Casa Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere

Evaluation of P2P Resource Discovery Architectures Using Real-Life Multi-Attribute Resource and Query Characteristics

H. M. N. Dilum Bandara and Anura P. Jayasumana

Electrical and Computer Engineering, Colorado State University, Fort Collins, CO. dilumb@engr.colostate.edu

University of Massachusetts Amherst

University of Oklahoma

Colorado State Universit

Puerto Rico Mayaguez

CASA is primarily supported by the Engineering Research Centers Program of the National Science Foundation under NSF award number 0313747.

Motivation

Desktop grids

- Throughput
- Static attributes
 - CPU speed, architecture, GPUs

Community (P2P) clouds

- QoE & QoS
- Dynamic attributes
 - Free CPU, bandwidth

Radar networks

- QoS & latency
- Static & dynamic attributes
 - CPU speed, free CPU, bandwidth

Contribution

Evaluate P2P multi-attribute resource discovery solutions using real-world resources & queries

- Collaborative P2P applications need to discover resources
 - Characteristics & models of resources\queries are essential in design, validation, & performance analysis
 - Existing solutions have relied on many simplifying assumptions
 - Characteristics of real-world resources & queries are different from those assumptions
- Fundamental design choices needs to be reevaluated using behavior learned from actual systems
 - Understand applicability, best practices, what not to do

Objectives

- Understand characteristics & model multi-attribute resources
 - Static attributes [Heien, 2011]
 - Static & dynamic attributes, & queries [Bandara, 2011a]
 - Model resources & synthetic resource generation [Bandara, 2011b]
 - Existing performance studies assume
 - i.i.d attributes, uniform/Zipf's distribution of attributes, queries specify small range of attribute values, ignored dynamic attributes, replication of small datasets, etc.
 - Not valid
- Evaluate fundamental design choices for P2P multi-attribute resource discovery
 - Cost of advertising/querying resources, index size, load balancing
- E. Heien et al., "Correlated resource models of Internet end hosts," ICDCS '11, June 2011.
- H.M.N.D. Bandara & A.P. Jayasumana, "Characteristics of multi-attribute resources/queries and implications on P2P resource discovery," AICCSA '11, Dec. 2011.
- H.M.N.D. Bandara & A.P. Jayasumana, "On Characteristics and Modeling of P2P Resources with Correlated Static and Dynamic Attributes," IEEE GLOBECOM '11, Dec. 2011.

Dataset

- PlanetLab node data
 - Global research network for developing new network services, protocols, & applications
 - Reflects many characteristics of Internet-based distributed systems
 - Heterogeneity, multiple end users, dynamic nodes, & global presence
 - Used to evaluate many preliminary P2P protocols & applications
- Rich dataset
 - Resources from CoMon (comon.cs.princeton.edu)
 - 12 static & 34 dynamic attributes
 - 5 min samples
 - 500-700 active nodes
 - Collected between Nov 1 to 15, 2010
 - Queries from SWORD (sword.cs.williams.edu)
 - 441 queries collected over a year

Multi-Attribute Resources & Queries

Resources

- CPUSpeed = 2.4 GHz and CPUFree = 54% and MemorySize = 4096 MB and OS="Linux 2.6"
- Specify
 - Set of attributes & their attribute values
 - Static & dynamic attributes
 - Advertised every time an attribute value (significantly) change
- Queries
 - Find 2 nodes with CPUSpeed ≥ 2.0 GHz and $256 \leq MemorySize \leq 512$ MB and OS="Linux 2.6"
 - Specify
 - Required number of resources
 - Multiple attributes
 - Range of attribute values

Resource Characteristics – Distributions

- Resources satisfy a mixture of probability distributions
 - Gaussian CPUSpeed, MemSize, DiskFree
 - Pareto TxRate, RxRate
 - Many identical nodes
- Highly skewed distributions
 - CPUFree, MemFree, CPU architecture

Resource Characteristics – Correlation

Spearman's ranked correlation coefficient ρ

	CPUSpeed	NumCores	CPUFree	1MinLoad	MemSize	MemFree	DiskFree	TxRate
NumCores	0.04							
CPUFree	-0.07	0.67						
1MinLoad	0.10	-0.42	-0.72					
MemSize	0.03	0.37	0.37	-0.33				
MemFree	-0.07	0.37	0.37	-0.38	0.53			
DiskFree	-0.20	0.60	0.52	-0.41	0.44	0.44		
TxRate	0.06	-0.35	-0.39	0.30	-0.07	-0.20	-0.29	
RxRate	0.07	-0.33	-0.42	0.41	-0.11	-0.21	-0.29	0.86

- Complex correlation among attributes
 - Static-dynamic attributes
 - Dynamic-dynamic attributes
- Contemporaneous correlation among time series
- Distinct temporal patterns

Resource Characteristics – Rate of Change in Dynamic Attributes

Thresholds: $CPUFree = MemFree = \pm 10\%$, $1MinLoad = \pm 2$, $TxRate = RxRate = \pm 1$ Kbps

