sted

 Have

 Bitfield

 Request

 Piece

 Cancel

26

Summary – Unstructured P2P

 Separate content discovery & delivery

 Content discovery is mostly outside of P2P overlay

 Centralized solutions

 Not scalable

 Affect content delivery when failed

 Distributed solutions

 High overhead

 May not locate the content

 No predictable performance

 Delay or message bounds

 Lack of QoS or QoE

27

Structured P2P

 Deterministic approach to locate contents & peers

 Locate peer(s) responsible for a given key

 Contents

 Unique key

 Hash of file name, metadata, or actual content

 160-bit or higher

 Peers also have a key

 Random bit string or IP address

 Index keys on a Distributed Hash Table (DHT)

 Distributed address space [0, 2m – 1]

 Deterministic overlay to publish & locate content

 Bounded performance under standard conditions

28

Terminology

 Hash function

 Converts a large amount of data into

a small datum

 Hash table

 Data structure that uses hashing to

index content

 Distributed Hash Table (DHT)

 A hash table that is distributed

 Types of hashing

 Consistent or random

 Locality preserving

29

f()

f()

f() g()

g()
g()

Structured P2P – Example

 2 operations

 store(key, value)

 locate(key)

30

Ring – 16 addresses

Song.mp3

Cars.mpeg

f()

f()

Find cars.mpeg

n + 2i – 1, 1  i  m

Successor

11 Song.mp3

6 Cars.mpeg

O(log N) hops

Chord [Stoica, 2001]

 Key space arranged as a ring

 Peers responsible for segment of

the ring

 Called successor of a key

 1st peer in clockwise direction

 Routing table

 Keep a pointer (finger) to m peers

 Keep a finger to (2i – 1)-th peer, 1 ≤ i ≤ m

 Key resolution

 Go to peer with the closest key

 Recursively continue until key is find

 Can be located within O(log n) hops

31

m =3-bit key ring

Chord (cont.)

 New peer entering overlay

 Takes keys from the successor

 Peer leaving overlay

 Give keys to the successor

 Fingers are updated as peers join & leave

 Peer failure or churn makes finger table entries stale 32

New peer with key 6 joins the overlay Peer with key 1 leave the overlay

Chord Performance

 Path length

 Worst case O(log N)

 Average ½log2N

 Updates O(log2 N)

 Fingers O(log N)

 Alternative paths (log N)!

 Balanced distribution of

keys

 Under uniform distribution

 N(log N) virtual nodes

provides best load

distribution

33

Kademlia [Maymounkov, 2002]

 Used in BitTorrent, eMule, aMule, & AZUREUS

 160-bit keys

 Nodes are assigned random keys

 Distance between 2 keys is determined by XOR

 Routing in the ring is bidirectional

 dist(a  b) = dist(b  a)

 Enable nodes to learn about new nodes from received messages

 Keys are stored in nodes with the shortest XOR distance

34

Kademlia (cont.)

 k-bucket routing table

 Store up to k peers for each (2i, 2i+1) distance, 1 ≤ i ≤ m

 Update bucket entries based on least-recently seen approach

 Ping a node before dropping from a bucket

 Better performance under peer churn & failure

35

Node with key 0110 keeps k

entries for

• 1xxx/1

• 00xx/2

• 010x/3

• 0111/4

1 0

0

0

0

0

0

0

0

0 0

1

1

1

1

1

1 1
1

1

Kademlia Routing

 Find set of peers with the shortest distance in routing table

 Longest prefix match

 Concurrently, ask α of them to find an even closer peer

 Iterate until no closer peers can be found

 Then send the query to α closest peers

36

1 0

0

0

0

0

0

0

0

0 0

1

1

1

1

1

1 1
1

1

Structured P2P – Alternate Designs

37

d-Torus
Content-Addressable Network (CAN)

[Ratnasamy, 2001]

(0, 0)

(1, 0)

(0, 0)

(0, 1)

Zone
controller

(0.1,0.9)

(0.3,0.4)

(0.4,0.8)

(0.75,0.2)(0.35,0.1)

(0.65,0.7)

(0.8,0.4)

(0.8,0.8)

(0-0.5, 0-0.5)

(0.5-1, 0-0.5)

(0-0.5, 0.5-1)

(0.5-1, 0.5-0.75)

Cube connected cycle
Cycloid [Shen, 2006]

Structured P2P – Extensions

 EpiChord [Leong, 2004]

 Use messages being forwarded

to learn about new nodes

 Cache their contact information

 Can achieve O(1) lookup

 Cannon [Ganesan, 2004b]

 Hierarchical DHT

 Each level in hierarchy maintains

a ring

 Merge rings at higher levels

 Maintain original fingers as it is

 Merging add few new fingers

 Many other designs for

specific applications 38

Amazon Dynamo [DeCandia, 2007]

 Highly-available key-value system

 Many large datasets/objects that only

require primary key access

 Shopping carts, better seller lists, customer

preferences, product catalogs, etc.

 Relational databases are not required, too

slow, or bulky

 Fast reads, high availability for writes

 Always failing servers, disks, switches

 Objects are replicated in successors

 All peers know about each other using

gossiping

 Can read/write to any replica

 Mechanisms to deal with different versions of objects

 39

Summary – Structured P2P

 Content discovery is within the P2P overlay

 Deterministic performance

 Chord

 Unidirectional routing

 Recursive routing

 Peer churn & failure is an issue

 Kademlia

 Bidirectional routing

 Parallel iterative routing

 Work better under peer failure & churn

 MySong.mp3 is not same as mysong.mp3

 Unbalanced distribution of keys & load
40

Summary (cont.)

41

Scheme Architecture Routing

mechanism

Lookup

overhead*

Routing

table size*

Join/leav

e cost

Resilience

Chord Circular key

space

Successor &

long distant links

O(log N) O(log N) O(log2 N) High

CAN d-torus Greedy routing

through

neighbors

O(dN1/d) 2d 2d Moderate

Pastry Hypercube Correct one digit

in key at time

O(logB N) O(B logB N) O(logB N) Moderate

Tapestry Hypercube Correct one digit

in key at time

O(logB N) O(logB N) O(logB N) Moderate

Viceroy Butterfly network Predecessor &

successor links

O(log N) O(1) O(log N) Low

Kademlia Binary tree, XOR

distance metric

Iteratively find

nodes close to

key

O(log N) O(log N) O(log N) High

Cycloid Cube connected

cycles

Links to cyclic &

cubical

neighbors

O(d) O(1) O(d) Moderate

* N – number of nodes in overlay, d – number of dimensions B – base of a key identifier

Structured vs. Unstructured

42

 Unstructured P2P Structured P2P

Overlay

construction
High flexibility Low flexibility

Resources Indexed locally Indexed remotely on a distributed

hash table

Query messages Broadcast or random walk Unicast

Content location Best effort Guaranteed

Performance Unpredictable Predictable bounds

Overhead High Relatively low

Object types Mutable, with many complex

attributes
Immutable, with few simple

attributes
Peer churn &

failure
Supports high failure rates Supports moderate failure rates

Applicable

environments
Small-scale or highly dynamic, e.g.,

mobile P2P
Large-scale & relatively stable,

e.g., desktop file sharing

Examples Gnutella, LimeWire, KaZaA,

BitTorrent
Chord, CAN, Pastry, eMule,

BitTorrent

Enhancing Lookup Performance

 Many fingers/pointers

 Caching

 Skewed popularity

 Reactive/passive

 Cache what you receive

 Proactive/active

 Demand based

 Community caching

 Replication

 Load balancing

43

Unstructured P2P –

Performance Enhancements

44

Content

locatable

Reduce path

length

Load

balancing

Distributed

statistics
• Capacity

• Popularity

• Failed queries

Consistency

Low key

movements

Goals Utilize

Heterogeneity

Skewed

popularity

Resilience

Reactive cache

ip

Local minima search

(Zhong, 2008)

P2R2

Push/pull

Unstructured P2P – Caching

 Passive/reactive caching

 Cache at query originator

 Minor improvement

 Active/proactive caching

 Cache along path

 Leads to (fk)
½ allocation

 fk – popularity of content k

 Relatively better lookup

 [Cohen, 2002] & [Lv, 2002]

45

Structured P2P –

 Performance Enhancements

Resilience

Reduce path

length

Load

balancing

Distributed

statistics
• Capacity

• Popularity

• No peers

Consistency

Low key

movements

Goals Utilize

Heterogeneity

Virtual nodes (VN)

Swap VNs

Skewed

popularity
Reactive cache

CAN replication

Beehive

PoPCache

Amazon’s Dynamo

Y0

Structured P2P – Caching

 Beehive [Ramasubramanian, 2004]

 Cache most popular keys everywhere

 2nd most popular at ½ of nodes

 3rd most popular at ¼ of nodes

 Assume Zipf’s popularity distribution

 Global popularity estimation

 Issues

 Unnecessary caching

 Not all nodes are interested in most

popular content

 Not all intermediate nodes are

involved in routing

 Works only with Zipf’s distribution

47

Structured P2P – Caching (cont.)

 PoPCache [Rao, 2007]

 Use overly routing tree to place

cache entries

 ck = fk B

 ck – cache capacity allocated to k

 Place cache entries from bottom of

routing tree

 Global popularity estimation

 More efficient than Beehive

 Issues
 Overlay routing tree is not symmetric

 ck can exceed N

 Use of upper bound O(log N)

48

Local Knowledge-based Distributed

Caching (LKDC)

 Each overlay node

 Independently decides what keys to cache based on number of

queries it forwards

 Tries to maximize number of queries it can answer

 NP-complete [Bandara, 2011d]

 Relaxed version of problem (namely GKDC) can be used

to determine

 Where to place cache entries?

 How many entries to place?

 GKDC says local statistics are adequate to decide what to

cache at a node

 Heuristic algorithm based on Least Frequently Used (LFU)

caching
49

Global Knowledge-based Distributed

Caching (GKDC)

 Where to place?

 At nodes that forward most

number of messages

 6, (4, 5), (0, 1, 2, 3), …

 How many?



 Place according to local

popularity

50

0

16

24 8

2

4

6

7

10

12

1418

26

22

20

28

30

6 5 31

7

3 23

4 2 30 22

0 28 20

24

8

16 12

26 18 14

1 29 21

25 17

10 9

13

27 19

11

15

16 4 28
1

4 28 1 4 2 1 2 1 1

112 112

1

4 2 1

12 1

1

1

1

1

5

10

10

5

1

Fingers

Longest path

 











else

),,(

)1(

if1

KlP

NlBf

lkN

c kk

[Bandara, 2011d]

Asymmetric routing tree

r
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s
 (

H
a

v
e
)

2.0

2.4

2.8

3.2

3.6

g(ck)

Continious, b = log21.5

GKDC - Sim

LKDC - Sim

Eq. (12)

Heuristic-Based LKDC – Performance

 Same performance as

PoPCache using

 Small caches

 Local statistics only

 Works with any skewed

distribution 51

Number of nodes (N)

1000 2000 3000 4000 5000

A
v
e

ra
g
e

 n
u

m
b

e
r

o
f

h
o

p
s
 (

H
a

v
e
)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

g(ck)

Continious,  = log21.5
PoPCache

GKDC - Sim
LKDC - Sim

PoPCache - Sim

Zipf's parameter ()

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

h
o
p
s
 (

H
a

v
e
)

0

1

2

3

4

5

6

g(ck)

Continious,  = log21.5

PoPCache

GKDC - Sim

LKDC - Sim

PoPCache - Sim

0

100

200

300

400

1 2 3 4 5 6 7 8 9 1011121314151617181920

Community-Aware Caching

 Many small P2P communities are

emerging

 Enhancing lookup
 Unstructured  Restructure overlay

 Structured  Cache only most popular

resources in entire system

 However
1. Communities are not isolated

2. Loose popularity due to aggregation

52
0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

+

Community EX FE SP TB TS TE TR

FE 0.38

SP 0.00 0.00

TB 0.40 0.29 0.00

TS 0.48 0.33 0.00 0.48

TE 0.53 0.23 0.00 0.31 0.25

TR 0.10 0.08 0.00 0.06 0.09 0.06

YB 0.36 0.35 0.00 0.29 0.42 0.20 0.04

[Bandara, 2011d]

Community-Aware Caching

 Goal – Reduce content mixing or

overlay restructuring
 Preserve popularity

 Each community forms a sub-

overlay
 Links to community members

 Sample nodes pointed by fingers to find

community members

 Forward messages through

community members
 Nodes can identify what’s popular

within their community

53

• By probing i-th finger & its

successor 2(i + 2 log N – m) - 1

nodes can be found

• Community of size M have M/2m –

i + 1 peers in the range of i-th

finger

Community-Aware Caching (cont.)

 Cache based on communities’

interest
 “What is important to me is also

important to other community members”

 “They may have queries it before me”

 Heuristic-based LKDC caching

algorithm

 Weighted LFU caching

 Local statistics only

 Pros
 Works with any structured overlay that

provide multiple paths

 Peers can be in any community

 Preserves path length bound O(log N)

54

Community-Aware Caching – Simulation

Setup

 15,000 nodes

 10 communities

 Chord overlay

 Simulated using OverSim

55

Community C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

No of nodes

(apx.)
600 600 600 1,200 1,200 1,200 1,200 1,200 2,400 4,800

Zipf’s parameter 0.85 0.95 1.10 0.5 0.80 0.80 1.0 0.90 0.90 0.75

No of distinct

keys
40,000 30,000 30,000 40,000 40,000 40,000 50,000 50,000 50,000 50,000

Similarity with

community (x)
0.2

(C8)
0

0.1

(C7)

0.2

(C9)

0.3

(C8)

0.5

(C7)

0

0.1

(C3)

0.5

(C5)

0.3

(C5)

0.2

(C1)

0.4

(C1)

0.2

(C4)

0.3

(C10)

0.3

(C9)

Queries for rank

1 key
4,516 8,535 17,100 603 6,454 6,454 21,059 11,956 23,911 17,030

Community

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

L
a
te

n
c
y
 (

m
s
)

0

500

1000

1500

2000

Random AS

GeographyAS

Community-Aware Caching – Results

 More popular communities

 48-53% reduction in path length

 Least popular community

 23% reduction (7% with caching)

 Geographic communities

 48-50% latency reduction
56

Community
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s

0

1

2

3

4

5

6

7

8

Chord

Caching

Community Caching

Time (seconds)
2000 2500 3000 3500 4000 4500 5000

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s

0

1

2

3

4

5

6

7

8

Chord

Passive Caching

Caching

Community Caching

Results (cont.)

 Significant performance with small

caches

 Caching threshold reduce cache

thrashing, & overhead

 Fast response to popularity

changes

57

Time (seconds)

2000 2500 3000 3500 4000 4500 5000 5500 6000

A
ve

ra
g
e
 n

u
m

b
e
r

o
f

h
o
p
s

4

5

6

7

8

Dcache = 0.11

Dcache = 0.12

Dcache = 0.13

Dcache = 0.14
Popularity inversion

Time (seconds)
2000 2500 3000 3500 4000 4500 5000

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
h
o
p
s

4

5

6

7

8

Dcache = 0.10

Dcache = 0.11

Dcache = 0.12

Dcache = 0.13

Dcache = 0.14

Dcache = 0.15

Cache size (Cn)
0 5 10 15 20 25

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
h
o
p
s
 (

H
a

v
e
)

0

2

4

6

8

Chord

Passive Caching

Caching

Community Caching

Load Balancing

 Swap nodes

 Overloaded node swap its overlay location with a resourceful node

 Load may exceed capabilities or any node  Not scalable

 Virtual nodes

 A physical node appear as several virtual nodes

 Chord index table is balanced when there are N log N virtual nodes

 Increase lookup cost, e.g., Chord O{log (N log N)}

 Replication

 Save in multiple neighbors, e.g., Kademlia & CAN

 Doesn’t work with some overlays, e.g., Chord

 Caching

 Nodes that cache reduce query load on indexing node

 Doesn’t work well with mutable content and/or large indexes
58

Login Server

Superpeer
overlay

Skype

 Proprietary

 Encrypted control & data messages

 Many platforms

 Voice/video calls, instant

messaging, file transfer,

video/audio conferencing

 Superpeer overlay

 Related to KaZaA

 Based on bandwidth, not behind

firewall/NAT, & processing power

 Enables NAT & firewall traversal for

ordinary peers

59

Skype (cont.)

 30% superpeers

 Relatively stable

 Diurnal behavior

 Longer session length than typical

P2P - Heavy tailed 60

[Guha, 2006]

P2P as Publisher/Subscriber Services

 Rendezvous service for consumers

& producers

 File sharing, RSS feeds, mobility,

multicast, data availability in sensor

networks

 i3 – Internet Indirection

Infrastructure [Stoica, 2002]

 Packets have unique IDs

 Receive requests packets from DHT

 Unicast, anycast, multicast, mobility

 Many other application specific

solutions

61

Mobility

Multicast

[Stoica, 2002]

P2P Middleware – JXTA

 XML-based P2P protocol

specification
 Sun Microsystem – up to 2010

 Implementations for Java, C/C++, C#

 Many protocols
 Peer Discovery – Resource search

 Pipe Binding – Addressable messaging

 Peer Information – Monitoring

 Peer Resolver – Generic query service

 Peer Membership – Security

 Rendezvous – Message propagation

 Peer Endpoint – Routing

 Use any available protocol to

traverse firewalls/NATs
 HTTP, TCP 62

[Brookshier, 2002]

JXTA (cont.)