- Rate of change fits a generalized Pareto distribution
- Wide variation among attributes & their rate of change
 - 32% of nodes significantly change their dynamic attributes 100 or more out of 288 samples
 - Each attribute value change → New advertisement or status update
 9

Query Characteristics

- Few attributes in a query
 - 80% queries specify 1 or 2 attributes
- Less specific attribute ranges
 - 89% queries request CPUFree of 40-100%
 - 70% queries request DiskFree of 5-1000GB
- Skewed but not Zipf's
- Dynamic attributes are popular
- Large number of resources
 - 73 resources per query

Design Choices – Unstructured P2P

 $\begin{array}{c} \textbf{Centralized}\\ O(1)\\ \textbf{Single point of failure} \end{array}$

 $\begin{array}{c} \textbf{Unstructured} \\ O(hops_{max}) \\ \text{Not guaranteed to find resources} \end{array}$

- 1. Sub-queries
- 2. Single Attribute Dominated Queries (SADQ)

Design Choices – Structured P2P (Cont.)

Connect resources based on their static attributes

Simulation Setup

- 7 representative architectures
- PlanetLab data to preserve mixture of distributions, complex correlation, temporal patters, etc.
 - − Nodes active over 3 days → 527 active nodes
 - Use 441 queries to generate large query set
 - Empirical distributions derived using no of attributes per query, popularity of attributes, range of attribute values, no of resources
 - Conditional probabilities to preserver correlation
- 750 & 1,000 node networks generated using our synthetic data generation tool [Bandara, 2011b]
- Unstructured & superpeer topologies
 - B-A scale-free network generator (available at mathworks.com)
 - $hop_{max} = 100$ (unstructured) & 10 (superpeer)
- Structured overlays based on Chord

Performance of Design Choices

200 Cost

0

12

15

- Low cost
 - Centralized, superpeer, & partitioned ring
- Sub-queries
 - Low advertising cost & high query cost
- SADQ
 - Low query cost & high advertising cost

24

21

Multi-ring + Sub-guery Multi-ring + SADQ Partitioned-ring + Sub-guery

Partitioned-ring + SADQ Overlapped-ring + SADQ

18 No of attributes

Simulation of Different Solutions (cont.)

• Large range of attribute values \rightarrow cost of ring-based designs O(N)

Load Distribution

	Total Cost per Query		Query Load				Index Size	
Architecture			Min		Max			
	SWORD	Uniform	SWORD	Uniform	SWORD	Uniform	Nin	Max
Centralized	2.03	2.03	950,000	950,000	950,000	950,000	527	527
Unstructured	69.5	94.8	4,859	1,272	268,497	37,824	1	1
Superpeer	6.5	9.5	81,021	22,390	289,626	87,209	17	36
Multi-ring + SADQ	48.3	69.0	0	0	178,492	22,943	0	527
Multi-ring + Sub-queries	398.8	120.8	0	0	624,837	57,518	0	230
Partitioned-ring + SADQ	36.6	37.0	0	0	185,972	15,840	0	527
Partitioned-ring + Sub-queries	40.7	16.4	0	0	432,859	46,946	0	527
Overlapped-ring + SADQ	46.0	67.2	0	0	391,738	57,524	0	527

N = 527, Attributes = 24

17

Unbalanced index size & query load

Summary of Findings

- Rapidly changing dynamic attributes
 - High advertising cost
 - Their impact should not be ignored
- Less specific range queries
 - Resources are relatively easier to find using unstructured & superpeer
 - Partitioned-ring have lower cost
 - Sub-queries are expensive
 - Cost of ring-based designs is effectively O(N)
- Skewed distribution of attribute values & popularity
 - Few nodes index most resources
 - Few nodes answer most queries
 - In partitioned & multiple rings some nodes don't index or answer queries at all

Conclusions

- Complex real-world resources & queries
 - Mixture of distributions, correlated, skewed, dynamic attributes, less specific queries
- Solutions lack scalability
 - Each solution is applicable under very specific conditions
 - Real-world queries are relatively easier to resolve using unstructured & superpeer
 - Effective cost of ring-based designs *O*(*N*)
 - Load balancing issues in all solutions (except unstructured P2P)
 - P2P load balancing solutions also fail under real-world characteristic
- Better solutions are need
 - More scalable, efficient, & robust
 - Consider real-world resource & query characteristic at design time
 - Hybrid designs

casa

RESQUE – RESource & QUEry Generator

- Generate large synthetic traces of multi-attribute resources & queries while preserving correlation & temporal patterns
- Useful for large-scale performance studies in P2P, grid, & cloud computing
- Beta version available www.cnrl.colostate.edu/Projects/CP2P/

casa

Questions/Comments

Anura.Jayasumana@ColoState.edu www.cnrl.colostate.edu/Projects/CP2P/

University of Massachusetts Amherst

University of Oklahoma

Colorado State University

Puerto Rico Mayagues

CASA is primarily supported by the Engineering Research Centers Program of the National Science Foundation under NSF award number 0313747