63

[Brookshier, 2002]

P2P Middleware in Windows

 Available since Windows XP
 Supports IPv6, IPV4 needs

tunneling

 Graphing
 Overlay connectivity maintenance

 Flooding based

 Grouping
 Peers groups

 Access control

 Distributed name lookup

 Peer identity management

 Applications
 Windows HomeGroup, Meeting

Space, Internet Computer Names 64

[Microsoft, 2006a]

NSP – Name Service Provider

PNRP – Peer Name Resolution Protocol

Windows Peer Name Resolution Protocol

 Scalable, secure, & dynamic

name resolution protocol

 P2P ID

 End-point identifier of an

application, service, user, group

 Circular ID space

 Service location

 Locally unique service ID

 Peers cache IDs of other peers

 Hierarchical like Kademlia

 Iteratively search for peer(s)

with shorter distance to

destination

65

[Microsoft, 2006b]

http://technet.microsoft.com/en-us/library/Bb726971.pnrp04(l=en-us).gif

P2P Simulators

 OverSim
 OMNeT++ based, GUI, C++

 Prebuilt (un)structured protocols

 Underlay support, e.g., GT-ITM

 oversim.org

 PeerSim
 Java based

 Fast cycle-based simulation

 Prebuilt (un)structured protocols

 peersim.sourceforge.net

 Overlay Weaver
 Emulator

 Java based, GUI

 Prebuilt (un)structured protocols

 overlayweaver.sourceforge.net 66

OverSim

Overlay Weaver

Challenges & Opportunities

67

Challenges Opportunities

P2P communities
• Identify, form, & maintain

Community-aware performance

enhancements
• Lookup, fast download, reputation, trust,

etc.

• Interest-based topology adaptation

• Capturing/using social relationship

among peers

Topology missmatch & ISP traffic

blocking
• P4P, ALTO

• User’s don’t like ISPs to suggest

Transparent selection of local peers
• User & ISP friendly designs

• Incentives

• Network coordinates

QoS & QoE Best effort  deterministic

performance
• Predictable download times

• Real-time & VoD streaming

Challenges & Opportunities (cont.)

68

Challenges Opportunities

Free riding
• 15% of Gnutella peers contribute

to 94% of content

• 63% of peers never responded to

queries [Adar, 2000]

Incentives, trust, & enforcement
• Revenue models

• Ads, pay-per-click

• Retaining users after downloads

Security
• File pollution, viruses, worms

• Topology worms

• Anonymity

• Route poisoning, sink holes, Sybil

attacks

Content protection & overlay security
• Signed content

• Enabling/disabling anonymity

• Authentication & accountability
• Centralized solutions are proposed

• Community support to moderate

content

Copyright violation
• Direct/indirect infringement

Monitoring, enforcement
• Active/passive monitoring

Load imbalance Static & dynamic load balancing

Challenges & Opportunities (cont.)

69

Challenges Opportunities

Integrating P2P & social

networks
• Capturing social relationships

• Privacy

Enhanced performance, QoE
• Social graph-based P2P overlays

• Better incentives

• Better caching, replication, load

distribution

Low resilience in structured P2P
• Sudden departures

• Route failures

• Loss of content index

Maximize resilience/availability
• Enhancing consistency of replicas

Connectivity
• NAT, firewalls, & proxies

• 66% of BitTorrent peers are

behind firewalls [Zhang, 2009]

Connectivity services & tunneling
• Performance should not depend on

whether a peer is behind a NAT/firewall

Outline

 File sharing

 Unstructured vs. structured overlays

 Performance enhancements

 More state, caching, replication

 Opportunities & challenges

 Streaming

 Tree-push vs. mesh-pull

 Opportunities & challenges

 Resource sharing

 Collaborative P2P

 Resource aggregation

 Opportunities & challenges

70

P2P streaming

 Emergence of IPTV

 Content Delivery Networks (CDNs) can’t handle bandwidth

requirements

 No multicast support at network layer

 P2P

 Easy to implement

 No global topology maintenance

 Tremendous scalability

 Greater demand  Better service

 Cost effective

 Robustness

 No single point of failure

 Adaptive

 Application layer

71

P2P Streaming – Components

 Chunk

 Segment of the video stream

 E.g., one second worth of video

 Partners

 Subset of known peers that a peer may

actually talk to 72

(Hie, 2008)

(Zhang, 2005)

(Liu, 2008)

Tree-Push Approach

 Construct overlay tree starting from video source

 Parent peer selection is based on

 Bandwidth, latency, number of peers, etc.

 Data/chunks are pushed down the tree

 Multi-tree-based approach

 Better content distribution

 Enhanced reliability

73

Tree-Push Approach – Issues

 Connectivity is affected when peers at the top of the tree

leave/fail

 Time to reconstruct the tree

 Unbalanced tree

 Majority of the peers are leaves

 Unable to utilize their bandwidth

 High delay

74

(Zhang, 2005)

Mesh-pull approach

 A peer connects to multiple peers

forming a mesh

 Pros

 More robust to failure

 Better bandwidth utilization

 Cons

 No specific chunk forwarding path

 Need to pull chunks from partners/peers

 Need to know which partner has what

 Used in most commercial products

75

(Zhang, 2005)

Chunk Sharing

 Each peer

 Caches a set of chunks within a sliding window

 Shares its chunk information with its partners

 Buffer maps are used to inform chunk availability

 Chunks may be in one or more partners

 What chunks to get from whom?

76

(Hie, 2008)

Chunk Scheduling

 Some chunks are highly available while others are scare

 Some chinks needs to be played soon

 New chunks need to be pulled from video source

 Chunk scheduling consider how a peer can get chunks while

 Minimizing latency

 Preventing skipping

 Maximizing throughput

 Chunk scheduling

 Random, rarest first, earliest deadline first, earliest deadline & rarest

first

 Determines user QoE

 Most commercial products use TCP for chunk transmission

 Control message overhead ~1-2%

77

Random Scheduling

 One of the earliest approach – used in Chainsaw

 Peers periodically share buffer maps

 Select a random chunk & request it from one of the partners

having the chunk

 Some peers may experience significant playback delay

 1-2 minutes

 Skipping is possible

78 [Pai, 2005]

Rarest First Scheduling

 Used in CoolStraming

 Chunk = 1 sec video, 120 chunk in sliding window

 A peer gets the rarest chunk so that chunk can be spread to

its partners

 Steps

1. Gather buffer maps periodically

2. Calculate number of suppliers (i.e., partners with chunk) for each

chunk

3. Request chunks with the lowest number of suppliers

4. For chunks with multiple suppliers, request from the supplier with

highest bandwidth & free time

 Gather application-level bandwidth data for each partner

 Request are made through a bitmap
79

Rarest First (cont.)

 It is sufficient to maintain 4 partners

 Discover more peers overtime – use gossiping

 Keep only the partners that have sufficient bandwidth &

more chunks 80

(Zhang, 2005)

Rarest First (cont.)

 More robust than tree-push

approach

 Larger user community  Better

service quality

 Most users experience < 1 min

delay

81

(Zhang, 2005)

Queue-Based Scheduling

 Objectives – Continuity & quality

 Try to maximize bandwidth utilization

of peers

 Available bandwidth is inferred from

queue status

 Steps

1. Peers pull chunks from source (marked

as F)

2. Peers push chunks to its peers (marked

as NF)

3. If source is not busy, it push chunks to

peers (marked as NF)

82

[Guo, 2008]

Queue Based Scheduling (cont.)

 Queues have different priorities

 Missing chunks can be requested from source or peers

 Maintain a separate queue & a connection to each peer

 Prevents a slower peer from slowing down the whole system

83

[Guo, 2008]

Queue Based Scheduling (cont.)

 Server need to contribute more bandwidth

 More suitable for on-demand video

 Lower hierarchy reduce latency

 Less scalable

 Peer churn & failure can affect the continuity
84

[Guo, 2008]

Earliest Deadline First

 Objectives – Minimum playback delay & continuity

 Rule 1

 Chunk with the lowest sequence number has the highest priority

 So request chunk with the lowest sequence number

 Try to meet earliest deadline

 Rule 2

 Peer with the lowest, largest sequence number in buffer map has the

highest priority

 Falling behind, so let it seed up

85
[Chen, 2008]

Earliest Deadline First (cont.)

 DPC – Distributed Priority based Chunk scheduling

 L – Number of partners

 Lower playback delay

 Lower skipping
86

[Chen, 2008]

Hybrid Chunk Scheduling

 Combine both earliest deadline & rarest first

 Lower delay than CoolStreaming & Chainsaw

 Lower skipping
87

250 300 350 400 450 500
0.4

0.5

0.6

0.7

0.8

0.9

1

Streaming Rate (Kbps)

A
v
e
ra

g
e
 D

e
liv

e
ry

 R
a
ti
o

Global optimal algorithm

Proposed distributed algorithm

DONet method

One-layer PALS method

Chainsaw method

[Zhang, 2006]

Application-Aware Radar Networking

 Application-aware overlay networks

 Application-aware packet marking &

streaming

 In-network data fusion

 API for application-aware service

deployment

 Data-fusion latency estimation
88

[Lee, 2006]

[Banka, 2007]

Challenges & Opportunities

89

Challenges Opportunities

QoS & QoE
• Peer churn & failure

• 30% of users leave overlay

within 3 minutes [Tang, 2007]

• Asymmetric bandwidth

Best effort  deterministic

performance
• Real-time & VoD streaming

• Minimizing skipping & start-up delay

• Adaptive network formation & routing

• Integrating social networks

Heterogeneous devices Supporting
• Different video qualities

• Scree sizes

• Processing, memory, & bandwidth

• Coding designed for P2P

Digital rights management Distributing certificates/keys
• Pay-per-view, VoD, ads

Outline

 File sharing

 Unstructured vs. structured overlays

 Performance enhancements

 More state, caching, replication

 Opportunities & challenges

 Streaming

 Tree-push vs. mesh-pull

 Opportunities & challenges

 Resource sharing

 Collaborative P2P

 Resource aggregation

 Opportunities & challenges

90

Collaborative P2P Systems

 About interaction of groups

 Aggregate group(s) of resources
 Diversity in resources & capabilities is an asset

 Can accomplish greater tasks – beneficial to all peers

 Many applications
 DCAS (Distributed Collaborative Adaptive Sensing), P2P clouds,

GENI (Global Environment for Network Innovation), mobile P2P,

social networks

Download
song.mp3

91

Collaborative Adaptive Sensing of the

Atmosphere (CASA)

 Distributed Collaborative

Adaptive Sensing (DCAS)

system

 Concept

 A network of small radars instead

of one large radar

 Sense lower 3 km of atmosphere

 Collaborating & adapting radars

 Improved sensing, detection, &

prediction

 CASA goal

 Improve warning time & forecast

accuracy for hazardous weather

10,000 ft

tornado wind

snow

3
.0

5
 k

m

3
.0

5
 k

m

0 40 80 120 160 200 240
RANGE (km)

Horz. Scale: 1” = 50 km
Vert. Scale: 1” -=- 2 km

5
.4

 k
m

 1
 k

m

2
 k

m
 4

 k
m

gap

10,000 ft

tornado

wind
snow

3
.0

5
 k

m

3
.0

5
 k

m

0 40 80 120 160 200 240
RANGE (km)

92

CASA Oklahoma Test Bed

 Multiple high bandwidth streams

 Real-time communication

 Simultaneous observations by multiple radars

 Multi-sensor data fusion

 Heterogeneous infrastructure & end users

 Hostile weather conditions

Radar 1 Radar 2

Radar 3 Radar 4

Radar 1

Radar 2
Radar 3

Radar 4

WOSC Altus

Snyder

Cameron

Lawton Repeater

USAO Chickasha

RushSprings

Velma

Radio tower

Newcastle

OU Engineering

DS-3

DS-3 D
S

-3

D
S
-3

D
S
-3

D
S

-3

D
S

-3

D
S

-3

D
S
-3

OneNet

Hub-

Altus

Tower-

Altus
100Mb

Tower-

Snyder

OneNet

Hub-

Lawton

Tower-

Lawton

Tower-

RushSpri

ngs

Tower-

Velma

Tower-

Ardmore

OneNet

Hub-

Ardmore

100 Mb

Tower-

Newcast

Tower

Chickash

OneNet

Hub-

Chick

DS-3 SONET

OneNet

Hub-OKC

45M
b-E

thernet

WesternHeights

Tower Lexington

802.11B

3550

Each Hub Has existing

Fiber Based DS-3 to

OneNethub-OKC

DS-3

DS-3DS-3
DS-3

93

Large-Scale CASA Deployments

 Large-scale CASA deployments are lot

more computation, bandwidth, & storage

intensive

 New solid-state radar data rates in Gbps

 Distributed & heterogeneous resources

 Increased resource utilization

94

MC&C
Meteorological

command & control

CASA (cont.)

 Groups of multi-attribute resources

 Radars/sensors, processing, storage,

scientific algorithms

 Heterogeneous, dynamic, &

distributed

 Need to aggregate groups of

resources as and when needed

95

Multi-Sensor Data Fusion Applications

Event
notification

Event
subscription

Publisher/Subscriber

Event
Handler

Resource
Manager

Best Peer
Selection (BPS)

Neighboring Peers

P2P Collaboration Framework in a peer

Locate data

Peer Manager

Data

Peers

Events Probe
& cost

Task assignment
& data

Global Environment for Network

Innovations (GENI)

 Collaborative & exploratory platform for innovation

 Aggregating groups of resources across multiple administrative

domains 96

www.geni.net

Other Applications

 Depends on some form of

resource aggregation

 Multi-attribute, heterogeneous,

dynamic, & distributed

97

Community (P2P) clouds

Find

ATM

Mobile P2P

Multi-Attribute P2P Resource Aggregation

 Phases of resource aggregation
 Advertise resources

 Attributes & usage constrains

 Select best resources

 Match resources
 Bandwidth, latency, packet loss,

neighborhood (avoid ISP)

 Bind to resources
 Agreement between user & resource

 Use resources

 Release
 Task complete or decreased demand

 Process continues
 Demand increases

 Overcome/use fail/new resources
98

Advertise

Select

Match

Bind

Use

Release

[Bandara, 2011d]

Multi-Attribute Queries

 Specify multiple attributes & range of attribute values

 “Find 2 nodes”

 “Find 2 Linux nodes”

 “Find 2 nodes with CPU ≥ 2.0 GHz and 256 ≤ Memory ≤ 512 MB and

OS=“Linux 2.6” and Latency ≤ 50 ms”

 May also specify constraints

 “Find 2 GHz ×86 CPU: available between 12:00am-6:00am to my friends and

average utilization must be ≤ 60%”

 99

Queries

Single attribute

Exact

Range

Multi-attribute

Exact

Range

Resource Discovery – Unstructured P2P

100

Centralized

O(1)

Single point of failure

Unstructured

O(hopsmax)

Not guaranteed to find resources

Superpeer

O(hopsmax)

Not guaranteed to find resources

Unstructured P2P (cont.)

 Random walk
 Superpeer overlay

 Pros – low overhead, accurate state

 Cons – no guarantees, high latency

 Broadcast
 Best peer selection [Lee; 2007]

 Expanding tree [Yao, 2006]

 Pros – accurate state

 Cons – high overhead, not scalable

 Gossiping
 Agents carry resource information

[Kwan, 2010]

 Pros – low overhead, large coverage

 Cons – stale data, no guarantees
101

Random walk

Expanding tree

I

N1

N2

N3

Step 1 (PP:d1, PP:d2, PPd3)

Step 2 (FP:PP(d1), PP(d2), PP(d3))
Probe(P

P:d1, P
P:d2, P

P:d3)

Probe(PP:d1, PP:d2, PP:d3)

Probe(PP:d1, PP:d2, PPd3)

I

N1

N2

N3

Cost(PP:d1:5, PP:d2:20, PP:d3:12)

X

Application Request

Best peer selection

Unstructured P2P (cont.)

 Report to specific nodes

 Centralized
 Report to a known location

 E.g., GENI clearing house

 Pros

 Accurate state, guaranteed, low

adv/query cost

 Cons

 Single point of failure, not scalable

 Hierarchical
 Report to local repository

 Which in turn report to a regional

one

 e.g., GENI federated clearing house

102

[Ranjan, 2008]

UPnP (Universal Plug & Play) – upnp.org

 Pervasive P2P network

connectivity across

 PCs, mobile phones, TVs,

intelligent appliances,

sensors, actuators

 Data sharing,

communication & control

 Expressed using XML

 HTTP & TCP/IP for direct

communication

 Facilitates collaborative

P2P applications within

 Home, office, & everywhere in

between

103

www.orbitmicro.com

wordpress.com

Resource Discovery – Structured P2P

104

Distribute Hash Table (DHT)
O(log N)

Guaranteed performance

Not for dynamic systems

Resource Discovery – Multiple Rings

 Separate ring for each attribute
 Mercury [Bharambe, 2004]

 Locality preserving hashing
 Map attribute values to nearby nodes

 (v – vmin)/(vmax – vmin)

1. Multiple sub-queries
 Go to c1/m1/b1

 Then go from c1/m1/b1 to c2/m2/b2

using successors

 Finally, a database-like join

 Total cost O(N)

105

q

CPUSpeed BandwidthMemory

Query routing Peer originating query

(a)

Pointers

query = c1 ≤ CPU ≤ c2, m1 ≤

Memory ≤ m2, b1 ≤ BW ≤ b2






)(tQq

q
QUE

Rr

r
ADVTOTAL CCC


































Aqi
i

i
q

i
q
QUE

A

N

r

r
hC 1

max

Multiple Rings (cont.)

2. Single-Attribute Dominated

Queries (SADQ)
 Advertise attributes to all rings

 Pick min(c1 – c2, m1 – m2, b1 – b2)

 Search that ring

 Query stop as soon as desired

no of resources are found

 Low query cost

 High advertising cost

 Pros
 Support new attributes

 Cons
 Many routing entries

 Load balancing issue

106

q

CPUSpeed BandwidthMemory

Query routing Peer originating query

(a)

Pointers

query = c1 ≤ CPU ≤ c2, m1 ≤

Memory ≤ m2, b1 ≤ BW ≤ b2

Single Ring

 Single-partitioned ring
 LORM [Shen, 2007]

 Sword [Albrecht, 2008]

 Pros

 Few routing entries

 Cons

 Hard to add new attributes

 Load balancing issue

 Single-overlapped ring
 MAAN [Cai, 2004]

 Pros

 Few routing entries

 Relatively better load distribution

 Cons

 Easy to add new attributes

107

CPUSpeed BandwidthMemory

q

q

Resource Discovery in MANET

 Group nodes based on landmarks

 Mapped to a partitioned-ring

 Advertise resources to

 Nodes within own landmark

 Global address on ring

 Can locate nearby resources

 Reduce latency & hops

 Doesn’t work with many attributes

108

MADPastry [Zahn, 2005]

D-Torus – MURK [Ganesan, 2004a]

 Map attribute values to a d-torus

 Partition d-torus to zones

 A peer is responsible for a zone

 Track as a kd-tree

 Index in appropriate zone

 Greedy routing of queries

 Parallel search on neighboring zones

 Results are send to query originator

 Finally, database-like join

 Cons - high query cost

 Also, mapped to Chord using space

filling curves

 Cons – loose locality, cost is O(N) 109

Clock speed

B
a

n
d

w
id

th

Q1

Q2

MURK - MUlti-dimensional

Rectangulation with Kd-trees

D-Torus – Resource-Aware Overlay
[Costa, 2009]

 DHTs can’t track dynamic attributes

correctly

 Use only static attributes

 Form overlay by connecting peers

based on
 Partition torus into hierarchical cells

 Keep a pointer to a node in each level in

hierarchy & cell

 Identified using gossip protocol

 Query resolution
 Depth-first search starting from lowest

level cell

 Cons – high latency & support only

static attributes 110

A

Clock speed

B
a

n
d

w
id

th

Q1

Resource Selection, Match, & Bind

 Select

 Supported by all solutions

 Match

 Need access to multiple resources

 Superpeers index multiple resources

 Sword support latency & bandwidth as AS level

 MADPastry based on locality & latency

 Bind

 Need access to resource

 Superpeers, unstructured P2P, & resource-aware overlay

 No single solution support all 3 requirements

111

Summary of Structured P2P Solutions

112

Scheme Architecture Routing

mechanism

Lookup

overhead

(point query)*

Lookup

overhead

(range

query)*

Routing

table size*

Load

balancing

Mercury Multiple rings Successor &

long distant

links

O(1/k log2 n) O(n) k + 2 per

ring

Dynamic

LORM Partitioned

ring

Cycloid O(d) O(n) O(1) Static

MADPastry Partitioned

ring (locality

based)

Pastry O(log n) O(n) O(log l) Static

MAAN Single ring Chord O(log n) O(n) O(log n) Static

MURK d- torus CAN with long

distance links

O(log2 n) O(n) 2d + k Dynamic

SWORD Partitioned

ring, resource

matching

Chord O(log n) O(n) O(log n) Static

Resource-

aware

overlay

d- torus

partitioned

into cells

Links to peers

in other cells

O(n) O(n) O(d) Static

* n – number of peers in overlay, k – number of long distant links, d – number of dimensions, D - network diameter, l – number

of landmarks

Summary of All Solutions
Scheme Architecture Advertise Discover Select Match* Bind*

Flooding Flood advertisements

or queries

Yes N/A Guaranteed N/S When queries

are flooded

Gossiping Agents share resource

specifications they

know

Yes Yes Moderate

probability of

success

Simple

matching

N/S

Random walk Agents carry resource

specifications &

queries

Yes Yes Moderate

probability of

success

Simple

matching

When query

agents are

used

Superpeer 2-layer overlay Yes Yes Relatively high

probability of

success

Simple

matching

Yes

Mercury Multiple rings Yes N/A Guaranteed N/S N/S

LORM Partitioned ring Yes N/A Guaranteed N/S N/S

MADPastry Partitioned ring (based

on locality)

To local &

neighbor

partitions

N/A Guaranteed Latency &

hop count

N/S

MAAN Single ring Yes N/A Guaranteed N/S N/S

MURK d- torus Yes N/A Guaranteed N/S N/S

SWORD Partitioned ring,

resource matching

Yes N/A Guaranteed Yes N/S

Resource-

aware overlay

d- torus partitioned

into cells

Static

attributes

N/A Guaranteed N/S Yes

113

Resource & Query Characteristics

 Resources & queries are characterized by multiple

attributes

 Need detailed understanding to design, optimize, & validate

 No formal analysis  Many simplifying assumptions

 Few attributes

 Ignore cost of updating dynamic attributes

 i.i.d attributes

 Uniform/Zipf’s distribution of resources/queries

 Queries specifying a large number of attributes & a small range of

attribute values

 Leads to inaccurate designs, performance analysis, &

conclusions

114

Datasets

 PlanetLab node data
 Global research network for developing new network services,

protocols, & applications

 Reflects many characteristics of Internet-based distributed systems

 Heterogeneity, multiple end users, dynamic nodes, & global

presence

 Used to evaluate many preliminary P2P protocols & applications

 12 static & 34 dynamic attributes sampled every 5 min

 500-700 active nodes

 SETI@home

 Desktop grid

 Static resources from 300,000+ nodes

 21 static & 4 dynamic attributes

115

Resource Characteristics

116

 Resources satisfy a mixture of

probability distributions
 Gaussian – CPUSpeed, MemSize, DiskFree

 Pareto – TxRate, RxRate

 Many identical nodes

 Highly skewed distributions
 CPUFree, MemFree, CPU architecture

Clock speed of CPUs (GHz)
0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

D
e
n

s
it
y

0.0

0.2

0.4

0.6

0.8

1.0
CPUSpeed

~N(2.63, 0.43)

Free CPU and memory (%)

0 10 20 30 40 50 60 70 80 90 100

D
e
n

s
it
y

0.00

0.02

0.04

0.06

0.08

0.10

CPUFree

MemFree

Transmission rate (bps)

0 5000 10000 15000 20000

D
e
n

s
it
y

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

TxRate

~GPD(0, 953, 0.55)

CPU architecture

x86 PowerPC SPARC

N
o
 o

f
n

o
d

e
s

0

1e+5

2e+5

3e+5

4e+5

SETI@home

No of attribute value changes within 24 hours

0 50 100 150 200 250

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

1MinLoad

5MinLoad

FreeCPU

FreeMemory

TxRate

RxRate

Dynamic Attributes at Different Times

 Distribution of dynamic attributes

is stable over days

 Dynamic attributes & their rate of

change fits Pareto
 Same attributes/nodes change

frequently

 Many status updates

117

CPUFree (%)

0 20 40 60 80 100

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

t = t0

t = t0 + 12 hours

t = t0 + 1 day

t = t0 + 7 days

t = t0 + 14 days

TxRate (bps)

0 5000 10000 15000 20000

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

t = t0

t = t0 + 12 hours

t = t0 + 1 day

t = t0 + 7 days

t = t0 + 14 days

Memory Free (%)

0 20 40 60 80 100

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

t = t0

t = t0 + 12 hours

t = t0 + 1 day

t = t0 + 7 days

t = t0 + 14 days

Thresholds: CPUFree = MemFree = ± 10%,

1MinLoad = ± 2, TxRate = RxRate = ± 1 Kbps

CPUFree (%)

0 20 40 60 80 100

N
u
m

C
o
re

s

0

2

4

6

8

10

12

14

16

Resource Characteristics – Correlation

 Complex correlation among

attributes

 Correlation between attributes
 Static-dynamic

 Dynamic-dynamic

118

C
P

U
S

p
ee

d

N
u

m
C

o
re

s

C
P

U
F

re
e

1
M

in
L

o
ad

M
em

S
iz

e

M
em

F
re

e

D
is

k
F

re
e

T
x

R
at

e

NumCores -0.09

 CPUFree 0.02 0.48

 1MinLoad 0.03 -0.31 -0.57

 MemSize 0.06 0.28 0.26 -0.25

 MemFree 0.13 0.21 0.31 -0.35 0.25

 DiskFree -0.09 0.46 0.37 -0.29 0.54 0.23

 TxRate 0.08 -0.23 -0.26 0.24 -0.12 -0.17 -0.12

 RxRate 0.10 -0.23 -0.30 0.35 -0.13 -0.20 -0.16 0.85

C
P

U
S

p
ee

d

N
u

m
C

o
re

s

C
P

U
F

re
e

1
M

in
L

o
ad

M
em

S
iz

e

M
em

F
re

e

D
is

k
F

re
e

T
x

R
at

e

NumCores 0.04

 CPUFree -0.07 0.67

 1MinLoad 0.10 -0.42 -0.72

 MemSize 0.03 0.37 0.37 -0.33

 MemFree -0.07 0.37 0.37 -0.38 0.53

 DiskFree -0.20 0.60 0.52 -0.41 0.44 0.44

 TxRate 0.06 -0.35 -0.39 0.30 -0.07 -0.20 -0.29

 RxRate 0.07 -0.33 -0.42 0.41 -0.11 -0.21 -0.29 0.86

Pearson’s correlation coefficient Spearman’s ranked correlation coefficient ρ

Dynamic Attributes – Contemporaneous

Correlation

 Contemporaneous correlation among time series of

dynamic attributes

 Specific temporal pattern in MemFree

 Temporal patterns need to be preserved 119

0 10 20 30 40 50

C
P

U
F

re
e

 (
%

)

0

30

60

90

1
M

in
L

o
a

d

FreeCPU

1MinLoad

0 10 20 30 40 50

M
e

m
F

re
e

 (
%

)

25

50

75

100

125

D
is

k
F

re
e

 (
G

B
)

MemFree

DiskFree

Time (hours)
0 10 20 30 40 50

T
x
R

a
te

 (
K

b
p

s
)

0

2

4

6

8

R
x
R

a
te

 (
K

b
p

s
)TxRate

RxRate

Dynamic Attributes – Autocorrelation

 High autocorrelation in DiskFree & MemFree

 No noticeable change in DiskFree

 Temporal patterns need to be preserved
120

Lag

0 20 40 60 80 100 120 140 160 180 200

A
u
to

c
o
rr

e
la

ti
o
n

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CPUFree

1MinLoad

MemFree

DiskFree

Txrate

RxRate

MemSize
0.0 0.2 0.4 0.6 0.8 1.0

N
u
m

C
o
re

s

0.0

0.2

0.4

0.6

0.8

1.0

Generated data

Actual data

Modeling Static Attributes

 Need to preserve correlation
 Attribute values can’t be randomly drawn from marginal distributions

 Pearson’s correlation matrix is insufficient

 Copulas capture complex correlations
 Functions that couple multivariate distributions to their marginals

 Multivariate joint distribution defined on d-dimensional unit cube s.t.

marginal distribution ui is ~uniform(0, 1)



 Empirical copulas support complex/unknown distributions

& correlations


 x(i) ordered statistics of x

 No need to find distribution of attributes

 )(,),()(11 dd uFuFCuF 

n

yyxxyx

n

j

n

i
C

ji
n

)()(and s.t.),(pairs of No
,












Modeling Dynamic Attributes

 Specific temporal patterns in time series  Can’t draw

values randomly

 Contemporaneous correlation  Can’t draw independently

 Goal – Not to predict future behavior, but to generate

nodes with similar overall characteristics

 Not necessary to fit a model

 Build a library of time series segments

 Pick the most distinct pattern & split according to structural changes

 Preserve distinct temporal patterns

 Split other time series at same position & replay segments together

122

Time (hours)
0 12 24 36 48 60 72

M
e
m

F
re

e
 (

%
)

50

75

100

Modeling Dynamic Attributes (cont.)

 Initial approach – R strucchange package

 Better approach – Sliding window (w) looking for

significant change in average value (Δ) of 2 halves

of the window
123

niuxy ii
T
ii ,,1 

Check for Null

Hypothesis that

H0: βi = β0, i = 1, …, n

Time (hours)
0 12 24 36 48 60 72

M
e
m

F
re

e
 (

%
)

50

75

100

Sliding Window

w = 20, Δ = 30%

Dynamic Attributes – Contemporaneous

Correlation

 Split other time series at same position & replay segments

together

 Concatenate segments to form longer sequences

 Segments are index by static attributes 124

0 10 20 30 40 50

C
P

U
F

re
e

 (
%

)

0

30

60

90

1
M

in
L

o
a

d

FreeCPU

1MinLoad

0 10 20 30 40 50

M
e

m
F

re
e

 (
%

)

25

50

75

100

125

D
is

k
F

re
e

 (
G

B
)

MemFree

DiskFree

Time (hours)
0 10 20 30 40 50

T
x
R

a
te

 (
K

b
p

s
)

0

2

4

6

8

R
x
R

a
te

 (
K

b
p

s
)TxRate

RxRate

RESQUE – RESource & QUEry Generator

 NumCores establish correlation between static & dynamic

 Generate synthetic traces with n nodes, as static & ad dynamic

attributes over a given time t

 Also generate multi-attribute queries

 Beta version available – www.cnrl.colostate.edu/Projects/CP2P/ 125

Transform to uniform CDF

Calculate empirical copula

Generate random numbers

Inverse CDF transformation

Build library of time
series

Library of
time series

Select attributes

PlanetLab node data

C
o

p
u

la
 g

en
er

at
io

n

Draw random
samples

Static & instantaneous
dynamic attributes

Time series of dynamic
attributes

Time series of
dynamic attributes

Random vectors

NumCores

TxRate (bps)
0 5000 10000 15000 20000

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

Act - t = t0 + 12 hours, ( = 1771,  = 2377)

Gen - t = t0, ( = 1488,  = 2040)

Gen - t = t0 + 12 hours, ( = 1626,  = 2249)

Gen - t = t0 + 1 day, ( = 1669,  = 2665)

Gen - t = t0 + 7 days, ( = 1539,  = 2174)

Gen - t = t0 + 14 days, ( = 1564,  = 2287)

CPUSpeed (GHz)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

Actula, ( = 2.63,  = 0.43)

Generated, ( = 2.63,  = 0.44)

CPUFree (%)
0 20 40 60 80 100

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

Act - t = t0+ 12 hours, ( = 76.6,  = 29.8)

Gen - t = t0, ( = 79.6,  = 28)

Gen - t = t0 + 12 hours, ( = 79.4,  = 28.2)

Gen - t = t0 + 1 day, ( = 79.7,  = 27.7)

Gen - t = t0 + 7 days, ( = 78.3,  = 28.8)

Gen - t = t0 + 14 days, ( = 78,  = 28.8)

Resource Generation – Validation

 Using 300 nodes over a week 

generated 5,000 nodes over 2 weeks

 Satisfy Kolmogorov-Smirnov (KS) test

with a significance level of 0.05

 Statistically accurate data

126

Attribute

R
es

pT
im

e

1M
in
Lo

ad

C
P
U
Fre

e

D
is
kF

re
e

M
em

Fre
e

TxR
at

e

C
P
U
S
pe

ed

M
em

S
iz
e

Lo
ca

tio
n

5M
in
Lo

ad

U
pT

im
e

B
W

Li
m

it

O
S
N
am

e
G
N
P

K
er

nV
er

D
rif

t

N
um

S
lic

es

C
P
U
B
us

y

D
is
kS

iz
e

H
as

V
ia

N
o
 o

f
q
u
e
ri

e
s

0

20

40

60

80

100

120

140

160

180

Query Characteristics

 441 queries, 9 moths

 Few attributes in a query
 80% queries specify 1 or 2 attributes

 Skewed but not Zipf’s

 Less specific attribute ranges
 89% queries request CPUFree of 40-100%

 70% queries request DiskFree of 5-1000GB

 Dynamic attributes are popular

 Large number of resources
 73 resources per query

127

FreeCPU (%)

0 10 20 30 40 50 60 70 80 90 100

N
o

 o
f
q

u
e

ri
e

s
 r

e
q

u
e

s
ti
n

g
 x

%
 F

re
e

C
P

U

0

20

40

60

80

100

No of distinct attributes specified in query
0 1 2 3 4 5 6 7

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

x = Cluster size

1 10 100

C
u

m
m

u
la

ti
v
e

 d
is

tr
ib

u
ti
o

n
 o

f
q

u
e

ri
e

s
 >

 x

0.001

0.01

0.1

1

Cluster of queries

Cluster of attributes

Comparison of Existing Solutions

 Most prior assumptions are not valid

 Resources

 Many attributes, mixture of distributions, skewed, correlated, change

rapidly

 Queries

 Few attributes, request many resources, large range of attribute

values, skewed

 Need to validate existing designs under real-workloads
 Mostly extensions of single-attribute solutions

 Contributions
 Simple cost model for advertising & querying

 Simulated 7 designs using PlanetLab resources & query traces

 Unable to deliver desired performance, load balancing, etc.

128

Time (hours)

0 12 24 36 48 60 72

T
o

ta
l
c
o
s
t
(h

o
p

s
)

0

3x107

6x107

9x107

Centralized

Unstructured

Superpeer

Multi-ring + SADQ

Partitioned-ring + SADQ

Overlapped-ring + SADQ

d-Torus

No of attributes

12 15 18 21 24

C
o

s
t
p

e
r

q
u
e

ry
 (

h
o
p

s
)

0

200

400

600

800

Multi-ring + Sub-query

Multi-ring + SADQ

Partitioned-ring + Sub-query

Partitioned-ring + SADQ

Overlapped-ring + SADQ

Simulation of Different Solutions

 Rings – higher advertising cost

 Partitioned ring – Disproportionate load

distribution

 Superpeers – Balance cost & load but can’t

locate all resources 129

No of attributes

12 15 18 21 24

T
o

ta
l
a

d
v
e

rt
is

in
g

 c
o
s
t
(h

o
p

s
)

0

107

2x107

3x107

Multi-ring + Sub-query

Multi-ring + SADQ

Partitioned-ring + Sub-query

Partitioned-ring + SADQ

Overlapped-ring + SADQ

Static attributes only

Number of nodes (N)

400 600 800 1000

C
o
s
t

p
e
r

q
u

e
ry

 (
h

o
p

s
)

0

200

400

600

800

1000

Multi-ring + SADQ

Partitioned-ring + SADQ

Overlapped-ring + SADQ

Simulation of Different Solutions (cont.)

 Large range of attribute values  cost of ring-based designs O(N)
130

N Multi-ring + SADQ Partitioned-ring +

SADQ

Overlapped-ring +

SADQ

Min Ave Max Min Ave Max Min Ave Max

250 0 9.2 239.1 0 3.7 19.4 0 9.1 238.4

527 0 13.7 509.0 0 4.6 27.6 0 13.5 506.0

750 0 16.2 719.1 0 4.9 36.6 0 16.5 719.9

1000 0 19.8 975.5 0 5.3 45.3 0 20.4 963.8

Index size

0 100 200 300 400 500

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

Multi-ring + SADQ

Partitioned-ring + SADQ

Overlapped-ring + SADQ

Load Distribution

 Unbalanced index size & query load
131

Architecture

Total Cost per Query Query Load Index Size

Min Max
Min Max

SWORD Uniform SWORD Uniform SWORD Uniform

Centralized 2.03 2.03 950,000 950,000 950,000 950,000 527 527

Unstructured 69.5 94.8 4,859 1,272 268,497 37,824 1 1

Superpeer 6.5 9.5 81,021 22,390 289,626 87,209 17 36

Multi-ring + SADQ 48.3 69.0 0 0 178,492 22,943 0 527

Multi-ring + Sub-queries 398.8 120.8 0 0 624,837 57,518 0 230

Partitioned-ring + SADQ 36.6 37.0 0 0 185,972 15,840 0 527

Partitioned-ring + Sub-queries 40.7 16.4 0 0 432,859 46,946 0 527

Overlapped-ring + SADQ 46.0 67.2 0 0 391,738 57,524 0 527

No of queries answered

0 1e+5 2e+5 3e+5 4e+5

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

Multi-ring + SADQ

Partitioned-ring + SADQ

Overlapped-ring + SADQ

N = 527, Attributes = 24

Challenges & Opportunities

133

Challenges Opportunities

Diversity in
• Resources

• Application requirements

• Complex inter-resource

relationships

New solutions
• Support large number of resources &

attributes
• Consider real-world resource & query

characteristics

• How to specify application requirements

& constraints

• Efficiently track & match inter-resource

relationships

No solution satisfy select, match,

& bind

Supporting select, match, & bind

within a single solution
• Track inter-node

• Bandwidth, latency, jitter, packet loss,

etc.

• Social relationships

• Distributed resource binding

Challenges & Opportunities (cont.)

134

Challenges Opportunities

High cost
• Query cost

• Advertising dynamic attributes

Enhance performance
• Better support for dynamic attributes

• Reduce query cost
• New DHT mechanisms

• Efficient updates – static/dynamic

thresholds to reduce number of

updates

Load balancing Dynamic/adaptive solutions
• Based on queries & updates

• Based on resources being indexed

• Supporting many attributes & values
• Some attributes have few values

Overcoming resource failures &

unavailability

Resource compensation
• Substituting one resource with another

• CASA – can process faster to

accommodate high transmission delay

due to lack of bandwidth

Challenges & Opportunities (cont.)

135

Challenges Opportunities

Increasing user participation Incentives, security, & trust
• Essential in collaborative P2P

• Virtual currency schemes to support

community clouds

Capturing large & high resolution

datasets

Tools to

• Capture datasets

• Generate statically accurate synthetic

datasets

Comments & Questions

136

Anura P. Jayasumana

 Electrical & Computer Engineering,

Colorado State University,

Fort Collins, CO 80525&

Anura.Jayasumana@Colostate.edu

www.engr.colostate.edu/~anura

Bibliography
1. E. Adar and B.A. Huberman, Free Riding on Gnutella, 2000.

2. J. Albrecht, D. Oppenheimer, D. Patterson, and A. Vahdat, Design and implementation tradeoffs for

wide-area resource discovery, ACM Trans. Internet Technol, 8(4), Sep. 2008.

3. H. M. N. D. Bandara and A. P. Jayasumana, Exploiting Communities for Enhancing Lookup

Performance in Structured P2P Systems, IEEE Int. Conf. on Communications (ICC2011), June 2011.

4. H. M. N. Dilum Bandara and Anura P. Jayasumana, On Characteristics and Modeling of P2P

Resources with Correlated Static and Dynamic Attributes, IEEE GLOBECOM ‘11, Dec. 2011.

5. H. M. N. D. Bandara and A. P. Jayasumana, Characteristics of Multi-Attribute Resources/Queries and

Implications on P2P Resource Discovery, 9th ACS/IEEE Int. Conf. On Computer Systems And

Applications (AICCSA 2011), Dec. 2011.

6. H. M. N. D. Bandara and A. P. Jayasumana, Community-Based Caching for Enhanced Lookup

Performance in P2P Systems, 2011, under review.

7. H. M. N. D. Bandara and A. P. Jayasumana, Evaluation of P2P Resource Discovery Architectures

Using Real-Life Multi-Attribute Resource and Query Characteristics, IEEE Consumer Communications

and Networking Conf. (CCNC ‘12), Jan. 2012.

8. T. Banka, P. Lee, A. P. Jayasumana and J. F. Kurose, An Architecture and a Programming Interface for

Application-Aware Data Dissemination Using Overlay Networks, COMSWARE 2007, Jan. 2007.

9. A. R. Bharambe, M. Agrawal, and S. Seshan, Mercury: Supporting scalable multi-attribute range

queries, ACM SIGCOMM ‘04, Aug.-Sep. 2004.

10. R. Bland, D. Caulfield, E. Clarke, A. Hanley, and E. Kelleher, “P2P routing,” Available:

http://ntrg.cs.tcd.ie/undergrad/4ba2.02-03/p9.html

137

Bibliography
11. D. Brookshier, Overview of JXTA, Aug. 2002, Available:

www.developer.com/java/other/article.php/10936_1450221_1

12. M. Cai, M. Frank, J. Chen, and P. Szekely, MAAN: A multi-attribute addressable network for grid

information services, Journal of Grid Computing, Jan 2004.

13. Z. Chen, K. Xue, and P. Hong, A study on reducing chunk scheduling delay for mesh-based P2P live

streaming, 7th Int. Conf. on Grid and Cooperative Computing, 2008, pp. 356-361.

14. Cisco Systems, Inc., Cisco Visual Networking Index: Forecast and Methodology, 2008–2013, June

2009.

15. Cisco Systems, Inc., Approaching the Zettabyte Era, June 2008.

16. E. Cohen and S. Shenker, Replication strategies in unstructured peer-to-peer networks, ACM

SIGCOMM ‘02, Aug. 2002.

17. P. Costa, J. Napper, G. Pierre, and M. Steen, Autonomous resource selection for decentralized utility

computing, 29th Int’l. Conf. Distributed Computing Systems, June 2009.

18. G. DeCandia et al., Dynamo: Amazon's highly available key-value store, ACM SIGOPS Operating

Systems (SOSP '07), vol. 41, no 6, Oct. 2007, pp. 205-220.

19. P. Ganesan, B. Yang, and H. Garcia-Molina, One torus to rule them all: Multi-dimensional queries in

P2P systems. 7th Int’l Workshop on the Web and Databases (WebDB ‘04), June 2004.

20. P. Ganesan, K. Gummadi, and H. Garcia-Molina, Canon in G major: designing DHTs with hierarchical

structure, 24th Int. Conf. on Distributed Computing Systems, 2004, pp. 263-272.

21. P. B. Godfrey and I. Stoica, Heterogeneity and load balance in distributed hash tables, IEEE INFOCOM,

Mar. 2005.
138

Bibliography
22. S. Guha, N. Daswani, and R. Jain, An Experimental Study of the Skype Peer-to-Peer VoIP System, 5th

Int. Workshop on Peer-to-Peer Systems (IPTPS ‘06), Feb. 2006.

23. Y. Guo, C. Liang, and Y. Liu, Adaptive queue-based chunk scheduling for P2P live streaming, IFIP

Networking, May 2008.

24. X. Hei, Y. Liu, and K. W. Ross, IPTV over P2P streaming networks: the mesh-pull approach, IEEE

Communications Magazine, vol. 46, no. 2, Feb. 2008, pp. 86-92.

25. T. Koponen et al., A data-oriented (and beyond) network architecture, SIGCOMM '07, 2007.

26. S. Kwan and J. K. Muppala, Bag-of-tasks applications scheduling on volunteer desktop grids with

adaptive information dissemination, IEEE LCN ‘10, Oct. 2010, pp. 560-567.

27. C. Leng, W. W. Terpstra, B. Kemme, W. Stannat, and A. P. Buchmann, Maintaining replicas in

unstructured P2P systems, ACM Int. Conf. on Emerging Networking Experiments and Technologies

(CoNEXT), Dec. 2008.

28. B. Leong, B. Liskov, E. D. Demaine, EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive

Routing State Management, 12th Int. Conf. on Networks, 2004.

29. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, Search and replication in unstructured peer-to-peer

networks, 16th Int. Conf. on Supercomputing (ICS ‘02), June 2002, pp. 84-95.

30. Microsoft, Introduction to Windows Peer-to-Peer Networking, Sep. 2006, Available:

http://technet.microsoft.com/en-us/library/bb457079(d=printer).aspx

31. Microsoft, Peer Name Resolution Protocol, Sep. 2006, Available: http://technet.microsoft.com/en-

us/library/bb726971(printer).aspx

32. R Morselli, B. Bhattacharjee, A. Srinivasan, and M. A. Marsh, Efficient lookup on unstructured

topologies, 24th ACM Symposium on Principles of Distributed Computing (PODC '05), July 2005. 139

Bibliography
33. P. Lee, T. Banka, A. P. Jayasumana, and V. Chandrasekar, Content Based Packet Marking for

Application-Aware Processing in Overlay Networks, IEEE LCN ‘06, Nov. 2006.

34. P. Lee, A. P. Jayasumana, S. Lim, and V. Chandrasekar, A Peer-to-Peer Collaboration Framework for

Multisensor Data Fusion, Int. Joint Conf. on Computer, Information, and Systems Sciences, and

Engineering (CISSE ‘07), Dec. 2007.

35. A. Legout, N. Liogkas, E. Kohler, and L. Zhang, Clustering and Sharing Incentives in BitTorrent

Systems, SIGMETRICS ‘07, June 2007.

36. J. Liu, S. G. Rao, B. Li, and H. Zhang, “Opportunities and challenges of peer-to-peer internet video

broadcast,” In Proc. of IEEE, vol. 96, no. 1, Jan. 2008, pp. 11-24.

37. P. Maymounkov and D. Mazières, Kademlia: A peer-to-peer information system based on the XOR

metric, 1st Int. Workshop on Peer-to-peer Systems (IPTPS ‘02), Feb. 2002, pp. 53-65.

38. V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy and A. E. Mohr, Chainsaw: eliminating trees from

overlay multicast, 4th Int. Workshop on Peer-to-Peer Systems (IPTPS), Feb. 2005, pp. 127-140.

39. V. Ramasubramanian and E. G. Sirer, Beehive: O(1) lookup performance for power-law query

distributions in peer-to-peer overlays, 1st Symposium on Networked Systems Design and

Implementation (NSDI), 2004, pp. 99-112.

40. R. Ranjan, A. Harwood, and R. Buyya, Peer-to-Peer based resource discovery in global grids: a tutorial,

IEEE Commun. Surveys, vol. 10, no. 2, 2008.

41. A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, Load balancing in structured P2P

systems, 2nd Int. Workshop on P2P Systems (IPTPS), Feb. 2003.

42. W. Rao, L. Chen, A. W. Fu, and Y. Bu, Optimal proactive caching in peer-to-peer network: analysis and

application, 6th ACM Conf. on Information and Knowledge Management (CIKM ‘07), Nov. 2007, pp. 663-

672.
140

Bibliography
43. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable content-addressable

network, ACM Special Interest Group on Data Communication (SIGCOMM ‘01), Aug. 2001.

44. J. Seedorf, S. Kiesel, and M. Stiemerling, Traffic Localization for P2P-Applications: The ALTO

Approach, IEEE P2P ‘09, 2009.

45. H. Shen, C. Xu, and G. Chen, Cycloid: A constant-degree and lookup-efficient P2P overlay network,

Performance Evaluation, vol. 63, no. 3, Mar. 2006, pp. 195-216.

46. H. Shen, A. Apon, and C. Xu, LORM: supporting low-overhead P2P-based range-query and multi-

attribute resource management in grids, 13th Int. Conf. on Parallel and Distributed Systems, (ICPADS

‘07), Dec. 2007.

47. M. Sozio, T. Neumann, and G. Weikum, Near-optimal dynamic replication in unstructured peer-to-peer

networks, 27th ACM symposium on Principles of Database Systems (PODS ‘08), June 2008, pp. 281-

290.

48. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, Chord: a scalable peer-to-peer

lookup service for internet applications, ACM SIGCOMM ‘01, 2001, pp. 149-160.

49. I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, Internet Indirection Infrastructure, ACM

SIGCOMM, Aug. 2002.

50. D. Stutzbach, R. Rejaie, and S. Sen, Characterizing unstructured overlay topologies in modern P2P

file-sharing systems, IEEE/ACM Transactions on Networking, vol. 16, no. 2, April 2008.

51. Y. Tang, L. Sun, K. Zhang, S. Yang, and Y. Zhong, Longer, better: On extending user online duration

to improve quality of streaming service in P2P networks, IEEE Int. Conf. on Multimedia and Expo, July

2007.

52. H. Xie, A. Krishnamurthy, A. Silberschatz, and Y. Richard Yang, P4P: Explicit Communications for

Cooperative Control Between P2P and Network Providers, P4P WG Whitepaper, May 2007.
141

Bibliography
53. J. Yao, J. Zhou, and L. Bhuyan, Computing real time jobs in P2P networks, IEEE LCN, Nov. 2006, pp.

107-114.

54. T. Zahn and J. Schiller, MADPastry: a DHT substrate for practicably sized MANETs, 5th Workshop

Applications and Services in Wireless Networks, June/July 2005.

55. B. Zhang, A. Iosup, J. Pouwelse, D. Epema, and H. Sips, On Assessing Measurement Accuracy in

BitTorrent Peer-to-Peer File-Sharing Networks, Delft University of Technology, 2009.

56. M. Zhang, Y. Xiong, Q. Zhang, and S. Yang, On the optimal scheduling for media streaming in data-

driven overlay networks, GLOBECOM ‘06, Nov.-Dec. 2006.

57. X. Zhang, J. Liu, B. Li, and T. P. Yum, CoolStreaming/DONet: a data-driven overlay network for

efficient live media streaming, INFOCOM 2005, Mar. 2005.

58. M. Zhong, K. Shen, and J. Seiferas, Replication degree customization for high availability, European

Conf. on Computer Systems (EuroSys '08), Apr. 2008, pp. 55-68.

59. J.F. Buford, H. Yu and E.K. Lua, P2P Networking and Applications, Morgan Kaufmann, 2009.

142

